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WD-SEG: A Deep Learning Framework for Delicate and
Accurate Wood Defect Segmentation
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Precise segmentation of subtle wood defects is crucial for optimizing wood
utilization and product value. Despite the prevalence of deep learning in
wood defect detection, its deployment in real-world forestry environments
is impeded by three primary challenges: 1: The limited capacity of
traditional models to represent low-contrast, faint defect features; 2:
feature ambiguity caused by complex background interference; and 3:
entrapment in local optima because of insufficient global feature
integration. To surmount these obstacles, this study proposes WD-SEG
(Wood Defect Segmentation), a high-performance model tailored for
complex forestry scenarios. The architecture integrates three core
modules: an Augmented Feature Network (AFN) to mitigate spatial
information loss; a Threshold Filtering Network (TFN), which leverages
cosine similarity to adaptively suppress background noise; and a novel
Interstellar Collision Optimization (ICO) algorithm to accelerate
convergence and bypass local optima. Experimental evaluations on the
wood defect training dataset demonstrate that WD-SEG outperforms
state-of-the-art models, achieving an Intersection over Union (loU) of
87.97% and an accuracy of 90.02%. Furthermore, generalization tests on
wood defect datasets confirm the model’s robustness, yielding an IoU of
86.50%. By introducing a novel “Enhance-Filter-Accelerate” framework,
this study provides a precise, robust solution for automated wood quality
inspection in resource-constrained environments.
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INTRODUCTION

As a fundamental industrial material, wood is susceptible to surface and internal
defects—such as cracks, knots, decay, and wormholes—during its growth and processing.
These wood defects not only significantly reduce wood utilization rates and product value,
but they also compromise its structural safety and service life (Chen et al. 2023).
Consequently, achieving rapid and precise segmentation of wood defects is of critical
importance for enhancing production quality and control efficiency in the forestry industry
(Dou et al. 2025).

Early defect identification used manual inspection, which was inefficient and
subjective. With the advent of machine vision, image processing-based detection methods
have been progressively adopted. Traditional approaches typically employ color space
conversions (e.g., HSV, Lab) combined with threshold segmentation, or utilizing texture
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features (e.g., GLCM, LBP) to construct classification models. In recent years, the rapid
advancement of computer vision and deep learning has empowered Convolutional Neural
Network (CNN)-based methods, such as U-Net (Ronneberger et al. 2015) and DeepLab
(Chen et al. 2017), to demonstrate significant potential in automatically extracting features
and localizing defect regions.

However, as a traditional industry, wood processing presents unique challenges for
defect segmentation due to diverse material textures and variable environmental
conditions. Faint surface defects, including knots, cracks, and pest damage, frequently
blend seamlessly with natural grain patterns (Dong et al. 2025). Consequently, existing
methods exhibit considerable limitations when detecting subtle defects (e.g., minute
cracks, scratches) and low-contrast targets. Subtle defects are often characterized by fine
textures, low contrast, and irregular shapes (Zhuo et al. 2022), while low-contrast defects—
constrained by lighting, material properties, or imaging equipment—often exhibit blurred
edges and high noise interference. These factors frequently lead to missed detections or
false positives in traditional segmentation approaches (Dong et al. 2019).

Furthermore, existing deep learning-based methods often demonstrate limited
generalization capabilities. Traditional CNNs possess a limited capacity to represent the
features of low-contrast defects, making it difficult to capture targets with blurred edges or
subtle grayscale variations. Moreover, complex background interference can cause feature
confusion, degrading model performance in noisy environments. Most models are trained
on single-species datasets, limiting their adaptability to multi-species scenarios and varying
environmental conditions (e.g., differences in lighting and viewing angles). Additionally,
the high computational resource consumption during training restricts their deployment in
resource-constrained real-world scenarios (Chen ef al. 2020). Therefore, balancing high
accuracy with computational efficiency and robust generalization remains a core challenge
in wood defect segmentation.

To address these challenges, this study proposes an innovative wood defect
segmentation model, WD-SEG. By integrating mechanisms for feature enhancement, noise
filtering, and intelligent optimization, the model significantly improves segmentation
precision, generalization, and efficiency for subtle and low-contrast defects. The primary
contributions of this study are as follows:

1. In this work, a hierarchical encoder-decoder structure is proposed for wood defect
segmentation, named WD-SEG (Wood Defect Segmentation). This model employs an
“Enhance-Filter-Accelerate” integrated framework to resolve the difficulty of
accurately segmenting faint defects on wood surfaces against complex forestry
backgrounds.

2. An Augmented Feature Network (AFN) is developed that leverages spatial and
channel attention mechanisms to effectively reinforce the feature response of subtle
defects characterized by blurred edges and minimal grayscale differences. This
module demonstrates significant advantages in extracting features from subtle and
low-contrast defects.

3. A Threshold Filtering Network (TFN) is developed based on directional consistency
modeling and an adaptive binarization mask generation mechanism. This network
exhibits superior selectivity in suppressing background noise and pseudo-responses,
effectively filtering out irrelevant information.
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4. The Interstellar Collision Optimization (ICO) algorithm is developed. It simulates
celestial gravitational and collision mechanisms to achieve global optimization. This
algorithm accelerates model convergence and reduces reliance on computational
resources, overcoming the tendency of traditional gradient descent methods to become
trapped in local optima.

