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MFWSD-YOLO: Lightweight Multi-scale Feature-fusion
Wood Surface Defect Detection Algorithm

Jun Wu,*® Ao Zhang,? Chao Deng,** and Jun Xu €

Wood surface defect detection confronts critical challenges including
cross-scale feature extraction, excessive parametric burden, and
inadequate small-target recognition. This study proposes MFWSD-YOLO,
a lightweight multi-scale feature fusion detection algorithm to address
these limitations. The algorithm introduces an adaptive downsampling
module utilizing dual-path parallel processing to preserve spatial
information, designs a shared convolution detection head enabling
efficient cross-scale feature interactions, proposes a progressive feature
integration block strengthening multi-scale semantic fusion, and embeds
a local attention mechanism enhancing spatial modeling precision.
Experimental validation demonstrates substantial enhancements,
achieving mAP@0.5 and mAP@0.5:0.95 improvements of 8.90% and
5.17% respectively over baseline YOLOv12n. Concurrently, efficiency
gains include 52.73% parameter reduction, 33.33% computational
complexity decrease, and 50.94% model size compression, maintaining
195.6 frames per second inference capability. Cross-dataset validation
substantiates robust generalization across diverse wood defect scenarios
and industrial applications. These advances establish an effective
computational solution for automated wood quality inspection within
intelligent manufacturing environments.
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INTRODUCTION

Forestry is an important part of modern industrial production (Wang et al. 2021).
Wood, its core product, serves as a crucial building and decorative material. Wood defects
refer to the general names of various characteristics that reduce the commodity and use
value of wood (Xie and Ling 2023). During the growth process of wood, the connection
points between branches and the main trunk form knots (Zhang et al. 2025), while growth
and processing procedures also generate various defects including cracks and pith spots.
These defects — either formed before or after the manufacture of wood products such as
houses, bridges, and furniture — can lower the efficient usage of materials (Hubbe 2017).
Wood surface defect detection methods can be broadly categorized into traditional
approaches and deep learning-based techniques. In traditional timber production, defects
in timber are mainly removed by manual detection (Chen et al. 2023). Traditional manual
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inspection methods, which have high production cost and low efficiency (Hu ef al. 2020),
also suffer from strong subjectivity, failing to meet industrial production requirements.
With the advancement of computer vision technology, deep learning has achieved
remarkable progress in object detection domains in recent years (Zhao et al. 2025).
However, despite the promising application prospects demonstrated by deep learning
methods for wood surface defect detection, challenges persist in dataset construction, data
source acquisition, and model design and optimization (Long et al. 2025). From an
algorithmic architecture perspective, deep learning-based object detection algorithms are
primarily divided into two-stage and one-stage types (Jiang ef al. 2024).

Two-stage representative algorithms include Fast R-CNN (Girshick 2015), Faster
R-CNN (Ren et al. 2016), and Mask R-CNN (He et al. 2017), among others. These
algorithms achieve high detection accuracy but involve complex computations, making it
difficult to fully satisfy real-time requirements. One-stage representative algorithms
include the YOLO series (Redmon ef al. 2016), RT-DETR (Zhao et al. 2024), and TOOD
(Feng et al. 2021), among others, with the core advantage lying in fast detection speed. In
practical applications, wood surface defects exhibit large-scale span and diverse
morphologies, ranging from tiny cracks to large-area missing knots across multiple scale
levels, with many belonging to small-target defects. Such issues lead to detection
difficulties and affect the model’s accurate recognition and localization capabilities for
targets (Hu ef al. 2024). Meanwhile, industrial production lines impose higher
requirements on the real-time performance and lightweight design of detection systems.
Therefore, achieving model lightweight character while maintaining detection speed and
accuracy represents a research topic worthy of investigation (Deng et al. 2025).

Research on deep learning-based wood surface defect detection has achieved
certain progress. Kurdthongmee and Suwannarat (2019) focused on wood stem cross-
section pith localization, achieving 76.3% accuracy, though the applicable scenarios
exhibited obvious limitations. Ling and Xie (2022) proposed a ResNet-v2 wood defect
detection model, leveraging the fusion of ResNet and GooglLeNet modules to achieve
recognition of three defect types; however, this model only supported single defect
classification and could not simultaneously detect multiple defects on the same wooden
board. Li and Peng (2024) addressed the issues of missed detections and false alarms
caused by small size and irregular morphology of wood surface defects by proposing an
improved algorithm based on YOLOv8n. By embedding a global context module,
integrating deformable large kernel attention into fast spatial pyramid pooling, and
optimizing multi-scale feature fusion with a weighted bidirectional feature pyramid,
mAP@0.5 increased by 3.1% and recall improved by 6.8% compared to the original
baseline algorithm, effectively resolving the previously high rates of missed detections and
false alarms. Chen et al. (2025) proposed the YOLOv8-OCHD model, introducing omni-
dynamic convolution to avoid information omission, strengthening deep feature learning
through a C2f RVB structure constructed by integrating RepViTBlock while simplifying
parameters. In addition, the receptive field was expanded while simplifying computation
using a Haar wavelet downsampling module. The mAP@0.5 improved by 5.9%,
effectively reducing mobile terminal deployment difficulty. However, there remains
optimization space in balancing model lightweight design and detection accuracy.

Although the aforementioned research has achieved certain progress in balancing
high accuracy and lightweight design, numerous deficiencies remain in wood surface
defect detection scenarios: standard convolutional downsampling causes dead knot void
boundaries and crack linear structures to degrade in deep networks; fixed convolutional
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kernels struggle to effectively extract crack directional information and irregular geometric
morphologies of resin pockets and pith spots; small-target defects such as cracks and live
knots suffer severe semantic information attenuation during dimensionality reduction;
traditional decoupled heads exhibit parameter redundancy and limited inter-detection-layer
information flow, resulting in insufficient detection performance in multi-scale defect
mixed scenarios; feature extraction modules demonstrate weak integration capability for
multi-level information of composite defects; neck networks exhibit deficiencies in spatial
localization modeling for irregular defects, among others.

In summary, existing wood defect detection methods struggle to balance accuracy
and lightweight design. These issues were addressed through improvements in feature
extraction, multi-scale fusion, detection head design, among others, with the MFWSD-
YOLO algorithm being proposed to achieve unification of high accuracy and real-time
performance. The primary research contributions:

1. Introduction of the Adaptive Downsampling Module (ADown) (Wang et al. 2024).
Proposed in the YOLOV9 model by the cited authors, this module constructed parallel
channels of average pooling and max pooling, simultaneously preserving global
distribution characteristics and local salient features during spatial dimensionality
reduction. Through channel reorganization and cascaded fusion, it generated
compressed representations with higher information density, effectively suppressing
the degradation of critical features such as dead knot void boundaries and crack linear
structures in deep networks.

2. Design of a Lightweight Shared Convolution and Group Normalization Detection Head
(LSGNDH). This detection head innovatively adopted a cross-branch parameter
sharing topology, enabling three detection layers to share a unified convolutional kernel
group. Through dynamic scale calibration layers that adaptively compensated for
semantic gaps across different feature levels, it reduced redundant weights while
establishing explicit feature flow mechanisms between detection layers, achieving
collaborative optimized representation of multi-scale targets and significantly
improving detection performance in scenarios mixing defects of different sizes.

