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Precise segmentation of subtle wood defects is crucial for optimizing wood 
utilization and product value. Despite the prevalence of deep learning in 
wood defect detection, its deployment in real-world forestry environments 
is impeded by three primary challenges: 1: The limited capacity of 
traditional models to represent low-contrast, faint defect features; 2: 
feature ambiguity caused by complex background interference; and 3: 
entrapment in local optima because of insufficient global feature 
integration. To surmount these obstacles, this study proposes WD-SEG 
(Wood Defect Segmentation), a high-performance model tailored for 
complex forestry scenarios. The architecture integrates three core 
modules: an Augmented Feature Network (AFN) to mitigate spatial 
information loss; a Threshold Filtering Network (TFN), which leverages 
cosine similarity to adaptively suppress background noise; and a novel 
Interstellar Collision Optimization (ICO) algorithm to accelerate 
convergence and bypass local optima. Experimental evaluations on the 
wood defect training dataset demonstrate that WD-SEG outperforms 
state-of-the-art models, achieving an Intersection over Union (IoU) of 
87.97% and an accuracy of 90.02%. Furthermore, generalization tests on 
wood defect datasets confirm the model’s robustness, yielding an IoU of 
86.50%. By introducing a novel “Enhance-Filter-Accelerate” framework, 
this study provides a precise, robust solution for automated wood quality 
inspection in resource-constrained environments. 
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INTRODUCTION 
 

As a fundamental industrial material, wood is susceptible to surface and internal 

defects—such as cracks, knots, decay, and wormholes—during its growth and processing. 

These wood defects not only significantly reduce wood utilization rates and product value, 

but they also compromise its structural safety and service life (Chen et al. 2023). 

Consequently, achieving rapid and precise segmentation of wood defects is of critical 

importance for enhancing production quality and control efficiency in the forestry industry 

(Dou et al. 2025). 

Early defect identification used manual inspection, which was inefficient and 

subjective. With the advent of machine vision, image processing-based detection methods 

have been progressively adopted. Traditional approaches typically employ color space 

conversions (e.g., HSV, Lab) combined with threshold segmentation, or utilizing texture 
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features (e.g., GLCM, LBP) to construct classification models. In recent years, the rapid 

advancement of computer vision and deep learning has empowered Convolutional Neural 

Network (CNN)-based methods, such as U-Net (Ronneberger et al. 2015) and DeepLab 

(Chen et al. 2017), to demonstrate significant potential in automatically extracting features 

and localizing defect regions. 

However, as a traditional industry, wood processing presents unique challenges for 

defect segmentation due to diverse material textures and variable environmental 

conditions. Faint surface defects, including knots, cracks, and pest damage, frequently 

blend seamlessly with natural grain patterns (Dong et al. 2025). Consequently, existing 

methods exhibit considerable limitations when detecting subtle defects (e.g., minute 

cracks, scratches) and low-contrast targets. Subtle defects are often characterized by fine 

textures, low contrast, and irregular shapes (Zhuo et al. 2022), while low-contrast defects—

constrained by lighting, material properties, or imaging equipment—often exhibit blurred 

edges and high noise interference. These factors frequently lead to missed detections or 

false positives in traditional segmentation approaches (Dong et al. 2019). 

Furthermore, existing deep learning-based methods often demonstrate limited 

generalization capabilities. Traditional CNNs possess a limited capacity to represent the 

features of low-contrast defects, making it difficult to capture targets with blurred edges or 

subtle grayscale variations. Moreover, complex background interference can cause feature 

confusion, degrading model performance in noisy environments. Most models are trained 

on single-species datasets, limiting their adaptability to multi-species scenarios and varying 

environmental conditions (e.g., differences in lighting and viewing angles). Additionally, 

the high computational resource consumption during training restricts their deployment in 

resource-constrained real-world scenarios (Chen et al. 2020). Therefore, balancing high 

accuracy with computational efficiency and robust generalization remains a core challenge 

in wood defect segmentation. 

To address these challenges, this study proposes an innovative wood defect 

segmentation model, WD-SEG. By integrating mechanisms for feature enhancement, noise 

filtering, and intelligent optimization, the model significantly improves segmentation 

precision, generalization, and efficiency for subtle and low-contrast defects. The primary 

contributions of this study are as follows: 

1. In this work, a hierarchical encoder-decoder structure is proposed for wood defect 

segmentation, named WD-SEG (Wood Defect Segmentation). This model employs an 

“Enhance-Filter-Accelerate” integrated framework to resolve the difficulty of 

accurately segmenting faint defects on wood surfaces against complex forestry 

backgrounds. 

2. An Augmented Feature Network (AFN) is developed that leverages spatial and 

channel attention mechanisms to effectively reinforce the feature response of subtle 

defects characterized by blurred edges and minimal grayscale differences. This 

module demonstrates significant advantages in extracting features from subtle and 

low-contrast defects. 

3. A Threshold Filtering Network (TFN) is developed based on directional consistency 

modeling and an adaptive binarization mask generation mechanism. This network 

exhibits superior selectivity in suppressing background noise and pseudo-responses, 

effectively filtering out irrelevant information. 
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4. The Interstellar Collision Optimization (ICO) algorithm is developed. It simulates 

celestial gravitational and collision mechanisms to achieve global optimization. This 

algorithm accelerates model convergence and reduces reliance on computational 

resources, overcoming the tendency of traditional gradient descent methods to become 

trapped in local optima. 

