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Wood surface defect detection confronts critical challenges including 
cross-scale feature extraction, excessive parametric burden, and 
inadequate small-target recognition. This study proposes MFWSD-YOLO, 
a lightweight multi-scale feature fusion detection algorithm to address 
these limitations. The algorithm introduces an adaptive downsampling 
module utilizing dual-path parallel processing to preserve spatial 
information, designs a shared convolution detection head enabling 
efficient cross-scale feature interactions, proposes a progressive feature 
integration block strengthening multi-scale semantic fusion, and embeds 
a local attention mechanism enhancing spatial modeling precision. 
Experimental validation demonstrates substantial enhancements, 
achieving mAP@0.5 and mAP@0.5:0.95 improvements of 8.90% and 
5.17% respectively over baseline YOLOv12n. Concurrently, efficiency 
gains include 52.73% parameter reduction, 33.33% computational 
complexity decrease, and 50.94% model size compression, maintaining 
195.6 frames per second inference capability. Cross-dataset validation 
substantiates robust generalization across diverse wood defect scenarios 
and industrial applications. These advances establish an effective 
computational solution for automated wood quality inspection within 
intelligent manufacturing environments. 
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INTRODUCTION 
 

Forestry is an important part of modern industrial production (Wang et al. 2021). 

Wood, its core product, serves as a crucial building and decorative material. Wood defects 

refer to the general names of various characteristics that reduce the commodity and use 

value of wood (Xie and Ling 2023). During the growth process of wood, the connection 

points between branches and the main trunk form knots (Zhang et al. 2025), while growth 

and processing procedures also generate various defects including cracks and pith spots. 

These defects – either formed before or after the manufacture of wood products such as 

houses, bridges, and furniture – can lower the efficient usage of materials (Hubbe 2017).  

Wood surface defect detection methods can be broadly categorized into traditional 

approaches and deep learning-based techniques. In traditional timber production, defects 

in timber are mainly removed by manual detection (Chen et al. 2023). Traditional manual 
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inspection methods, which have high production cost and low efficiency (Hu et al. 2020), 

also suffer from strong subjectivity, failing to meet industrial production requirements. 

With the advancement of computer vision technology, deep learning has achieved 

remarkable progress in object detection domains in recent years (Zhao et al. 2025). 

However, despite the promising application prospects demonstrated by deep learning 

methods for wood surface defect detection, challenges persist in dataset construction, data 

source acquisition, and model design and optimization (Long et al. 2025). From an 

algorithmic architecture perspective, deep learning-based object detection algorithms are 

primarily divided into two-stage and one-stage types (Jiang et al. 2024). 

Two-stage representative algorithms include Fast R-CNN (Girshick 2015), Faster 

R-CNN (Ren et al. 2016), and Mask R-CNN (He et al. 2017), among others. These 

algorithms achieve high detection accuracy but involve complex computations, making it 

difficult to fully satisfy real-time requirements. One-stage representative algorithms 

include the YOLO series (Redmon et al. 2016), RT-DETR (Zhao et al. 2024), and TOOD 

(Feng et al. 2021), among others, with the core advantage lying in fast detection speed. In 

practical applications, wood surface defects exhibit large-scale span and diverse 

morphologies, ranging from tiny cracks to large-area missing knots across multiple scale 

levels, with many belonging to small-target defects. Such issues lead to detection 

difficulties and affect the model’s accurate recognition and localization capabilities for 

targets (Hu et al. 2024). Meanwhile, industrial production lines impose higher 

requirements on the real-time performance and lightweight design of detection systems. 

Therefore, achieving model lightweight character while maintaining detection speed and 

accuracy represents a research topic worthy of investigation (Deng et al. 2025). 

Research on deep learning-based wood surface defect detection has achieved 

certain progress. Kurdthongmee and Suwannarat (2019) focused on wood stem cross-

section pith localization, achieving 76.3% accuracy, though the applicable scenarios 

exhibited obvious limitations. Ling and Xie (2022) proposed a ResNet-v2 wood defect 

detection model, leveraging the fusion of ResNet and GoogLeNet modules to achieve 

recognition of three defect types; however, this model only supported single defect 

classification and could not simultaneously detect multiple defects on the same wooden 

board. Li and Peng (2024) addressed the issues of missed detections and false alarms 

caused by small size and irregular morphology of wood surface defects by proposing an 

improved algorithm based on YOLOv8n. By embedding a global context module, 

integrating deformable large kernel attention into fast spatial pyramid pooling, and 

optimizing multi-scale feature fusion with a weighted bidirectional feature pyramid, 

mAP@0.5 increased by 3.1% and recall improved by 6.8% compared to the original 

baseline algorithm, effectively resolving the previously high rates of missed detections and 

false alarms. Chen et al. (2025) proposed the YOLOv8-OCHD model, introducing omni-

dynamic convolution to avoid information omission, strengthening deep feature learning 

through a C2f_RVB structure constructed by integrating RepViTBlock while simplifying 

parameters. In addition, the receptive field was expanded while simplifying computation 

using a Haar wavelet downsampling module. The mAP@0.5 improved by 5.9%, 

effectively reducing mobile terminal deployment difficulty. However, there remains 

optimization space in balancing model lightweight design and detection accuracy. 

Although the aforementioned research has achieved certain progress in balancing 

high accuracy and lightweight design, numerous deficiencies remain in wood surface 

defect detection scenarios: standard convolutional downsampling causes dead knot void 

boundaries and crack linear structures to degrade in deep networks; fixed convolutional 
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kernels struggle to effectively extract crack directional information and irregular geometric 

morphologies of resin pockets and pith spots; small-target defects such as cracks and live 

knots suffer severe semantic information attenuation during dimensionality reduction; 

traditional decoupled heads exhibit parameter redundancy and limited inter-detection-layer 

information flow, resulting in insufficient detection performance in multi-scale defect 

mixed scenarios; feature extraction modules demonstrate weak integration capability for 

multi-level information of composite defects; neck networks exhibit deficiencies in spatial 

localization modeling for irregular defects, among others. 

In summary, existing wood defect detection methods struggle to balance accuracy 

and lightweight design. These issues were addressed through improvements in feature 

extraction, multi-scale fusion, detection head design, among others, with the MFWSD-

YOLO algorithm being proposed to achieve unification of high accuracy and real-time 

performance. The primary research contributions: 

1. Introduction of the Adaptive Downsampling Module (ADown) (Wang et al. 2024). 

Proposed in the YOLOv9 model by the cited authors, this module constructed parallel 

channels of average pooling and max pooling, simultaneously preserving global 

distribution characteristics and local salient features during spatial dimensionality 

reduction. Through channel reorganization and cascaded fusion, it generated 

compressed representations with higher information density, effectively suppressing 

the degradation of critical features such as dead knot void boundaries and crack linear 

structures in deep networks. 

2. Design of a Lightweight Shared Convolution and Group Normalization Detection Head 

(LSGNDH). This detection head innovatively adopted a cross-branch parameter 

sharing topology, enabling three detection layers to share a unified convolutional kernel 

group. Through dynamic scale calibration layers that adaptively compensated for 

semantic gaps across different feature levels, it reduced redundant weights while 

establishing explicit feature flow mechanisms between detection layers, achieving 

collaborative optimized representation of multi-scale targets and significantly 

improving detection performance in scenarios mixing defects of different sizes. 

