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Plant bioresources are an abundant, sustainable, and underutilized source
of essential bioactive substances for use in the food, pharmaceutical,
cosmetic, and nutraceutical sectors. The increased demand for
sustainable and environmentally friendly processing technologies has
fueled interest in enzyme-assisted valorization as a greener alternative to
traditional extraction methods. This review emphasizes the relevance of
plant bioresources and functioning bioproducts, particularly the use of
enzymes in green extraction methods. The many kinds of hydrolytic and
oxidative enzymes that contribute to biomass valorization are described,
as well as their modes of action. Uses of enzyme-assisted extraction in
the production of functional bioproducts are discussed, followed by a
review of commercial scale-up issues, economic feasibility, and regulatory
implications. In terms of sustainability, selectivity, and environmental
effect, enzyme-assisted approaches can outperform traditional,
microwave, ultrasound, and pressurized liquid extraction procedures.
Enzymes can selectively break down complex polysaccharides and
phenolic chemicals. Challenges persist in enzyme cost, capacity, and
regulatory barriers. Future studies should focus on optimizing enzyme
combinations, increasing cost-efficiency through enzyme recycling, and
combining enzymatic approaches with other green technologies to
improve sustainability. Furthermore, broadening the spectrum of
feedstocks and guaranteeing compliance with industry norms will be
critical for widespread industrial use of enzyme-assisted procedures.
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INTRODUCTION

Plant bioresources, including agricultural residues, forestry byproducts, and food
processing wastes, represent an abundant, renewable, and largely underutilized source of
valuable biomolecules such as polyphenols, polysaccharides, proteins, lipids, and natural
pigments (Abdelghany et al. 2020). The efficient utilization of these resources is
increasingly recognized as a key pillar in advancing circular bioeconomy concepts,
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reducing environmental burdens associated with waste disposal, and promoting sustainable
industrial development (Ugwu et al. 2025). Functional bioproducts derived from plant
biomass exhibit a wide spectrum of biological and technological properties, including
antioxidant, antibacterial, anti-inflammatory, and health-promoting activities, making
them highly attractive for food, pharmaceutical, cosmetic, and nutraceutical applications
(Estarriaga-Navarro ef al. 2025). Despite their high potential, the recovery of bioactive
compounds from plant bioresources is often limited by the complex and rigid architecture
of plant cell walls, which restricts solvent penetration and hinders the release of
intracellular compounds. Conventional extraction techniques frequently rely on high
temperatures, extended processing times, and large volumes of organic solvents, which
may lead to the degradation of thermolabile compounds, low selectivity, and increased
environmental impact. These limitations have intensified the search for alternative, greener
extraction technologies capable of improving extraction efficiency while preserving the
structural integrity and bioactivity of target compounds (Lemoni et al. 2025).

Enzyme-assisted extraction has emerged as a promising green technology that
effectively overcomes these constraints by selectively degrading structural polymers in
plant cell walls under mild processing conditions (Jiang et al. 2025). In contrast to
traditional solvent-based methods, enzymatic processes typically require lower solvent
volumes, reduced energy consumption, and shorter extraction times, while offering higher
selectivity toward specific biomolecules. Enzymes act as highly specific biocatalysts,
enabling controlled hydrolysis of polysaccharides, proteins, and phenolic complexes
without causing extensive chemical damage to sensitive bioactive compounds (Farhan et
al. 2025). In recent years, enzyme-assisted valorization has gained increasing attention not
only as an extraction technique, but also as an integrated strategy for sustainable biomass
conversion within biorefinery frameworks. By facilitating the recovery of multiple high-
value compounds from a single feedstock, enzymatic approaches align well with the
principles of resource efficiency, waste minimization, and value-chain diversification. This
makes enzyme-assisted extraction particularly relevant for the valorization of agro-
industrial residues, which are generated in large quantities worldwide and often remain
underexploited (Ntunka ef al. 2025).