 

Related Work 
Efficient attention methods 

Attention mechanisms have emerged as pivotal techniques for enhancing the 

performance of deep learning models. Within the domain of computer vision, particularly 

for dense prediction tasks such as image segmentation, the efficient capture of both local 

and global contextual information is of paramount importance. For instance, the CSWin 

Transformer (Dong et al. 2022) introduces cross-shaped window self-attention, which 

performs self-attention within local windows and incorporates horizontal and vertical 

window cross-branching. This design effectively balances local feature interaction with 

global information flow, thereby yielding improved model accuracy without a prohibitive 

increase in computational complexity. Regarding multi-scale feature fusion, the Channel 

and Spatial Attention Fusion Network (CSAFNet), proposed by Lei et al. (2022), leverages 

synergistic channel and spatial attention to bolster feature representations across disparate 

encoding streams, thereby refining detail-capturing capabilities. Furthermore, Bi-Level 

Routing Attention (Liu et al. 2022) employs a dual-level routing mechanism to achieve 

dynamic, content-aware allocation of computational resources, offering an efficient 

solution for high-resolution image processing. Collectively, these advancements provide a 

robust foundation for developing efficient attention modules tailored for tasks requiring 

meticulous local comprehension and broad global context, such as wood defect 

segmentation. From the perspective of engineering optimization, Flash Attention 2 (Dao 

2023) significantly accelerates computational throughput and minimizes memory 

footprints by optimizing parallelization and tiling strategies for GPU memory access, all 

while preserving the original mathematical definition of attention. Such optimizations 

facilitate the deployment of sophisticated attention-based models in resource-constrained 

environments. Moreover, various approaches focused on mathematical reconstruction—

such as Optimized Attention and Efficient Attention—further demonstrate the potential for 

enhancing the efficiency of standard attention mechanisms (Hosseini 2024). 

 

Optimization algorithm 

In wood defect segmentation, the complex noise patterns often lead traditional 

gradient-based methods into local optima. The selection of an optimization algorithm 

governs the convergence rate, final performance, and generalization capability of a model 

(Chen et al. 2024). Within the realm of adaptive optimizers, AdamW (Loshchilov and 

Hutter 2017) mitigates the overfitting tendencies inherent in the original Adam optimizer 

by decoupling weight decay from gradient updates. This modification significantly bolsters 

generalization, establishing AdamW as the predominant choice for training large-scale 

architectures, such as Vision Transformers (ViTs). 

Recently, several efficient optimization paradigms tailored for large-scale training 

have emerged. Specifically, the Sophia optimizer (Liu et al. 2023) introduces a lightweight 

second-order approach that employs diagonal Hessian estimates as a preconditioner. By 

integrating an element-wise clipping mechanism to constrain update magnitudes in worst-

case scenarios, Sophia demonstrates accelerated convergence over AdamW in language 
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modeling tasks. From a theoretical perspective, Cohen et al. (2021) characterized the “Edge 

of Stability” phenomenon, where gradient descent typically operates in a regime where loss 

surface sharpness adapts dynamically. This finding provides a novel lens through which 

the practical dynamics of modern neural network optimizers can be understood. 

 

 

EXPERIMENTAL 
 

Proposed Methods 
The WD-SEG model developed in this study is designed to address critical 

limitations in existing wood defect segmentation methods, specifically their insufficient 

accuracy, limited sensitivity to subtle and low-contrast defects, and low computational 

efficiency.  

 

 

Fig. 1. Overall framework diagram of WD-SEG wood defect segmentation model 
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The core philosophy of the proposed method involves the integration of novel 

feature extraction and enhancement mechanisms, adaptive strategies for filtering irrelevant 

information (noise), and an intelligent algorithm combining multi-dimensional search with 

global optimization. These components work synergistically to achieve precise 

segmentation and effective discrimination of defect regions, with a particular focus on 

subtle and low-contrast defects characterized by blurred edges, minimal grayscale 

variation, and fine texture changes. The WD-SEG architecture comprises three pivotal 

modules: the AFN, TFN, and ICO algorithm. The overall framework is illustrated in Fig. 

1. 

 

Amplified Feature Network 
In semantic segmentation, the encoder-decoder architecture uses convolution and 

down sampling to extract high-dimensional features. However, the inevitable loss of spatial 

detail during this process poses a significant challenge for identifying subtle wood defects, 

which requires high spatial sensitivity. Furthermore, standard convolution operations treat 

all feature channels uniformly, failing to account for the varying importance of information 

encoded across different channels. For low-contrast defects, faint signals are typically 

concentrated in only a few key channels. If these informative channels are not adaptively 

enhanced while irrelevant background features are suppressed, the defect signals risk being 

obscured, thereby compromising the model’s overall generalization capability. 

While existing attention mechanisms offer potential solutions to these issues, they 

are typically implemented as lightweight, add-on modules. In contrast, the AFN proposed 

in this study is designed as a robust, deeply integrated module. The core philosophy of the 

AFN is to synergistically perform non-linear transformations and self-calibration on 

features across both spatial and channel dimensions along the critical feature propagation 

path. This approach significantly amplifies defect-related information while suppressing 

noise and redundancy. It is worth noting that despite its robust design, the AFN’s 

integration into the deeper layers ensures that its computational footprint remains minimal 

due to reduced spatial dimensions. This allows the model to prioritize high-fidelity feature 

extraction without significantly compromising real-time performance. Specifically, the 

AFN takes the feature tensor down-sampled from the fourth layer of the encoder as input, 

which is formulated as shown in Eq. 1: 

𝑋𝑜𝑢𝑡 = 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑋; 𝛩𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ⊕ 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑋; 𝛩𝑠𝑝𝑎𝑡𝑖𝑎𝑙) (1) 

In Eq. 1, Fchannel and Fspatial represent the channel and spatial feature extraction networks, 

respectively, Θ  denotes their parameters, and ⊕  indicates the element-wise addition 

operation. Prior to the summation, the outputs of the two sub-networks are passed through 

an optional convolutional layer to adjust the channel dimensions, thus ensuring a consistent 

output. The network described above compensates for the spatial information loss caused 

by down-sampling by modeling dependencies in the spatial dimension, thereby capturing 

the global contextual information of the entire feature map. The detailed forward 

propagation process is as follows: 

 

Dual pooling and embedding 

Global Average Pooling (GAP) and Global Max Pooling (GMP) are applied 

simultaneously to the input X, mapping it from a high-dimensional space to a highly 

abstract spatial descriptor. The operations can be formulated as Eqs. 2 and 3, respectively. 
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𝑍𝑎𝑣𝑔 = 𝐺𝐴𝑃(𝑋) =
1

𝐻 × 𝑊
∑ ∑ 𝑋(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

  𝑧𝑎𝑣𝑔 ∈ 𝑅𝐶𝑖𝑛 (2) 

𝑍𝑚𝑎𝑥 = 𝐺𝑀𝑃(𝑋) = 𝑋(𝑖, 𝑗)𝑖=1:𝐻,𝑗=1:𝑊
𝑚𝑎𝑥   𝑧𝑚𝑎𝑥 ∈ 𝑅𝐶𝑖𝑛 (3) 

Here, GAP extracts the statistical mean of global features, which is sensitive to the 

overall context, while GMP captures the most salient local features, which is sensitive to 

potential subtle defect points. Their combination thus provides complementary spatial 

information. 