3. Proposal of a Progressive Lightweight Reparameterized Feature Integration Block 

(PLRFIB). This module constructed a heterogeneous dual-path feature transmission 

architecture, with a preservation path ensuring the structural integrity of original 

representations, while a processing path performed deep extraction of semantic 

information through structural reparameterization operators. It configured cascaded 

convolutional sequences to form a gradient diffusion pattern of spatial receptive fields, 

achieving progressive feature aggregation from microscopic textures to macroscopic 

structures. The module ultimately performed deep fusion of shallow geometric 

encoding and deep semantic encoding through cross-level feature bridging strategies, 

generating multi-level feature representations with strong discriminative power for 

composite features such as resin pocket lenticular gloss variations and missing knot 

internal material deficiencies. 

4. Introduction of the Efficient Local Attention (ELA) mechanism (Xu et al. 2025). As 

proposed by the cited authors, this mechanism decoded spatial statistical distributions 

through bidirectional adaptive pooling, combined with directional encoding from one-

dimensional convolution to generate spatial weight matrices, strengthening the model’s 

representation capability for irregular defect spatial positions. 
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EXPERIMENTAL 
 

MFWSD-YOLO 
In wood surface defect detection, YOLOv12n served as the baseline model due to 

its effective integration of attention mechanisms and real-time performance. YOLOv12n 

embedded regional attention mechanisms into the feature extraction process through the 

A2C2f module, achieving collaborative optimization of receptive field expansion and 

computational load compression. This module, combined with the residual aggregation 

strategy, stabilized the training process of large-scale models through block-level residual 

connections and optimized feature fusion pathways. FlashAttention technology improved 

computational efficiency by reconstructing memory access patterns, while 7×7 separable 

convolution replaced traditional position encoding to reduce parameter burden. 

However, this model exhibited limitations in wood surface defect detection 

scenarios: traditional convolutional downsampling demonstrated insufficient capability to 

preserve fine boundary features; the decoupled detection head structure impeded inter-

layer feature flow; fixed feature processing procedures showed poor adaptability to 

heterogeneous defect morphologies; the neck network lacked targeted spatial position 

encoding mechanisms, among others. To address these deficiencies exposed in YOLOv12n 

for wood surface defect detection scenarios, the MFWSD-YOLO algorithm was proposed, 

with its structure illustrated in Fig. 1.  

 
 

Fig. 1. Algorithm structure of MFWSD-YOLO 
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ADown Downsampling Module 
Traditional convolutional networks face severe information loss dilemmas during 

layer-by-layer transmission in wood defect detection. Knot-type defect boundary details 

exhibit progressive weakening during dimensionality reduction, cracks are highly 

susceptible to missed detection due to extremely small line widths and variable directional 

characteristics, and resin pocket and pith spot morphological features suffer severe 

distortion after multi-level transformations. To address these issues, the ADown module 

proposed in YOLOv9 was introduced, implementing replacement of certain convolutional 

layers in the original network. Its structure is detailed in Fig. 2. 

 
Fig. 2. ADown downsampling structure 

 

This module first performed preliminary aggregation on the input using average, 

pooling AvgPool2d with kernel size k=2, stride s=1, and padding p=0, preserving 

contextual information while reducing dimensions. Subsequently, the pooling results were 

evenly divided (Chunk) along the channel direction into two paths, requiring the input 

channel number C to be even. The first path employed convolution with k=3, s=2, p=1 to 

extract local textural relationships, while the second path first used max pooling 

MaxPool2d with k=3, s=2, p=1 to preserve extreme value responses, followed by 

convolution with k=1, s=1, p=0 to adjust channels. In the figure, H denotes height, W 

denotes width, and // represents integer division. After processing through both paths, 

features of dimension (C//2, H//2, W//2) were obtained, which were finally merged through 

concatenation (Concat) into output of dimension (C, H//2, W//2). 

The adoption of ADown brought significant improvements. The dual-path 

architecture enabled the convolutional branch to focus on texture detail capture while the 

pooling branch locked onto salient regional responses, constructing a complementary 

expression system after concatenation. For small-target defects such as fine cracks, this 

structure achieved collaborative preservation of edge sharpness and positional information, 

with detection accuracy improved compared to single-path convolution. When addressing 

other defects such as dead knots, the branch mechanism also endowed features with 

stronger adaptability. 

 

LSGNDH 
The original detection head of YOLOv12n adopted a decoupled head structure. 

Although it introduced Depthwise Separable Convolution (DWConv), the P3, P4, and P5 

three-layer structure configured complete convolutional weights for classification and 

regression branches separately, with the accumulation across three layers resulting in 

persistently high total parameter count. This design exhibited dual limitations in wood 

defect processing: first, parameter redundancy caused model volume inflation; second, 
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detection layers operated independently, with fine detail information from the P3 layer 

unable to transmit to the P5 layer, and semantic information from the P5 layer unable to 

feedback to the P3 layer, severely limiting adaptability to defects of different scales. This 

scale difference required the detection head to possess more flexible feature processing 

mechanisms. Based on this, a Lightweight Shared Convolution and Group Normalization 

Detection Head (LSGNDH) was designed, enabling three detection layers to share a single 

set of convolutional parameters, achieving model scale compression through parameter 

reuse while simultaneously introducing normalization layers to ensure training stability. 

The overall architecture of LSGNDH is detailed in Fig. 3.  

 
 

Fig. 3. Lightweight shared convolution and group normalization detection head 

 

The P3, P4, and P5 feature layers output from the neck network first flowed through 

independent 1×1 Conv_GN modules to complete channel adjustment, normalizing the 

channel count of each layer to a unified dimension. In the figure, Conv_GN represents 

convolutional operations fused with group normalization, consisting of three parts: 

standard convolutional layer Conv2d, group normalization layer GroupNorm2d, and 

activation function SiLU. The channel adjustment process is shown in Eq. 1, 

( ),adj ,in hSiLU GroupNorm2d Conv2d , , {3,4,5}i i C i  =   
F F   (1) 

where 𝑭𝑖,in denotes the input feature, 𝑭𝑖,adjdenotes the adjusted feature with unified channel 

count 𝐶ℎ , i represents the detection layer index, the Conv2d function represents two-

dimensional convolution with kernel size 1×1, the GroupNorm2d function represents 

group normalization dividing feature channels into 16 groups for intra-group 

normalization, and SiLU serves as the activation function.  

Feature layers unified in channels entered the shared convolution module, which 

consisted of two cascaded 3×3 Conv_GN layers. Features from three detection layers 

sequentially passed through this group of convolutional weights to complete 

transformation. The first layer performed depthwise separable convolution to extract 
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spatial patterns, while the second layer performed pointwise convolution to fuse channel 

information, with all detection layers sharing a single set of parameters throughout the 

entire process. The feature extraction process was expressed as follows, 

( )(2) (1)

s GN GN ,adj hConv Conv ,i g C = =
 

F F                                                         (2) 

where ConvGN
(1)

represents the first layer of depthwise separable convolution with parameter 

g as the group number such that 𝑔 = 𝐶ℎ indicated depthwise convolution, ConvGN
(2)

 

represents the second layer of pointwise convolution, and 𝑭𝑠 denotes the unified feature 

representation.  

Shared convolution output features diverged into dual parallel processing paths: the 

regression branch Conv_Reg handled bounding box position prediction, while the 

classification branch Conv_Cls discriminated defect categories. In the figure, Conv_Reg 

represents the regression convolutional branch, generating bounding box position offset 

predictions through a 1×1 convolutional layer. After regression branch output, a Scale layer 

was introduced. This layer compensated for response differences when processing targets 

at different scales with shared parameters through learnable scalar parameters 𝑠𝑖 . The 

regression prediction scaling process is shown in Eq. 3, 

( )s regConv2d ,i is N= B F         (3) 

where 𝑩𝑖 denotes the bounding box prediction output for the i-th detection layer, 

𝑠𝑖 represents the learnable scaling parameter corresponding to the i-th layer, and 

𝑁reg denotes the regression branch output channel count, equal to 4 × 𝑟max , where 𝑟max 

represents the maximum regression range parameter for distribution focal loss.  