From a sustainability perspective, enzyme-assisted extraction supports regulatory
and industrial demands for cleaner production technologies by minimizing the use of
hazardous chemicals and reducing greenhouse gas emissions associated with energy-
intensive processes (Diaz-de-Cerio and Trigueros 2025). Moreover, the compatibility of
enzymatic processes with other green technologies—such as ultrasound, microwave, and
membrane-assisted separations—offers additional opportunities for process intensification
and performance enhancement (Roobab et al. 2025). Given the rapid expansion of research
in this field, a comprehensive understanding of enzyme types, mechanisms of action,
extraction efficiencies, application areas, and industrial feasibility is essential. This review
therefore aims to provide an in-depth overview of enzyme-assisted valorization of plant
bioresources, focusing on the types of enzymes employed, mechanistic pathways of
extraction, applications in functional bioproduct development, industrial scale-up
considerations, and comparative advantages over conventional and emerging extraction
techniques. By addressing these interconnected aspects, this review highlights enzyme-
assisted extraction as a key enabling technology for sustainable and high-value utilization
of plant bioresources.
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A thorough and structured literature review was used to evaluate recent
improvements in enzyme-assisted biomass valorization. Major academic databases such as
Web of Science, Scopus, PubMed, ScienceDirect, and Google Scholar were used to search
for scientific papers. Enzyme-assisted extraction, biomass valorization, plant bioresources,
hydrolytic enzymes, oxidative enzymes, and green extraction methods were some of the
keywords and search strings used. To ensure relevance and scientific rigor, the literature
was selected from peer-reviewed research articles, review papers, and book chapters
published predominantly in the recent decade. Studies were selected based on their
connection to enzyme types, extraction mechanisms, process efficiency, and their use in
the food, pharmaceutical, cosmetic, and biorefinery industries. Papers that lacked adequate
experimental description, were unrelated to plant-based biomass, or focused entirely on
chemical extraction with no enzymatic involvement were eliminated. The chosen literature
was thoroughly reviewed and structured to give a balanced and comprehensive overview
of enzyme-assisted extraction methodologies, eliminating redundancy and stressing
mechanistic understanding, technological improvements, and practical usefulness.

Enzymes in Biomass Valorization

Enzymes play a central role in biomass valorization due to their ability to
selectively and efficiently catalyze the breakdown of complex plant cell wall components
into valuable functional molecules. In enzyme-assisted extraction processes, enzymes act
as biocatalysts that target specific structural and chemical bonds within plant biomass,
thereby enhancing the release, solubilization, and accessibility of bioactive compounds.
Based on their mode of action and substrate specificity, enzymes used in biomass
valorization can be broadly classified into several major categories (Nargotra et al. 2023)
as the following:

Hydrolytic enzymes
Hydrolytic enzymes, such as cellulases, hemicellulases, pectinases, and proteases,
are essential for disrupting plant cell wall components such cellulose, hemicellulose,
pectin, and protein scaffolding (Nofal et al. 2021; Al-Rajhi et al. 2022). Cellulases are
multi-enzyme systems rather than single enzymes that play an important role in the
enzymatic breakdown of cellulose. Most cellulases have a catalytic domain attached to a
carbohydrate-binding module, which improves substrate affinity and catalytic efficiency.
Cellulase systems function by combining multiple different enzymes to work together.
Endoglucanases randomly cleave internal -1,4-glycosidic linkages in amorphous
regions of cellulose, creating new chain ends and improving substrate accessibility
(Schmitt and Hirakawa 2025). Exoglucanases, also known as cellobiohydrolases, act
processively on the reducing or non-reducing ends of cellulose chains to release cellobiose
units. B-Glucosidases convert cellobiose and short cello-oligosaccharides to glucose,
avoiding product inhibition and completing cellulose saccharification (Mafa et al. 2025).
Hemicellulases, which include xylanases, mannanases, arabinofuranosidases, and
acetylxylan esterases, work on the heterogeneous hemicellulose matrix. These enzymes
have a variety of active-site designs that are specific to branched polysaccharides.
Hemicellulases eliminate hemicellulosic barriers surrounding cellulose microfibrils, which
improves total enzymatic accessibility and extraction efficiency (Dhakal et al. 2025).
Pectinases, which include polygalacturonases, pectin lyases, and pectin esterases,
break down pectic compounds found largely in the middle lamella. The mechanism
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involves breaking of a-1,4-glycosidic and ester linkages, which leads to cell separation and
increased porosity. Pectinases are especially crucial for converting fruit, vegetable, and soft
biomass into valuable resources (Chandel et al. 2022).