 

Non-linear dimensionality reduction and transformation 

Both descriptors are then passed through a shared-parameter Multi-Layer 

Perceptron (MLP). This MLP employs a bottleneck structure designed to introduce non-

linearity and reduce computational complexity. Specifically, the first linear layer 

(parameterized by W1) reduces the dimension from 𝐶into 𝐶in/𝑟, and the second linear layer 

(parameterized by W2) subsequently restores it to 𝐶in, as detailed in Eqs. 4 and 5. 

𝑆𝑎𝑣𝑔 = 𝑊2 · 𝛿(𝑊1 · 𝑧𝑎𝑣𝑔 + 𝑏1) + 𝑏2 (4) 

𝑆𝑚𝑎𝑥 = 𝑊2 · 𝛿(𝑊1 · 𝑧𝑚𝑎𝑥 + 𝑏1) + 𝑏2 (5) 

In these equations, W1 and W2 are the weight matrices, b1 and b2 are the bias terms, and δ 

denotes the ReLU activation function. The weights W1  and W2  enable the network to 

process information derived from the two distinct pooling operations with a consistent 

transformation. 

 

Spatial attention weight generation 

The two transformed feature vectors are summed, and a spatial importance weight 

vector Sis generated through a Sigmoid activation function. Each element in corresponds 

to a comprehensive importance score for a specific channel across all spatial locations, as 

detailed in Eq. 6. 

S=σ(Savg+Smax) (6) 

Here, σ represents the Sigmoid function, which maps values to the interval (0, 1). The 

generated spatial weight vector sis then multiplied with the original input feature map X in 

an element-wise, channel-wise manner, yielding the spatially enhanced feature Xspatial, as 

specified in Eq. 7. 

𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝑋 ⊗ 𝑆 (7) 

In this process, for the channel feature Xspatial , X is adaptively scaled for each 

channel by combining it with the weight 𝑠, thereby enhancing the channels that contain 

important spatial contextual information. GAP and GMP are applied to compress spatial 

dimensions, resulting in two distinct channel descriptors, as detailed in Eqs. 8 and 9, 

respectively. 

𝑢𝑎𝑣𝑔 = GAPspatial(𝑋) ∈ 𝑅𝐶𝑖𝑛 (8) 

𝑢max = GMPspatial(𝑋) ∈ 𝑅𝐶𝑖𝑛 (9) 
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Subsequently, 𝑢𝑎𝑣𝑔  and 𝑢max  are processed by another MLP (which shares the 

same bottleneck structure as the one in the spatial network but with independent, non-

shared parameters), as detailed in Eqs. 10 and 11, respectively. 

𝐶avg = 𝑊2
′ ⋅ 𝛿(𝑊1

′ ⋅ 𝑢𝑎𝑣𝑔 + 𝑏1
′ ) + 𝑏2

′ (10) 

𝐶max = 𝑊2
′ ⋅ 𝛿(𝑊1

′ ⋅ 𝑢𝑚𝑎𝑥 + 𝑏1
′ ) + 𝑏2

′ (11) 

The outputs of the two MLPs are summed and then passed through a Sigmoid 

function to generate the channel attention weight vector c, as specified in Eq. 12. 

𝐶 = 𝜎(𝑐avg + 𝑐max) (12) 

The channel weight vector 𝐶 then multiplied with the original input X, yielding the 

channel-enhanced feature Xchannel . This operation achieves adaptive selection across 

different feature channels, amplifying the key feature channels associated with defects. The 

process is detailed in Eq. 13. 

𝑋channel = 𝑋 ⊗ 𝐶 (13) 

The spatially enhanced feature Xspatialand the channel-enhanced feature Xchannel are 

fused, as shown in Eq. 14. 

𝑋𝑜𝑢𝑡 = 𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝑋𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (14) 

To allow for more flexible control over the fusion process, a learnable weighting 

parameter α (initialized to 0) is introduced. This enables the network to adaptively 

determine from which sub-network to learn more. Subsequently, a small convolutional 

network is employed to automatically learn the fusion weights, as formulated in Eq. 15. 

𝑋𝑜𝑢𝑡 = 𝛼 · 𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + (1 − 𝛼) · 𝑋𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (15) 

Xout represents the final output of the AFN, which is a refined feature where both 

spatial and channel information are synergistically enhanced. 

In summary, the AFN is integrated into the WD-SEG framework primarily to 

preserve critical defect feature information. Addressing the loss of spatial details caused 

by convolutional downsampling—which hinders the identification of dispersed wood 

defects—we incorporated the AFN as a dedicated branch.  

 

Threshold Filtering Network 
AFN-enhanced feature maps are dense, and they contain irrelevant information, 

which can degrade performance during up sampling and increase computational cost. This 

issue is particularly critical when processing low-contrast defects, where faint signals are 

highly susceptible to noise interference. To address this challenge, the Threshold Filtering 

Network (TFN) is introduced in this work. 

The core premise of the TFN is to formulate feature filtering as a binary decision 

problem. By employing an adaptive threshold learning mechanism, the TFN transforms 

continuous feature maps into sparse binary attention masks, explicitly distinguishing 

between “salient” and “secondary” feature regions. Functioning as a gating mechanism, 

this ensures that only significant features propagate through the network. The specific 

procedure is as follows: 
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 (1) Feature tensor reshaping: The input feature tensor Xout is flattened along the 

spatial dimension to form a set of h feature vectors. Each vector encapsulates all channel 

information corresponding to a specific spatial coordinate (i, j). 