Conv_Cls represents the classification convolutional branch, performing category 

prediction through a 1×1 convolutional layer. The classification branch prediction could 

be expressed as follows, 

( )s clsConv2d , N=P F          (4) 

where 𝑷denotes the category prediction output, and 𝑁clsrepresents the classification branch 

output channel count, equal to the number of categories 𝑛𝑐 , with each channel 

corresponding to a confidence score for one defect category. The convolutional layer 

weights for the regression and classification branches were completely independent, 

ensuring the model optimized separately for localization and classification tasks.  

During inference, regression branch outputs were decoded into precise coordinates 

through the distribution focal loss mechanism. The decoding process is shown in Eq. 5, 

( )
max 1

( )

0

softmax
r

j

i

j

j
−

=

= B B        (5) 

where 𝑩𝑖
(𝑗)

represents the j-th channel of the i-th detection layer’s regression prediction, j 

denotes the channel index, the softmax function normalized 𝑟max channels to obtain 

probability distribution, and 𝑩 ̂ represents the decoded bounding box offset.  

The decoded offsets were combined with anchor points and converted to bounding 

box coordinates, which were concatenated with classification results before output. The 

final detection output could be expressed as follows, 
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( )ddist2bbox , , ( )S =  
 

Y B A P       (6) 

where 𝒀represents the final detection output containing bounding box coordinates and 

category confidence, dist2bbox represents the core coordinate transformation function 

converting offset distances and anchor points 𝑨 into bounding box coordinates, 𝑆𝑑 

represents the downsampling stride for each detection layer, and 𝜎 denotes the Sigmoid 

function.  

In the LSGNDH design, the shared convolution mechanism compressed the 

original three sets of independent parameters into a single set, with parameter reduction 

amplitude being significant, which held great significance for production line systems 

requiring frequent model loading. The introduction of group normalization further 

consolidated training stability, avoiding convergence difficulties caused by gradient 

fluctuations during small-batch training. The introduction of the Scale layer compensated 

for potential scale adaptability degradation caused by parameter sharing, enabling the 

model to maintain flexibility when localizing defects of different sizes through learnable 

scaling coefficients. 

 

PLRFIB 
The difficulty in wood surface defect recognition focused on morphological 

diversity. Dead knots exhibited irregular circular or elliptical contours, live knots 

maintained close connections with surrounding xylem, cracks displayed linear or dendritic 

extensions, and missing knots formed cavity-like depressions. The C3k2 and A2C2f 

modules of YOLOv12n (structures detailed in Fig. 4) employed serially constructed feature 

channels using Bottleneck residual units. 

 
 

Fig. 4. C3k2 and A2C2f structure 

 

This design limitation lay in convolutional layers processing inputs step-by-step 

according to preset fixed procedures, with each Bottleneck executing the same flow from 

compression to transformation to restoration, lacking mechanisms for dynamic adjustment 

based on target characteristics. Standard convolution generated feature maps containing 

numerous redundant encodings with similar responses; such redundancy both occupied 

storage space and slowed computational speed. When addressing missing knots—

composite defects mixing void boundaries, peripheral textures, and missing regions with 

three types of information—single-path serial processing could not effectively separate and 

integrate different levels of discriminative bases. In view of this, the Progressive 
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Lightweight Reparameterized Feature Integration Block (PLRFIB) was designed, with its 

structure detailed in Fig. 5. 

 

 
Fig. 5. PLRFIB structure 

 

PLRFIB first employed 1×1 convolution to perform channel expansion on input 

feature maps, reserving sufficient space for branch processing, as follows, 

e 1 1 eConv ( ; )=F X W                    (7) 

where 𝑿denoted the input feature, 𝑭𝑒represented the expanded feature, and 𝑾𝑒denoted 

convolutional kernel weights. Subsequently, through the Chunk operation, features were 

evenly divided along the channel dimension into two branches, 

a b e{ , } Chunk( ,2,1)=F F F        (8) 

where 𝑭𝑎 and 𝑭𝑏 represented the two branch features after chunking, respectively. The 

numbers 2 and 1 indicated division into 2 chunks and splitting along the channel dimension 

(dim=1). Branch a directly transmitted to the fusion stage to preserve shallow information, 

while branch b entered the RepConv module (structure shown in Fig. 6) for deep feature 

extraction.  

RepConv adopted a three-path parallel structure during training: 3×3 convolution 

captured spatial neighborhood relationships, 1×1 convolution adjusted inter-channel 

connections, and identity mapping maintained input signals. In the figure, BN represented 

batch normalization layer, Train indicated training mode, Val indicated validation/ 

inference mode, Conv represented convolution operations, and SiLU served as the 

activation function. The forward propagation during the training phase was expressed as 

follows, 

r b 3 3 b 3 1 1 b 1[BN( ) Conv ( ; ) Conv ( ; )] =  + +F F F W F W    (9) 

where 𝑭𝑟 denotes the RepConv output feature with subscript r indicating 

reparameterization, 𝑾3 and 𝑾1 represents 3×3 and 1×1 convolutional kernel weights 

respectively with subscripts 3 and 1 indicating kernel sizes, 𝜎  denotes the activation 

function, BN represents the batch normalization function, and the Conv operation already 
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included BN. The three paths each collected gradients during training, enabling the 

network to learn more comprehensive feature representations.  

During inference, the three-path convolutional kernels and batch normalization 

parameters were synthesized into a single equivalent convolutional kernel, 

3 d1
f 3 3 3 1

2 2 2

3 1 d

Pad
  



  
= + + 

+ + +  

W W W I
σ σ σ

               (10) 

where 𝑾𝑓 denotes the fused equivalent convolutional kernel weight (subscript f indicating 

fusion), 𝛾3, 𝛾1, and 𝛾𝑑 represents the scaling parameter vectors from batch normalization 

layers of the three branches respectively (subscript d indicating direct connection branch), 

𝜎3
2, 𝜎1

2, and 𝜎𝑑
2 represents the running variances of corresponding branches, 𝜀 denotes a 

numerical stability constant variable, 𝑰 represents the identity mapping unit convolutional 

kernel, ⊙indicates element-wise multiplication, and Pad represents the padding function.  

After obtaining 𝑭𝑟, this feature transmitted along two paths in parallel: one directly 

participated in subsequent feature fusion, while the other entered a progressive 

convolutional sequence composed of multiple 3×3 convolutions connected end-to-end. 

Each convolutional layer in the sequence only processed local regions of upper-layer 

outputs, but as layer count accumulated, spatial coverage continuously expanded. This 

progressive expansion approach proved particularly suitable for recognizing features 

requiring observation of larger regions, such as crack extension directions and dispersed 

knot distributions, while being more parameter-efficient than directly using large 

convolutional kernels. The processing flow, i.e., features after RepConv processing 

entering the progressive convolutional sequence and achieving receptive field expansion 

through stacking 𝑛 − 1 3×3 convolutions, was expressed as follows, 

3 3 1Conv ( ; ), 1,2, , 1k kk k n −= =  −F F W      (11) 

where 𝑭𝑘 denotes the k-th convolutional layer output feature, 𝑾𝑘 represents the k-th 

convolutional kernel weight, with initial input being 𝑭𝑟, and n represents the total number 

of convolutional layers.  