Proteases catalyze the breakdown of peptide bonds in structural and storage
proteins. They liberate protein-bound phenolics and bioactive peptides while also
disrupting protein-polysaccharide complexes, hence enhancing extraction yield and
functional characteristics (Oliveira ef al. 2025).

Oxidative enzymes

Oxidative enzymes, such as laccases and peroxidases are oxidative enzymes that
change phenolic structures and lignin constituents, leading to improved extractability and
functional characteristics (Gatazka ef al. 2025).

Glycoside hydrolases

Glycoside hydrolases, including B-glucosidase and a-amylase, target glycosidic
bonds in cellulose, starch, and glycosylated phenolic compounds. These enzymes are
crucial for releasing bound phenolics and oligosaccharides, enhancing both bioavailability
and functional performance. Their application is especially relevant in biorefining
processes and the production of functional food ingredients and nutraceuticals
(Karnaouri et al. 2019).

Table 1. Types of Enzymes Employed in Biomass Valorization According to
Substrate Specificity and Functional Role

Enzyme Enzymes Target Bio- Mechanism of | Applications References
Type molecules Action
Hydrolytic | Cellulases, Cellulose, Hydrolysis of Release of (Lubek-
enzymes hemicellulases, | hemicellulose, | polysaccharides, | sugars, Nguyen et al.
pectinases, pectin, proteins polyphenols, 2022)
proteases proteins peptides
Oxidative Laccases, Phenolic Oxidation of Enhancement of | (Pham et al.
enzymes peroxidases, compounds, phenolics and bioactive 2024)
tyrosinases lignin lignin compound
extraction
Glycoside | B-glucosidase, | Cellulose, Hydrolysis of Biorefining and (Karnaouri et
hydrolases | a-amylase starch glycosidic bonds | functional food al. 2019)
production
Lipases Lipases Lipids, fats Hydrolysis of Biocatalysis in (Selo et al.
ester bonds biodiesel 2021)
production and
food
Lignolytic Lignin Lignin Lignin Waste (Vrsanska et
enzymes peroxidase, degradation valorization, al. 2016)
manganese biofuel
peroxidase production

Lipolytic enzymes

Lipolytic enzymes, as lipases, are specialized enzymes that catalyze the hydrolysis
of ester bonds in lipids and fats. In biomass valorization, lipases are employed to recover
lipid-based compounds and to facilitate biocatalytic transformations in food, cosmetic, and
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biofuel applications. Their high specificity and efficiency under mild conditions make them
valuable tools in sustainable lipid processing (Selo et al. 2021).

Lignolytic enzymes

Lignolytic enzymes, including lignin peroxidase and manganese peroxidase, are
primarily involved in lignin degradation. These enzymes disrupt the lignin network that
protects cellulose and hemicellulose, thereby increasing the accessibility of carbohydrates
and phenolic compounds. Lignolytic enzymes are particularly important in waste
valorization and biofuel production, where extensive delignification is required
Vrsanska et al. 2016). These enzymes’ synergistic actions allows for the effective and
selective release of important chemicals, making them indispensable instruments in
enzyme-assisted biomass conversion (Mabate et al. 2025). The primary enzyme classes
employed in biomass valorization, including their target substrates and functional roles
summarized in (Table 1). Furthermore, the involvement of several enzymes in destroying
biomass structural parts is depicted schematically in (Fig. 1).

Enzymes Employed in Biomass Valorization

\
( ! !
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Glycoside Hydrolases Lipases

Hydrolytic

Oxidative Enzymes
Enzymes

Lignolytic Enzymes

Fig. 1. Schematic representation of different enzyme—substrate interactions in biomass
valorization processes