(2) Spatial gradient calculation: To capture the spatial variation trends of each 

feature point, the first-order differences (approximate gradients) in both horizontal and 

vertical directions were computed. Specifically, the horizontal feature vector Gh(i,j) is 

derived by calculating the difference between each position and its right-adjacent neighbor, 

as defined in Eq. 16: 

Gh(i,j)=Xout(i,j+1)-Xout(i,j) (16) 

To preserve the dimensions, zero-padding is applied to the rightmost column. The 

vertical feature vector is then obtained by calculating the difference between each position 

and its neighbor below, as detailed in Eq. 17: 

𝐺𝑣(𝑖, 𝑗) = 𝑋𝑜𝑢𝑡(𝑖, 𝑗 + 1) − 𝑋𝑜𝑢𝑡(𝑖, 𝑗)     𝑓𝑜𝑟     𝑗 = 1, … , 𝐻 − 1 (17) 

The gradient vectors, Gh(i,j)  and Gv(i,j) , jointly describe the direction and 

magnitude of the fastest feature change at point (𝑖, 𝑗) . The cosine value between the 

horizontal and vertical gradient vectors is computed, and its absolute value is used as a 

measure of feature consistency at that point, as specified in Eq. 18: 

𝑐𝑜𝑠 𝜃(𝑖,𝑗) =
|⟨𝐺ℎ(𝑖, 𝑗), 𝐺𝑣(𝑖, 𝑗)⟩|

‖𝐺ℎ(𝑖, 𝑗)‖2 ·  ‖𝐺𝑣(𝑖, 𝑗)‖2 + 𝜀
(18) 

In this formulation, the term 𝑐𝑜𝑠 denotes the cosine similarity, ‖∗‖2 represents the 

L2 norm, and 𝜀 is a small constant introduced to prevent division-by-zero errors. A cosine 

value approaching 1 indicates that the gradient vectors are nearly parallel (0° or 180°). 

This parallelism suggests consistent feature variation trends across orthogonal 

directions, implying a high probability that the corresponding location represents a salient 

defect feature. Conversely, a value approaching 0 implies that the gradient vectors are 

nearly orthogonal (90°). This directional inconsistency typically characterizes background 

noise or complex textures rather than structural defects. 

Upon generating the importance score map, a thresholding operation is required to 

facilitate binary decision-making. While conventional methods often rely on manually 

preset hyper-parameters, this approach lacks flexibility. To address this, a learnable 

parameter is introduced, enabling the network to adaptively optimize the threshold level 

during training via global loss backpropagation. The final binary mask M is generated 

using a step function approximated by a Straight-Through Estimator (STE), as defined in 

Eq. 19: 

𝑀(𝑖, 𝑗) = ∐[𝑆(𝑖, 𝑗) > 𝑡ℎ𝑟] = {
1   𝑖𝑓 𝑆(𝑖, 𝑗) > 𝑡ℎ𝑟
0   𝑜therwise       

(19) 

In this formulation, ∐ denotes the indicator function. During backpropagation, the 

Straight-Through Estimator (STE) propagates gradients directly from the output to the 

input layer, effectively bypassing the non-differentiability of the step function. The 

utilization of cosine similarity offers two primary architectural advantages. First, it 

enhances scale robustness; by normalizing features via the L2 norm, the model becomes 

invariant to feature magnitude, prioritizing feature direction over absolute amplitude. 

In summary, the TFN is designed to refine the enhanced feature matrix by pruning 

task-irrelevant information inherited from the AFN, effectively categorizing features into 
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“salient” and “secondary” tiers. Operatively, the TFN maps the composite feature matrix 

to the spatial domain and evaluates the orthogonality of gradient vectors via an attention 

mechanism. A cosine similarity approaching zero (implying a 90° angle) indicates a lack 

of directional consensus, which is characteristic of background noise rather than structural 

defects. By imposing a learnable threshold 𝑡ℎ𝑟 , the network selectively enhances 

informative features while suppressing noise. Specifically, feature responses with 

similarity scores falling below 𝑡ℎ𝑟 —indicating low directional consistency—are 

suppressed (set to 0), while those exceeding 𝑡ℎ𝑟 are retained (set to 1).  

To further elucidate the internal mechanism of the Threshold Filtering Network 

(TFN), the intermediate feature maps were visualized to demonstrate its pruning efficacy. 

As illustrated in Fig. 2, the feature map produced by the Augmented Feature Network 

(AFN) effectively captures the faint signals of subtle defects but inherently retains 

significant background interference, such as natural wood grain and uneven lighting. 

Upon processing by the TFN, the model calculates the directional consistency of 

feature gradients and generates an adaptive binary attention mask. This mask explicitly 

distinguishes between “salient” defect regions and “secondary” background textures. By 

applying this sparse gating mechanism, task-irrelevant noise is effectively suppressed 

while the high-fidelity structural features of the defects are preserved.  

 

 

Fig. 2. Visual interpretability of the AFN and TFN module 

 

Interstellar Collision Optimization Algorithm 
Intelligent optimization algorithms have demonstrated remarkable efficacy in 

addressing complex combinatorial optimization problems. However, these methods often 

necessitate manual customization based on domain-specific expertise and lack 

transferability across different problem instances, resulting in computational inefficiency. 

Consequently, designing a tailored intelligent optimization algorithm specifically for wood 

defect recognition is of paramount importance. 
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The training of deep neural networks constitutes a high-dimensional, non-convex 

optimization challenge. Traditional gradient-based methods, such as Stochastic Gradient 

Descent (SGD) and Adam, are prone to entrapment in local optima and exhibit high 

sensitivity to hyperparameters, particularly the learning rate.  

To overcome these limitations, the Interstellar Collision Optimization (ICO) 

algorithm is introduced here. Conceptualizing the solution space as a universe and 

candidate solutions as celestial bodies, ICO precisely simulates two fundamental 

interactions: gravitation and collision. This mechanism effectively equilibrates the trade-

off between global search and local refinement, enabling the model to escape local optima 

and converge efficiently towards the global optimum. The fundamental principles of ICO 

are detailed below. 

