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Current carbon footprint tools for the pulp and paper industry focus on 
conventional wood fibers and overlook alternative biomass and soil 
organic carbon (SOC) sequestration. This study developed a software tool 
for market pulp production comparing conventional eucalyptus and 
Northern Bleached Softwood Kraft (NBSK) against alternative non-wood 
fibers (bamboo, switchgrass, sorghum, rice husk, hemp hurd, sugarcane 
bagasse, wheat straw, rice straw, banana fiber, and ryegrass straw). The 
tool models kraft and alkaline peroxide mechanical pulping (APMP), 
integrates ISO 14040-44 standards, and incorporates SOC sequestration 
based on cultivar morphology. While applicable to diverse market pulps, 
tissue production is the primary application. Results identify Brazilian 
Eucalyptus Kraft (BEK) as the most environmentally favorable option. 
Specifically, the kraft process delivers lower carbon footprints (504 to 794 
kg CO2eq/ADt) than APMP (1,015 to 1,320 kg CO2eq/ADt) because lignin 
combustion provides superior energy self-sufficiency. Energy sources 
critically affect APMP, with wheat straw ranging from 643 to 1,715 kg 
CO2eq/ADt (hydropower versus coal), while NBSK varied minimally (631 
to 779 kg CO2eq/ADt). Across the twelve biomasses, high SOC 
stabilization factors reduced carbon footprints by up to 86%, while low 
factors showed less than 1% variation. This tool provides a practical 
platform for industry decision-making and sustainability education.   
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INTRODUCTION 
 

Carbon footprint accounting, the systematic recognition, evaluation, and 

monitoring of greenhouse gas emissions across value chains, has become a critical business 

imperative, yet it remains expensive and complex (Stechemesser and Guenther 2012). 

Companies face costs ranging from $237,000 to $677,000 for comprehensive carbon 

analyses, while grappling with data quality challenges, boundary adjustments, and 

stakeholder coordination barriers (Lee and Inaba 2004; Brock 2022; Saavedra-Rubio et al. 

2022; Zargar et al. 2022). 

Despite these challenges, regulatory mandates are intensifying. California’s climate 
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disclosure laws (SB-253 and SB-261) and the U.S. SEC climate disclosure rule now require 

detailed greenhouse gas reporting, including Scope 3 emissions (Dalton 2024; Naishadham 

2024). Market pressures reinforce this shift, with record participation in the Carbon 

Disclosure Project (CDP) and 86% of S&P 500 firms voluntarily disclosing climate data 

to meet investor demands (Khan 2024). Carbon transparency has evolved from compliance 

requirement to strategic asset, fostering stakeholder trust and competitive advantage in the 

low-carbon economy (Lindell 2025). 

Digital transformation offers a solution pathway, with specialized carbon 

accounting software automating data collection and enabling advanced analytics (Vial 

2019). The global carbon footprint software market is projected to grow from $18.52 

billion in 2024 to $100.84 billion by 2032 at a CAGR of 23.6% (Fortune Business Insights 

2025). However, this growth predominantly serves generic applications, creating 

opportunities for industry-specific solutions. 

Several industry-specific tools have been developed for the pulp and paper industry 

over the past two decades. Early developments include the GHG Calculation Tools for Pulp 

& Paper Mills, developed by the National Council for Air and Stream Improvement 

(NCASI) in 2002, which provide Excel-based models to estimate CO2 emissions from 

fossil fuel combustion, methane, and nitrous oxide from combustion processes, and 

emissions from landfills and wastewater treatment for US and Canadian markets (NCASI 

2005).  The Paper Calculator, launched in 2005 by the Environmental Defense Fund and 

now managed by the Environmental Paper Network, is a web-based tool grounded in Life 

Cycle Assessment (LCA) methodology that enables users to compare environmental 

performance based on fiber source and recycled content. Version 4.0, released in 2018, 

evaluates 14 paper grades according to ISO 14044 standards (Schultz and Suresh 2018). In 

2006, the GHG protocol adopted the NCASI tool for the Mexican pulp and paper industry 

(United States-Mexico Foundation for Science (USMFS/FUMEC) 2006). 

More recent developments include the FisherSolve® 2018 integration of 

sustainability modules with carbon-benchmarking capabilities for global pulp and paper 

mills measuring scope 1, 2, and 3 emissions (FisherSolve® 2025). The World Wildlife 

Fund (WWF) released the Biogenic Carbon Footprint Calculator for Harvested Wood 

Products in 2020, which accounts for dynamic forest carbon gaps and storage benefits 

(Gmünder et al. 2020). NCASI introduced the Footprint Estimator for Forest Products 

(FEFPro™) in 2024, a sector-specific tool enabling pulp and paper companies to estimate 

product carbon footprints using harmonized data and methods tailored to forest-based value 

chains (NCASI 2024). VPK Group’s Product Carbon Footprint Calculator, announced in 

2024, uses the Partnership for Carbon Transparency (PACT) methodology to provide 

cradle-to-gate carbon intensity data aligned with the GHG Protocol and ISO standards 

(“vpk” 2025). 

Despite these advancements, current industry-specific tools predominantly focus 

on conventional wood fibers and overlook alternative biomass feedstocks. This gap is 

particularly significant for the hygiene tissue sector, which is one of the fastest-growing 

paper categories globally, with a compound annual growth rate (CAGR) of 3.3% (Statista 

2026). The tissue industry has emerged as a primary driver for fiber diversification as it 

seeks to mitigate risks related to the long-term supply and pricing of traditional fibers like 

Northern Bleached Softwood Kraft (NBSK) (Urdaneta et al. 2024a, Urdaneta et al. 2025). 

 Recent research has highlighted the viability of chemi-mechanical pulping 

processes, particularly alkaline peroxide mechanical pulping (APMP) and chemi-

thermomechanical pulp (CTMP), for converting agricultural residues such as wheat straw 
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into tissue-grade pulp (Urdaneta et al. 2024a). Furthermore, the utilization of alternative 

fibers such as bamboo, wheat straw, and miscanthus has shown significant potential for 

tissue production, offering a pathway for small-scale, low-investment operations that 

bypass the economic barriers of traditional kraft recovery systems (Urdaneta et al. 2025). 

This shift in processing is fundamentally tied to the physical and chemical characteristics 

of the biomass. For example, while kraft pulping is the industry standard for dense, resinous 

softwoods like pine (NBSK) to handle high lignin content (Smook 2016), agro-industrial 

residues such as rice husk, agricultural residues like wheat straw, and grasses such as 

miscanthus and bamboo present a vastly different morphology (Mansaray and Ghaly 1997; 

Urdaneta et al. 2025). These materials often possess higher silica content, lower bulk 

density, and shorter fibers, making chemi-mechanical processes such as APMP more 

suitable to manage their brittle structure while preserving yield (Urdaneta et al. 2025). 