3. Proposal of a Progressive Lightweight Reparameterized Feature Integration Block
(PLRFIB). This module constructed a heterogeneous dual-path feature transmission
architecture, with a preservation path ensuring the structural integrity of original
representations, while a processing path performed deep extraction of semantic
information through structural reparameterization operators. It configured cascaded
convolutional sequences to form a gradient diffusion pattern of spatial receptive fields,
achieving progressive feature aggregation from microscopic textures to macroscopic
structures. The module ultimately performed deep fusion of shallow geometric
encoding and deep semantic encoding through cross-level feature bridging strategies,
generating multi-level feature representations with strong discriminative power for
composite features such as resin pocket lenticular gloss variations and missing knot
internal material deficiencies.

4. Introduction of the Efficient Local Attention (ELA) mechanism (Xu et al. 2025). As
proposed by the cited authors, this mechanism decoded spatial statistical distributions
through bidirectional adaptive pooling, combined with directional encoding from one-
dimensional convolution to generate spatial weight matrices, strengthening the model’s
representation capability for irregular defect spatial positions.
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EXPERIMENTAL

MFWSD-YOLO

In wood surface defect detection, YOLOv12n served as the baseline model due to
its effective integration of attention mechanisms and real-time performance. YOLOvI12n
embedded regional attention mechanisms into the feature extraction process through the
A2C2f module, achieving collaborative optimization of receptive field expansion and
computational load compression. This module, combined with the residual aggregation
strategy, stabilized the training process of large-scale models through block-level residual
connections and optimized feature fusion pathways. FlashAttention technology improved
computational efficiency by reconstructing memory access patterns, while 7x7 separable
convolution replaced traditional position encoding to reduce parameter burden.

However, this model exhibited limitations in wood surface defect detection
scenarios: traditional convolutional downsampling demonstrated insufficient capability to
preserve fine boundary features; the decoupled detection head structure impeded inter-
layer feature flow; fixed feature processing procedures showed poor adaptability to
heterogeneous defect morphologies; the neck network lacked targeted spatial position
encoding mechanisms, among others. To address these deficiencies exposed in YOLOv12n
for wood surface defect detection scenarios, the MEFWSD-YOLO algorithm was proposed,

Detect LSGNDH
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Fig. 1. Algorithm structure of MFWSD-YOLO
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ADown Downsampling Module

Traditional convolutional networks face severe information loss dilemmas during
layer-by-layer transmission in wood defect detection. Knot-type defect boundary details
exhibit progressive weakening during dimensionality reduction, cracks are highly
susceptible to missed detection due to extremely small line widths and variable directional
characteristics, and resin pocket and pith spot morphological features suffer severe
distortion after multi-level transformations. To address these issues, the ADown module
proposed in YOLOV9 was introduced, implementing replacement of certain convolutional
layers in the original network. Its structure is detailed in Fig. 2.
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Fig. 2. ADown downsampling structure

This module first performed preliminary aggregation on the input using average,
pooling AvgPool2d with kernel size k=2, stride s=1, and padding p=0, preserving
contextual information while reducing dimensions. Subsequently, the pooling results were
evenly divided (Chunk) along the channel direction into two paths, requiring the input
channel number C to be even. The first path employed convolution with &=3, s=2, p=1 to
extract local textural relationships, while the second path first used max pooling
MaxPool2d with £=3, s=2, p=1 to preserve extreme value responses, followed by
convolution with k=1, s=1, p=0 to adjust channels. In the figure, H denotes height, W
denotes width, and // represents integer division. After processing through both paths,
features of dimension (C//2, H//2, W//2) were obtained, which were finally merged through
concatenation (Concat) into output of dimension (C, H//2, W//2).

The adoption of ADown brought significant improvements. The dual-path
architecture enabled the convolutional branch to focus on texture detail capture while the
pooling branch locked onto salient regional responses, constructing a complementary
expression system after concatenation. For small-target defects such as fine cracks, this
structure achieved collaborative preservation of edge sharpness and positional information,
with detection accuracy improved compared to single-path convolution. When addressing
other defects such as dead knots, the branch mechanism also endowed features with
stronger adaptability.

LSGNDH

The original detection head of YOLOvI12n adopted a decoupled head structure.
Although it introduced Depthwise Separable Convolution (DWConv), the P3, P4, and P5
three-layer structure configured complete convolutional weights for classification and
regression branches separately, with the accumulation across three layers resulting in
persistently high total parameter count. This design exhibited dual limitations in wood
defect processing: first, parameter redundancy caused model volume inflation; second,
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detection layers operated independently, with fine detail information from the P3 layer
unable to transmit to the P5 layer, and semantic information from the P5 layer unable to
feedback to the P3 layer, severely limiting adaptability to defects of different scales. This
scale difference required the detection head to possess more flexible feature processing
mechanisms. Based on this, a Lightweight Shared Convolution and Group Normalization
Detection Head (LSGNDH) was designed, enabling three detection layers to share a single
set of convolutional parameters, achieving model scale compression through parameter
reuse while simultaneously introducing normalization layers to ensure training stability.
The overall architecture of LSGNDH is detailed in Fig. 3.
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Fig. 3. Lightweight shared convolution and group normalization detection head

The P3, P4, and PS5 feature layers output from the neck network first flowed through
independent 1x1 Conv_GN modules to complete channel adjustment, normalizing the
channel count of each layer to a unified dimension. In the figure, Conv_GN represents
convolutional operations fused with group normalization, consisting of three parts:
standard convolutional layer Conv2d, group normalization layer GroupNorm2d, and
activation function SiLU. The channel adjustment process is shown in Eq. 1,

F, ;= SiLU| GroupNorm2d[ Conv2d(F,,.C, )]|, i€{3,4,5} (1)

i,adj

where F;;, denotes the input feature, F; ,q;denotes the adjusted feature with unified channel

count Cp, i represents the detection layer index, the Conv2d function represents two-
dimensional convolution with kernel size 1x1, the GroupNorm2d function represents
group normalization dividing feature channels into 16 groups for intra-group
normalization, and SiLU serves as the activation function.

Feature layers unified in channels entered the shared convolution module, which
consisted of two cascaded 3x3 Conv_GN layers. Features from three detection layers
sequentially passed through this group of convolutional weights to complete
transformation. The first layer performed depthwise separable convolution to extract
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spatial patterns, while the second layer performed pointwise convolution to fuse channel
information, with all detection layers sharing a single set of parameters throughout the
entire process. The feature extraction process was expressed as follows,

F, = Convi,| Convi, (F, .8 =C, )] )

where Convgl\)lrepresents the first layer of depthwise separable convolution with parameter

g as the group number such that g = (}, indicated depthwise convolution, Convg\)]

represents the second layer of pointwise convolution, and F, denotes the unified feature
representation.