 (1) Quality Mapping Function 

Assuming the objective is to minimize 𝑓(𝑥), this study employs the following 

quality mapping function, as shown in Eq. 20, 

𝑀𝑖(𝑡) =
1

1 + 𝑓(𝑋𝑖(𝑡)) − 𝑓𝑏𝑒𝑠𝑡

(20) 

where 𝑋𝑖(𝑡)  denotes the position vector of the  𝑖 − 𝑡ℎ  celestial body at time t, 𝑀𝑖(𝑡) 

represents the mass of the 𝑖 − 𝑡ℎ celestial body at time t, and f
best

 is the optimal function 

value found in the current population. This function ensures that the mass is always positive 

and that better solutions possess greater mass. 

The gravitational force causes a celestial body 𝑖 to be attracted by another body j, 

which in turn alters the velocity of body 𝑖. In the ICO algorithm, instead of computing the 

gravitational forces between all pairs of celestial bodies, each body is only attracted by the 

current best solution (best) and another randomly selected high-quality solution, as 

specified in Eqs. 21 and 22, respectively. 

𝐹𝑖
𝑏𝑒𝑠𝑡(𝑡) = 𝐺 · 

𝑀𝑖(𝑡) · 𝑀𝑏𝑒𝑠𝑡(𝑡)

‖𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)‖2 + 𝜀
 · (𝑋best(𝑡) − 𝑋𝑖(𝑡)) (21) 

𝐹𝑖
𝑟𝑎𝑛𝑑(𝑡) = 𝐺 · 

𝑀𝑖(𝑡) · 𝑀𝑘(𝑡)

‖𝑋𝑘(𝑡) − 𝑋𝑖(𝑡)‖2 + 𝜀
 · (𝑋𝑘(𝑡) − 𝑋𝑖(𝑡))   (𝑘 ≠ 𝑖, 𝑘 ≠ 𝑏𝑒𝑠𝑡) (22) 

In these equations, G is the gravitational constant, which decays as the number of 

iterations increases to enhance convergence in the later stages. The velocity update is 

determined by the acceleration caused by gravitational forces, as detailed in Eq. 23: 

𝑉𝑖(𝑡 + 1) = 𝜔 · 𝑉𝑖(𝑡) +
𝐶𝑖

𝑀𝑖(𝑡)
 · (𝐹𝑖

𝑏𝑒𝑠𝑡(𝑡) + 𝐹𝑖
𝑟𝑎𝑛𝑑(𝑡)) (23) 

Collision is the key mechanism for ICO to escape local optima. In this study, the 

collision condition is defined as follows: if the distance between two celestial bodies i and 

j is less than the collision radius 𝑟_𝑐𝑜𝑙𝑙𝑖𝑑𝑒 and the difference in their fitness values is 

greater than a threshold 𝛿, a collision event is triggered, as specified in Eq. 24: 

‖𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)‖ < 𝑅𝑐𝑜𝑙𝑙𝑖𝑑𝑒 𝑎𝑛𝑑 |𝑓(𝑋𝑖(𝑡)) − 𝑓 (𝑋𝑗(𝑡))| > 𝛿 (24) 

After a collision, the two celestial bodies do not annihilate but rather merge and 

recombine to produce one or more new offspring bodies, which replace the poorer solution 
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among the parents. For celestial bodies that do not collide, their positions are updated in 

the standard manner, as shown in Eq. 25: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (25) 

The new solutions generated from collisions are directly inserted into the 

population, typically replacing one or several of the current worst solutions in terms of 

mass. The flowchart of the Planetary Collision Optimization algorithm and its key 

algorithm are illustrated in Fig. 3. 

In summary, the ICO algorithm is employed to enhance the training efficiency of 

the WD-SEG model and facilitate the search for global optima. Within the optimization 

process, the collision mechanism models stochastic perturbations during exploration. 

These events induce significant shifts in the solution space, effectively enabling the 

algorithm to escape entrapment in local optima. 

 

 

Fig. 3. (a) Interstellar Collision Optimization (ICO) algorithm iteration process. (b) Schematic 
diagram of the optimization process of Interstellar Collision Optimization algorithm 

 

 

RESULTS AND DISCUSSION 
 
Wood Defect Training Dataset 

The Wood Defect Training Dataset (Kodytek et al. 2022) is derived from real-world 

wood imagery sourced from an open-source repository. As a subset of a large-scale wood 

surface defect database, it comprises over 8,000 images covering common defect 

categories. For the purpose of training the WD-SEG model, the dataset was randomly 

partitioned into training and validation sets at an 8:2 ratio. Representative examples of 

these defect categories are illustrated in Fig. 4. 
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Fig. 4. Example of wood defect categories in the wood defect training dataset 

 

Analysis of the dataset reveals a hierarchical structure in defect distribution, 

characterized by significant variations in prevalence. Missing Knots constitute the 

predominant category, accounting for 26% of the dataset. This prevalence is approximately 

1.3 times that of the second-highest category, Live Knots (20%), and 6.5 times that of the 

rarest category, Insect Damage (4%). The second cluster is formed by Live Knots and Dead 

Knots (15%), which collectively represent 35% of the data. The third tier comprises Quartz 

(12%) and Cracks (10%); while the difference between them is only 2% points, the 

prevalence of Cracks is merely 38% of that of Missing Knots. Pith (8%) and Resin (5%) 

occupy the fourth tier, with a 3% differential, where Resin accounts for only 19% of the 

Missing Knot volume. Finally, Insect Damage (4%) occupies the lowest tier, representing 

only 15% of Missing Knots, 20% of Live Knots, and 27% of Dead Knots. This imbalance 

indicates that the dataset accurately reflects the natural distribution of wood defects in real-

world environments.  

