Advances in Biomass-Derived Carbon Materials for Energy Storage and Conversion
Keywords:
Biomass-derived carbon materials, Fabrication techniques, Structure tuning strategies, Energy storage, Energy conversionAbstract
Amid the global energy crisis and the pursuit of carbon neutrality, biomass-derived carbon materials (BDCs) have emerged as promising sustainable candidates for energy applications due to their abundant sources, tailorable hierarchical porosity/heteroatom doping, and remarkable properties. This review systematically summarizes recent advances (2020 to 2025) in BDCs for supercapacitors, secondary batteries (lithium/ sodium/potassium-ion), and electrocatalysis (ORR/OER/HER/CO₂RR). The review focuses on the synthesis-structure-performance correlation, highlighting how pore architecture, heteroatom incorporation, and morphology govern electrochemical performance. Key challenges including precursor inconsistency, imperfect structure control, and scalability in sustainable production are critically assessed. Future prospects are proposed, including machine-learning-guided material design, in situ/operando mechanistic studies, and practical device integration. This work offers insightful guidance for the rational design of BDCs toward practical energy storage and conversion systems.