Shared convolution output features diverged into dual parallel processing paths: the
regression branch Conv_Reg handled bounding box position prediction, while the
classification branch Conv_Cls discriminated defect categories. In the figure, Conv_Reg
represents the regression convolutional branch, generating bounding box position offset
predictions through a 1x1 convolutional layer. After regression branch output, a Scale layer
was introduced. This layer compensated for response differences when processing targets
at different scales with shared parameters through learnable scalar parameters s;. The
regression prediction scaling process is shown in Eq. 3,

B =s,-Conv2d(F,,N,,) 3)
where B; denotes the bounding box prediction output for the i-th detection layer,
s; represents the learnable scaling parameter corresponding to the i-th layer, and
N, denotes the regression branch output channel count, equal to 4 X 1., where 7,
represents the maximum regression range parameter for distribution focal loss.

Conv_Cls represents the classification convolutional branch, performing category
prediction through a 1x1 convolutional layer. The classification branch prediction could
be expressed as follows,

P =Conv2d(F,N,) 4)

where Pdenotes the category prediction output, and N, represents the classification branch
output channel count, equal to the number of categories n., with each channel
corresponding to a confidence score for one defect category. The convolutional layer
weights for the regression and classification branches were completely independent,
ensuring the model optimized separately for localization and classification tasks.

During inference, regression branch outputs were decoded into precise coordinates
through the distribution focal loss mechanism. The decoding process is shown in Eq. 5,

Tnax =

1
B=) j-softmax(Bf-")) (5)
=0

where BLQ )represents the j-th channel of the i-th detection layer’s regression prediction, j
denotes the channel index, the softmax function normalized 7;,,, channels to obtain
probability distribution, and B represents the decoded bounding box offset.

The decoded offsets were combined with anchor points and converted to bounding
box coordinates, which were concatenated with classification results before output. The
final detection output could be expressed as follows,
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Y= [dist2bbox (B Sd,A),c(P)} ©)

where Yrepresents the final detection output containing bounding box coordinates and
category confidence, dist2bbox represents the core coordinate transformation function
converting offset distances and anchor points A into bounding box coordinates, S,
represents the downsampling stride for each detection layer, and o denotes the Sigmoid
function.

In the LSGNDH design, the shared convolution mechanism compressed the
original three sets of independent parameters into a single set, with parameter reduction
amplitude being significant, which held great significance for production line systems
requiring frequent model loading. The introduction of group normalization further
consolidated training stability, avoiding convergence difficulties caused by gradient
fluctuations during small-batch training. The introduction of the Scale layer compensated
for potential scale adaptability degradation caused by parameter sharing, enabling the
model to maintain flexibility when localizing defects of different sizes through learnable
scaling coefficients.

PLRFIB

The difficulty in wood surface defect recognition focused on morphological
diversity. Dead knots exhibited irregular circular or elliptical contours, live knots
maintained close connections with surrounding xylem, cracks displayed linear or dendritic
extensions, and missing knots formed cavity-like depressions. The C3k2 and A2C2f
modules of YOLOvV12n (structures detailed in Fig. 4) employed serially constructed feature
channels using Bottleneck residual units.

Fig. 4. C3k2 and A2C2f structure

This design limitation lay in convolutional layers processing inputs step-by-step
according to preset fixed procedures, with each Bottleneck executing the same flow from
compression to transformation to restoration, lacking mechanisms for dynamic adjustment
based on target characteristics. Standard convolution generated feature maps containing
numerous redundant encodings with similar responses; such redundancy both occupied
storage space and slowed computational speed. When addressing missing knots—
composite defects mixing void boundaries, peripheral textures, and missing regions with
three types of information—single-path serial processing could not effectively separate and
integrate different levels of discriminative bases. In view of this, the Progressive
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Lightweight Reparameterized Feature Integration Block (PLRFIB) was designed, with its
structure detailed in Fig. 5.
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Fig. 5. PLRFIB structure

PLRFIB first employed 1x1 convolution to perform channel expansion on input
feature maps, reserving sufficient space for branch processing, as follows,

F, =Conv,,(X; W) (7)

where Xdenoted the input feature, F represented the expanded feature, and W denoted
convolutional kernel weights. Subsequently, through the Chunk operation, features were
evenly divided along the channel dimension into two branches,

{F,. F,} = Chunk(F,,2,]) ®)

where F,and Fjrepresented the two branch features after chunking, respectively. The
numbers 2 and 1 indicated division into 2 chunks and splitting along the channel dimension
(dim=1). Branch a directly transmitted to the fusion stage to preserve shallow information,
while branch b entered the RepConv module (structure shown in Fig. 6) for deep feature
extraction.

RepConv adopted a three-path parallel structure during training: 3x3 convolution
captured spatial neighborhood relationships, 1x1 convolution adjusted inter-channel
connections, and identity mapping maintained input signals. In the figure, BN represented
batch normalization layer, Train indicated training mode, Val indicated validation/
inference mode, Conv represented convolution operations, and SiLU served as the
activation function. The forward propagation during the training phase was expressed as
follows,

F, =o[BN(F, )+ Convy, (F;W;) + Conv,,, (F; )] ©)

where F, denotes the RepConv output feature with subscript r indicating
reparameterization, W3 and W represents 3x3 and 1x1 convolutional kernel weights
respectively with subscripts 3 and 1 indicating kernel sizes, o denotes the activation
function, BN represents the batch normalization function, and the Conv operation already
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included BN. The three paths each collected gradients during training, enabling the
network to learn more comprehensive feature representations.

During inference, the three-path convolutional kernels and batch normalization
parameters were synthesized into a single equivalent convolutional kernel,

W, =w,0 —L>+pad, w0 L _lijg Lo (10)

\o: +¢ ol +¢ \o, +¢

where W denotes the fused equivalent convolutional kernel weight (subscript f indicating

fusion), y3, ¥1, and y, represents the scaling parameter vectors from batch normalization
layers of the three branches respectively (subscript d indicating direct connection branch),
02, o, and o7 represents the running variances of corresponding branches, ¢ denotes a
numerical stability constant variable, I represents the identity mapping unit convolutional
kernel, Oindicates element-wise multiplication, and Pad represents the padding function.

After obtaining F,., this feature transmitted along two paths in parallel: one directly
participated in subsequent feature fusion, while the other entered a progressive
convolutional sequence composed of multiple 3x3 convolutions connected end-to-end.
Each convolutional layer in the sequence only processed local regions of upper-layer
outputs, but as layer count accumulated, spatial coverage continuously expanded. This
progressive expansion approach proved particularly suitable for recognizing features
requiring observation of larger regions, such as crack extension directions and dispersed
knot distributions, while being more parameter-efficient than directly using large
convolutional kernels. The processing flow, i.e., features after RepConv processing
entering the progressive convolutional sequence and achieving receptive field expansion
through stacking n — 1 3x3 convolutions, was expressed as follows,

F, =Conv,,(F,_;W,),k=12,...,n-1 (11)

where F) denotes the k-th convolutional layer output feature, W represents the k-th
convolutional kernel weight, with initial input being F,, and n represents the total number
of convolutional layers.

After progressive sequence processing, the shallow representations preserved by
branch a, mid-level representations extracted by RepConv, deep features generated by each
convolutional layer, and features processed by 1x1 convolution at the sequence end were
all aggregated. In Fig. 5, Concat completed feature concatenation along the channel
dimension, finally adjusting channel count through 1x1 convolution,

Y =Conv, {Concat[F,,F,F,....F,_,Conv,, (F,_ ;W)W } (12)

n—1°

where Yrepresents the final output feature, W, denotes the convolutional kernel weight at
the sequence end (subscript ¢ indicating channel adjustment), W, represents the output
convolutional kernel weight (subscript o indicating output), and Concat denotes the
concatenation function.