Beyond APMP and CTMP, recent research has demonstrated the potential of sulfite 

pulping for alternative fibers (Vivas et al. 2024). Moreover, existing tools do not 

incorporate the potential benefits of Soil Organic Carbon (SOC) sequestration, which 

recent studies have identified as significantly contributing to climate mitigation (Forfora et 

al. 2024; Lan et al. 2024). This gap underscores the need for a specialized tool that 

compares conventional and alternative fibers while integrating SOC sequestration 

assessments. 

To address these limitations, this study developed a comprehensive carbon 

footprint software tool to compare the carbon footprint of conventional and alternative 

fibers processed via kraft pulping and APMP from cradle to gate. While the tool is designed 

for the broader market pulp industry, it is uniquely positioned to support the tissue sector’s 

transition toward alternative biomass by providing the necessary carbon transparency for 

these emerging supply chains. The tool evaluates twelve biomass types across five 

categories: tree plantations (eucalyptus), natural forests (northern softwood and bamboo 

natural stands), dedicated crops (switchgrass and sorghum), agro-industrial residues (rice 

husk, hemp hurd, sugarcane bagasse), and agricultural residues (wheat straw, rice straw, 

banana fiber, ryegrass straw). The software incorporates SOC sequestration potential by 

modeling carbon input based on the root-to-shoot ratios of different cultivars and soil 

carbon stabilization factors (Forfora et al. 2024). This work represents the first 

comprehensive software tool to simultaneously evaluate diverse biomass types with 

integrated SOC assessment for pulping applications. 

This article presents the methodology for data acquisition and modeling, the model 

framework and computational modeling, and the software capabilities. The results section 

demonstrates software validation through comparative analysis against published literature 

and explores the impact of electricity sources and SOC sequestration factors on process 

emissions. The findings advance carbon accounting methodologies for the pulp industry 

while supporting the pulp and paper industry with decision-making tools.  

 

 

EXPERIMENTAL 
 

This section outlines the systematic approach employed to develop a 

comprehensive carbon footprint software. The methodology is presented in three 

subsections. The first subsection, data acquisition and modeling, addresses the procedures 

for collecting Life Cycle Inventory (LCI) data and developing the mathematical routines 

that constitute the computational backbone of the tool. The second subsection, the model 
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framework and computational modeling, presents the design and implementation of the 

software architecture, including database integration, modular coding, and user interface 

development. The third subsection, software capabilities, describes the validation of the 

tool and the functionalities that enable scenario analysis, visualization, and recommended 

carbon comparisons. 

 
Data Acquisition and Modeling 

Figure 1 illustrates the comprehensive process of tool development, implementing 

the ISO 14040/14044 LCA framework within an extended modeling framework for carbon 

footprint assessment software development. 

A systematic literature review of agricultural practices was conducted to extract the 

LCI data for biomass production, following the methodology described in previous work 

(Forfora et al. 2024). This process considered 187 literature sources, including peer-

reviewed articles, government reports, and personal communications. From these sources, 

a robust dataset of 122 individual data points was compiled, specifically extracted to satisfy 

the study’s twenty carbon footprint equations (S1-S20) as shown in Table 1. These points 

cover transportation distances, annual productivity, nitrogen application, and market 

prices. To enable linear correlations, a triad of data points representing the minimum, mean, 

and maximum values found in the literature characterized key variables. The review 

encompassed twelve biomass types grouped into five categories: tree plantation 

(eucalyptus), natural forest (northern softwood and bamboo natural stands), dedicated 

crops (sorghum and switchgrass), agro-industrial residues (rice husk, hemp hurd, and 

sugarcane bagasse) and agricultural residues (wheat straw, rice straw, banana fiber, and 

ryegrass straw). Emissions equations were derived from biomass LCI as a function of 

biomass yield, nitrogen application rates, transportation distances, fertilizer types and 

quantities, seed requirements, fuel consumption (Forfora et al. 2024). Table 1 summarizes 

the emission equations by biomass category and the economic and mass allocation factors 

used for each biomass are described in Table S1. 

 

 
Fig. 1. Data acquisition and modeling framework integrating ISO 14040/14044 LCA principles 
with extended modeling for carbon footprint software development 
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Table 1. Emission Equations by Biomass Category 

Biomass 
Category 

Specific Type 
Allocation 

Method 
Co-products 

Equation 
Reference 

Tree plantation Eucalyptus N/A N/A S1 

Natural forest 

Northern 
softwood 

Economic Green lumber, 
saw dust, bark 

S2 

Mass S3 

Bamboo natural 
stands 

N/A N/A S4 

Dedicated crops 
Switchgrass N/A N/A S5 

Sorghum N/A N/A S6 

Agro-industrial 
residues 

Rice husk 
Economic White grain, rice 

bran, rice straw 

S7 

Mass S8 

Hemp hurd 
Economic Hemp bast fiber, 

hemp dust 

S9 

Mass S10 

Sugarcane 
bagasse 

Economic Surplus bagasse, 
molasses, raw 

sugar 

S11 

Mass S12 

Agricultural 
residues 

Wheat straw 
Economic 

Wheat grain 
S13 

Mass S14 

Rice straw 
Economic 

Paddy rice 
S15 

Mass S16 

Banana fiber 
Economic 

Pseudo-stem, fruit 
S17 

Mass S18 

Ryegrass straw 
Economic 

Ryegrass grain 
S19 

Mass S20 

 

The upstream data source required for determining the regression parameters in 

equations S1 to S20 were obtained from the ecoinvent 3.8 database (cut-off) (Wernet et al. 

2016). Mass and energy balances for pulp production were established using Valmet’s 

WinGEMS software (Valmet 1990) through chemical and mechanical process simulations. 

 LCIs were collected for Bleached Eucalyptus Kraft (BEK) (Ortega et al. 2024), 

NBSK, and Bleached Bamboo Kraft (BBK) (Forfora et al. 2025). The APMP process 

regional selection focused on the southeastern United States (Vivas et al. 2024), with the 

LCI collected from previous research (Urdaneta et al. 2024b). Upstream data for fuels, 

electricity, and chemicals for both processes was obtained from the ecoinvent 3.8 database 

(cut-off) (Wernet et al. 2016). 

 The LCA framework was implemented following ISO 14040-44 principles, 

encompassing goal and scope definition with system boundaries from cradle to pulp mill 

gate, LCI compilation from literature and simulations, life cycle impact assessment 

executed using openLCA software (Ciroth 2007) and TRACI methodology (Bare et al. 

