Comparative Review of Natural and Synthetic Binders for Microbial Fuel Cell Electrodes
Keywords:
Binding materials, Bioelectrochemical system, Electrode, Environmental sustainability, Microbial fuel cellAbstract
Microbial fuel cells (MFCs) are a promising technology for renewable energy and environmental remediation. The performance of MFCs is greatly influenced by the binder materials used on the electrodes, which must have good conductivity, stability, and compatibility with microorganisms. Synthetic binders, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyuretane (PU), geopolymer binder, and polyvinyl alcohol (PVOH), are commonly used due to their electrochemical properties but are expensive and not environmentally friendly. In contrast, natural binders, such as chitosan, sucrose, carboxymethylcellulose (CMC), and vegetable oils, provide cost-effective and environmentally friendly alternatives. This review synthesizes findings from various studies, comparing the electrochemical properties, stability, and sustainability of chemical and natural binders. The review identifies key research gaps and suggests future directions to improve the performance of natural binders in MFCs, making them more viable for large-scale applications in terms of cost and environmental impact. Natural binders have the potential to be a sustainable alternative in MFC electrode development.