Cross-level concatenation enabled the module to simultaneously utilize shallow
details and deep semantics, thereby strengthening discriminative capability when detecting
different defect types such as pith spots and resin pockets. Particularly for composite
defects such as knot with crack, the dual-path architecture enables simultaneous
extraction of crack directional features through the progressive convolutional sequence and
knot morphological features through the preservation path, achieving effective feature

Wu et al. (2026). “MFWSD-YOLO and wood defects,” BioResources 21(1), 1779-1806. 1788



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

complementarity. Through cooperation of branch diversion, reparameterized extraction,
and progressive aggregation, PLRFIB both reduced redundant computation and enhanced
recognition accuracy for complex defects.
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ELA Attention Mechanism

Wood defect position distribution directly affected the practical value of detection
results. The appearance of dead knots and live knots at board edges versus center positions
produced vastly different impacts on wood grade determination; crack extension directions
determined the feasibility of subsequent cutting schemes; and the aggregation positions of
resin pockets and pith spots related to surface treatment difficulty.
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Fig. 7. ELA attention mechanism structure

Wu et al. (2026). “MFWSD-YOLO and wood defects,” BioResources 21(1), 1779-1806. 1789



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Detection systems must precisely capture defect spatial coordinate information. To
strengthen the network’s discriminative capability for positions, ELA proposed by Xu et
al. (2025) was introduced into the YOLOv12n neck. Its structure is detailed in Fig. 7.

Input features had dimensions C X H X W, where C denoted channel count, H
represented height, and W represented width. ELA divided the input into two independent
pathways for position encoding. The left branch employed XAvgPool for average pooling
along the horizontal direction, compressing each row’s features to obtain a C X H X
1tensor. The right branch used YAvgPool for pooling along the vertical direction,
averaging each column to obtain a C X 1 X W tensor. The pooled sequences were
respectively fed into one-dimensional convolution Convld with kernel size set to 7; the
left side output C X Hencoding, while the right side output C X Wencoding. A kernel size
of 7 could cover sufficient neighborhood ranges.

Subsequently, GroupNorm group normalization was used to perform standardized
processing on features. This approach divided channels into groups before calculating
statistics, receiving less influence from sample batch size compared to conventional
normalization methods. After normalization, the Sigmoid activation function was used to
generate attention weight of C X H X 1land € X 1 X W. These two weights multiplied to
obtain a complete spatial weight map, which finally performed element-wise multiplication
with the original input, outputting enhanced features of C X H X W.

ELA enabled the network to explicitly clarify defect positions in feature maps, with
particularly remarkable improvement effects on localization accuracy for targets such as
knots with cracks exhibiting significant edge-center response differences. Compared to
global attention mechanisms requiring computation of relationships among all positions,
this dimension-reduction-then-convolution processing approach substantially reduced
computational load.

RESULTS AND DISCUSSION

Wood Surface Defects Dataset

A subset of the large-scale wood surface defect image dataset publicly released by
Kodytek et al. (2022) was adopted. The original dataset encompassed annotations for 10
defect categories. According to research requirements, seven common defect types with
sufficient sample quantities were retained after screening for model training and
evaluation: Dead Knot, Live Knot, knot with crack, Crack, resin, Marrow, and
Knot missing, totaling 3,593 wvalid images. To match detection network input
specifications, all images were preprocessed to 640x640 pixel resolution. The dataset was
randomly divided into training, validation, and test sets at an 8:1:1 ratio. During the training
phase, the mosaic data augmentation strategy was enabled to enrich sample diversity and
enhance the model's adaptability to complex morphologies of wood surface defects. The
seven defect categories included in the dataset are detailed in Fig. 8.

The sample distribution across defect categories presented a characteristic
imbalance that merits attention, as depicted in Fig. 9. Live Knot and Dead Knot
dominated the dataset composition, contributing 45.2% and 32.5% of total samples
respectively. The remaining five categories occupied considerably smaller proportions:
Resin at 7.3%, Crack at 5.8%, knot_with crack at 5.7%,
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(a)Live_Knot (b)Dead_Knot (cyresin

(d)Knot_missing (e)knot_with_crack (f)Crack

(g)Marrow

Fig. 8. Dataset defect categories
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Fig. 9. Histogram of defect category distribution

Marrow at 2.3%, and Knot missing at merely 1.3%. Such distributional disparity
originates from the intrinsic biological and mechanical processes governing wood defect
genesis. Knots—whether dead or live—arise inevitably at branch-trunk junctions
throughout tree growth, rendering them pervasive across virtually all timber specimens.
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Knot_with crack demands the concurrent manifestation of knot presence alongside crack
propagation, a compound condition triggered predominantly by differential shrinkage
stresses during kiln drying or ambient seasoning. Resin accumulation depends upon
species-specific secretory physiology characteristic of certain conifers, whereas Marrow
defects emerge from suboptimal sawing practices that fail to exclude the pith zone.
Knot missing represents perhaps the rarest category, requiring complete knot
dislodgement through either natural abscission or deliberate excision during processing—
both statistically uncommon events.

The procedures used in the present work deliberately preserved the native
distributional characteristics without resorting to oversampling or synthetic augmentation,
since such interventions risk contaminating the training-test partition boundary and
consequently yielding inflated performance metrics that misrepresent true generalization
capacity. Maintaining fidelity to the original distribution not only facilitates reproducibility
across independent research efforts but also ensures that the evaluation conditions
approximate the authentic defect occurrence patterns encountered on industrial grading
lines.

Experimental Environment and Parameter Settings

The experimental environment was constructed based on the PyTorch deep learning
framework, with the operating platform being the Linux operating system. The GPU was
NVIDIA GeForce RTX 4090 (24GB memory), the CPU was AMD EPYC 7K62 48-Core
Processor 2.6GHz, and GPU acceleration utilized CUDA 12.1.

Key hyperparameters during the training process were set as follows: batch size
was set to 16, patience for early stopping mechanism was set to 50, Stochastic Gradient
Descent (SGD) was selected as the parameter optimization strategy, the number of workers
was set to 4, total training epochs were determined as 200, and the initial learning rate was
set to 0.01. Additionally, no pre-trained weights were introduced for initialization during
the model training process.

The detailed hyperparameter configuration is presented in Table 1. The selection of
these hyperparameters was primarily guided by the work of Yan et al. (2025), who
conducted systematic experiments on wood defect detection tasks using similar parameter
configurations.