2012), and interpretation of results with both mass-based and economic allocation methods 

applied (Finkbeiner et al. 2006). The declared units for analysis were one bone-dry ton 

(BDt) for biomass and one air-dried ton (ADt, 10% moisture) for pulp fiber. 

  The extended modeling framework refers to the inclusion of potential soil organic 

carbon modeling, represented by equations S21 to S23, which was implemented to estimate 

SOC accumulation by incorporating root-to-shoot ratios with assumptions of uniform soil 

properties and constant climatic conditions over a 100-year time horizon (Forfora et al. 

2024). This extended framework enables comprehensive carbon footprint assessment by 

incorporating carbon sequestration potential alongside emission calculations, providing a 

more complete picture of the environmental impacts associated with different biomass 

sources for pulp production. 
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 Finally, the tool development involves the integration of computational models and 

software implementation. The carbon footprint calculation for pulp production 

incorporates biomass production emissions, processing energy and material requirements, 

transportation impacts, and soil organic carbon sequestration potential. The graphical user 

interface (GUI) was developed using Visual Basic .NET, targeting the .NET Framework 

4.7.2 (Microsoft 2018) and Visual Studio 2022 (Microsoft 2022), providing an integrated 

environment for front-end and back-end coding. The .NET Framework was selected due 

to its robust performance, ease of integration with Windows-based systems, and extensive 

library support, which streamlined the development process and facilitated efficient 

coupling of the computational models with the user interface (Microsoft 2018). The GUI 

was designed to facilitate user interaction with the models by providing an intuitive 

platform for data input and visualization of results.  

 

Model Framework and Computational Implementation 
The computational framework was developed using a structured sequential process 

to ensure the rigorous integration of the literature-derived data points and the underlying 

ISO 14040/14044 LCA principles. This approach, illustrated in Fig. 2, progressed through 

five primary stages: analysis, design, implementation, testing, and maintenance (Royce 

1987). 

The analysis phase established the model’s core requirements, detailing the purpose 

and scope of the twenty emission equations (S1 to S20) and soil organic carbon models 

(S21 to S23). During the subsequent design phase, the software architecture was 

established, algorithms were developed, and the database schema was designed to manage 

the complexity of twelve biomass types and multiple allocation methods (Bassil 2012). In 

the implementation phase, these specifications were transformed into a working executable 

program, utilizing modular programming to handle diverse computational requirements 

(Bassil 2012).  

 

 
 

Fig. 2. Sequential framework for model development and computational implementation (Bassil 
2012) 
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The implementation resulted in a comprehensive computational tool incorporating 

complex repetition structures and algorithmic optimizations to handle the diverse 

requirements of carbon footprint assessment. The software architecture employed modular 

design principles to manage the complexity of twelve biomass types and extensive 

mathematical computations. The codebase utilized object-oriented programming to 

efficiently process the emission equations while maintaining the flexibility required for 

various pulping processes. 

 The testing phase, which incorporated verification and validation processes, 

ensured that the software met the specified requirements and functioned as intended 

(Geraci 1991). Finally, the maintenance phase involved iterative modifications to improve 

accuracy and enhance algorithmic performance (Stellman and Greene 2005).  

Over three years, the framework underwent 91 iterations of algorithmic refinement 

before reaching its current validated state. These refinements focused primarily on 

optimizing the carbon footprint calculation algorithms and enhancing data integration to 

accommodate the diverse biomass LCI data. 

 Key challenges included integrating diverse data sources from the ecoinvent 

database and literature review, optimizing the accuracy and efficiency of carbon 

accounting algorithms for the twenty emission equations and three soil organic carbon 

models, and designing a user-friendly GUI that could effectively visualize results across 

multiple allocation methods. Continuous feedback from domain experts and stakeholders 

spurred repeated refinements to both the computational models and the software interface, 

ultimately ensuring the reliability and effectiveness of the tool. This iterative development 

process was instrumental in refining the carbon footprint software and ensuring its capacity 

to perform accurate assessments while maintaining the scientific rigor of the underlying 

ISO 14040/14044 LCA framework and extended modeling components. 

 

Software Capabilities 
Figure 3 illustrates the modular capabilities of the carbon footprint software, 

demonstrating how the ISO 14040/14044 LCA framework is extended through SOC 

sequestration modeling. The software comprises six interconnected modules that enable 

comprehensive comparison of carbon footprint assessments.  

Module 1 evaluates the carbon footprint of biomass production across the twelve-

biomass types, while Module 2 extends this analysis by incorporating the potential for SOC 

sequestration to provide a net carbon footprint assessment. Module 3 focuses on the carbon 

footprint of the APMP pulping process, while Module 4 integrates SOC sequestration 

potential into the APMP process evaluation. Module 5 assesses the carbon footprint of the 

kraft pulping process, and Module 6 combines this evaluation with SOC sequestration 

effects. This modular design allows users to compare conventional LCA results (Modules 

1, 3, 5) with extended assessments that account for carbon sequestration benefits (Modules 

2, 4, 6), providing a more comprehensive understanding of the environmental impacts 

across different biomass sources and pulping technologies.  

The software incorporates comprehensive input parameters for biomass cultivation, 

organized by feedstock category. Average input parameters for tree plantations and natural 

forests are detailed in Table S2. Dedicated crops and agro-industrial residues parameters 

are presented in Table S3, while agricultural residues are specified in Table S4. The 

software displays specific system boundaries for each feedstock type, with eucalyptus 

plantations provided as an illustrative example in Fig. S1. 
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Fig. 3. Modular modeling framework showing ISO 14040/14044 LCA framework integration with 
extended SOC sequestration modeling capabilities. Arrows indicate recommended comparisons 
between standard and SOC-inclusive approaches. 

 

The APMP process configuration is detailed in Table S5, showing average inputs 

with corresponding ecoinvent unit processes described in Table S6. The APMP process 

system boundary is represented in Fig. S2. Input parameters for APMP encompass 

production capacity, process yield, power boiler fuel selection, electricity sources, and 

chemical requirements, facilitating comprehensive comparisons between conventional and 

alternative fiber processes. 

For kraft pulping processes applied to tree plantations and natural forests, LCIs are 

presented in Table S7, with corresponding ecoinvent unit processes described in Table S8. 

Each kraft process has its own system boundary description, exemplified by the eucalyptus 

processing boundary illustrated in Fig. S3. Input parameters for kraft pulping include 

production capacity, process yield, fuels used in power boilers and lime kilns, electricity 

sources, and chemical requirements for makeup, bleaching, and chlorine dioxide 

generation. 

The extended modeling framework incorporates morphological properties of 

cultivars and soil carbon stabilization factors, with input values specified in Table S9. This 

integration enables the software to account for long-term carbon sequestration effects 

alongside traditional LCA assessments. 