Mechanisms of Enzyme-Assisted Extraction

Enzyme-assisted extraction uses well-defined structural, molecular, and physico-
chemical pathways to increase the release of intracellular and cell wall-bound bioactive
chemicals from plant biomass. Unlike traditional extraction procedures, which rely mostly
on solvent diffusion and heat effects, enzymatic extraction is driven by biocatalytic
breakdown of specific plant cell wall constituents, resulting in controlled disintegration of
biomass structures (Jiang et al. 2025). At the structural level, plant cell walls are made up
of a complex network of cellulose microfibrils embedded in hemicellulose, pectin, lignin,
and structural proteins, resulting in a stiff matrix that limits solvent accessibility. Enzymes
including cellulases, hemicellulases, and pectinases selectively break down [-1,4-
glycosidic bonds and ester connections in polymers. This focused hydrolysis enhances cell
wall porosity, breaks the middle lamella, and reduces cell-cell adhesion, allowing solvent
penetration and intracellular chemical diffusion (Xiao et al. 2025). At the molecular level,
enzymatic reactions break down specific chemical bonds that attach bioactive chemicals to
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macromolecular matrices. B-glucosidases dissolve glycosidic bonds between phenolics and
sugars, whereas proteases break protein-polyphenol and protein-polysaccharide
complexes. These processes convert bound or insoluble chemicals into soluble, extractable
forms while retaining their functional structure, therefore conserving bioactivity
(Siddikey et al. 2025). From a mass transfer perspective, enzymatic degradation lowers
diffusion barriers by reducing particle size, loosening polymeric networks, and expanding
surface area. The increased solvent accessibility enhances solute migration from the solid
matrix to the liquid phase. This mechanism explains why enzyme-assisted systems produce
higher extraction yields and can have shorter processing times than non-enzymatic
extraction (Segneanu et al. 2025). Enzymatic efficiency is also influenced by kinetic and
process characteristics such as enzyme specificity, level, pH, temperature, substrate
structure, and reaction time. Synergistic enzyme combinations frequently outperform
single-enzyme systems in terms of cell wall disintegration because they target many
structural components at the same time (Siddikey et al. 2025). Thus, enzyme-assisted
extraction performs by selectively biocatalytically modifying plant biomass rather than
causing non-specific physical disruption. This controlled mode of action allows for
moderate processing conditions, higher selectivity, increased extraction efficiency, and the
ongoing storage of thermolabile and bioactive chemicals, establishing enzymatic extraction
as a machinery driven green technology (Jiang et al. 2025). Table 2 compiles important
research that clarifies the mechanics behind enzyme-assisted extraction, such as mass
transfer enhancement and cell wall disintegration. Additionally, Fig. 2 illustrates the
primary molecular steps in enzyme-assisted extraction.
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Fig. 2. Mechanistic pathways of enzyme-assisted extraction at the cellular and molecular levels

The synthesis of certain functional products via enzyme-assisted extraction is
highly reliant on process parameters such as enzyme selection, enzyme combinations,
temperature, pH, solid loading, and reaction time. Optimized enzyme cocktails are
frequently required for synergistic hydrolysis of complicated biomass matrices. Mild
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temperatures (30 article 55 °C) and slightly acidic to neutral pH values (4.5 article 6.5) are
commonly used to preserve enzyme activity while maintaining thermolabile substances.
Solid loading and enzyme dosage have a substantial impact on extraction efficiency and
process economics, necessitating careful optimization based on the intended product
(Brienza ef al. 2025). Some of the key references for enzyme-aided extraction conditions

for various functional compounds are summarized in (Table 3).

Table 2. Summary of Representative Studies Investigating Mechanistic Pathways
of Enzyme-Assisted Extraction

Plant Enzymes Target Mechanism of Key Outcome | References
Bioresource | Used Compounds action
Citrus peels | Pectinase, Flavonoids, Degradation of Enhanced (Lima et al.
cellulase phenolic acids | pectin-rich middle | phenolic yield | 2025)
lamella and and
cellulose antioxidant
microfibrils activity
Grape Cellulase, Anthocyanins, | Hydrolysis of Increased (Stanek-
pomace hemicellulase, | tannins polysaccharide extraction Wandzel et
pectinase network efficiency and | al. 2024)
improving solvent | color stability
penetration
Wheat bran | Xylanase, Dietary fiber, Hemicellulose Improved (Ren et al.
protease bioactive depolymerization | solubilization 2024)
peptides and protein and functional
hydrolysis properties
Soybean Protease Bioactive Cleavage of Increased (Yan et al.
meal (Alcalase) peptides protein— peptide yield 2022)
polyphenol and bioactivity
complexes
Apple Pectinase, Pectins, Cell separation Higher (Kaire et al.
pomace cellulase phenolic and loosening of | recovery under | 2025)
compounds cell wall structure | mild
processing
conditions
Olive leaves | Cellulase, B- | Oleuropein, Hydrolysis of Improved (Huaman-
glucosidase phenolics glycosidic bonds | phenolic Castilla et
releasing bound extraction and | al. 2024)
phenolics antioxidant
capacity