Related Work
Efficient attention methods

Attention mechanisms have emerged as pivotal techniques for enhancing the
performance of deep learning models. Within the domain of computer vision, particularly
for dense prediction tasks such as image segmentation, the efficient capture of both local
and global contextual information is of paramount importance. For instance, the CSWin
Transformer (Dong et al. 2022) introduces cross-shaped window self-attention, which
performs self-attention within local windows and incorporates horizontal and vertical
window cross-branching. This design effectively balances local feature interaction with
global information flow, thereby yielding improved model accuracy without a prohibitive
increase in computational complexity. Regarding multi-scale feature fusion, the Channel
and Spatial Attention Fusion Network (CSAFNet), proposed by Lei ef al. (2022), leverages
synergistic channel and spatial attention to bolster feature representations across disparate
encoding streams, thereby refining detail-capturing capabilities. Furthermore, Bi-Level
Routing Attention (Liu et al. 2022) employs a dual-level routing mechanism to achieve
dynamic, content-aware allocation of computational resources, offering an efficient
solution for high-resolution image processing. Collectively, these advancements provide a
robust foundation for developing efficient attention modules tailored for tasks requiring
meticulous local comprehension and broad global context, such as wood defect
segmentation. From the perspective of engineering optimization, Flash Attention 2 (Dao
2023) significantly accelerates computational throughput and minimizes memory
footprints by optimizing parallelization and tiling strategies for GPU memory access, all
while preserving the original mathematical definition of attention. Such optimizations
facilitate the deployment of sophisticated attention-based models in resource-constrained
environments. Moreover, various approaches focused on mathematical reconstruction—
such as Optimized Attention and Efficient Attention—further demonstrate the potential for
enhancing the efficiency of standard attention mechanisms (Hosseini 2024).

Optimization algorithm

In wood defect segmentation, the complex noise patterns often lead traditional
gradient-based methods into local optima. The selection of an optimization algorithm
governs the convergence rate, final performance, and generalization capability of a model
(Chen et al. 2024). Within the realm of adaptive optimizers, AdamW (Loshchilov and
Hutter 2017) mitigates the overfitting tendencies inherent in the original Adam optimizer
by decoupling weight decay from gradient updates. This modification significantly bolsters
generalization, establishing AdamW as the predominant choice for training large-scale
architectures, such as Vision Transformers (ViTs).

Recently, several efficient optimization paradigms tailored for large-scale training
have emerged. Specifically, the Sophia optimizer (Liu et al. 2023) introduces a lightweight
second-order approach that employs diagonal Hessian estimates as a preconditioner. By
integrating an element-wise clipping mechanism to constrain update magnitudes in worst-
case scenarios, Sophia demonstrates accelerated convergence over AdamW in language
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modeling tasks. From a theoretical perspective, Cohen et al. (2021) characterized the “Edge
of Stability” phenomenon, where gradient descent typically operates in a regime where loss
surface sharpness adapts dynamically. This finding provides a novel lens through which
the practical dynamics of modern neural network optimizers can be understood.

EXPERIMENTAL

Proposed Methods

The WD-SEG model developed in this study is designed to address critical
limitations in existing wood defect segmentation methods, specifically their insufficient
accuracy, limited sensitivity to subtle and low-contrast defects, and low computational
efficiency.
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Fig. 1. Overall framework diagram of WD-SEG wood defect segmentation model
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The core philosophy of the proposed method involves the integration of novel
feature extraction and enhancement mechanisms, adaptive strategies for filtering irrelevant
information (noise), and an intelligent algorithm combining multi-dimensional search with
global optimization. These components work synergistically to achieve precise
segmentation and effective discrimination of defect regions, with a particular focus on
subtle and low-contrast defects characterized by blurred edges, minimal grayscale
variation, and fine texture changes. The WD-SEG architecture comprises three pivotal
modules: the AFN, TFN, and ICO algorithm. The overall framework is illustrated in Fig.
1.

Amplified Feature Network

In semantic segmentation, the encoder-decoder architecture uses convolution and
down sampling to extract high-dimensional features. However, the inevitable loss of spatial
detail during this process poses a significant challenge for identifying subtle wood defects,
which requires high spatial sensitivity. Furthermore, standard convolution operations treat
all feature channels uniformly, failing to account for the varying importance of information
encoded across different channels. For low-contrast defects, faint signals are typically
concentrated in only a few key channels. If these informative channels are not adaptively
enhanced while irrelevant background features are suppressed, the defect signals risk being
obscured, thereby compromising the model’s overall generalization capability.

While existing attention mechanisms offer potential solutions to these issues, they
are typically implemented as lightweight, add-on modules. In contrast, the AFN proposed
in this study is designed as a robust, deeply integrated module. The core philosophy of the
AFN is to synergistically perform non-linear transformations and self-calibration on
features across both spatial and channel dimensions along the critical feature propagation
path. This approach significantly amplifies defect-related information while suppressing
noise and redundancy. It is worth noting that despite its robust design, the AFN’s
integration into the deeper layers ensures that its computational footprint remains minimal
due to reduced spatial dimensions. This allows the model to prioritize high-fidelity feature
extraction without significantly compromising real-time performance. Specifically, the
AFN takes the feature tensor down-sampled from the fourth layer of the encoder as input,
which is formulated as shown in Eq. 1:

Xout = Fchannel(X; @channel) ® Fspatial(X; @spatial) (1)