 

Wood Defect Dataset 
Similarly, the Wood Defect Dataset (Pavel et al. 2021), also derived from real-

world open-source imagery, includes categories such as cracks, dead knots, live knots, and 

pith. Samples from this dataset are presented in Fig. 5. 

 

 

Fig. 5. Example of wood defect categories in the wood defect dataset 
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Data Processing 
All images in the Wood Defect Training dataset were manually annotated using the 

Labelme software. Special attention was paid to complex defects that may encapsulate non-

defect regions; to avoid mislabeling background textures as defects, images were annotated 

at high magnification to ensure meticulous contour tracing. Upon completion, the 

generated JSON annotation files were converted into binary masks (PNG format) to align 

with the model's input requirements, as illustrated in Fig. 6. 

 

 

Fig. 6. Example of wood defects after LabelMe software  

 
Evaluation Criteria 

To ensure a fair evaluation of the segmentation model’s performance, this study 

employed the current mainstream evaluation metrics, including Intersection over Union 

(IoU), Precision, Recall, and Accuracy, to assess the model's efficacy. 

The confusion matrix components presented are defined as follows: 

(1) True Positives (TP): Defective regions correctly classified as defective; 

(2) False Negatives (FN): Defective regions incorrectly classified as non-defective; 

(3) False Positives (FP): Non-defective regions incorrectly classified as defective; 

(4) True Negatives (TN): Non-defective regions correctly classified as non-

defective. 

Intersection over Union (IoU): Defined as the ratio of the intersection to the union 

of the predicted and ground truth sets, IoU serves as the primary metric for evaluating 

semantic segmentation performance. It quantifies the spatial overlap between the predicted 

mask and the ground truth, directly reflecting the model’s capability to accurately delineate 

target boundaries. The calculation is defined in Eq. 26: 

IoU =
TP

TP + FN + FP
(26) 

Precision measures the proportion of pixels predicted as positive that truly belong 

to the target class. In binary segmentation, high precision indicates the model’s reliability 

in suppressing false positives, ensuring that identified regions are relevant. The formula for 

Precision is given in Eq. 27: 

Precision =
TP

TP + FP
(27) 
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Recall (or Sensitivity) calculates the proportion of actual positive pixels that are 

correctly identified by the model. This metric assesses the completeness of the 

segmentation. Recall is calculated as shown in Eq. 28: 

Recall =
TP

TP + FN
(28) 

Accuracy represents the ratio of correctly classified pixels (both defective and non-

defective) to the total pixel count. It provides a global measure of the model’s classification 

performance across the entire image. The formula is provided in Eq. 29: 

Accuracy =
TP + FN

TP + FN + FP + FN
(29) 

 
Implementation and Training Protocols 

All experiments in this study were conducted on a Windows-based platform using 

the PyTorch framework. To ensure rigorous benchmarking across different methods and 

datasets, a unified training, testing, and evaluation framework was established. This was 

inspired by the architecture of the Segment Anything Model (SAM). 

For hyper-parameters, the initial learning rate was set to 1𝑒−3 with a weight decay 

of 0.01. To guarantee fair comparison, WD-SEG utilized the same data processing pipeline 

as the baseline U-Net model. A polynomial learning rate decay schedule was employed to 

provide fine-grained control over learning rate adjustments, ensuring efficient and stable 

convergence. The training duration was set to 500 epochs with a global batch size of 4. To 

account for potential variations arising from stochastic initialization and to ensure 

experimental robustness, each experiment was conducted five times independently. All 

reported performance metrics represent the mean values accompanied by their respective 

standard deviations (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑). Regarding input resolution, images from the Wood 

Defect dataset were resized to 2800 × 1024  pixels. Detailed hardware and software 

configurations for the experimental environment are provided in Table 1. 

 

Table 1. Configuration of Software and Hardware Used in the Experiment 

Name Category Version Information 

Processing Platform GPU NVIDIA GeForce RTX4060 

Operating System OS Windows 11 

Deep Learning Framework Pytorch 1.9 

Programming Language Python 3.8 

Code Compiler IDE Pycharm 

 

Furthermore, the proposed ICO algorithm for model optimization were employed. 

Sharing underlying principles with AdamW, the ICO optimizer incorporates enhanced 

momentum acceleration and adaptive learning rate mechanisms. To validate the 

effectiveness of the proposed ICO algorithm, we compared the performance of ICO with 

SGD, Adam, and AdamW under strictly identical training parameters, including the same 

learning rate schedule, batch size, and number of epochs, using the Wood Defect dataset 

and with WD-SEG as the fixed backbone network. The experimental results are presented 

in Table 2. It can be seen that the ICO algorithm achieves the best performance across all 

evaluation metrics. 
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Table 2. Performance Comparison of Different Optimizers 

Method Recall (%) IoU (%) Precision (%) Accuracy (%) 

SGD 81.45±0.21 80.12±0.18 82.56±0.24 83.10±0.15 

Adam 84.32±0.16 84.50±0.20 87.12±0.22 87.55±0.19 

AdamW 85.10±0.15 85.01±0.17 88.22±0.20 87.25±0.16 

ICO (Ours) 88.96±0.12 87.97±0.15 89.98±0.10 90.02±0.11 

 
Ablation Study 

To quantify the individual and collective contributions of the proposed modules—

namely the AFN, TFN, and ICO—a comprehensive ablation study on the Wood Defect 

Training dataset were conducted. The results for various component combinations are 

detailed in Table 3 and visualized in Fig. 7. 

The study systematically elucidates the incremental performance gains attributed 

to each module within the WD-SEG task. The baseline model achieved a Precision of 

88.22%. The integration of the AFN increased Precision to 88.46%, validating its efficacy 

in recovering fine-grained details within shallow feature layers. Conversely, deploying the 

TFN in isolation yielded a Precision of 88.28%. While superior to the baseline, this was 

0.18% lower than the AFN-only configuration, suggesting that applying threshold filtering 

without prior feature enhancement risks suppressing valid defect information. 