After progressive sequence processing, the shallow representations preserved by 

branch a, mid-level representations extracted by RepConv, deep features generated by each 

convolutional layer, and features processed by 1×1 convolution at the sequence end were 

all aggregated. In Fig. 5, Concat completed feature concatenation along the channel 

dimension, finally adjusting channel count through 1×1 convolution,  

1 1 a r 1 1 1 1 1 c oConv Concat[ , , , , ,Conv ({ ]) }; ;n n −  −= Y F F F F F W W   (12) 

where 𝒀represents the final output feature, 𝑾𝑐 denotes the convolutional kernel weight at 

the sequence end (subscript c indicating channel adjustment), 𝑾𝑜 represents the output 

convolutional kernel weight (subscript o indicating output), and Concat denotes the 

concatenation function.  

Cross-level concatenation enabled the module to simultaneously utilize shallow 

details and deep semantics, thereby strengthening discriminative capability when detecting 

different defect types such as pith spots and resin pockets. Particularly for composite 

defects such as knot_with_crack, the dual-path architecture enables simultaneous 

extraction of crack directional features through the progressive convolutional sequence and 

knot morphological features through the preservation path, achieving effective feature 
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complementarity. Through cooperation of branch diversion, reparameterized extraction, 

and progressive aggregation, PLRFIB both reduced redundant computation and enhanced 

recognition accuracy for complex defects. 

 
 

Fig. 6. RepConv structure 

 

ELA Attention Mechanism 
Wood defect position distribution directly affected the practical value of detection 

results. The appearance of dead knots and live knots at board edges versus center positions 

produced vastly different impacts on wood grade determination; crack extension directions 

determined the feasibility of subsequent cutting schemes; and the aggregation positions of 

resin pockets and pith spots related to surface treatment difficulty.  

 
 

Fig. 7. ELA attention mechanism structure 
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Detection systems must precisely capture defect spatial coordinate information. To 

strengthen the network’s discriminative capability for positions, ELA proposed by Xu et 

al. (2025) was introduced into the YOLOv12n neck. Its structure is detailed in Fig. 7. 

Input features had dimensions 𝐶 × 𝐻 × 𝑊 , where C denoted channel count, H 

represented height, and W represented width. ELA divided the input into two independent 

pathways for position encoding. The left branch employed XAvgPool for average pooling 

along the horizontal direction, compressing each row’s features to obtain a 𝐶 × 𝐻 ×
1 tensor. The right branch used YAvgPool for pooling along the vertical direction, 

averaging each column to obtain a 𝐶 × 1 × 𝑊 tensor. The pooled sequences were 

respectively fed into one-dimensional convolution Conv1d with kernel size set to 7; the 

left side output 𝐶 × 𝐻encoding, while the right side output 𝐶 × 𝑊encoding. A kernel size 

of 7 could cover sufficient neighborhood ranges.  

Subsequently, GroupNorm group normalization was used to perform standardized 

processing on features. This approach divided channels into groups before calculating 

statistics, receiving less influence from sample batch size compared to conventional 

normalization methods. After normalization, the Sigmoid activation function was used to 

generate attention weight of 𝐶 × 𝐻 × 1and 𝐶 × 1 × 𝑊. These two weights multiplied to 

obtain a complete spatial weight map, which finally performed element-wise multiplication 

with the original input, outputting enhanced features of 𝐶 × 𝐻 × 𝑊.  

ELA enabled the network to explicitly clarify defect positions in feature maps, with 

particularly remarkable improvement effects on localization accuracy for targets such as 

knots with cracks exhibiting significant edge-center response differences. Compared to 

global attention mechanisms requiring computation of relationships among all positions, 

this dimension-reduction-then-convolution processing approach substantially reduced 

computational load.  

 

 
RESULTS AND DISCUSSION 
 
Wood Surface Defects Dataset 

A subset of the large-scale wood surface defect image dataset publicly released by 

Kodytek et al. (2022) was adopted. The original dataset encompassed annotations for 10 

defect categories. According to research requirements, seven common defect types with 

sufficient sample quantities were retained after screening for model training and 

evaluation: Dead_Knot, Live_Knot, knot_with_crack, Crack, resin, Marrow, and 

Knot_missing, totaling 3,593 valid images. To match detection network input 

specifications, all images were preprocessed to 640×640 pixel resolution. The dataset was 

randomly divided into training, validation, and test sets at an 8:1:1 ratio. During the training 

phase, the mosaic data augmentation strategy was enabled to enrich sample diversity and 

enhance the model's adaptability to complex morphologies of wood surface defects. The 

seven defect categories included in the dataset are detailed in Fig. 8. 

The sample distribution across defect categories presented a characteristic 

imbalance that merits attention, as depicted in Fig. 9. Live_Knot and Dead_Knot 

dominated the dataset composition, contributing 45.2% and 32.5% of total samples 

respectively. The remaining five categories occupied considerably smaller proportions: 

Resin at 7.3%, Crack at 5.8%, knot_with_crack at 5.7%,  
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Fig. 8. Dataset defect categories 

 

 
 

Fig. 9. Histogram of defect category distribution 

 
Marrow at 2.3%, and Knot_missing at merely 1.3%. Such distributional disparity 

originates from the intrinsic biological and mechanical processes governing wood defect 

genesis. Knots—whether dead or live—arise inevitably at branch-trunk junctions 

throughout tree growth, rendering them pervasive across virtually all timber specimens. 
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Knot_with_crack demands the concurrent manifestation of knot presence alongside crack 

propagation, a compound condition triggered predominantly by differential shrinkage 

stresses during kiln drying or ambient seasoning. Resin accumulation depends upon 

species-specific secretory physiology characteristic of certain conifers, whereas Marrow 

defects emerge from suboptimal sawing practices that fail to exclude the pith zone. 

Knot_missing represents perhaps the rarest category, requiring complete knot 

dislodgement through either natural abscission or deliberate excision during processing—

both statistically uncommon events. 

The procedures used in the present work deliberately preserved the native 

distributional characteristics without resorting to oversampling or synthetic augmentation, 

since such interventions risk contaminating the training-test partition boundary and 

consequently yielding inflated performance metrics that misrepresent true generalization 

capacity. Maintaining fidelity to the original distribution not only facilitates reproducibility 

across independent research efforts but also ensures that the evaluation conditions 

approximate the authentic defect occurrence patterns encountered on industrial grading 

lines. 

 
Experimental Environment and Parameter Settings 

The experimental environment was constructed based on the PyTorch deep learning 

framework, with the operating platform being the Linux operating system. The GPU was 

NVIDIA GeForce RTX 4090 (24GB memory), the CPU was AMD EPYC 7K62 48-Core 

Processor 2.6GHz, and GPU acceleration utilized CUDA 12.1. 

Key hyperparameters during the training process were set as follows: batch size 

was set to 16, patience for early stopping mechanism was set to 50, Stochastic Gradient 

Descent (SGD) was selected as the parameter optimization strategy, the number of workers 

was set to 4, total training epochs were determined as 200, and the initial learning rate was 

set to 0.01. Additionally, no pre-trained weights were introduced for initialization during 

the model training process. 

The detailed hyperparameter configuration is presented in Table 1. The selection of 

these hyperparameters was primarily guided by the work of Yan et al. (2025), who 

conducted systematic experiments on wood defect detection tasks using similar parameter 

configurations. 