In Eq. 1, Fepanner and Fypyiiar represent the channel and spatial feature extraction networks,

respectively, ® denotes their parameters, and @ indicates the element-wise addition
operation. Prior to the summation, the outputs of the two sub-networks are passed through
an optional convolutional layer to adjust the channel dimensions, thus ensuring a consistent
output. The network described above compensates for the spatial information loss caused
by down-sampling by modeling dependencies in the spatial dimension, thereby capturing
the global contextual information of the entire feature map. The detailed forward
propagation process is as follows:

Dual pooling and embedding

Global Average Pooling (GAP) and Global Max Pooling (GMP) are applied
simultaneously to the input X, mapping it from a high-dimensional space to a highly
abstract spatial descriptor. The operations can be formulated as Egs. 2 and 3, respectively.
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H W
1
Zayg = GAP(X) = H % WZZX(i,j) Zayg € RCin (2)
i=1 j=1
Zmax = GMP(X) = i=1:H,j="11:?/|};X(i;j) Zmax € R 3)

Here, GAP extracts the statistical mean of global features, which is sensitive to the
overall context, while GMP captures the most salient local features, which is sensitive to
potential subtle defect points. Their combination thus provides complementary spatial
information.

Non-linear dimensionality reduction and transformation

Both descriptors are then passed through a shared-parameter Multi-Layer
Perceptron (MLP). This MLP employs a bottleneck structure designed to introduce non-
linearity and reduce computational complexity. Specifically, the first linear layer
(parameterized by W) reduces the dimension from Cj,to G, /7, and the second linear layer
(parameterized by W,) subsequently restores it to Cj,, as detailed in Egs. 4 and 5.

Savg = W2 : 6(W1 : Zavg + bl) + bz (4)
Smax = Wy - 6(W1 “Zmax T bl) + b, (5)

In these equations, W, and W, are the weight matrices, b, and b, are the bias terms, and ¢
denotes the ReLU activation function. The weights W, and W, enable the network to
process information derived from the two distinct pooling operations with a consistent
transformation.

Spatial attention weight generation

The two transformed feature vectors are summed, and a spatial importance weight
vector Sis generated through a Sigmoid activation function. Each element in corresponds
to a comprehensive importance score for a specific channel across all spatial locations, as
detailed in Eq. 6.

5= J(Savg+5max) (6)

Here, orepresents the Sigmoid function, which maps values to the interval (0, 1). The
generated spatial weight vector sis then multiplied with the original input feature map X in
an element-wise, channel-wise manner, yielding the spatially enhanced feature X441, s
specified in Eq. 7.

Xspatial =X®S ()

In this process, for the channel feature Xp,iq1, X is adaptively scaled for each

channel by combining it with the weight s, thereby enhancing the channels that contain
important spatial contextual information. GAP and GMP are applied to compress spatial
dimensions, resulting in two distinct channel descriptors, as detailed in Eqgs. 8 and 9,
respectively.

Uavg = GAPSpatial(X) € RCin (8)
Umax = GMPspatial (X) € R¢in 9)
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Subsequently, Ug,g and Uy, are processed by another MLP (which shares the

same bottleneck structure as the one in the spatial network but with independent, non-
shared parameters), as detailed in Eqs. 10 and 11, respectively.

Cavg = W2, ’ 6(W1, *Ugpg + b{) + bé (10)
Crnax = W2’ : 5(W1, “Umax T b{) + bé (11)

The outputs of the two MLPs are summed and then passed through a Sigmoid
function to generate the channel attention weight vector c, as specified in Eq. 12.

C= G(Cavg + Cmax) (12)

The channel weight vector C then multiplied with the original input X, yielding the
channel-enhanced feature X, - This operation achieves adaptive selection across
different feature channels, amplifying the key feature channels associated with defects. The
process is detailed in Eq. 13.

Xchannel =X ® C (13)

The spatially enhanced feature Xj,i,and the channel-enhanced feature X papner are
fused, as shown in Eq. 14.

Xout = Xspatial + Xchannet (14)

To allow for more flexible control over the fusion process, a learnable weighting
parameter o (initialized to 0) is introduced. This enables the network to adaptively
determine from which sub-network to learn more. Subsequently, a small convolutional
network is employed to automatically learn the fusion weights, as formulated in Eq. 15.

Xout =+ Xspatial + (1 = a) " Xchanner (15)

X,ut represents the final output of the AFN, which is a refined feature where both
spatial and channel information are synergistically enhanced.

In summary, the AFN is integrated into the WD-SEG framework primarily to
preserve critical defect feature information. Addressing the loss of spatial details caused
by convolutional downsampling—which hinders the identification of dispersed wood
defects—we incorporated the AFN as a dedicated branch.

Threshold Filtering Network

AFN-enhanced feature maps are dense, and they contain irrelevant information,
which can degrade performance during up sampling and increase computational cost. This
issue is particularly critical when processing low-contrast defects, where faint signals are
highly susceptible to noise interference. To address this challenge, the Threshold Filtering
Network (TFN) is introduced in this work.

The core premise of the TFN is to formulate feature filtering as a binary decision
problem. By employing an adaptive threshold learning mechanism, the TFN transforms
continuous feature maps into sparse binary attention masks, explicitly distinguishing
between “salient” and “secondary” feature regions. Functioning as a gating mechanism,
this ensures that only significant features propagate through the network. The specific
procedure is as follows:
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(1) Feature tensor reshaping: The input feature tensor X, is flattened along the
spatial dimension to form a set of h feature vectors. Each vector encapsulates all channel
information corresponding to a specific spatial coordinate (i, j).