Table 3. Enzyme-assisted Extraction Conditions for Different Functional Products

Target Biomass Enzyme(s) | Key conditions (pH, | Main outcome | References

product source used T, solid loading)

Phenolics Grape Pectinase + | pH 5.0, 45 °C, 5% Phenolic yield (Stanek-Wandzel et

pomace cellulase solids al. 2024)

Oligo- Wheat bran | Xylanase pH 6.0, 50 °C Prebiotic oligo- | (Wu et al. 2025)

saccharides saccharides

Sugars Corn stover | Cellulase pH 4.8, 50 °C High glucose (Gong et al. 2020)

cocktail release

Proteins Soy residue | Protease pH 7.0,40 °C Bioactive (Mirzapour-Kouh-

peptides dasht et al. 2023)
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Applications in Functional Bioproduct Production

The formation of functional bioproducts from a variety of plant bioresources has
made extensive use of enzyme-assisted extraction (Streimikyte et al. 2022). Polyphenols,
dietary fibers, bioactive peptides, and oligosaccharides with improved bioavailability and
usefulness are recovered via enzymatic procedures in the food and nutraceutical industries
(Zhao et al. 2025).

Enzyme-assisted extracts that are high in antioxidants, pigments, and
polysaccharides are used in cosmetic formulations to prevent aging and protect the skin.
Enzymes help extract plant-derived chemicals having antibacterial, anti-inflammatory, and
anticancer characteristics for use in medicinal applications (Michalak 2023). Enzyme-
assisted techniques also aid in the creation of useful components such natural thickeners,
emulsifiers, and prebiotics. Enzymatic extraction frequently produces better-quality
products with enhanced sensory and functional properties as compared to traditional
methods (Zhao et al. 2025).

Enzyme-assisted valorization’s adaptability underscores its promise as a crucial
enabling technique for creating high-value functional bioproducts from plant-based
feedstocks (Saorin Puton et al. 2025). The variety of functional bioproducts made with
enzyme-assisted extraction, their source materials, and their intended uses are shown in
(Table 4). Additionally, Fig. 3 summarizes the variety of uses made possible by enzyme-
assisted extraction in the generation of functional bioproducts.

Table 4. Functional Bioproducts Obtained via Enzyme-assisted Extraction and
their Corresponding Biomass Sources

Application Plant Bio- Enzymes Functional Key Benefit References

Area resource Used Bioproducts

Food & nutra- | Grape Cellulase, Polyphenols, Enhanced Poblete et

ceuticals pomace pectinase anthocyanins | antioxidant activity | al. 2025
and bioavailability

Food Citrus peels Pectinase Pectin, Improved yield Lima et al.

ingredients flavonoids and functional 2025
properties

Nutra- Soybean Protease Bioactive Increased peptide | Sedlar et al.

ceuticals meal (Alcalase) peptides release and 2025
digestibility

Cosmetics Aloe vera Cellulase, Polysaccharid | Improved Elferjane et

hemicellulase | es moisturizing and al. 2023

skin-protective
properties

Pharma- Olive leaves | Cellulase, - | Oleuropein, Increased Vardakas et

ceuticals glucosidase phenolics antimicrobial and al. 2024
antioxidant activity

Functional Wheat bran Xylanase Soluble Improved solubility | (Streimikyte

fibers dietary fiber and prebiotic et al. 2022)
potential
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Fig. 3. Application spectrum of enzyme-assisted extraction in functional bioproduct development

Industrial Perspectives and Scale-Up

Reactor design, process integration, and operating parameters must all be carefully
taken into account for the industrial application of enzyme-assisted extraction. Stirred-tank
reactors, packed-bed reactors, and membrane-assisted systems are common reactor
topologies that are chosen according to substrate properties and process scale (Palladino et
al. 2024). The goal of process optimization is to maximize the efficiency of enzymes while
reducing the expenses related to their manufacture, recovery, and reuse. Enzyme
immobilization has drawn interest as a tactic to improve recyclability and operating
stability (Mao et al. 2024).