The software provides flexible energy configuration options to accommodate 

diverse operational scenarios. Users can evaluate multiple fuel options by selecting from 

wood waste, coal, fuel oil, and natural gas for various process requirements. The software 

supports comprehensive electricity selection, enabling users to choose from electricity 

sources across various regions in the USA and Brazil, as well as average electricity profiles 

from China, Portugal, Canada, Chile, and Uruguay, as detailed in Table S10. Additionally, 

users can distinguish between renewable sources (hydro, wind, nuclear, and solar) and non-

renewable sources (coal), allowing for detailed assessment of energy source impacts on 

carbon footprint calculations. 
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Through the integration of data acquisition, mathematical modeling, and 

comprehensive software development, the carbon footprint tool can evaluate diverse 

scenarios and perform detailed comparisons of conventional and alternative fibers 

produced via kraft pulping and APMP processes. The software enables assessments both 

with and without SOC sequestration effects, providing flexibility for different analytical 

approaches. The tool facilitates extensive sensitivity analyses on process parameters and 

SOC scenarios, allowing users to understand the impact of variable inputs on carbon 

footprint outcomes. 

The software’s user-friendly interface provides intuitive access to all analytical 

capabilities while maintaining the scientific rigor of the underlying computational models. 

For comprehensive guidance on user engagement with the carbon footprint software, 

readers are encouraged to refer to Fig. S4, which demonstrates the software's interface and 

operational workflow. 

 

 

RESULTS AND DISCUSSION 
 

The results are presented in two subsections. First, the software is validated by 

comparing calculated GWP values for kraft pulping of eucalyptus plantations in Brazil and 

natural forests (Northern softwood in Canada and natural bamboo stands in China) against 

published literature benchmarks. Second, scenario analyses examine how electricity 

sources (renewable vs. non-renewable) influence the carbon footprint of mechanical and 

chemical pulping processes. The study also evaluates how different soil-carbon 

stabilization factors affect the carbon footprint of these processes. 

 

 
Fig. 4. Validation results of kraft pulping process per ADt of market pulp in the carbon footprint 
software using economic allocation 
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Software Validation 
The validation results presented in Fig. 4 confirm the accuracy of the carbon 

footprint software for carbon footprint assessments. The close alignment between software 

calculated GWP values and published literature benchmarks across all three fiber types 

(bamboo, northern softwood and eucalyptus) demonstrates the tool's capability to 

accurately model complex pulping processes.  

The software successfully captured the relative contributions of individual impact 

categories, with fuel direct emissions consistently representing the dominant component 

(approximately 38% to 44% of total GWP), followed by chemicals (24% to 42%), biomass 

(7% to 20%), and electricity (3% to 25%), mirroring the patterns reported in peer-reviewed 

studies. The consistent performance across geographically diverse operations, from 

eucalyptus plantations in Brazil to northern softwood forests in Canada and bamboo stands 

in China, validates the software’s robustness in handling varying regional conditions, 

energy sources, and raw material characteristics. 

The validation results have significant implications for industrial decision-making 

and policy development in the pulp and paper sector. The software's capability to model 

diverse feedstocks and processing conditions addresses a critical gap in current carbon 

accounting methodologies, where most existing tools focus on conventional wood-based 

feedstocks. This comprehensive approach enables pulp producers to make evidence-based 

decisions about feedstock diversification strategies, particularly relevant as the industry 

faces increasing pressure to adopt alternative fiber sources to reduce environmental impacts 

and enhance supply chain resilience. 

 
Scenario Exploration on Processes Energy Consumption and Soil Organic 
Carbon Sequestration Potential  

Figure 5 presents the sensitivity analysis of electricity sources for APMP wheat 

straw and kraft pulping processes (BBK and NBSK). The results reveal that APMP pulps 

are highly sensitive to electricity source, demonstrating substantially greater variability in 

carbon impact compared to kraft processes. 

Figure 5 illustrates significant differences between hydropower and coal-based 

electricity scenarios across different pulp production methods. When hydropower is used, 

BBK demonstrates the lowest carbon footprint at 597 kg CO₂eq/ADt, followed by NBSK 

at 631 kg CO₂eq/ADt, and APMP wheat straw at 643 kg CO₂eq/ADt. Under coal-based 

electricity scenarios, the carbon footprints increase substantially to 779 kg CO₂eq/ADt for 

NBSK, 1,070 kg CO₂eq/ADt for BBK, and 1,715 kg CO₂eq/ADt for APMP wheat straw. 

The differences between these two energy scenarios reveal markedly different sensitivities: 

APMP wheat straw exhibits the most pronounced sensitivity with a range of 1,072 kg 

CO₂eq/ADt, BBK shows a moderate difference of 473 kg CO₂eq/ADt, while NBSK 

exhibits the smallest variation at 148 kg CO₂eq/ADt. This substantial variation in APMP 

wheat straw underscores the critical role of electricity sourcing in APMP operations, where 

the carbon footprint increases by 167% when switching from hydropower to coal-based 

electricity. In contrast, NBSK’s carbon footprint increases by only 23% under the same 

transition, demonstrating how energy source dramatically affects the environmental profile 

of different pulping processes.  

The reduced sensitivity of kraft pulping processes stems from their energy self-

sufficiency through black liquor combustion, which provides substantial internal energy 

generation and reduces dependence on external electricity sources. This inherent 

characteristic of kraft mills buffers them against variations in external electricity sources, 
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whereas APMP processes, which rely heavily on mechanical refining and external 

electricity, experience dramatic shifts in their environmental performance based on the 

energy mix. 

 

 
Fig. 5. Carbon footprint sensitivity to electricity source for pulping processes. Blue bars show 
impact from hydropower; gray bars show impact from coal-based electricity. Red diamonds mark 
average GWP for each pulp type. Numbers indicate total global warming potential (kg 
CO2eq/ADt) for each scenario 
 

The positioning of each process relative to its average carbon footprint baseline 

(marked by red diamonds) further emphasizes these energy-related impacts. Under 

hydropower scenarios, both APMP and kraft processes achieve carbon footprints below 

their respective coal-scenario values. The magnitude of this reduction, however, varies 

dramatically—APMP processes show large reductions from their baseline, while kraft 

processes remain relatively stable. Under coal-based electricity scenarios, APMP processes 

shift dramatically above their average baseline, whereas kraft processes show more modest 

increases, demonstrating their lower sensitivity to electricity supply source. 

These sensitivity patterns are independent of the allocation method employed, as 

allocation approaches scale absolute values proportionally without altering the relative 

differences between energy scenarios. This ensures that the observed sensitivity rankings 

and process comparisons remain robust regardless of whether economic or mass allocation 

is applied. For a detailed breakdown of the scenario exploration for each process, see Table 

S11.  