(2) Spatial gradient calculation: To capture the spatial variation trends of each
feature point, the first-order differences (approximate gradients) in both horizontal and
vertical directions were computed. Specifically, the horizontal feature vector Gy (i) is
derived by calculating the difference between each position and its right-adjacent neighbor,
as defined in Eq. 16:

Gh(i'j):Xout(i'j+1)'Xout(i:j) (16)

To preserve the dimensions, zero-padding is applied to the rightmost column. The
vertical feature vector is then obtained by calculating the difference between each position
and its neighbor below, as detailed in Eq. 17:

Gv(irj) = Xout(irj +1) - Xout(i'j) for j=1,.,H-1 (17)

The gradient vectors, Gy(i,j)) and G,(i,j), jointly describe the direction and
magnitude of the fastest feature change at point (i,j). The cosine value between the
horizontal and vertical gradient vectors is computed, and its absolute value is used as a
measure of feature consistency at that point, as specified in Eq. 18:

|(Gh(l,]), Gv(l,])”
NGh D2 - GGz + &

In this formulation, the term cos denotes the cosine similarity, ||*||, represents the
L, norm, and ¢ is a small constant introduced to prevent division-by-zero errors. A cosine
value approaching 1 indicates that the gradient vectors are nearly parallel (0° or 180°).

This parallelism suggests consistent feature variation trends across orthogonal
directions, implying a high probability that the corresponding location represents a salient
defect feature. Conversely, a value approaching 0 implies that the gradient vectors are
nearly orthogonal (90°). This directional inconsistency typically characterizes background
noise or complex textures rather than structural defects.

Upon generating the importance score map, a thresholding operation is required to
facilitate binary decision-making. While conventional methods often rely on manually
preset hyper-parameters, this approach lacks flexibility. To address this, a learnable
parameter is introduced, enabling the network to adaptively optimize the threshold level
during training via global loss backpropagation. The final binary mask M is generated
using a step function approximated by a Straight-Through Estimator (STE), as defined in
Eq. 19:

cos O jy = (18)

1 if S(i,j) > thr
0 otherwise

(19)

In this formulation, || denotes the indicator function. During backpropagation, the
Straight-Through Estimator (STE) propagates gradients directly from the output to the
input layer, effectively bypassing the non-differentiability of the step function. The
utilization of cosine similarity offers two primary architectural advantages. First, it
enhances scale robustness; by normalizing features via the L, norm, the model becomes
invariant to feature magnitude, prioritizing feature direction over absolute amplitude.

In summary, the TFN is designed to refine the enhanced feature matrix by pruning
task-irrelevant information inherited from the AFN, effectively categorizing features into

MG, j) = LIS, > thr] = {
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“salient” and “secondary” tiers. Operatively, the TFN maps the composite feature matrix
to the spatial domain and evaluates the orthogonality of gradient vectors via an attention
mechanism. A cosine similarity approaching zero (implying a 90° angle) indicates a lack
of directional consensus, which is characteristic of background noise rather than structural
defects. By imposing a learnable threshold thr, the network selectively enhances
informative features while suppressing noise. Specifically, feature responses with
similarity scores falling below thr —indicating low directional consistency—are
suppressed (set to 0), while those exceeding thr are retained (set to 1).

To further elucidate the internal mechanism of the Threshold Filtering Network
(TFN), the intermediate feature maps were visualized to demonstrate its pruning efficacy.
As illustrated in Fig. 2, the feature map produced by the Augmented Feature Network
(AFN) effectively captures the faint signals of subtle defects but inherently retains
significant background interference, such as natural wood grain and uneven lighting.

Upon processing by the TFN, the model calculates the directional consistency of
feature gradients and generates an adaptive binary attention mask. This mask explicitly
distinguishes between “salient” defect regions and “secondary” background textures. By
applying this sparse gating mechanism, task-irrelevant noise is effectively suppressed
while the high-fidelity structural features of the defects are preserved.

Augmented Feature
Network

Refined Feature Map Sparse Binary Mask

—— -

Directional
Consistency Modeling

Fig. 2. Visual interpretability of the AFN and TFN module

Interstellar Collision Optimization Algorithm

Intelligent optimization algorithms have demonstrated remarkable efficacy in
addressing complex combinatorial optimization problems. However, these methods often
necessitate manual customization based on domain-specific expertise and lack
transferability across different problem instances, resulting in computational inefficiency.
Consequently, designing a tailored intelligent optimization algorithm specifically for wood
defect recognition is of paramount importance.
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The training of deep neural networks constitutes a high-dimensional, non-convex
optimization challenge. Traditional gradient-based methods, such as Stochastic Gradient
Descent (SGD) and Adam, are prone to entrapment in local optima and exhibit high
sensitivity to hyperparameters, particularly the learning rate.

To overcome these limitations, the Interstellar Collision Optimization (ICO)
algorithm is introduced here. Conceptualizing the solution space as a universe and
candidate solutions as celestial bodies, ICO precisely simulates two fundamental
interactions: gravitation and collision. This mechanism effectively equilibrates the trade-
off between global search and local refinement, enabling the model to escape local optima
and converge efficiently towards the global optimum. The fundamental principles of ICO
are detailed below.

(1) Quality Mapping Function

Assuming the objective is to minimize f(x), this study employs the following
quality mapping function, as shown in Eq. 20,

1
1+ f(Xi(t)) - fbest

where X;(t) denotes the position vector of the i — th celestial body at time t, M;(t)
represents the mass of the i — th celestial body at time t, and f, . is the optimal function

value found in the current population. This function ensures that the mass is always positive
and that better solutions possess greater mass.