 

Table 1. Detailed Table of Hyperparameter Configuration 

Hyperparameter Value Justification 

Batch Size 16 Optimal for RTX 4090 memory; balances gradient stability and 
training speed 

Initial Learning 
Rate 

0.01 Standard for SGD optimizer in YOLO models; validated through 
grid search [0.001, 0.01, 0.1] 

Epochs 200 Sufficient for convergence; early stopping prevents overfitting 

Patience 50 Allows adequate exploration while preventing unnecessary 
computation 

Optimizer SGD Superior generalization compared to Adam for object detection 

Momentum 0.937 Standard YOLO configuration for stable convergence 

Weight Decay 0.0005 Regularization to prevent overfitting; standard practice 

 

Evaluation Metric System 
To ensure comprehensiveness and accuracy of model performance evaluation, a 

multi-dimensional evaluation metric system was constructed, specifically including: mean 
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Average Precision (mAP), Parameters (Params/M), model Size (Size/MB), Floating Point 

Operations (FLOPs/G), inference speed FPS (frames per second, f/s), and Inference Time. 

Among these, mAP@0.5 represents the average precision at IoU threshold 0.5, while 

mAP@0.5:0.95 represents the mean average precision across IoU thresholds from 0.5 to 

0.95 (step size 0.05). Params denotes Parameters, FLOPs indicates Floating Point 

Operations, FPS represents Frames Per Second, and Inference Time was calculated as 

Inference Time = 1/FPS, representing the time required to process a single frame. MB 

denotes megabytes, M represents the unit million, G indicates 1 billion floating-point 

operations per second, f represents frames, and s represents seconds. 

 

Ablation Experiments 
To verify the effectiveness of each improved module in MFWSD-YOLO, ablation 

experiments were conducted on this dataset. The experiments employed identical 

hyperparameters and training environments, progressively integrating the four 

improvement points of ADown, LSGNDH, PLRFIB, and ELA through eight ablation 

experiments. Each experiment selected the best weights for detection, obtaining validation 

results as shown in Table 2. 

 

Table 2. Ablation Experiments 

Model 
ADo
wn 

LSGN
DH 

PLR
FIB 

EL
A 

mAP
@0.5 

mAP@0.5
:0.95 

Param
s/M 

Size/
MB 

FLOP
s/G 

FPS(
f/s) 

YOLOv
12n 

        0.6403  0.3353  2.56  5.3  6.3  92.3  

YOLOv
12n 

√       0.6684  0.3499  2.05  4.4  5.2  92.2  

YOLOv
12n 

  √     0.6949  0.3796  2.34  4.9  5.1  119.3  

YOLOv
12n 

    √   0.7143  0.3602  1.80  3.8  5.4  186.7  

YOLOv
12n 

      √ 0.6959  0.3474  2.53  5.3  5.8  104.2  

YOLOv
12n 

√ √     0.6991  0.3670  1.89  4.0  4.4  127.0  

YOLOv
12n 

√ √ √   0.7253  0.3805  1.18  2.6  4.1  160.5  

YOLOv
12n 

√ √ √ √ 0.7293  0.3870  1.21  2.6  4.2  195.6  

 

The baseline YOLOv12n model achieved mAP@0.5 of 64.03% and 

mAP@0.5:0.95 of 33.53%. After integrating the ADown module into the baseline model, 

mAP@0.5 increased to 66.84%, representing a 2.81% improvement over the baseline. This 

module adopted a spatial rearrangement mechanism, achieving lossless information 

transmission through channel-dimensional feature reorganization, which proved 

particularly critical for preserving spatial continuity of elongated defects such as pith spots. 

Params decreased to 2.05 M, a reduction of 19.92%, and FLOPs decreased to 5.2G, a 

reduction of 17.46%. 

The LSGNDH detection head elevated mAP@0.5 by 5.46% and increased 

mAP@0.5:0.95 by 4.43%, representing the most significant accuracy improvement among 

single modules. Its core lay in cross-scale gradient sharing and normalization strategies, 

demonstrating outstanding scale adaptability. FLOPs decreased to 5.1 G, a reduction of 

mailto:mAP@0.5:0.95
mailto:mAP@0.5:0.95
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19.05%, and FPS reached 119.3 f/s. 

The PLRFIB module caused mAP@0.5 to climb to 71.43%, an improvement 

magnitude reaching 7.40%. This module constructed multi-level semantic aggregation 

pathways through progressive receptive field expansion, with low layers capturing local 

texture mutations of cracks and high layers integrating global geometric morphologies of 

dead knot boundaries. Params decreased to 1.80 M, a compression of 29.69%, Size was 

3.8 MB, a reduction of 28.30%, and FPS reached 186.7 f/s, representing 2.02 times the 

original. 

The ELA mechanism increased mAP@0.5 by 5.56%, strengthening feature 

responses in texture-dense regions through adaptive weighting within local receptive 

fields. 

The combination of ADown and LSGNDH increased mAP@0.5 to 69.91%, an 

improvement of 5.88%, and mAP@0.5:0.95 increased by 3.17%, exhibiting synergistic 

gain effects in void boundary localization. Params decreased to 1.89 M, a reduction of 

26.17%, and FLOPs decreased to 4.4 G, a reduction of 30.16%. 

Three-module fusion elevated mAP@0.5 to 72.53%, an increase of 8.50%, and 

mAP@0.5:0.95 improved by 4.52%. Progressive receptive fields and adaptive detection 

heads demonstrated deep coupling on composite defects such as knots with cracks, forming 

multi-scale feature complementary enhancement. Params decreased to 1.18 M, a sharp 

reduction of 53.91%, FLOPs decreased to 4.1 G, a reduction of 34.92%, and FPS reached 

160.5 f/s. Although Params and FLOPs represented optimal values among all experiments, 

other metrics still possessed certain improvement space. 

After complete fusion of four modules, mAP@0.5 reached 72.93%, an 

improvement magnitude of 8.90%, and mAP@0.5:0.95 reached 38.70%, an increase of 

5.17%, achieving optimal performance. Params was 1.21 M, a sharp reduction of 52.73%, 

Size was 2.6 MB, a reduction magnitude reaching 50.94%, FLOPs was 4.2 G, a decrease 

of 33.33%, and FPS reached 195.6 f/s, representing 2.12 times the original. 

 

Comparative Experiments of Different Algorithms 
To verify the detection effectiveness of MFWSD-YOLO, multiple mainstream 

algorithms were selected for comparative experiments, with results detailed in Table 3. To 

ensure experimental fairness, all experiments were conducted on identical hardware. For 

YOLO-series models, unified training configurations were applied, including batch size, 

learning rate, and optimization strategy. For non-YOLO architectures, their officially 

recommended configurations were adopted, as these methods originate from distinct 

detection paradigms with specialized loss functions and optimization schemes that would 

yield suboptimal convergence under arbitrarily imposed settings. 

The proposed algorithm achieved an mAP@0.5 of 72.93%, representing 

improvements of 8.73%, 10.83%, and 7.73% compared to RT-DETR-R18, ATSS-R50, and 

TOOD-R50, respectively. mAP@0.5:0.95 reached 38.70%, representing improvements of 

1.54%, 6.30%, and 6.00% compared to the three aforementioned algorithms, respectively. 