Figure 6 presents the scenario exploration for SOC stabilization factors on the 

carbon footprint for both kraft pulping and APMP processes across the twelve biomasses 

studied. The results reveal distinct sensitivity patterns among different biomass categories, 

with dedicated crops and woody biomasses demonstrating substantially higher sensitivity 

to SOC stabilization factors compared to agricultural and agro-industrial residues. 

Figure 6 illustrates significant differences between 5% and 25% SOC stabilization 

scenarios across different biomass types. Under the 25% SOC stabilization scenario (green 
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bars), BEK (Brazil) demonstrates the lowest carbon footprint at 74 kg CO₂eq/ADt, 

followed by NBSK at 213 kg CO₂eq/ADt, BBK at 387 kg CO₂eq/ADt, and APMP 

switchgrass at 539 kg CO₂eq/ADt. Agricultural and agro-industrial residues show higher 

values, ranging from 815 kg CO₂eq/ADt for APMP bamboo to 1,124 kg CO₂eq/ADt for 

APMP sugarcane bagasse. Under the 5% SOC stabilization scenario (orange bars), the 

carbon footprints increase to 404 kg CO₂eq/ADt for BEK, 525 kg CO₂eq/ADt for NBSK, 

685 kg CO₂eq/ADt for BBK, and 1,005 kg CO₂eq/ADt for APMP switchgrass, while 

agricultural residues range from 975 kg CO₂eq/ADt for APMP bamboo to 1,212 kg 

CO₂eq/ADt for APMP banana fiber.  

 

 
 

Fig. 6. Carbon footprint sensitivity to SOC stabilization factors for pulping processes across 
twelve biomass types. Green bars: 25% SOC factor; orange bars: 5% SOC factor; red diamonds: 
baseline at 15% SOC factor. Values indicate total GWP (kg CO₂eq/ADt) using economic 
allocation. 

 

The differences between these two SOC scenarios reveal markedly different 

sensitivities across biomass types. APMP switchgrass exhibits the most pronounced 

sensitivity with a difference of 466 kg CO₂eq/ADt (from 539 to 1,005 kg CO₂eq/ADt), 

representing an 86% increase when moving from high to low SOC stabilization. BEK 

shows a difference of 330 kg CO₂eq/ADt (446% increase), NBSK demonstrates 312 kg 

CO₂eq/ADt (147% increase), and BBK exhibits 298 kg CO₂eq/ADt (77% increase). In 

contrast, agricultural and agro-industrial residues show minimal sensitivity: APMP rice 
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husk exhibits the smallest variation at only 3 kg CO₂eq/ADt (0.3% increase), APMP rice 

straw shows 13 kg CO₂eq/ADt (1% increase), and APMP sugarcane bagasse demonstrates 

28 kg CO₂eq/ADt (2% increase). This remarkable contrast underscores the critical 

importance of soil carbon sequestration potential in dedicated energy crops and woody 

biomass production compared to agro-industrial and agricultural residues. 

The high sensitivity patterns in dedicated crops and woody biomasses reflect the 

significant root biomass and soil carbon input potential associated with perennial woody 

species, which typically exhibit higher root-to-shoot ratios and longer growing cycles 

compared to annual crops. The reduced sensitivity of agricultural and agro-industrial 

residues stems from the fact that these materials are byproducts of agricultural systems 

where the primary crop has already been harvested, and the residues themselves contribute 

minimally to additional soil organic carbon accumulation. 

The positioning of each biomass relative to its average carbon footprint baseline 

(marked by red diamonds) further emphasizes the soil carbon sequestration impacts. Under 

high SOC stabilization scenarios (25%), dedicated crops and woody biomasses achieve 

carbon footprints substantially below their baseline values, demonstrating significant 

climate benefits through soil carbon sequestration. Under low SOC stabilization scenarios 

(5%), these same biomasses shift above their baseline values, while agricultural residues 

remain relatively stable near their baseline regardless of the SOC factor applied. 

These findings have significant implications for biomass selection in pulp 

production. Dedicated crops such as switchgrass and woody biomasses such as eucalyptus 

may offer substantial climate benefits when high soil carbon stabilization is achieved but 

could show less favorable performance under conservative stabilization assumptions. 

Conversely, agricultural residues provide more predictable and stable carbon footprints 

regardless of soil carbon uncertainties. The pronounced sensitivity of woody biomasses 

and dedicated crops to SOC factors highlights the importance of site-specific soil carbon 

measurements and long-term monitoring programs to accurately quantify the carbon 

footprint benefits of these feedstocks in pulp production systems. 

These sensitivity patterns are independent of the allocation method employed, as 

allocation approaches scale absolute values proportionally without altering the relative 

differences between SOC stabilization scenarios. This ensures that the observed sensitivity 

rankings and biomass comparisons remain robust regardless of whether economic or mass 

allocation is applied. For a detailed breakdown of the scenario exploration for each process, 

see Table S12. 

The favorable carbon footprint outcomes for BEK (Brazil) and NBSK (Canada), as 

illustrated in Fig. 6, are primarily driven by biomass-to-pulp conversion efficiency and mill 

energy self-sufficiency. BEK mills typically demonstrate a higher degree of power self-

sufficiency compared to NBSK operations. By generating a larger share of their energy 

from biomass-derived black liquor, these mills significantly reduce their reliance on 

external fossil-fuel-intensive energy.   

The outcomes identified in this study are indeed sensitive to the methodology used 

for biogenic carbon accounting. Following the ISO 14040-44, a biogenic neutrality 

assumption was applied, treating the CO2 absorbed during biomass growth as equivalent 

to the CO2 released during combustion or decomposition within the same rotation. This 

approach distinguishes biogenic carbon from fossil-fuel-emitted carbon, which represents 

a net addition of carbon to the active atmosphere.  

Regarding the temporal and ecological assumptions underlying carbon accounting, 

this study follows the standard attributional LCA approach (ISO 14040-44), which assumes 
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a steady-state biogenic carbon cycle. However, the future ability of the environment to 

assimilate CO2 may not mirror recent historical patterns. Factors such as increased 

frequency of forest disturbances, and the potential saturation of terrestrial carbon sinks 

introduce a level of non-stationarity into future climate scenarios (Hubau et al. 2020; Seidl 

et al. 2017). Nevertheless, even if the net-neutrality of biogenic carbon were to be re-

evaluated in future frameworks, the relative performance of the fiber sources analyzed here 

would likely persist. The fundamental drivers of a low carbon footprint—specifically high 

biomass-to-pulp conversion efficiency and high mill energy self-sufficiency—are 

engineering parameters that minimize fossil fuel dependence. These factors remain the 

primary levers for decarbonization in the pulp and paper industry, regardless of the 

evolving capacity of the global carbon sink. 