The gravitational force causes a celestial body i to be attracted by another body j,
which in turn alters the velocity of body i. In the ICO algorithm, instead of computing the
gravitational forces between all pairs of celestial bodies, each body is only attracted by the
current best solution (best) and another randomly selected high-quality solution, as
specified in Egs. 21 and 22, respectively.

M;(t) - Mpest ()
[ Xpese (£) = X (Ol + &
_ M;(¢) - My (t)
1% (&) = X: (O + &
In these equations, G is the gravitational constant, which decays as the number of

iterations increases to enhance convergence in the later stages. The velocity update is
determined by the acceleration caused by gravitational forces, as detailed in Eq. 23:

M;(t) = (20)

FPest () =G - - (Xpest (1) — X;(D) (21)

Frd(e) =G (X = X;(t)) (k # i,k # best)  (22)

Ci best rand
Vit + D) =0 Vi + 30 - (R0 + o) (23)

Collision is the key mechanism for ICO to escape local optima. In this study, the
collision condition is defined as follows: if the distance between two celestial bodies 1 and
j is less than the collision radius r_collide and the difference in their fitness values is
greater than a threshold J, a collision event is triggered, as specified in Eq. 24:

1X:(6) = ;O] < Reouiae and [f(x:(0)) = f (X;®))| > 6 (24)

After a collision, the two celestial bodies do not annihilate but rather merge and
recombine to produce one or more new offspring bodies, which replace the poorer solution
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among the parents. For celestial bodies that do not collide, their positions are updated in
the standard manner, as shown in Eq. 25:

Xit+1)=X;t)+Vi(t+1) (25)

The new solutions generated from collisions are directly inserted into the
population, typically replacing one or several of the current worst solutions in terms of
mass. The flowchart of the Planetary Collision Optimization algorithm and its key
algorithm are illustrated in Fig. 3.

In summary, the ICO algorithm is employed to enhance the training efficiency of
the WD-SEG model and facilitate the search for global optima. Within the optimization
process, the collision mechanism models stochastic perturbations during exploration.
These events induce significant shifts in the solution space, effectively enabling the
algorithm to escape entrapment in local optima.
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Fig. 3. (a) Interstellar Collision Optimization (ICO) algorithm iteration process. (b) Schematic
diagram of the optimization process of Interstellar Collision Optimization algorithm

RESULTS AND DISCUSSION

Wood Defect Training Dataset

The Wood Defect Training Dataset (Kodytek e al. 2022) is derived from real-world
wood imagery sourced from an open-source repository. As a subset of a large-scale wood
surface defect database, it comprises over 8,000 images covering common defect
categories. For the purpose of training the WD-SEG model, the dataset was randomly
partitioned into training and validation sets at an 8:2 ratio. Representative examples of
these defect categories are illustrated in Fig. 4.
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Fig. 4. Example of wood defect categories in the wood defect training dataset

Analysis of the dataset reveals a hierarchical structure in defect distribution,
characterized by significant variations in prevalence. Missing Knots constitute the
predominant category, accounting for 26% of the dataset. This prevalence is approximately
1.3 times that of the second-highest category, Live Knots (20%), and 6.5 times that of the
rarest category, Insect Damage (4%). The second cluster is formed by Live Knots and Dead
Knots (15%), which collectively represent 35% of the data. The third tier comprises Quartz
(12%) and Cracks (10%); while the difference between them is only 2% points, the
prevalence of Cracks is merely 38% of that of Missing Knots. Pith (8%) and Resin (5%)
occupy the fourth tier, with a 3% differential, where Resin accounts for only 19% of the
Missing Knot volume. Finally, Insect Damage (4%) occupies the lowest tier, representing
only 15% of Missing Knots, 20% of Live Knots, and 27% of Dead Knots. This imbalance
indicates that the dataset accurately reflects the natural distribution of wood defects in real-
world environments.

Wood Defect Dataset

Similarly, the Wood Defect Dataset (Pavel et al. 2021), also derived from real-
world open-source imagery, includes categories such as cracks, dead knots, live knots, and
pith. Samples from this dataset are presented in Fig. 5.

» -

—

Healing joint Resin Crack

Fig. 5. Example of wood defect categories in the wood defect dataset
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Data Processing

All images in the Wood Defect Training dataset were manually annotated using the
Labelme software. Special attention was paid to complex defects that may encapsulate non-
defect regions; to avoid mislabeling background textures as defects, images were annotated
at high magnification to ensure meticulous contour tracing. Upon completion, the
generated JSON annotation files were converted into binary masks (PNG format) to align
with the model's input requirements, as illustrated in Fig. 6.

Fig. 6. Example of wood defects after LabelMe software

Evaluation Criteria
To ensure a fair evaluation of the segmentation model’s performance, this study
employed the current mainstream evaluation metrics, including Intersection over Union
(IoU), Precision, Recall, and Accuracy, to assess the model's efficacy.
The confusion matrix components presented are defined as follows:
(1) True Positives (TP): Defective regions correctly classified as defective;
(2) False Negatives (FN): Defective regions incorrectly classified as non-defective;
(3) False Positives (FP): Non-defective regions incorrectly classified as defective;
(4) True Negatives (TN): Non-defective regions correctly classified as non-
defective.