 

Table 3. Configuration of Software and Hardware Used in the Experiment 

Method AFN TFN ICO Recall (%) IoU (%) Precision (%) 

1 - - - 85.00 85.01 88.22 

2 √ - - 85.56 85.62 88.46 

3 - √ - 85.98 86.18 88.28 

4 - - √ 86.45 86.21 88.36 

5 √ √ - 86.70 86.30 88.54 

6 - √ √ 86.57 86.25 88.52 

7 √ - √ 87.60 86.43 88.56 

8 √ √ √ 88.96 87.97 89.98 

 

 

 

Fig. 7. Comparison of ablation experimental results of various components in WD-SEG model 
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However, the synergistic combination of AFN and TFN boosted Precision to 

88.54% and Accuracy to 88.77%—which represent increases of 0.32% and 1.77% over the 

baseline, respectively. This substantiates the effectiveness of the “Enhance-then-Filter” 

strategy, which successfully eliminates redundant artifacts generated by the AFN while 

preserving high-fidelity defect features. Furthermore, incorporating the ICO algorithm 

independently raised Precision to 88.36% (+0.14%). This improvement indicates that the 

algorithm’s multi-trajectory parallel search mechanism smoothed initial loss parameter 

adjustments, effectively mitigating oscillations caused by random initialization. 

Consequently, this achieves a simultaneous enhancement of accuracy and stability while 

reducing training overhead. 

Finally, the complete WD-SEG framework achieved optimal performance across 

all metrics, with Recall, IoU, Precision, and Accuracy reaching 88.96%, 87.97%, 89.98%, 

and 90.02%, respectively. These results conclusively demonstrate the high degree of 

complementarity between the proposed architectural enhancements and the intelligent 

optimization algorithm. 

 

Comparative Performance Analysis 
To rigorously validate the efficacy and competitiveness of WD-SEG in wood defect 

segmentation, a comparative experiment on the Wood Defect Training dataset against a 

suite of representative state-of-the-art models were conducted. The selected baselines 

include U-Net++ (Zhou et al. 2019), Matting Anything (Li et al. 2024), SNUNet-CD (Fang 

et al. 2021), YOLOv11-seg (He et al. 2025), and FovealSeg (Yang et al. 2021). These 

models, widely adopted in industrial inspection, encompass diverse architectures ranging 

from standard encoder-decoders and attention-enhanced networks to specialized edge-

aware designs. 

To ensure fair comparison, all models were evaluated using identical data 

partitioning, preprocessing protocols, and training configurations. Performance was 

measured using a unified set of metrics. The comparative results are detailed in Table 4, 

with visual segmentation examples presented in Fig. 8. 

 

Table 4. Experimental Results Comparing the Performance of Different 
Segmentation Models on the Wood Defect Training Dataset 

Method Recall (%) IoU (%) Precision (%) Accuracy (%) 

U-net++ 86.76±0.24 86.70±0.18 86.65±0.21 87.09±0.16 

Matting Anything 85.34±0.10 85.59±0.20 85.84±0.19 86.10±0.14 

SNUNet-CD 82.17±0.21 81.53±0.17 81.09±0.13 82.25±0.20 

YOLOv11-seg 87.38±0.14 88.00±0.22 88.63±0.16 88.54±0.15 

FovealSeg 85.54±0.18 85.38±0.21 85.22±0.12 85.19±0.12 

WD-SEG 88.96±0.12 87.97±0.15 89.98±0.10 90.02±0.11 

 

The results demonstrate that WD-SEG consistently outperforms existing classic 

and advanced models. Achieving a Recall of 88.96%, IoU of 87.97%, Precision of 89.98%, 

and Accuracy of 90.02%, WD-SEG surpassed all comparison methods across all metrics. 

These findings validate the effectiveness and universality of the proposed “Enhance-Filter-

Accelerate” framework. 

UNet++: While its dense nested skip connections yielded an accuracy of 87.09%, 

its Recall was limited to 86.76%, indicating insufficient sensitivity to faint or blurred 

defects. In contrast, WD-SEG’s AFN leverages dual-path (spatial and channel) attention to 
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amplify shallow features, significantly enhancing the detection of subtle defects and 

mitigating missed detections in low-contrast regions. 

Matting Anything: Despite leveraging SAM priors for zero-shot capability and 

lightweight edge refinement, this model struggled with complex texture backgrounds, 

resulting in a Precision of 85.84% (4.14% lower than WD-SEG). This suggests 

susceptibility to background noise, leading to spurious contours.  

SNUNet-CD: Originally designed for bi-temporal change detection, its weight-

sharing structure lacks differential guidance in single-image tasks, leading to background 

overfitting and a low Accuracy of 82.25%. This highlights the limitations of direct 

architecture transfer.  

 

 

Fig. 8. Examples of different segmentation models performing defect segmentation processing on 
the Wood defect training dataset. Existing methods struggle to correctly segment wood defect 
areas (marked in red dashed box). 
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YOLOv11-seg: Combining an efficient backbone with a lightweight segmentation 

head, this model achieved a respectable Accuracy of 88.54%. However, its Recall (87.38%) 

trailed WD-SEG by 1.58%, reflecting insufficient activation in low Signal-to-Noise Ratio 

(SNR) scenarios. WD-SEG addresses this via the AFN's layer-wise amplification, which 

fundamentally improves SNR and minimizes missed detections. 

FovealSeg: While exhibiting balanced performance, its Accuracy was limited to 

85.19%, suggesting that high-order fuzzy operations are ineffective at suppressing wood 

surface artifacts. WD-SEG's synergistic AFN-TFN mechanism effectively discriminates 

between signal and noise, achieving a superior equilibrium between Precision and Recall. 

In conclusion, by integrating feature enhancement (AFN), intelligent filtering 

(TFN), and accelerated optimization (ICO), WD-SEG not only achieved a benchmark 

Accuracy of 90.02% but also demonstrated optimal comprehensive performance on the 

Pareto frontier, offering a novel paradigm for high-precision binary segmentation in 

complex environments. 

Additionally, to evaluate the practical deployment potential of WD-SEG in 

resource-constrained forestry environments, a quantitative comparison of model 

complexity and inference efficiency was conducted. As summarized in Table 5, WD-SEG 

demonstrates a superior balance between segmentation accuracy and computational 

overhead compared to established benchmarks. 