The scenario explorations presented in Figs. 5 and 6 demonstrate the robust 

capability of the carbon footprint software to capture and quantify the impact of key 

process variables and the intrinsic characteristics of the twelve-biomass types considered. 

The software successfully demonstrates its capability to simultaneously assess 12 different 

biomass types across multiple pulping processes (APMP and kraft), maintain 

methodological consistency across economic and mass allocation methods, generate 

quantitative benchmarks for carbon footprint variability in pulp production systems, and 

handle complex interactions between feedstock characteristics and process requirements. 

These findings validate the tool’s ability to generate scientifically robust carbon 

footprint estimates when evaluating conventional and alternative fibers in pulp production. 

The validated software tool provides the pulp industry with comprehensive capabilities to 

assess alternative fiber strategies while maintaining scientific rigor in carbon accounting 

methodologies. 

Future developments will involve incorporation of additional pulping processes 

such as CTMP (Chemi-Thermo-Mechanical Pulping) and sulfite processes to provide more 

comprehensive process coverage across all major industrial pulping technologies. After 

completing the remaining processes, Techno-Economic Analysis (TEA) capabilities will 

be included to enable simultaneous evaluation of environmental and economic 

performance metrics, allowing users to optimize both sustainability and profitability in 

their decision-making processes. Finally, an intelligent Chatbot interface will be developed 

to incorporate product-performance data from the SAFI consortium to provide real-time 

decision support and enhanced user accessibility specifically for tissue products 

applications. 

 

 

CONCLUSIONS 
 

1. Validation against published literature benchmarks for kraft pulping of eucalyptus, 

northern softwood, and bamboo confirmed the software’s accuracy. 

2. The validated software addresses a critical gap in current carbon accounting 

methodologies by enabling simultaneous assessment of twelve biomass types across 

economic and mass allocation methods while maintaining methodological consistency. 

3. The carbon footprint software reduces the time and cost of environmental assessments 

compared to traditional methods. 

4. Alkaline peroxide mechanical pulp (APMP) processes demonstrated high sensitivity to 

electricity sources, with wheat straw showing a difference of 1,072 kg CO2eq/ADt 
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between hydropower and coal-based scenarios. 

5. Renewable energy adoption for mechanical pulping operations is strongly 

recommended based on these findings. 

6. Kraft pulping processes exhibited greater power self-sufficiency through black liquor 

combustion, with variations ranging from only 148 to 473 kg CO2eq/ADt for northern 

bleached softwood kraft (NBSK) and bleached bamboo kraft (BBK) respectively.  

7. Dedicated crops and woody biomasses, particularly switchgrass and eucalyptus, 

showed substantial sensitivity to soil organic carbon (SOC) factors, with potential 

swings exceeding 466 kg CO2eq/ADt between stabilization scenarios. 

8. The software capabilities empower the pulp industry to make evidence-based decisions 

about alternative fiber strategies, particularly relevant as environmental pressures and 

supply chain resilience concerns drive feedstock diversification. 
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APPENDIX 
 

The emissions of eucalyptus plantations in kg CO2eq/BDt are estimated by Eq. S1, 

 

𝐸 =
3297.3+10.193∗𝑋

𝑌∗0.47
∗ 1.12 + 3.0571 + (2.44 ∗

𝐷

13.2
)                                                  (S1) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg N/ha), 𝑌 is yield 

(m3/ha), and 𝐷 is transportation distance (km). 

The emissions of northern softwood managed forest in kg CO2eq/BDt are estimated 

using Eq. S2 considering economic allocation, 

 

𝐸 = ((
1095

𝑌
+ 18.5) ∗ 3.053 + 75.88) ∗

𝑃𝑟𝑐

𝑃𝑟𝑐+(𝑃𝑔𝑙∗1.61)
+ (2.44 ∗

𝐷

13.2
)                     (S2) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑌 is yield (m3/ha), 𝑃𝑟𝑐 is price residual chips 

($/BDt), 𝑃𝑔𝑙 is price green lumber ($/BDt), and 𝐷 is transportation distance (km). 

The emissions of northern softwood managed forest in kg CO2eq/BDt are estimated 

using Eq. S3 considering mass allocation, 

 

𝐸 = ((
1095

𝑌
+ 18.5) ∗ 3.053 + 75.88) ∗

1

1+1.61
+ (2.44 ∗

𝐷

13.2
)                                 (S3) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑌 is yield (m3/ha), and 𝐷 is transportation distance 

(km). 

The emissions of natural bamboo forest in kg CO2eq/BDt are estimated using Eq. 

S4, 

 

𝐸 =
(8.36+1.28∗𝑌)∗0.479

𝑌∗(1−0.15)
+ 17.11 + (2.07 ∗

𝐷

15
)                                                              (S4) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑌 is yield (ton/ha/yr), and 𝐷 is transportation distance 

(km). 

The emissions of switchgrass plantations in kg CO2eq/BDt are estimated using Eq. 

S5, 

 

𝐸 =
(2087.3+10∗10.199∗𝑋)

𝑌∗(1−0.184)∗10
+ 6.75 + (2.07 ∗

𝐷

15
)                                                             (S5) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg N/ha/yr), 𝑌 is yield 

(ton/ha/yr), and 𝐷 is transportation distance (km).  

The emissions of sorghum plantations in kg CO2eq/BDt are estimated using Eq. S6, 

 

𝐸 =
(375.89+10.187∗𝑋)

𝑌∗(1−0.16)
+ 6.47 + (2.07 ∗

𝐷

15.5
)                                                                (S6) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg N/ha/yr), 𝑌 is yield 

(ton/ha/yr), and 𝐷 is transportation distance (km). 

The emissions of rice husk in kg CO2eq/BDt are estimated using Eq. S7 considering 
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economic allocation, 

 

𝐸 =

(

 
 
 

(

  
 

(

 
 
(
6.4939∗𝑋+1018.4+27.124∗𝑅𝑆𝐼𝐹∗(1−0.08)−0.0084+((160∗1.586∗((1+0.29∗𝑅𝑆𝑅∗(1−0.08))

0.59
))∗25)

𝑌∗(1−0.2)
) ∗

(
𝑃𝑅𝐺∗𝑌

𝑃𝑅𝐺∗𝑌+𝑃𝑅𝑆∗𝑅𝑆𝑅
)

)

 
 
+ 5.72

)

  
 
∗ 5 + 356.2

)

 
 
 
∗ ((𝑃𝑅𝐻 ∗

0.2

(𝑃𝑅𝐻∗0.2)+(𝑃𝑊𝐺∗0.7)+(𝑃𝑅𝐵∗0.1)
)) + 3.28 + (2.07 ∗

𝐷

10.3
)                                                   (S7) 

  

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha), 𝑅𝑆𝐼𝐹 is rice straw 

incorporated in field (ton/ha), 𝑅𝑆𝑅 is rice straw removed (ton/ha), 𝑌 is rough grain yield 

(ton/ha), 𝑃𝑅𝐺 is price rough grain ($/ton), 𝑃𝑅𝑆 is price rice straw ($/ton), 𝑃𝑅𝐻 is price 

rice husk ($/ton), 𝑃𝑊𝐺 is price wheat grain ($/ton), 𝑃𝑅𝐵 is price rice bran ($/ton), and 𝐷 

is transportation distance (km). 