Intersection over Union (IoU): Defined as the ratio of the intersection to the union
of the predicted and ground truth sets, IoU serves as the primary metric for evaluating
semantic segmentation performance. It quantifies the spatial overlap between the predicted
mask and the ground truth, directly reflecting the model’s capability to accurately delineate
target boundaries. The calculation is defined in Eq. 26:

IoU = v (26)
°" T TP+ FN + FP

Precision measures the proportion of pixels predicted as positive that truly belong
to the target class. In binary segmentation, high precision indicates the model’s reliability
in suppressing false positives, ensuring that identified regions are relevant. The formula for
Precision is given in Eq. 27:

TP

Precision = —— 27
recision TP T FP (27)
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Recall (or Sensitivity) calculates the proportion of actual positive pixels that are
correctly identified by the model. This metric assesses the completeness of the
segmentation. Recall is calculated as shown in Eq. 28:

Recall = — & (28)
A TP+ FN

Accuracy represents the ratio of correctly classified pixels (both defective and non-
defective) to the total pixel count. It provides a global measure of the model’s classification
performance across the entire image. The formula is provided in Eq. 29:

TP + FN
TP + FN + FP + FN

Accuracy = (29)

Implementation and Training Protocols

All experiments in this study were conducted on a Windows-based platform using
the PyTorch framework. To ensure rigorous benchmarking across different methods and
datasets, a unified training, testing, and evaluation framework was established. This was
inspired by the architecture of the Segment Anything Model (SAM).

For hyper-parameters, the initial learning rate was set to 1e~3 with a weight decay
0of 0.01. To guarantee fair comparison, WD-SEG utilized the same data processing pipeline
as the baseline U-Net model. A polynomial learning rate decay schedule was employed to
provide fine-grained control over learning rate adjustments, ensuring efficient and stable
convergence. The training duration was set to 500 epochs with a global batch size of 4. To
account for potential variations arising from stochastic initialization and to ensure
experimental robustness, each experiment was conducted five times independently. All
reported performance metrics represent the mean values accompanied by their respective
standard deviations (mean % std). Regarding input resolution, images from the Wood
Defect dataset were resized to 2800 X 1024 pixels. Detailed hardware and software
configurations for the experimental environment are provided in Table 1.

Table 1. Configuration of Software and Hardware Used in the Experiment

Name Category Version Information
Processing Platform GPU NVIDIA GeForce RTX4060
Operating System oS Windows 11
Deep Learning Framework Pytorch 1.9
Programming Language Python 3.8
Code Compiler IDE Pycharm

Furthermore, the proposed ICO algorithm for model optimization were employed.
Sharing underlying principles with AdamW, the ICO optimizer incorporates enhanced
momentum acceleration and adaptive learning rate mechanisms. To validate the
effectiveness of the proposed ICO algorithm, we compared the performance of ICO with
SGD, Adam, and AdamW under strictly identical training parameters, including the same
learning rate schedule, batch size, and number of epochs, using the Wood Defect dataset
and with WD-SEG as the fixed backbone network. The experimental results are presented
in Table 2. It can be seen that the ICO algorithm achieves the best performance across all
evaluation metrics.
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Table 2. Performance Comparison of Different Optimizers

Method Recall (%) loU (%) Precision (%) Accuracy (%)
SGD 81.45+40.21 80.12+0.18 82.561+0.24 83.10+0.15
Adam 84.32+0.16 84.504+0.20 87.12+0.22 87.55+0.19

AdamW 85.10+0.15 85.01+0.17 88.22+0.20 87.25+0.16

ICO (Ours) 88.9640.12 87.971+0.15 89.9840.10 90.0240.11

Ablation Study

To quantify the individual and collective contributions of the proposed modules—
namely the AFN, TFN, and ICO—a comprehensive ablation study on the Wood Defect
Training dataset were conducted. The results for various component combinations are
detailed in Table 3 and visualized in Fig. 7.

The study systematically elucidates the incremental performance gains attributed
to each module within the WD-SEG task. The baseline model achieved a Precision of
88.22%. The integration of the AFN increased Precision to 88.46%, validating its efficacy
in recovering fine-grained details within shallow feature layers. Conversely, deploying the
TFN in isolation yielded a Precision of 88.28%. While superior to the baseline, this was
0.18% lower than the AFN-only configuration, suggesting that applying threshold filtering
without prior feature enhancement risks suppressing valid defect information.

Table 3. Configuration of Software and Hardware Used in the Experiment

Method AFN TFN ICO Recall (%) loU (%) Precision (%)
1 - - - 85.00 85.01 88.22
2 - - 85.56 85.62 88.46
3 - \ - 85.98 86.18 88.28
4 - - N 86.45 86.21 88.36
5 v \ - 86.70 86.30 88.54
6 - \ \ 86.57 86.25 88.52
7 N - N 87.60 86.43 88.56
8 v \ \ 88.96 87.97 89.98

Ablation Study Results of WD-SEG Model
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Fig. 7. Comparison of ablation experimental results of various components in WD-SEG model
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However, the synergistic combination of AFN and TFN boosted Precision to
88.54% and Accuracy to 88.77% —which represent increases of 0.32% and 1.77% over the
baseline, respectively. This substantiates the effectiveness of the “Enhance-then-Filter”
strategy, which successfully eliminates redundant artifacts generated by the AFN while
preserving high-fidelity defect features. Furthermore, incorporating the ICO algorithm
independently raised Precision to 88.36% (+0.14%). This improvement indicates that the
algorithm’s multi-trajectory parallel search mechanism smoothed initial loss parameter
adjustments, effectively mitigating oscillations caused by random initialization.
Consequently, this achieves a simultaneous enhancement of accuracy and stability while
reducing training overhead.