Table 1. Detailed Table of Hyperparameter Configuration

Hyperparameter | Value Justification
Batch Size 16 Optimal for RTX 4090 memory; balances gradient stability and
training speed
Initial Learning 0.01 Standard for SGD optimizer in YOLO models; validated through
Rate grid search [0.001, 0.01, 0.1]
Epochs 200 Sufficient for convergence; early stopping prevents overfitting
Patience 50 Allows adequate exploration while preventing unnecessary
computation
Optimizer SGD Superior generalization compared to Adam for object detection
Momentum 0.937 Standard YOLO configuration for stable convergence
Weight Decay | 0.0005 Regularization to prevent overfitting; standard practice

Evaluation Metric System
To ensure comprehensiveness and accuracy of model performance evaluation, a
multi-dimensional evaluation metric system was constructed, specifically including: mean
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Average Precision (mAP), Parameters (Params/M), model Size (Size/MB), Floating Point
Operations (FLOPs/G), inference speed FPS (frames per second, f/s), and Inference Time.
Among these, mAP@0.5 represents the average precision at IoU threshold 0.5, while
mAP@0.5:0.95 represents the mean average precision across loU thresholds from 0.5 to
0.95 (step size 0.05). Params denotes Parameters, FLOPs indicates Floating Point
Operations, FPS represents Frames Per Second, and Inference Time was calculated as
Inference Time = 1/FPS, representing the time required to process a single frame. MB
denotes megabytes, M represents the unit million, G indicates 1 billion floating-point
operations per second, f represents frames, and s represents seconds.

Ablation Experiments

To verify the effectiveness of each improved module in MEFWSD-YOLO, ablation
experiments were conducted on this dataset. The experiments employed identical
hyperparameters and training environments, progressively integrating the four
improvement points of ADown, LSGNDH, PLRFIB, and ELA through eight ablation
experiments. Each experiment selected the best weights for detection, obtaining validation
results as shown in Table 2.

Table 2. Ablation Experiments

Model ADo | LSGN | PLR | EL | mAP | mAP@O0.5 | Param | Size/ | FLOP | FPS(
wn | DH | FIB | A | @05 0.95 s’M | MB | siG | fis)
Y?'z—r?v 0.6403 | 03353 | 256 | 53 | 63 | 923
Y?'z—r?v N 0.6684 | 0.3499 | 205 | 44 | 52 | 92.2
Y?er?V v 06949 | 03796 | 234 | 49 | 51 [1193
Y?er?V y 07143 | 03602 | 1.80 | 38 | 54 |186.7
Y?er?V V | 06959 | 03474 | 253 | 53 | 58 |104.2
Y?er?V N v 06991 | 03670 | 1.89 | 40 | 44 |[127.0
Y?ZLSV N \ \ 07253 | 03805 | 118 | 26 | 41 | 1605
Y?ZLSV N N V| N {07293 03870 | 121 | 26 | 42 |1956

The baseline YOLOv1I2n model achieved mAP@0.5 of 64.03% and
mAP@0.5:0.95 of 33.53%. After integrating the ADown module into the baseline model,
mAP@0.5 increased to 66.84%, representing a 2.81% improvement over the baseline. This
module adopted a spatial rearrangement mechanism, achieving lossless information
transmission through channel-dimensional feature reorganization, which proved
particularly critical for preserving spatial continuity of elongated defects such as pith spots.
Params decreased to 2.05 M, a reduction of 19.92%, and FLOPs decreased to 5.2G, a
reduction of 17.46%.

The LSGNDH detection head elevated mAP@0.5 by 5.46% and increased
mAP@0.5:0.95 by 4.43%, representing the most significant accuracy improvement among
single modules. Its core lay in cross-scale gradient sharing and normalization strategies,
demonstrating outstanding scale adaptability. FLOPs decreased to 5.1 G, a reduction of
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19.05%, and FPS reached 119.3 {/s.

The PLRFIB module caused mAP@0.5 to climb to 71.43%, an improvement
magnitude reaching 7.40%. This module constructed multi-level semantic aggregation
pathways through progressive receptive field expansion, with low layers capturing local
texture mutations of cracks and high layers integrating global geometric morphologies of
dead knot boundaries. Params decreased to 1.80 M, a compression of 29.69%, Size was
3.8 MB, a reduction of 28.30%, and FPS reached 186.7 f/s, representing 2.02 times the
original.

The ELA mechanism increased mAP@0.5 by 5.56%, strengthening feature
responses in texture-dense regions through adaptive weighting within local receptive
fields.

The combination of ADown and LSGNDH increased mAP@0.5 to 69.91%, an
improvement of 5.88%, and mAP@0.5:0.95 increased by 3.17%, exhibiting synergistic
gain effects in void boundary localization. Params decreased to 1.89 M, a reduction of
26.17%, and FLOPs decreased to 4.4 G, a reduction of 30.16%.

Three-module fusion elevated mAP@0.5 to 72.53%, an increase of 8.50%, and
mAP@0.5:0.95 improved by 4.52%. Progressive receptive fields and adaptive detection
heads demonstrated deep coupling on composite defects such as knots with cracks, forming
multi-scale feature complementary enhancement. Params decreased to 1.18 M, a sharp
reduction of 53.91%, FLOPs decreased to 4.1 G, a reduction of 34.92%, and FPS reached
160.5 f/s. Although Params and FLOPs represented optimal values among all experiments,
other metrics still possessed certain improvement space.

After complete fusion of four modules, mAP@0.5 reached 72.93%, an
improvement magnitude of 8.90%, and mAP@0.5:0.95 reached 38.70%, an increase of
5.17%, achieving optimal performance. Params was 1.21 M, a sharp reduction of 52.73%,
Size was 2.6 MB, a reduction magnitude reaching 50.94%, FLOPs was 4.2 G, a decrease
of 33.33%, and FPS reached 195.6 f/s, representing 2.12 times the original.

Comparative Experiments of Different Algorithms

To verify the detection effectiveness of MFWSD-YOLO, multiple mainstream
algorithms were selected for comparative experiments, with results detailed in Table 3. To
ensure experimental fairness, all experiments were conducted on identical hardware. For
YOLO-series models, unified training configurations were applied, including batch size,
learning rate, and optimization strategy. For non-YOLO architectures, their officially
recommended configurations were adopted, as these methods originate from distinct
detection paradigms with specialized loss functions and optimization schemes that would
yield suboptimal convergence under arbitrarily imposed settings.

The proposed algorithm achieved an mAP@0.5 of 72.93%, representing
improvements of 8.73%, 10.83%, and 7.73% compared to RT-DETR-R18, ATSS-R50, and
TOOD-R50, respectively. mAP@0.5:0.95 reached 38.70%, representing improvements of
1.54%, 6.30%, and 6.00% compared to the three aforementioned algorithms, respectively.