The emissions of rice husk in kg CO2eq/BDt are estimated using Eq. S8 considering 

mass allocation, 

 

𝐸 =

(

  
 

(

 
 
((

6.4939∗𝑋+1018.4+27.124∗𝑅𝑆𝐼𝐹∗(1−0.08)−0.0084+((160∗1.586∗((1+0.29∗𝑅𝑆𝑅∗(1−0.08))
0.59

))∗25)

𝑌∗(1−0.2)
) ∗

(
𝑌∗(1−0.2)

𝑌∗(1−0.2)+𝑅𝑆𝑅∗(1−0.08)
)) + 5.72

)

 
 
∗ 5 + 356.2

)

  
 
∗ (0.2) + 3.28 + (2.07 ∗

𝐷

10.3
)       (S8) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha), 𝑅𝑆𝐼𝐹 is rice straw 

incorporated in field (ton/ha), 𝑅𝑆𝑅 is rice straw removed (ton/ha), 𝑌 is rough grain yield 

(ton/ha), and 𝐷 is transportation distance (km). 

The emissions of hemp hurd in kg CO2eq/BDt are estimated using Eq. S9 

considering economic allocation, 

 

𝐸 = ((
11.459∗𝑋+548.78

𝑌∗(1−0.13)
) ∗ 1.66 + 97.89) ∗ (0.6 ∗

𝑃𝐻𝐻

0.3∗𝑃𝐻𝐵+0.6∗𝑃𝐻𝐻
) + 4.46 + (2.07 ∗

𝐷

12
)                    (S9) 

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑌 is hemp fiber yield (ton/ha/yr), 𝑃𝐻𝐻 is price 

hemp hurd ($/ton), 𝑃𝐻𝐵 is price hemp bast ($/ton), and 𝐷 is transportation distance (km).  

The emissions of hemp hurd in kg CO2eq/BDt are estimated using Eq. S10 

considering mass allocation, 
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𝐸 = ((
11.459∗𝑋+548.78

𝑌∗(1−0.13)
) ∗ 1.66 + 97.89) ∗ 0.667 + 4.46 + (2.07 ∗

𝐷

12
)                       (S10)               

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑌 is hemp fiber yield (ton/ha/yr), and 𝐷 is 

transportation distance (km). 

The emissions of sugarcane bagasse in kg CO2eq/BDt are estimated using Eq. S11 

considering economic allocation, 

 

𝐸 = ((
10.177∗𝑋+2686.3

𝑌∗(1−0.7)
+ 13.12) ∗ 14.12 + 45.17) ∗ (

𝑃𝑆𝐵

𝑃𝑆𝐵+5.42∗𝑃𝑅𝑆+2.06∗𝑃𝑀
) ∗ 1.44 + 38.3 + 11 + (2.07 ∗

𝐷

6.2
)                                                                                                                                    (S11) 

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑌 is sugarcane yield (ton/ha/yr), 𝑃𝑆𝐵 is price 

surplus bagasse ($/BDt), 𝑃𝑅𝑆 is price raw sugar ($/ton), 𝑃𝑀 is price molasses ($/ton), and 

𝐷 is transportation distance (km). 

The emissions of sugarcane bagasse in kg CO2eq/BDt are estimated using Eq. S12 

considering mass allocation, 

 

𝐸 = ((
10.177∗𝑋+2686.3

𝑌∗(1−0.7)
+ 13.12) ∗ 14.12 + 45.17) ∗ (

1

1+5.42+2.06
) ∗ 1.44 + 38.3 + 11 +

 (2.07 ∗
𝐷

6.2
)                                                                                                                   (S12)               

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑌 is sugarcane yield (ton/ha/yr), and 𝐷 is 

transportation distance (km). 

The emissions of wheat straw in kg CO2eq/BDt are estimated using Eq. S13 

considering economic allocation, 

 

𝐸 = (
(10.285∗𝑋+389.56)+(78.502∗(𝑊𝑆𝑅∗(1−0.098))+0.0638)

𝑊𝑆𝑅∗(1−0.098)
) ∗ (

𝑊𝑆𝑅∗𝑃𝑆

𝑊𝑆𝑅∗𝑃𝑆+𝑌∗𝑃𝑊𝐺
) + 5.18 +

 (2.07 ∗
𝐷

10.6
)               (S13)                                                                                                                

 

where 𝑋 is nitrogen application (kg/ha), 𝑊𝑆𝑅 is wheat straw removed (ton/ha), 𝑃𝑆 is price 

straw ($/BDt), 𝑌 is wheat grain yield (ton/ha), 𝑃𝑊𝐺 is price wheat grain ($/ton), and 𝐷 is 

transportation distance (km). 

The emissions of wheat straw in kg CO2eq/BDt are estimated using Eq. S14 

considering mass allocation, 

 

𝐸 =  (
(10.285∗𝑋+389.56)+(78.502∗(𝑊𝑆𝑅∗(1−0.098))+0.0638)

𝑊𝑆𝑅∗(1−0.098)
) ∗ (

𝑊𝑆𝑅∗(1−0.098)

𝑊𝑆𝑅∗(1−0.098)+𝑌∗(1−0.15)
) + 5.18 + (2.07 ∗

𝐷

10.6
)                                                                                                                                 (S14)                                                                                                                            

 

where 𝑋 is nitrogen application (kg/ha), 𝑊𝑆𝑅 is wheat straw removed (ton/ha), 𝑌 is wheat 

grain yield (ton/ha), and 𝐷 is transportation distance (km). 