Specifically, WD-SEG achieves the highest accuracy of 90.02% with a 

significantly compact architecture, requiring only 18.4 M parameters and 42.6 G FLOPs. 

In contrast, U-Net++ exhibits nearly seven times the parameter count (36.6 M) and four 

times the FLOPs (150.4 G) due to its dense nested skip connections, which substantially 

restricts its real-time applicability. While YOLOv11-seg delivers the fastest inference 

speed (12.5ms) owing to its optimized detection-based backbone, it yields a lower accuracy 

(88.54%). The efficiency of WD-SEG is primarily attributed to the Threshold Filtering 

Network (TFN). By transforming continuous feature maps into sparse binary masks, the 

TFN effectively prunes task-irrelevant background information, thereby concentrating 

computational resources on salient defect regions without compromising edge fidelity. 

 

Table 5. Quantitative Analysis of Model Complexity and Inference Efficiency 

Method Parameters (M) FLOPs (G) Inference Time (ms) Accuracy (%) 

U-Net++ 36.6 150.4 45.2 87.09 

YOLOv11-seg 12.6 31.2 12.5 88.54 

WD-SEG 18.4 42.6 20.8 90.02 

 

Generalization Analysis on the Wood Defect Dataset 
To further investigate the generalization capabilities of the proposed WD-SEG 

model, comparative experiments were conducted on the Wood Defect dataset. The results 

are detailed in Table 6 and Fig. 9. 

The experiments on the Wood Defect dataset provide further validation of WD-

SEG's robustness and adaptability. As presented in Table 8, WD-SEG outperformed all 

comparison models across the four key metrics, achieving a Recall of 86.77%, IoU of 

86.50%, Precision of 86.54%, and Accuracy of 85.99%. These results demonstrate the 

model's consistent ability to identify defects within complex scenarios. 
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Table 6. Generalization Experimental Results of Different Segmentation 
Networks on the Wood Defect Dataset 

Method Recall (%) IoU (%) Precision (%) Accuracy (%) 

U-net++ 83.46±0.24 82.94±0.28 82.78±0.25 81.98±0.20 

Matting Anything 84.42±0.20 83.54±0.22 83.56±0.18 82.30±0.16 

SNUNet-CD 85.29±0.19 84.75±0.17 84.80±0.26 83.75±0.21 

YOLOv11-seg 85.99±0.26 85.03±0.23 85.12±0.21 84.94±0.19 

FovealSeg 86.41±0.17 86.02±0.20 86.13±0.13 85.48±0.14 

WD-SEG 86.77±0.16 86.50±0.18 86.54±0.15 85.99±0.13 

 

Fig. 9. Comparison of generalization experiment results based on Wood defect dataset 

 

WD-SEG’s superior performance on this dataset is attributed to the synergistic 

integration of its core components: the AFN ensures sensitive capture of faint defects; the 

TFN effectively filters periodic textures and directional noise; and the ICO algorithm 

provides global optimization during training. The proposed “Enhance-Filter-Accelerate” 

mechanism demonstrates exceptional generalization when confronting typical 

interferences such as growth rings, resin spots, and uneven lighting, thereby confirming the 

model's reliability and potential for practical application. 
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CONCLUSIONS 
 

This study addressed critical barriers in automated wood quality inspection, 

specifically the insufficient segmentation accuracy for subtle, low-contrast defects and the 

limited generalization capabilities of existing models in complex forestry environments. 

To overcome these challenges, the WD-SEG model, a novel deep learning framework 

underpinned by an “Enhance-Filter-Accelerate” paradigm, was developed and evaluated. 

1. The Augmented Feature Network (AFN) successfully mitigates the loss of spatial 

details inherent in deep networks. By synergizing spatial and channel attention 

mechanisms, AFN amplifies the feature response of faint defects—such as minute 

cracks and knots—that are typically obscured by blurred edges and minimal grayscale 

variations. 
 

2. The Threshold Filtering Network (TFN) introduces a directional consistency modeling 

approach to refine feature maps. By utilizing cosine similarity and adaptive 

binarization, TFN effectively suppresses task-irrelevant background noise and 

periodic texture interference without compromising edge fidelity. 
 

3. The integration of the Interstellar Collision Optimization (ICO) algorithm resolves 

training inefficiencies. By simulating gravitational attraction and collision 

mechanisms, ICO balances global exploration with local refinement, enabling the 

model to escape local optima and converge more rapidly than traditional gradient 

descent methods. 
 

4. Quantitative evaluations confirmed the superior performance of the WD-SEG 

framework. On the Wood Defect Training dataset, WD-SEG achieved state-of-the-art 

results, with an IoU of 87.97%, significantly surpassing existing advanced baselines. 

Furthermore, generalization tests conducted on an independent validation dataset 

demonstrated the model’s strong robustness, yielding an IoU of 86.50%. These results 

validated the high precision and reliability of the framework even under challenging 

conditions, such as varying lighting and complex growth ring textures. 

In summary, WD-SEG provides a precise, robust, and computationally efficient 

solution for wood defect segmentation. By effectively extracting faint defect features while 

maintaining low computational overhead, this study establishes a solid foundation for the 

deployment of automated inspection systems in resource-constrained real-world 

environments. Beyond its robust performance, the modular architecture of WD-SEG 

provides a technical foundation for selective defect attention. Through the adaptive 

thresholding mechanism in the TFN module, the system can be tuned to prioritize high-

risk structural defects while filtering out task-irrelevant surface variations. Future research 

will prioritize model compression for deployment on edge-computing hardware and the 

expansion of the dataset to encompass a broader diversity of rare timber species. 

Furthermore, the proposed framework will be integrated into a comprehensive wood 

quality assessment system. By incorporating standardized grading protocols and market-

oriented metrics—potentially utilizing the KANO model to categorize defect severity 

according to industrial requirements—this research aims to bridge the gap between high-

precision computer vision and optimized industrial value recovery. 
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