Table 5. Industrial Implementation and Scale-Up Considerations for Enzyme-
Assisted Extraction Technologies

Aspect Description Industrial Advantage References
Strategy
Reactor type Stirred-tank Batch or fed- Easy scale-up Arulrajah et al. 2025
reactor batch enzymatic and process
hydrolysis control
Continuous Packed-bed Immobilized Enzyme Chalella Mazzocato
processing reactor enzymes reusability and & Jacquier 2024
reduced cost
Process Enzyme Statistical and Improved Lopez-Truijillo et al.
optimization concentration, | kinetic modeling efficiency and 2023
pH, yield
temperature
Economic Enzyme cost Enzyme recycling | Lower Ghinea et al. 2025
feasibility and recovery and biorefinery operational cost
integration
Sustainability | Reduced Green processing | Lower Ibrahim et al. 2023
solvent and approach environmental
energy use footprint
Regulatory Food/pharma- | GRAS approval Market Sutay Kocabas &
compliance grade and GMP acceptance Grumet 2019
enzymes standards
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Enzyme-assisted procedures can be economically advantageous when incorporated
into biorefineries that valorize several product streams. Sustainability assessments show
reduced energy consumption, solvent usage, and environmental impact compared to typical
extraction methods (Diaz-de-Cerio and Trigueros 2025). However, regulatory issues such
as enzyme safety, product purity, and compliance with food and pharmaceutical standards
remain significant hurdles. Addressing these variables is critical to successful industrial-
scale adoption (Arnau et al. 2019). Table 5 presents industrial viewpoints such as scale-up
problems, process integration, and economic considerations.

Comparative Analysis with Other Extraction Techniques

Enzyme-assisted extraction has various advantages over traditional solvent
extraction and developing physical approaches including microwave-assisted, ultrasound-
assisted, and pressured liquid extraction (Poblete et al. 2025). Conventional solvent
extraction frequently necessitates huge volumes of organic solvents, high temperatures, and
extended extraction times, which can result in thermolabile chemical degradation (Zhang
et al. 2018). Microwave and ultrasound-assisted technologies improve mass transfer and
minimize processing time, but they can induce localized heating and structural damage to
sensitive bioactives (Mieles-Gomez et al. 2025). Pressurized liquid extraction enhances
efficiency, but it requires a lot of energy and specialized equipment. In contrast, enzyme-
assisted techniques operate under mild conditions with good selectivity, retaining the
structural and functional integrity of target molecules (Poblete ef al. 2025).

Table 6. Comparative Evaluation of Enzyme-Assisted and Conventional
Extraction Techniques Based on Efficiency, Sustainability, and Product Quality

Extraction Operating Advantages | Limitations Comparison References
Technique Conditions with Enzyme-
Assisted
Extraction
Conventional High solvent, Simple, low Low Less Osorio- Tobd
solvent long time capital cost selectivity, sustainable 2020
extraction solvent and lower
residues product quality
Microwave- Rapid heating | Short Thermal Enzymes offer | Macedo et
assisted extraction degradation milder al. 2023
extraction time risk conditions
Ultrasound- Acoustic Improved Possible Enzymes Kenenbay et
assisted cavitation mass structural preserve al. 2025
extraction transfer damage bioactivity
Pressurized High pressure | High High energy Enzymes are Poblete et al.
liquid extraction | and efficiency and more eco- 2025
temperature equipment friendly
cost

Enzyme- Mild pH and High Enzyme cost | Superior Diaz-de-
assisted temperature selectivity, sustainability Cerio &
extraction green and product Trigueros

process integrity 2025
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Enzymatic extraction is especially appealing for sustainable processing due to its
lower environmental impact and enhanced product quality. Enzyme-assisted valorization
is now considered as a better green extraction technology (Diaz-de-Cerio and Trigueros
2025). Table 6 compares enzyme-assisted extraction to conventional approaches.