Although RT-DETR-R18 possessed global modeling capability based on 

Transformer architecture, its Params of 19.90 M, FLOPs of 57.0 G, and Size of 77.0MB 

limited edge deployment due to computational intensity characteristics. The proposed 

algorithm achieved reduction magnitudes of 93.92%, 92.63%, and 96.62% in these three 

metrics compared to RT-DETR-R18. 
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Table 3. Comparative Experiments of Different Algorithms 

Model mAP@0.5 mAP@0.5:0.95 Params/M FLOPs/G Size/MB FPS(f/s) 

RT-DETR-
R18 

0.6420  0.3716  19.90  57.0  77.0  130.7  

ATSS-R50 0.6210  0.3240  38.91  68.2  256.3  15.4  

TOOD-
R50 

0.6520  0.3270  32.04  125.9  251.0  29.3  

YOLOv3-
tiny 

0.6441  0.3419  12.13  18.9  23.3  133.4  

YOLOv5n 0.6393  0.3043  2.51  7.1  5.0  103.3  

YOLOv6n 0.6164  0.3073  4.23  11.8  8.3  114.0  

YOLOv8n 0.6558  0.3433  3.01  8.1  6.0  114.5  

YOLOv9t 0.6154  0.3278  1.97  7.6  4.4  96.8  

YOLOv10n 0.5819  0.2971  2.27  6.5  5.5  105.8  

YOLOv11n 0.6246  0.3373  2.58  6.3  5.2  125.9  

YOLOv12n 0.6403  0.3353  2.56  6.3  5.3  92.3  

YOLOv13n 0.6128  0.3211  2.45  6.1  5.2  47.6  

This study 0.7293  0.3870  1.21  4.2  2.6  195.6  

 

ATSS-R50 adopted an adaptive sample allocation strategy, but optimization only 

functioned during the training phase. Its Params of 38.91M, FLOPs of 68.2 G, and Size of 

256.3 MB contrasted sharply with the proposed algorithm, which achieved Params 

reduction of 96.89%, FLOPs reduction of 93.84%, Size reduction of 98.99%, and FPS 

reaching 12.70 times that of ATSS-R50, demonstrating significant advantages in inference 

efficiency. 

TOOD-R50 employed a task alignment mechanism but exhibited high model 

complexity and sensitivity to sample distribution. Its Params of 32.04 M, FLOPs of 125.9 

G, and Size of 251.0 MB contrasted with the proposed algorithm, which achieved 

reductions of 96.22%, 96.66%, and 98.96% in Params, FLOPs, and Size, respectively, with 

FPS being 6.68 times that of TOOD-R50, significantly reducing computational overhead. 

In YOLO series algorithm comparisons, the proposed algorithm’s mAP@0.5 

improved by 8.52%, 9.00%, 11.29%, 7.35%, 11.39%, 14.74%, 10.47%, and 11.65% 

compared to YOLOv3-tiny, YOLOv5n, YOLOv6n, YOLOv8n, YOLOv9t, YOLOv10n, 

YOLOv11n, and YOLOv13n, respectively. mAP@0.5:0.95 improved by 4.51%, 8.27%, 

7.97%, 4.37%, 5.92%, 8.99%, 4.97%, and 6.59% compared to the aforementioned 

algorithms, respectively, while Params, FLOPs, and Size were only 1.21 M, 4.2 G, and 

2.6MB, respectively, with FPS reaching 195.6 f/s, demonstrating significant lightweight 

advantages. 

YOLOv3-tiny's Params of 12.13 M suffered from insufficient feature extraction 

depth. The proposed algorithm achieved a 90.02% reduction compared to it, representing 

breakthrough progress in parameter compression. YOLOv5n’s FLOPs of 7.1G exhibited 

limitations in feature fusion strategy for detail preservation. The proposed algorithm 

reduced FLOPs by 40.85% compared to it. 

YOLOv8n introduced the C2f module and decoupled head, but independent 

optimization branches increased network complexity. The proposed algorithm achieved a 

59.80% reduction in Params compared to it. YOLOv10n adopted end-to-end design, but 

one-to-one label assignment also exhibited numerous deficiencies in dense scenarios. The 

proposed algorithm reduced FLOPs by 35.38% compared to it. 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Wu et al. (2026). “MFWSD-YOLO and wood defects,” BioResources 21(1), 1779-1806.  1796 

The corresponding radar chart is detailed in Fig. 10. From multi-metric distribution 

perspective, MFWSD-YOLO's positive metrics such as mAP@0.5, mAP@0.5:0.95, and 

FPS were positioned at the outer edge of the radar chart, while negative metrics such as 

Params and FLOPs were close to the center, visually confirming its comprehensive 

advantages of high accuracy, fast speed, and low resource consumption. In summary, the 

MFWSD-YOLO algorithm maintained high detection accuracy while possessing low 

computational complexity and model scale. 

 
 

Fig. 10. Radar chart for comparison of different algorithms 

 

Comparative Experiments with Different Downsampling Methods 
To verify the superiority of ADown, five widely used downsampling operations 

were selected—WaveletPool, ContextGuidedDown, SPDConv, PSConv, and wConv—for 

comparative experiments with ADown on YOLOv12n, as shown in Table 4. 

 

Table 4. Comparative Experiments with Different Downsampling Methods 

Conv mAP@0.5 mAP@0.5:0.95 Params/M Size/MB FLOPs/G FPS(f/s) 

YOLOv12n 0.6403  0.3353  2.56 5.3  6.3  92.3  

WaveletPool  0.6298  0.3233  2.05 4.3  5.1  92.1  

ContextGuidedDown 0.6575  0.3487  3.47 7.1  9.0  92.2  

SPDConv 0.6485  0.3449  4.54 9.1  11.3  86.9  

PSConv 0.6639  0.3415  2.41 5.1  6.3  76.1  

wConv 0.6085  0.3089  2.54 5.3  4.6  92.1  

ADown 0.6684  0.3499  2.05 4.4  5.2  92.2  

 

Experimental results indicated that ADown achieved mAP@0.5 of 66.84% and 

mAP@0.5:0.95 of 34.99%, representing improvements of 2.81% and 1.46% compared to 

the baseline model, respectively. Compared to WaveletPool, ADown led by 3.86% in 

mAP@0.5, indicating that the dual-path design possessed greater advantages in capturing 

wood defect details. 

Although ContextGuidedDown reached 34.87% in mAP@0.5:0.95, its Params 

reached 3.47M and FLOPs was 9.0G, with resource consumption far exceeding ADown. 
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SPDConv’s Params and FLOPs reached 4.54 M and 11.3 G, respectively, with FPS of only 

86.9 f/s, exhibiting obvious gaps in comprehensive performance. PSConv exhibited the 

lowest FPS. wConv exhibited disadvantages across all metrics. 

Comprehensive analysis indicated that while ADown achieved the highest 

detection accuracy, Params was only 2.05 M, Size was 4.4 MB, FLOPs was 5.2 G, and it 

maintained detection speed of 92.2 f/s, fully demonstrating its balanced advantages 

between accuracy and efficiency. 

 

Comparative Experiments with Different Detection Heads 
To verify the effectiveness of the LSGNDH detection head, on the basis of 

introducing the ADown module into YOLOv12n, five mainstream detection heads—

dyhead, EfficientHead, LQEHead, MultiSEAMHead, and SEAMHead—were integrated 

for comparative experiments. Experimental results are shown in Table 5. 

Data indicated that LSGNDH’s mAP@0.5 reached 69.91%, representing a 5.88% 

improvement compared to the baseline model YOLOv12n’s 64.03%. mAP@0.5:0.95 

improved from 33.53% to 36.70%, an increase of 3.17%, achieving optimal detection 

accuracy among all comparison methods. This benefited from the shared convolution 

mechanism effectively integrating multi-scale features. 

dyhead elevated mAP@0.5 to 66.43% through multiple attention mechanisms, but 

computational complexity resulted in FPS of only 77.0 f/s, with significantly insufficient 

inference efficiency. Although EfficientHead’s Params was only 1.79 M, mAP@0.5 was 

only 63.66%. 

