Sodium Silicate, Potassium Silicate, and Copper Sulfate’s Effectiveness In Vitro and In Silico against the Wood-decaying Fungus Phanerochaete chrysosporium
Keywords:
Wood biodegradation, Wood fungal protection, Silicate treatments, Docking interactionAbstract
Wood modification via silicon ingredients was investigated to increase its resistance to biological decay. Surfactant and desiccant features of derived products of silicates are considered the main contributors in wood resistance to decay. The detected fungus from decayed wood sample was identified as Phanerochaete chrysosporium. Inhibitory tests showed that sodium silicate (SS) was more effective than potassium silicate (PS) and copper sulfate (CS) against P. chrysosporium growth. The weight loss of infected wood with P. chrysosporium without treatment was 32.2%, while treatment by SS, PS, and CS reduced weight loss to 4.3%, 11.5%, and 14.3%, respectively, over 40 days. To ducument the effect of SS, PS, and CS on P. chrysosporium, molecular docking was used to evaluate the binding interactions of these compounds with the active site (Lignin peroxidase) of P. chrysosporium (PDB ID: 1QPA). Binding affinities were determined via docking scores, conformational energies, placement energies, and refinement parameters evaluation. SS exhibited the strongest docking scores (S = -6.17 to -5.83) and favorable interactions, including metal coordination and hydrogen bonding. PS and CS showed moderate to weak binding, with distinct interaction patterns. These computational results highlight SS as a potential candidate for further experimental validation in targeting the 1QPA protein.