Finally, the complete WD-SEG framework achieved optimal performance across
all metrics, with Recall, IoU, Precision, and Accuracy reaching 88.96%, 87.97%, 89.98%,
and 90.02%, respectively. These results conclusively demonstrate the high degree of
complementarity between the proposed architectural enhancements and the intelligent
optimization algorithm.

Comparative Performance Analysis

To rigorously validate the efficacy and competitiveness of WD-SEG in wood defect
segmentation, a comparative experiment on the Wood Defect Training dataset against a
suite of representative state-of-the-art models were conducted. The selected baselines
include U-Net++ (Zhou et al. 2019), Matting Anything (Li et al. 2024), SNUNet-CD (Fang
et al. 2021), YOLOvl11-seg (He et al. 2025), and FovealSeg (Yang et al. 2021). These
models, widely adopted in industrial inspection, encompass diverse architectures ranging
from standard encoder-decoders and attention-enhanced networks to specialized edge-
aware designs.

To ensure fair comparison, all models were evaluated using identical data
partitioning, preprocessing protocols, and training configurations. Performance was
measured using a unified set of metrics. The comparative results are detailed in Table 4,
with visual segmentation examples presented in Fig. 8.

Table 4. Experimental Results Comparing the Performance of Different
Segmentation Models on the Wood Defect Training Dataset

Method Recall (%) loU (%) Precision (%) Accuracy (%)
U-net++ 86.761+0.24 86.701+0.18 86.6540.21 87.094+0.16
Matting Anything 85.34+0.10 85.5940.20 85.84140.19 86.10+0.14
SNUNet-CD 82.171+0.21 81.53+0.17 81.094+0.13 82.25+0.20
YOLOv11-seg 87.38+0.14 88.00+0.22 88.63+0.16 88.54+0.15
FovealSeg 85.541+0.18 85.3840.21 85.224+0.12 85.19+0.12
WD-SEG 88.96+0.12 87.97+0.15 89.98+0.10 90.024+0.11

The results demonstrate that WD-SEG consistently outperforms existing classic
and advanced models. Achieving a Recall of 88.96%, IoU of 87.97%, Precision of 89.98%,
and Accuracy of 90.02%, WD-SEG surpassed all comparison methods across all metrics.
These findings validate the effectiveness and universality of the proposed “Enhance-Filter-
Accelerate” framework.

UNet++: While its dense nested skip connections yielded an accuracy of 87.09%,
its Recall was limited to 86.76%, indicating insufficient sensitivity to faint or blurred
defects. In contrast, WD-SEG’s AFN leverages dual-path (spatial and channel) attention to
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amplify shallow features, significantly enhancing the detection of subtle defects and

mitigating missed detections in low-contrast regions.

Matting Anything: Despite leveraging SAM priors for zero-shot capability and
lightweight edge refinement, this model struggled with complex texture backgrounds,
resulting in a Precision of 85.84% (4.14% lower than WD-SEG). This suggests

susceptibility to background noise, leading to spurious contours.

SNUNet-CD: Originally designed for bi-temporal change detection, its weight-
sharing structure lacks differential guidance in single-image tasks, leading to background
overfitting and a low Accuracy of 82.25%. This highlights the limitations of direct

architecture transfer.

Image

-

s
————

Label

Unet++

MA

SNUNet

YOLOI11

IT2FNN

‘.
— —
. » ..

Fig. 8. Examples of different segmentation models performing defect segmentation processing on
the Wood defect training dataset. Existing methods struggle to correctly segment wood defect

areas (marked in red dashed box).
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YOLOv11-seg: Combining an efficient backbone with a lightweight segmentation
head, this model achieved a respectable Accuracy of 88.54%. However, its Recall (87.38%)
trailed WD-SEG by 1.58%, reflecting insufficient activation in low Signal-to-Noise Ratio
(SNR) scenarios. WD-SEG addresses this via the AFN's layer-wise amplification, which
fundamentally improves SNR and minimizes missed detections.

FovealSeg: While exhibiting balanced performance, its Accuracy was limited to
85.19%, suggesting that high-order fuzzy operations are ineffective at suppressing wood
surface artifacts. WD-SEG's synergistic AFN-TFN mechanism effectively discriminates
between signal and noise, achieving a superior equilibrium between Precision and Recall.

In conclusion, by integrating feature enhancement (AFN), intelligent filtering
(TFN), and accelerated optimization (ICO), WD-SEG not only achieved a benchmark
Accuracy of 90.02% but also demonstrated optimal comprehensive performance on the
Pareto frontier, offering a novel paradigm for high-precision binary segmentation in
complex environments.

Additionally, to evaluate the practical deployment potential of WD-SEG in
resource-constrained forestry environments, a quantitative comparison of model
complexity and inference efficiency was conducted. As summarized in Table 5, WD-SEG
demonstrates a superior balance between segmentation accuracy and computational
overhead compared to established benchmarks.

Specifically, WD-SEG achieves the highest accuracy of 90.02% with a
significantly compact architecture, requiring only 18.4 M parameters and 42.6 G FLOPs.
In contrast, U-Net++ exhibits nearly seven times the parameter count (36.6 M) and four
times the FLOPs (150.4 G) due to its dense nested skip connections, which substantially
restricts its real-time applicability. While YOLOv11-seg delivers the fastest inference
speed (12.5ms) owing to its optimized detection-based backbone, it yields a lower accuracy
(88.54%). The efficiency of WD-SEG is primarily attributed to the Threshold Filtering
Network (TFN). By transforming continuous feature maps into sparse binary masks, the
TFN effectively prunes task-irrelevant background information, thereby concentrating
computational resources on salient defect regions without compromising edge fidelity.