 

Table 5. Comparative Experiments with Different Detection Heads 

Head mAP@0.5 mAP@0.5:0.95 Params/M Size/MB FLOPs/G FPS(f/s) 

YOLOv12n 0.6403  0.3353  2.56  5.3  6.3  92.3  

dyhead  0.6643  0.3366  2.57  5.4  6.3  77.0  

EfficientHead  0.6366  0.3327  1.79  3.8  4.0  119.5  

LQEHead 0.6485  0.3356  2.06  4.4  5.2  113.7  

MultiSEAMHead 0.6838  0.3619  4.07  8.3  4.9  71.1  

SEAMHead 0.6708  0.3469  1.97  4.2  4.6  93.4  

LSGNDH 0.6991  0.3670  1.89  4.0  4.4  127.0  

 

LQEHead’s mAP@0.5 was 64.85%. Although FPS reached 113.7 f/s, Params was 

2.06M and FLOPs reached 5.2 G, failing to achieve ideal balance in accuracy and 

computational efficiency. MultiSEAMHead's mAP@0.5 was 68.38%, but its Params 

reached 4.07 M and FPS was the lowest, limiting its practical deployment value. 

SEAMHead's mAP@0.5 was 67.08%, Params was 1.97 M, and FPS was 93.4 f/s, 

demonstrating good performance in lightweight design, but accuracy remained lower than 

LSGNDH. In contrast, LSGNDH controlled Params at 1.89 M, representing a 26.17% 

reduction compared to the baseline model, compressed Size to 4.0 MB, reduced FLOPs to 

4.4 G, while FPS reached 127.0 f/s. 

Experimental results indicated that LSGNDH achieved simultaneous improvement 

in detection accuracy and inference speed under the premise of maintaining lightweight 

design. 
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Comparative Experiments with Different Attention Mechanisms 
To verify the effectiveness of ELA in wood surface defect detection, on the basis 

of YOLOv12n fusing ADown, LSGNDH, and PLRFIB, ELA was compared with six 

classic attention mechanisms—CAA (Cai et al. 2024), AFGCAttention, CPCA (Huang et 

al. 2024), LSKA (Lau et al. 2024), LSKBlock, and LocalWindowAttention—as shown in 

Table 6. 

 

Table 6. Comparative Experiments with Different Attention Mechanisms 

Model mAP@0.5 mAP@0.5:0.95 Params/M Size/MB FLOPs/G 
FPS 
(f/s) 

YOLOv12n 0.6403  0.3353  2.56  5.3  6.3  92.3  

CAA 0.7046  0.3601  1.20  2.6  4.3  169.2  

AFGCAttention 0.7070  0.3666  1.19  2.6  4.1  166.2  

CPCA 0.7121  0.3758  1.20  2.6  4.4  160.7  

LSKA 0.7221  0.3761  1.19  2.6  4.2  173.5  

LSKBlock 0.6895  0.3689  1.21  2.6  4.4  163.6  

LocalWindowAttention 0.7123  0.3770  1.20  2.6  4.3  164.4  

ELA 0.7293  0.3870  1.21  2.6  4.2  195.6  

 

Analysis revealed that CAA’s global pooling lost crack local information; 

AFGCAttention’s matrix operations exhibited computational redundancy when processing 

pith spots; CPCA faced limitations in spatial localization for resin pockets; LSKA’s dilated 

convolution produced grid effects at dead knot boundaries; LSKBlock exhibited feature 

allocation conflicts when addressing complex defect features; LocalWindowAttention’s 

window partitioning limited global modeling. ELA preserved directional and positional 

information through bidirectional adaptive pooling, achieving optimal balance between 

accuracy and speed. 

 

Generalization Experiments 
To comprehensively evaluate the generalization performance of the MFWSD-

YOLO model, generalization experiment validation was conducted on three types of 

publicly available datasets. 

First, the OULU-DET (Luo et al. 2025) wood surface defect dataset from the 

University of Oulu was adopted. This dataset contained 3,773 images encompassing six 

typical defect categories: dry knot, sound knot, edge knot, small knot, split, and wave. 

Second, the PCB_DATASET (Ding et al. 2019) printed circuit board defect dataset 

released by Peking University was selected. The original dataset contained 693 images, 

including six defect types: spurious copper, open circuit, mouse bite, short circuit, missing 

hole, and spur. Given the small sample scale, it was expanded to 6,330 images through data 

augmentation techniques. 

Finally, the authoritative solar panel defect dataset PVEL-AD (Su et al. 2022) was 

introduced. This dataset encompassed 12 defect types: black_core, corner, crack, finger, 

fragment, horizontal_dislocation, printing_error, scratch, short_circuit, star_crack, 

thick_line, and vertical_dislocation. From this, 3,645 high-quality images were carefully 

selected for experiments. 
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The hyperparameter settings, training environment, and dataset division strategy 

for the three aforementioned datasets remained consistent with ablation experiments. 

Experimental results are shown in Table 7.  

 

Table 7. Generalization Experiments 

Datasets Model mAP@0.5 mAP@0.5:0.95 FPS(f/s) InferenceTime(s) 

OULU-DET 

YOLOv12n 0.8699  0.5308  107.2  0.0093 

MFWSD-
YOLO 

0.9584  0.6248  125.2  0.0080 

PCB_DATASET 

YOLOv12n 0.9696  0.6505  96.4  0.0104 

MFWSD-
YOLO 

0.9849  0.7474  134.1  0.0075 

PVEL-AD 

YOLOv12n 0.7366  0.4997  80.5  0.0124 

MFWSD-
YOLO 

0.8245  0.5194  122.4  0.0082 

 

Experimental results demonstrated that on OULU-DET, mAP@0.5 improved from 

86.99% to 95.84%, mAP@0.5:0.95 leaped from 53.08% to 62.48%, FPS increased to 125.2 

f/s, and inference time decreased from 0.0093s to 0.0080s. Cross-domain experiments 

indicated that on PCB_DATASET, mAP@0.5:0.95 improved from 65.05% to 74.74%, 

with FPS reaching 134.1 f/s and inference time reduced to 0.0075s per frame. On PVEL-

AD, mAP@0.5 increased from 73.66% to 82.45%, with FPS reaching 122.4 f/s and 

inference time compressed from 0.0124 s to 0.0082 s, representing a 33.9% reduction in 

processing latency. 

These excellent results stemmed from the powerful feature expression capability 

constructed by the proposed method, enabling the model to exhibit outstanding 

generalization performance in both wood and cross-domain detection tasks. 

 

Analysis of mAP@0.5 Improvement Effect for Various Defect Categories 
As shown in Table 8, the improved model achieved gains across all defect 

categories.  

 

Table 8. Comparison of mAP@0.5 Before and After for Various Defect Types 

Model 

Live_Knot 
Dead_
Knot 

resin Knot_missing 
knot_with 

_crack 
Marrow Crack 

mAP@0.5 
mAP@

0.5 
mAP@

0.5 

mAP@0.5 mAP@0.5 

mAP@0
.5 

mAP@0
.5 

YOLOv1
2n 

0.8247 0.8847 0.6656 0.6296 0.6224  0.5655  0.2898 

MFWSD-
YOLO 

0.8319 0.8891 0.6785 0.6362 0.6358  0.8016  0.6320 

 

Crack mAP@0.5 increased from 0.2898 to 0.6320, a gain of 34.22%, which can be 

attributed to PLRFIB's progressive receptive field expansion effectively capturing the 

extension trajectories of elongated, variably-oriented crack structures. Marrow improved 

by 23.61%, as the strip-shaped small-target characteristics benefited substantially from 

multi-scale semantic fusion. Knot_with_crack gained 1.34%, owing to LSGNDH’s cross-

scale parameter sharing mechanism that enabled coordinated expression of composite 

features. Resin improved by 1.29%, where ELA’s spatial weight modeling enhanced 

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
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mailto:mAP@0.5
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localization precision for lens-shaped boundaries. Knot_missing increased by 0.66%, with 

Adown’s dual-path architecture preserving boundary details of cavity structures. 