Although RT-DETR-R18 possessed global modeling capability based on
Transformer architecture, its Params of 19.90 M, FLOPs of 57.0 G, and Size of 77.0MB
limited edge deployment due to computational intensity characteristics. The proposed
algorithm achieved reduction magnitudes of 93.92%, 92.63%, and 96.62% in these three
metrics compared to RT-DETR-R18.
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Table 3. Comparative Experiments of Different Algorithms

Model MAP@0.5 | mMAP@0.5:0.95 | Params/M | FLOPs/G Size/MB FPS(f/s)
RT'F%ESTR' 0.6420 0.3716 19.90 57.0 77.0 130.7
ATSS-R50 | 0.6210 0.3240 38.91 68.2 2563 154

Tg%)' 0.6520 0.3270 32.04 125.9 251.0 20.3
YotiLrg"?" 0.6441 0.3419 12.13 18.9 23.3 133.4
YOLOV5n | 0.6393 0.3043 251 71 50 103.3
YOLOv6n | 06164 0.3073 423 118 83 114.0
YOLOv8n | 06558 0.3433 3.01 8.1 6.0 114.5
YOLOVSt | 0.6154 0.3278 1.07 76 44 96.8
YOLOV10n | 0.5819 0.2971 227 65 55 105.8
YOLOV11n | 0.6246 0.3373 258 63 52 125.9
YOLOvi2n | 0.6403 0.3353 256 63 53 923
YOLOV13n | 0.6128 0.3211 2.45 6.1 52 476
This study | 0.7293 0.3870 1.21 42 26 195.6

ATSS-R50 adopted an adaptive sample allocation strategy, but optimization only
functioned during the training phase. Its Params of 38.91M, FLOPs of 68.2 G, and Size of
256.3 MB contrasted sharply with the proposed algorithm, which achieved Params
reduction of 96.89%, FLOPs reduction of 93.84%, Size reduction of 98.99%, and FPS
reaching 12.70 times that of ATSS-R50, demonstrating significant advantages in inference
efficiency.

TOOD-R50 employed a task alignment mechanism but exhibited high model
complexity and sensitivity to sample distribution. Its Params of 32.04 M, FLOPs of 125.9
G, and Size of 251.0 MB contrasted with the proposed algorithm, which achieved
reductions of 96.22%, 96.66%, and 98.96% in Params, FLOPs, and Size, respectively, with
FPS being 6.68 times that of TOOD-R50, significantly reducing computational overhead.

In YOLO series algorithm comparisons, the proposed algorithm’s mAP@0.5
improved by 8.52%, 9.00%, 11.29%, 7.35%, 11.39%, 14.74%, 10.47%, and 11.65%
compared to YOLOv3-tiny, YOLOv5n, YOLOv6n, YOLOv8n, YOLOvV9t, YOLOV10n,
YOLOv11n, and YOLOvI13n, respectively. mAP@0.5:0.95 improved by 4.51%, 8.27%,
7.97%, 4.37%, 5.92%, 8.99%, 4.97%, and 6.59% compared to the aforementioned
algorithms, respectively, while Params, FLOPs, and Size were only 1.21 M, 4.2 G, and
2.6MB, respectively, with FPS reaching 195.6 f/s, demonstrating significant lightweight
advantages.

YOLOv3-tiny's Params of 12.13 M suffered from insufficient feature extraction
depth. The proposed algorithm achieved a 90.02% reduction compared to it, representing
breakthrough progress in parameter compression. YOLOv5n’s FLOPs of 7.1G exhibited
limitations in feature fusion strategy for detail preservation. The proposed algorithm
reduced FLOPs by 40.85% compared to it.

YOLOV8n introduced the C2f module and decoupled head, but independent
optimization branches increased network complexity. The proposed algorithm achieved a
59.80% reduction in Params compared to it. YOLOv10n adopted end-to-end design, but
one-to-one label assignment also exhibited numerous deficiencies in dense scenarios. The
proposed algorithm reduced FLOPs by 35.38% compared to it.
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The corresponding radar chart is detailed in Fig. 10. From multi-metric distribution
perspective, MFWSD-YOLO's positive metrics such as mAP@0.5, mAP@0.5:0.95, and
FPS were positioned at the outer edge of the radar chart, while negative metrics such as
Params and FLOPs were close to the center, visually confirming its comprehensive
advantages of high accuracy, fast speed, and low resource consumption. In summary, the
MFWSD-YOLO algorithm maintained high detection accuracy while possessing low
computational complexity and model scale.

Comparisan of Various Models Across Metrics

ParamelersiM MAP@0.5:0.95

+

FLOPSIG MAPEO.S

bibth

---------

.....

Fig. 10. Radar chart for comparison of different algorithms

Comparative Experiments with Different Downsampling Methods

To verify the superiority of ADown, five widely used downsampling operations
were selected—WaveletPool, ContextGuidedDown, SPDConv, PSConv, and wConv—for
comparative experiments with ADown on YOLOvV12n, as shown in Table 4.

Table 4. Comparative Experiments with Different Downsampling Methods

Conv mAP@0.5 | mAP@0.5:0.95 | Params/M | Size/MB | FLOPs/G | FPS(f/s)
YOLOv12n 0.6403 0.3353 2.56 5.3 6.3 92.3
WaveletPool 0.6298 0.3233 2.05 4.3 5.1 92.1
ContextGuidedDown 0.6575 0.3487 3.47 7.1 9.0 92.2
SPDConv 0.6485 0.3449 4.54 9.1 11.3 86.9
PSConv 0.6639 0.3415 2.41 5.1 6.3 76.1
wConv 0.6085 0.3089 2.54 5.3 4.6 92.1
ADown 0.6684 0.3499 2.05 4.4 5.2 92.2

Experimental results indicated that ADown achieved mAP@0.5 of 66.84% and
mAP@0.5:0.95 of 34.99%, representing improvements of 2.81% and 1.46% compared to
the baseline model, respectively. Compared to WaveletPool, ADown led by 3.86% in
mAP@0.5, indicating that the dual-path design possessed greater advantages in capturing
wood defect details.

Although ContextGuidedDown reached 34.87% in mAP@0.5:0.95, its Params
reached 3.47M and FLOPs was 9.0G, with resource consumption far exceeding ADown.
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SPDConv’s Params and FLOPs reached 4.54 M and 11.3 G, respectively, with FPS of only
86.9 f/s, exhibiting obvious gaps in comprehensive performance. PSConv exhibited the
lowest FPS. wConv exhibited disadvantages across all metrics.

Comprehensive analysis indicated that while ADown achieved the highest
detection accuracy, Params was only 2.05 M, Size was 4.4 MB, FLOPs was 5.2 G, and it
maintained detection speed of 92.2 f/s, fully demonstrating its balanced advantages
between accuracy and efficiency.

Comparative Experiments with Different Detection Heads

To verify the effectiveness of the LSGNDH detection head, on the basis of
introducing the ADown module into YOLOvI2n, five mainstream detection heads—
dyhead, EfficientHead, LQEHead, MultiSEAMHead, and SEAMHead—were integrated
for comparative experiments. Experimental results are shown in Table 5.

Data indicated that LSGNDH’s mAP@0.5 reached 69.91%, representing a 5.88%
improvement compared to the baseline model YOLOvI2n’s 64.03%. mAP@0.5:0.95
improved from 33.53% to 36.70%, an increase of 3.17%, achieving optimal detection
accuracy among all comparison methods. This benefited from the shared convolution
mechanism effectively integrating multi-scale features.

dyhead elevated mAP@0.5 to 66.43% through multiple attention mechanisms, but
computational complexity resulted in FPS of only 77.0 f/s, with significantly insufficient
inference efficiency. Although EfficientHead’s Params was only 1.79 M, mAP@0.5 was
only 63.66%.