Table 5. Quantitative Analysis of Model Complexity and Inference Efficiency

Method Parameters (M) | FLOPs (G) Inference Time (ms) Accuracy (%)
U-Net++ 36.6 150.4 45.2 87.09
YOLOv11-seg 12.6 31.2 12,5 88.54
WD-SEG 18.4 42.6 20.8 90.02

Generalization Analysis on the Wood Defect Dataset

To further investigate the generalization capabilities of the proposed WD-SEG
model, comparative experiments were conducted on the Wood Defect dataset. The results
are detailed in Table 6 and Fig. 9.

The experiments on the Wood Defect dataset provide further validation of WD-
SEG's robustness and adaptability. As presented in Table 8, WD-SEG outperformed all
comparison models across the four key metrics, achieving a Recall of 86.77%, IoU of
86.50%, Precision of 86.54%, and Accuracy of 85.99%. These results demonstrate the
model's consistent ability to identify defects within complex scenarios.
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Table 6. Generalization Experimental Results of Different Segmentation
Networks on the Wood Defect Dataset

Method Recall (%) loU (%) Precision (%) Accuracy (%)
U-net++ 83.46+0.24 82.94+0.28 82.7840.25 81.98+0.20
Matting Anything | 84.42+0.20 83.54+0.22 83.56+0.18 82.30+0.16
SNUNet-CD 85.2940.19 84.75+0.17 84.80+0.26 83.7540.21
YOLOv11-seg 85.99+0.26 85.03+0.23 85.1240.21 84.94+0.19
FovealSeg 86.41+0.17 86.02+0.20 86.13+0.13 85.48+0.14
WD-SEG 86.77+0.16 86.50+0.18 86.54+0.15 85.99+40.13

Generalization Experimental Results on Wood Defect Dataset

U-net++ 83.46 82.94 82.78 81.98

86

Matting Anything 83.56

84.80
85.03 85.12 -84
86.02 86.13
-83
85.99
-82

Recall(%) loU(%) Precision(%) Accuracy(%)

SNUNet-CD

YOLOv11-seqg

FovealSeg

WD-SEG 86.77

Fig. 9. Comparison of generalization experiment results based on Wood defect dataset

WD-SEG’s superior performance on this dataset is attributed to the synergistic
integration of its core components: the AFN ensures sensitive capture of faint defects; the
TFN effectively filters periodic textures and directional noise; and the ICO algorithm
provides global optimization during training. The proposed “Enhance-Filter-Accelerate
mechanism demonstrates exceptional generalization when confronting typical
interferences such as growth rings, resin spots, and uneven lighting, thereby confirming the
model's reliability and potential for practical application.
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CONCLUSIONS

This study addressed critical barriers in automated wood quality inspection,
specifically the insufficient segmentation accuracy for subtle, low-contrast defects and the
limited generalization capabilities of existing models in complex forestry environments.
To overcome these challenges, the WD-SEG model, a novel deep learning framework
underpinned by an “Enhance-Filter-Accelerate” paradigm, was developed and evaluated.

1. The Augmented Feature Network (AFN) successfully mitigates the loss of spatial
details inherent in deep networks. By synergizing spatial and channel attention
mechanisms, AFN amplifies the feature response of faint defects—such as minute
cracks and knots—that are typically obscured by blurred edges and minimal grayscale
variations.

2. The Threshold Filtering Network (TFN) introduces a directional consistency modeling
approach to refine feature maps. By utilizing cosine similarity and adaptive
binarization, TFN effectively suppresses task-irrelevant background noise and
periodic texture interference without compromising edge fidelity.

3. The integration of the Interstellar Collision Optimization (ICO) algorithm resolves
training inefficiencies. By simulating gravitational attraction and collision
mechanisms, ICO balances global exploration with local refinement, enabling the
model to escape local optima and converge more rapidly than traditional gradient
descent methods.

4. Quantitative evaluations confirmed the superior performance of the WD-SEG
framework. On the Wood Defect Training dataset, WD-SEG achieved state-of-the-art
results, with an [oU of 87.97%, significantly surpassing existing advanced baselines.
Furthermore, generalization tests conducted on an independent validation dataset
demonstrated the model’s strong robustness, yielding an loU of 86.50%. These results
validated the high precision and reliability of the framework even under challenging
conditions, such as varying lighting and complex growth ring textures.

In summary, WD-SEG provides a precise, robust, and computationally efficient
solution for wood defect segmentation. By effectively extracting faint defect features while
maintaining low computational overhead, this study establishes a solid foundation for the
deployment of automated inspection systems in resource-constrained real-world
environments. Beyond its robust performance, the modular architecture of WD-SEG
provides a technical foundation for selective defect attention. Through the adaptive
thresholding mechanism in the TFN module, the system can be tuned to prioritize high-
risk structural defects while filtering out task-irrelevant surface variations. Future research
will prioritize model compression for deployment on edge-computing hardware and the
expansion of the dataset to encompass a broader diversity of rare timber species.
Furthermore, the proposed framework will be integrated into a comprehensive wood
quality assessment system. By incorporating standardized grading protocols and market-
oriented metrics—potentially utilizing the KANO model to categorize defect severity
according to industrial requirements—this research aims to bridge the gap between high-
precision computer vision and optimized industrial value recovery.
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