Dead_Knot and Live_Knot showed marginal improvements of 0.44% and 0.72% 

respectively, due to their already high baseline precision limiting further enhancement 

potential.  

 

Visualization Results Analysis 
To deeply demonstrate the detection performance advantages of MFWSD-YOLO, 

the GradCAM++ method (Chattopadhay et al. 2018) was adopted to obtain heatmaps, 

comparing the performance differences between the baseline model YOLOv12n and the 

improved model in detecting seven wood defect types. Visualization results are detailed in 

Fig. 11. 

 
Fig. 11. Visualization results 

 
Figure 11 presents the attention distribution of both models through GradCAM++ 

heatmaps. The color gradient encodes confidence levels: red denotes regions where the 

model exhibits strongest responses, yellow and green indicate intermediate activation 

intensities, whereas blue and purple correspond to areas receiving minimal attention. The 

quantitative comparison reveals consistent performance gains achieved by MFWSD-

YOLO across all seven defect categories. Two small-scale defect types merit particular 

discussion. Marrow detection confidence rose from 48% to 75%, yielding a 27% 

improvement margin. Crack recognition similarly benefited, with confidence advancing 

from 47% to 60%. These gains can be attributed to the progressive receptive field 

expansion mechanism embedded in PLRFIB, which preserves fine-grained spatial details 

during feature aggregation. The composite defect category knot_with_crack warrants 

separate examination given its inherent detection complexity. This defect type 

simultaneously presents crack linear extension patterns and knot circular boundary 
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characteristics, demanding the detector to integrate geometrically heterogeneous features 

within a unified representation. MFWSD-YOLO elevated the detection confidence from 

75% to 85% for this category. The dual-path architecture of PLRFIB contributes to this 

improvement: the preservation branch retains knot boundary information while the 

processing branch extracts crack directional features through cascaded convolutions, 

enabling coherent feature fusion for such morphologically diverse targets. The heatmap 

visualization corroborates these quantitative findings. YOLOv12n generates fragmented 

activation patterns characterized by scattered red regions and extensive yellow-green 

transitional zones, indicating imprecise attention allocation. The model struggles to 

distinguish defect boundaries from surrounding wood textures, particularly when 

processing targets with irregular geometries. MFWSD-YOLO produces markedly different 

activation maps: red high-response regions form compact clusters that align closely with 

actual defect contours, accompanied by sharper transitions toward peripheral areas. This 

concentrated activation pattern demonstrates that the ELA mechanism successfully guides 

the network toward defect-relevant spatial locations while suppressing background 

interference, thereby enhancing localization precision for wood surface defects exhibiting 

diverse morphological characteristics. 

To thoroughly evaluate the classification performance, normalized confusion 

matrices of YOLOv12n and MFWSD-YOLO across four datasets were constructed, as 

illustrated in Fig. 12. 

On the large-scale wood defect dataset, the baseline model achieved merely 40% 

recall for Crack, with the lower-left triangular region revealing substantial false negatives 

where crack samples were misclassified into other categories including background. This 

deficiency stemmed from the inherent characteristics of cracks: their extremely fine line 

widths and variable extension directions caused severe feature attenuation during 

conventional downsampling. The ADown module addressed this issue through its dual-

path architecture, where the max pooling branch preserved edge sharpness while the 

convolutional branch retained textural details, jointly elevating Crack recall to 57%. 

Notable confusion between Live_Knot and Dead_Knot appeared in the confusion matrix, 

attributable to their morphological similarity in circular contours and color gradients, 

though dead knots typically exhibit darker peripheral boundaries. The LSGNDH module 

mitigated this inter-class confusion through cross-scale parameter sharing, enabling 

semantic information from the P5 layer to guide fine-grained discrimination at the P3 layer. 

For the Dead_Knot category, recall improved from 70% to 78%, demonstrating enhanced 

boundary recognition. Regarding false positives, the upper-right triangular region indicated 

that background and other categories were occasionally misclassified as target defects; the 

ELA mechanism suppressed such false alarms by strengthening spatial position encoding, 

particularly effective for cavity-type defects such as Knot_missing, where recall improved 

from 55% to 66%. 

On the OULU-DET dataset, small_knot recall improved substantially from 74% to 

92%, with confusion matrix values showing significant false negative reduction for small-

scale defects. The wave category also demonstrated notable improvement, with recall 

increasing from 85% to 95%, benefiting from the progressive feature integration of 

PLRFIB. The PCB_DATASET experiments validated cross-domain adaptability, where 

open_circuit recall rose from 94% to 98%, and mouse_bite recall improved from 91% to 

95%. 
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Fig. 12. Confusion matrix comparison chart 

 

On the PVEL-AD dataset with twelve defect categories, scratch recall improved 

from 70% to 84%, and the confusion between crack and star_crack was notably alleviated 

through enhanced feature discrimination. The star_crack category showed particularly 

strong improvement from 72% to 83% recall, benefiting from the progressive receptive 

field expansion of PLRFIB that enhanced discrimination between linear and radial fracture 

patterns. Fragment recall also increased from 68% to 82%, demonstrating the model’s 

enhanced capability in detecting small-scale defects. The overall matrix distributions 

confirm that MFWSD-YOLO systematically reduced both false negative and false positive 

rates through the targeted contributions of each proposed module. 
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CONCLUSIONS 
 

1. The improved algorithm achieved significant performance improvements on a public 

wood defect dataset, with mAP@0.5 reaching 72.93% and mAP@0.5:0.95 reaching 

38.70%, representing improvements of 8.90% and 5.17% respectively compared to the 

baseline model YOLOv12n. Meanwhile, model parameters were reduced to 1.21 M, 

computational complexity decreased to 4.2 G, and model size was compressed to 2.6 

MB, representing reductions of 52.73%, 33.33%, and 50.94% respectively compared 

to the baseline model, with inference speed reaching 195.6 frames per second, 

achieving an effective balance between detection accuracy and model lightweight 

design. 

2. Ablation experiments demonstrated the effectiveness of each improved module. The 

adaptive downsampling module (ADown) improved mAP@0.5 by 2.81%; the 

lightweight shared convolution and group normalization detection head (LSGNDH) 

improved mAP@0.5 by 5.46%; the progressive lightweight reparameterized feature 

integration block (PLRFIB) improved mAP@0.5 by 7.40%; and the efficient local 

attention mechanism (ELA) improved mAP@0.5 by 5.56%. The synergistic effect of 

the four modules achieved maximum performance improvement. 

3. Comparative experiments demonstrated distinct advantages over mainstream 

algorithms. Against Transformer-based and ResNet-based architectures, the proposed 

method achieved parameter reductions exceeding 90% while maintaining competitive 

accuracy. Compared to YOLO variants, mAP@0.5 improvements ranged from 7.35% 

to 14.74%, validating the effectiveness of multi-scale feature fusion and attention 

mechanisms in detecting small defects within complex wood textures. 

4. Cross-dataset generalization experiments verified the algorithm’s robustness. On the 

OULU-DET wood defect dataset, mAP@0.5 improved from 86.99% to 95.84%; on the 

cross-domain PCB_DATASET, mAP@0.5:0.95 improved from 65.05% to 74.74%; 

and on the PVEL-AD photovoltaic defect dataset, mAP@0.5 improved from 73.66% 

to 82.45%, demonstrating the algorithm's adaptability across different application 

scenarios. 
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