Enzyme-assisted biomass valorization has a wide range of uses in industries such
as food, pharmaceuticals, cosmetics, and biorefineries. The variety of functional products
developed through specialized enzyme systems emphasizes the adaptability and
technological maturity of enzymatic extraction technologies (Makaveckas et al. 2025). A
comparative performance of extraction techniques in terms of yield, selectivity, and
environment impact is found in (Table 7).

Table 7. Comparison of Extraction Techniques for Biomass Valorization

Extraction Yield (%) | Selectivity | Solvent use Energy Environ- | References
method demand mental

impact
Conventional | Low— Low High High High (Khalil et al.
solvent moderate 2021)
Enzyme- High High Low Moderate Low (Streimikyte et
assisted al. 2022)
Ultrasound- Moderate | Moderate Moderate Moderate Moderate | (Chen et al.
assisted 2025)
Microwave- High Low— Moderate High Moderate | (Laina et al.
assisted moderate 2024)
Supercritical High High Low Very high Moderate | (Kamjam et al.
fluid 2024)

Despite the broad scope of this review, many limitations should be noted. First, the
analysis is mostly based on published literature. Therefore, it is subject to the availability,
quality, and reporting criteria of current studies. Differences in biomass sources, enzyme
types, extraction conditions, and analytical procedures between research may prevent
direct quantitative assessment of published work. Second, as laboratory-scale enzyme-
assisted extraction procedures are extensively explored, there is less attention on pilot- and
industrial-scale procedures due to a lack of publicly available data. Therefore, economic
assessments and life-cycle analyses were not thoroughly reviewed because such data is
inconsistently published in the literature. Finally, research published in languages other
than English or with insufficient methodological detail were removed, which may have
resulted in the exclusion of potentially important findings.

CONCLUSIONS AND FUTURE DIRECTIONS

1. Enzyme-assisted valorization is a sustainable and effective method for recovering high-
value functional bioproducts from plant bioresources. Enzymatic methods improve
extraction efficiency by selectively destroying plant cell wall components, while
sensitive chemicals’ structural integrity and bioactivity are preserved.
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2. Hydrolytic and oxidative enzymes work together to convert biomass and release
bioactive compounds such as polysaccharides, phenolics, and proteins under mild
processing conditions. In terms of selectivity and environmental effect, enzyme-
assisted extraction outperforms several traditional and developing extraction
technologies due to its specificity and versatility.

3. Enzyme-assisted extraction improves product quality, reduces solvent and energy
usage, and aligns with circular bioeconomy concepts in various industries, including
food, pharmaceutical, cosmetic, and nutraceuticals.

4. Despite evident advantages, issues such as enzyme cost, process optimization, and
regulatory compliance persist. Future advances in enzyme engineering, immobili-
zation, and integration with other green technologies are projected to improve the
industrial viability and scalability of enzyme-assisted biomass valorization.

Although problems such as optimization of processes, enzyme cost, and
compliance with regulations persist (Saorin Puton ef al. 2025), advances in technology for
enzymes and biorefinery integration continue to increase the industrial applicability of
enzyme-assisted extraction. Further investigation on enzyme-assisted extraction should
concentrate on creating tailored enzyme combinations with increased specificity and
synergistic efficacy against a variety of plant matrices. Improvements in enzyme
engineering, immobilization methods, and recombinant production are projected to lower
costs and increase operating stability on an industrial scale.

The combination of enzyme-assisted extraction with upcoming technologies such
as ultrasonic or membrane separation may improve efficiency and selectivity (Abdel-
Mageed 2025). Furthermore, life cycle evaluation and technological-economic analysis
should be used systematically to analyze the sustainability and economic viability of
enzymatic processes. Ramirez-Cando et al. (2025) suggest focusing on underutilized agro-
industrial leftovers and unconventional plant bioresources to broaden the feedstock base
for functional bioproduct development. Lastly, the harmonization of regulatory structures
and uniform processing parameters will be required to support the widespread industrial
implementation of enzyme-assisted valorization procedures.
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