Table 5. Comparative Experiments with Different Detection Heads

Head MmAP@0.5 | mAP@0.5:0.95 | Params/M | Size/MB | FLOPs/G | FPS(f/s)

YOLOv12n 0.6403 0.3353 2.56 5.3 6.3 92.3
dyhead 0.6643 0.3366 2.57 5.4 6.3 77.0
EfficientHead 0.6366 0.3327 1.79 3.8 4.0 119.5
LQEHead 0.6485 0.3356 2.06 4.4 5.2 113.7
MultiSEAMHead 0.6838 0.3619 4.07 8.3 49 71.1
SEAMHead 0.6708 0.3469 1.97 4.2 4.6 934
LSGNDH 0.6991 0.3670 1.89 4.0 4.4 127.0

LQEHead’s mAP@0.5 was 64.85%. Although FPS reached 113.7 /s, Params was
2.06M and FLOPs reached 5.2 G, failing to achieve ideal balance in accuracy and
computational efficiency. MultiSEAMHead's mAP@0.5 was 68.38%, but its Params
reached 4.07 M and FPS was the lowest, limiting its practical deployment value.

SEAMHead's mAP@0.5 was 67.08%, Params was 1.97 M, and FPS was 93.4 {/s,
demonstrating good performance in lightweight design, but accuracy remained lower than
LSGNDH. In contrast, LSGNDH controlled Params at 1.89 M, representing a 26.17%
reduction compared to the baseline model, compressed Size to 4.0 MB, reduced FLOPs to
4.4 G, while FPS reached 127.0 f/s.

Experimental results indicated that LSGNDH achieved simultaneous improvement
in detection accuracy and inference speed under the premise of maintaining lightweight
design.
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Comparative Experiments with Different Attention Mechanisms

To verify the effectiveness of ELA in wood surface defect detection, on the basis
of YOLOvI2n fusing ADown, LSGNDH, and PLRFIB, ELA was compared with six
classic attention mechanisms—CAA (Cai et al. 2024), AFGCAttention, CPCA (Huang et
al. 2024), LSKA (Lau et al. 2024), LSKBIlock, and LocalWindowAttention—as shown in
Table 6.

Table 6. Comparative Experiments with Different Attention Mechanisms

Model MAP@0.5 | mMAP@0.5:0.95 | Params/M | Size/MB | FLOPS/G l(:fI/DsS)
YOLOV12n 0.6403 0.3353 256 53 63 | 923
CAA 0.7046 0.3601 120 26 43 | 1692
AFGCAttention 0.7070 0.3666 119 26 41 | 1662
CPCA 0.7121 0.3758 120 26 44 | 1607
LSKA 0.7221 0.3761 119 26 42 | 1735
LSKBlock 0.6895 0.3689 121 26 44 | 1636
LocalWindowAttention | 0.7123 0.3770 1.20 26 43 | 1644
ELA 0.7293 0.3870 121 26 42 | 1956

Analysis revealed that CAA’s global pooling lost crack local information;
AFGCAttention’s matrix operations exhibited computational redundancy when processing
pith spots; CPCA faced limitations in spatial localization for resin pockets; LSKA’s dilated
convolution produced grid effects at dead knot boundaries; LSKBlock exhibited feature
allocation conflicts when addressing complex defect features; LocalWindowAttention’s
window partitioning limited global modeling. ELA preserved directional and positional
information through bidirectional adaptive pooling, achieving optimal balance between
accuracy and speed.

Generalization Experiments

To comprehensively evaluate the generalization performance of the MFWSD-
YOLO model, generalization experiment validation was conducted on three types of
publicly available datasets.

First, the OULU-DET (Luo et al. 2025) wood surface defect dataset from the
University of Oulu was adopted. This dataset contained 3,773 images encompassing six
typical defect categories: dry knot, sound knot, edge knot, small knot, split, and wave.

Second, the PCB_DATASET (Ding et al. 2019) printed circuit board defect dataset
released by Peking University was selected. The original dataset contained 693 images,
including six defect types: spurious copper, open circuit, mouse bite, short circuit, missing
hole, and spur. Given the small sample scale, it was expanded to 6,330 images through data
augmentation techniques.

Finally, the authoritative solar panel defect dataset PVEL-AD (Su et al. 2022) was
introduced. This dataset encompassed 12 defect types: black core, corner, crack, finger,
fragment, horizontal dislocation, printing error, scratch, short circuit, star crack,
thick line, and vertical dislocation. From this, 3,645 high-quality images were carefully
selected for experiments.
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The hyperparameter settings, training environment, and dataset division strategy
for the three aforementioned datasets remained consistent with ablation experiments.
Experimental results are shown in Table 7.

Table 7. Generalization Experiments

Datasets Model MmAP@0.5 | mAP@0.5:0.95 | FPS(f/s) | InferenceTime(s)

YOLOv12n 0.8699 0.5308 107.2 0.0093

OULU-DET MFWSD-
YOLO 0.9584 0.6248 125.2 0.0080
YOLOv12n 0.9696 0.6505 96.4 0.0104
PCB_DATASET | MPVISD- 0.9849 0.7474 134.1 0.0075
YOLOv12n 0.7366 0.4997 80.5 0.0124

PVEL-AD MFWSD-
YOLO 0.8245 0.5194 122.4 0.0082

Experimental results demonstrated that on OULU-DET, mAP@0.5 improved from
86.99% t0 95.84%, mAP@0.5:0.95 leaped from 53.08% to 62.48%, FPS increased to 125.2
f/s, and inference time decreased from 0.0093s to 0.0080s. Cross-domain experiments
indicated that on PCB_ DATASET, mAP@0.5:0.95 improved from 65.05% to 74.74%,
with FPS reaching 134.1 /s and inference time reduced to 0.0075s per frame. On PVEL-
AD, mAP@0.5 increased from 73.66% to 82.45%, with FPS reaching 122.4 /s and
inference time compressed from 0.0124 s to 0.0082 s, representing a 33.9% reduction in
processing latency.

These excellent results stemmed from the powerful feature expression capability
constructed by the proposed method, enabling the model to exhibit outstanding
generalization performance in both wood and cross-domain detection tasks.

Analysis of mMAP@0.5 Improvement Effect for Various Defect Categories
As shown in Table 8, the improved model achieved gains across all defect

categories.

Table 8. Comparison of mMAP@0.5 Before and After for Various Defect Types

Live_Knot Dead_ resin Knot_missing knot_with Marrow Crack
Model Knot crack
mAP@0.5 | TAP@ | MAP@ | \p@05 | mAP@o.s | MAP@O | mAP@O
0.5 0.5 5 5
YOLOV1
> 0.8247 | 0.8847 | 0.6656 0.6296 06224 | 05655 | 0.2898
M%VLSOD' 08319 | 0.8891 | 0.6785 0.6362 06358 | 0.8016 | 0.6320

Crack mAP@0.5 increased from 0.2898 to 0.6320, a gain of 34.22%, which can be
attributed to PLRFIB's progressive receptive field expansion effectively capturing the
extension trajectories of elongated, variably-oriented crack structures. Marrow improved
by 23.61%, as the strip-shaped small-target characteristics benefited substantially from
multi-scale semantic fusion. Knot with crack gained 1.34%, owing to LSGNDH’s cross-
scale parameter sharing mechanism that enabled coordinated expression of composite
features. Resin improved by 1.29%, where ELA’s spatial weight modeling enhanced
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localization precision for lens-shaped boundaries. Knot missing increased by 0.66%, with
Adown’s dual-path architecture preserving boundary details of cavity structures.
Dead Knot and Live Knot showed marginal improvements of 0.44% and 0.72%
respectively, due to their already high baseline precision limiting further enhancement
potential.

Visualization Results Analysis

To deeply demonstrate the detection performance advantages of MFWSD-YOLO,
the GradCAM++ method (Chattopadhay et al. 2018) was adopted to obtain heatmaps,
comparing the performance differences between the baseline model YOLOv12n and the
improved model in detecting seven wood defect types. Visualization results are detailed in
Fig. 11.

Dead_Knot resin  Live _Knot knot with_crack Knot missin Marrow Crack

MFWSD-YOL

|
YOLOv12n
’ FWSD-YOLW

Fig. 11. Visualization results

Figure 11 presents the attention distribution of both models through GradCAM++
heatmaps. The color gradient encodes confidence levels: red denotes regions where the
model exhibits strongest responses, yellow and green indicate intermediate activation
intensities, whereas blue and purple correspond to areas receiving minimal attention. The
quantitative comparison reveals consistent performance gains achieved by MFWSD-
YOLO across all seven defect categories. Two small-scale defect types merit particular
discussion. Marrow detection confidence rose from 48% to 75%, yielding a 27%
improvement margin. Crack recognition similarly benefited, with confidence advancing
from 47% to 60%. These gains can be attributed to the progressive receptive field
expansion mechanism embedded in PLRFIB, which preserves fine-grained spatial details
during feature aggregation. The composite defect category knot with crack warrants
separate examination given its inherent detection complexity. This defect type
simultaneously presents crack linear extension patterns and knot circular boundary
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characteristics, demanding the detector to integrate geometrically heterogeneous features
within a unified representation. MFWSD-YOLO elevated the detection confidence from
75% to 85% for this category. The dual-path architecture of PLRFIB contributes to this
improvement: the preservation branch retains knot boundary information while the
processing branch extracts crack directional features through cascaded convolutions,
enabling coherent feature fusion for such morphologically diverse targets. The heatmap
visualization corroborates these quantitative findings. YOLOv12n generates fragmented
activation patterns characterized by scattered red regions and extensive yellow-green
transitional zones, indicating imprecise attention allocation. The model struggles to
distinguish defect boundaries from surrounding wood textures, particularly when
processing targets with irregular geometries. MEWSD-YOLO produces markedly different
activation maps: red high-response regions form compact clusters that align closely with
actual defect contours, accompanied by sharper transitions toward peripheral areas. This
concentrated activation pattern demonstrates that the ELA mechanism successfully guides
the network toward defect-relevant spatial locations while suppressing background
interference, thereby enhancing localization precision for wood surface defects exhibiting
diverse morphological characteristics.

To thoroughly evaluate the classification performance, normalized confusion
matrices of YOLOv12n and MFWSD-YOLO across four datasets were constructed, as
illustrated in Fig. 12.

On the large-scale wood defect dataset, the baseline model achieved merely 40%
recall for Crack, with the lower-left triangular region revealing substantial false negatives
where crack samples were misclassified into other categories including background. This
deficiency stemmed from the inherent characteristics of cracks: their extremely fine line
widths and variable extension directions caused severe feature attenuation during
conventional downsampling. The ADown module addressed this issue through its dual-
path architecture, where the max pooling branch preserved edge sharpness while the
convolutional branch retained textural details, jointly elevating Crack recall to 57%.
Notable confusion between Live Knot and Dead Knot appeared in the confusion matrix,
attributable to their morphological similarity in circular contours and color gradients,
though dead knots typically exhibit darker peripheral boundaries. The LSGNDH module
mitigated this inter-class confusion through cross-scale parameter sharing, enabling
semantic information from the P5 layer to guide fine-grained discrimination at the P3 layer.
For the Dead Knot category, recall improved from 70% to 78%, demonstrating enhanced
boundary recognition. Regarding false positives, the upper-right triangular region indicated
that background and other categories were occasionally misclassified as target defects; the
ELA mechanism suppressed such false alarms by strengthening spatial position encoding,
particularly effective for cavity-type defects such as Knot missing, where recall improved
from 55% to 66%.

On the OULU-DET dataset, small_knot recall improved substantially from 74% to
92%, with confusion matrix values showing significant false negative reduction for small-
scale defects. The wave category also demonstrated notable improvement, with recall
increasing from 85% to 95%, benefiting from the progressive feature integration of
PLRFIB. The PCB_DATASET experiments validated cross-domain adaptability, where
open_circuit recall rose from 94% to 98%, and mouse bite recall improved from 91% to
95%.
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Fig. 12. Confusion matrix comparison chart

On the PVEL-AD dataset with twelve defect categories, scratch recall improved
from 70% to 84%, and the confusion between crack and star crack was notably alleviated
through enhanced feature discrimination. The star crack category showed particularly
strong improvement from 72% to 83% recall, benefiting from the progressive receptive
field expansion of PLRFIB that enhanced discrimination between linear and radial fracture
patterns. Fragment recall also increased from 68% to 82%, demonstrating the model’s
enhanced capability in detecting small-scale defects. The overall matrix distributions
confirm that MFWSD-YOLO systematically reduced both false negative and false positive
rates through the targeted contributions of each proposed module.
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CONCLUSIONS

1. The improved algorithm achieved significant performance improvements on a public
wood defect dataset, with mAP@0.5 reaching 72.93% and mAP@0.5:0.95 reaching
38.70%, representing improvements of 8.90% and 5.17% respectively compared to the
baseline model YOLOv12n. Meanwhile, model parameters were reduced to 1.21 M,
computational complexity decreased to 4.2 G, and model size was compressed to 2.6
MB, representing reductions of 52.73%, 33.33%, and 50.94% respectively compared
to the baseline model, with inference speed reaching 195.6 frames per second,
achieving an effective balance between detection accuracy and model lightweight
design.

2. Ablation experiments demonstrated the effectiveness of each improved module. The
adaptive downsampling module (ADown) improved mAP@0.5 by 2.81%; the
lightweight shared convolution and group normalization detection head (LSGNDH)
improved mAP@0.5 by 5.46%; the progressive lightweight reparameterized feature
integration block (PLRFIB) improved mAP@0.5 by 7.40%; and the efficient local
attention mechanism (ELA) improved mAP@0.5 by 5.56%. The synergistic effect of
the four modules achieved maximum performance improvement.

3. Comparative experiments demonstrated distinct advantages over mainstream
algorithms. Against Transformer-based and ResNet-based architectures, the proposed
method achieved parameter reductions exceeding 90% while maintaining competitive
accuracy. Compared to YOLO variants, mAP@0.5 improvements ranged from 7.35%
to 14.74%, validating the effectiveness of multi-scale feature fusion and attention
mechanisms in detecting small defects within complex wood textures.

4. Cross-dataset generalization experiments verified the algorithm’s robustness. On the
OULU-DET wood defect dataset, mAP@0.5 improved from 86.99% to 95.84%; on the
cross-domain PCB_DATASET, mAP@0.5:0.95 improved from 65.05% to 74.74%;
and on the PVEL-AD photovoltaic defect dataset, mAP@0.5 improved from 73.66%
to 82.45%, demonstrating the algorithm's adaptability across different application
scenarios.
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