The emissions of rice straw in kg CO2eq/BDt are estimated using Eq. S15 

considering economic allocation, 
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𝐸 = (
(6.4939∗𝑋+1018.4)+((160∗1.586∗((1+0.29∗𝑅𝑆𝐼𝐹∗(1−0.08))

0.59
))∗25)+(27.124∗𝑅𝑆𝑅∗(1−0.08)−0.0084)

𝑅𝑆𝑅∗(1−0.08)
) ∗

((
𝑅𝑆𝑅 ∗ 𝑃𝑅𝑆

𝑅𝑆𝑅∗𝑃𝑅𝑆+𝑌∗𝑃𝑅𝐺
)) + 5.98 + (2.07 ∗

𝐷

10.3
)                                             (S15) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha), 𝑅𝑆𝐼𝐹 is rice straw 

incorporated in field (ton/ha), 𝑅𝑆𝑅 is rice straw removed (ton/ha), 𝑌 is rough grain yield 

(ton/ha), 𝑃𝑅𝐺 is price rough grain ($/ton), 𝑃𝑅𝑆 is price rice straw ($/ton), 𝑃𝑅𝐻 is price 

rice husk ($/ton), 𝑃𝑊𝐺 is price wheat grain ($/ton), 𝑃𝑅𝐵 is price rice bran ($/ton), and 𝐷 

is transportation distance (km). 

The emissions of rice straw in kg CO2eq/BDt are estimated using Eq. S16 

considering mass allocation, 

 

𝐸 = (
(6.4939∗𝑋+1018.4)+((160∗1.586∗((1+0.29∗𝑅𝑆𝐼𝐹∗(1−0.08))

0.59
))∗25)+(27.124∗𝑅𝑆𝑅∗(1−0.08)−0.0084)

𝑅𝑆𝑅∗(1−0.08)
) ∗

((
𝑅𝑆𝑅∗(1−0.08)

𝑅𝑆𝑅∗(1−0.08)+𝑌∗(1−0.2)
)) + 5.98 + (2.07 ∗

𝐷

10.3
)                                                                     (S16) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha), 𝑅𝑆𝐼𝐹 is rice straw 

incorporated in field (ton/ha), 𝑅𝑆𝑅 is rice straw removed (ton/ha), 𝑌 is rough grain yield 

(ton/ha), and 𝐷 is transportation distance (km). 

The emissions of banana fiber in kg CO2eq/BDt are estimated using Eq. S17 

considering economic allocation, 

 

𝐸 =  (
10.199∗𝑋+2892.3

𝐹𝑃∗(1−0.1)
) ∗ (

𝐹𝑃∗𝑃𝐵𝐹

𝑃𝐵𝐹∗𝐹𝑃+𝐹𝑟𝑃∗𝑃𝐹𝑟
) + 6.12 +  0.1717 ∗ 1.11 ∗ 𝐷                   (S17) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha/yr), 𝐹𝑃 is fiber 

production (ton/ha/yr), 𝑃𝐵𝐹 is price banana fiber ($/ton), 𝐹𝑟𝑃 is fruit production 

(ton/ha/yr), 𝑃𝐹𝑟 is price fruit ($/ton), and 𝐷 is transportation distance (km). 

The emissions of banana fiber in kg CO2eq/BDt are estimated using Eq. S18 

considering mass allocation, 

 

𝐸 =  (
10.199∗𝑋+2892.3

𝐹𝑃∗(1−0.1)
) ∗ (

𝐹𝑃∗(1−0.1)

𝐹𝑃∗(1−0.1)+𝐹𝑟𝑃∗(1−0.7366)
) + 6.12 +  0.1717 ∗ 1.11 ∗ 𝐷             (S18) 

 

where 𝐸 is emission (kg CO2eq/BDt), 𝑋 is nitrogen application (kg/ha/yr), 𝐹𝑃 is fiber 

production (ton/ha/yr), 𝐹𝑟𝑃 is fruit production (ton/ha/yr), and 𝐷 is transportation distance 

(km). 

The emissions of ryegrass straw in kg CO2eq/BDt are estimated using Eq. S19 

considering economic allocation, 

 

𝐸 = (
12.683∗𝑋+307.24

𝑅𝑆𝑅∗(1−0.13)
) ∗ (

𝑃𝑅𝑆∗𝑅𝑆𝑅

𝑃𝑅𝑆∗𝑅𝑆𝑅+𝑃𝐺∗𝑌
) + 6.25 +  2.07 ∗

𝐷

15.6
                  (S19) 

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑅𝑆𝑅 is ryegrass straw removed (ton/ha/yr), 
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𝑃𝑅𝑆 is price ryegrass straw ($/ton), 𝑌 is ryegrass grain yield (ton/ha/yr), 𝑃𝐺 is price grain 

($/ton), and 𝐷 is transportation distance (km). 

The emissions of ryegrass straw in kg CO2eq/BDt are estimated using Eq. S20 

considering mass allocation, 

 

𝐸 = (
12.683∗𝑋+307.24

𝑅𝑆𝑅∗(1−0.13)
) ∗ (

𝑅𝑆𝑅∗(1−0.13)

𝑅𝑆𝑅∗(1−0.13)+𝑌∗(1−0.425)
) + 6.25 +  2.07 ∗

𝐷

15.6
                             (S20) 

 

where 𝑋 is nitrogen application (kg/ha/yr), 𝑅𝑆𝑅 is ryegrass straw removed (ton/ha/yr), 𝑌 

is ryegrass grain yield (ton/ha/yr), and 𝐷 Transportation distance (km). 

The SOC sequestration potential was included for each biomass, considering the 

morphological properties of each cultivar, following the methodology developed by 

(Forfora et al. 2024), which is described in equations S21 to S23, as follows, 

 

𝐶𝑅_𝑃𝑃 = 𝐴𝐺𝐵 ∗ 𝑅𝑆𝑅 ∗ 𝑋𝐶 ∗ 𝑋𝑃𝑃                                                                                                                                            (S21) 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑖𝑛𝑝𝑢𝑡 = ∑ 𝐶𝑖𝑛𝑝𝑢𝑡𝑖 =
𝑛
1 ∑ 𝐶𝑅𝑃𝑃𝑖 ∗ 𝑆𝑅𝑖 + 𝐶𝐸𝑃𝑃𝑖

∗ 𝑆𝐸𝑖
𝑛
1                                         (S22)                                              

𝐶𝑖𝑛𝑝𝑢𝑡 = 
𝑇𝑜𝑡𝑎𝑙 𝐶𝑖𝑛𝑝𝑢𝑡

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
                                                                                                 (S23)                                                

 

where 𝐶𝑅_𝑃𝑃 is carbon in coarse roots (ton C/ha), 𝐴𝐺𝐵 is aboveground biomass (ton C/ha), 

𝑅𝑆𝑅 is root-to-shoot ratio (dimensionless), 𝑋𝐶 is carbon mass fraction (dimensionless), 𝑋𝑝𝑝 

is allocation factor (dimensionless), 𝑇𝑜𝑡𝑎𝑙 𝐶𝑖𝑛𝑝𝑢𝑡 is total carbon input to soil (ton C/ha), 𝑛 

is rotation time, 𝑖 is iteration index, 𝑆𝑅𝑖 is fraction of the coarse roots that are returned to 

the soil=1 (dimensionless), 𝐶𝐸𝑝𝑝𝑖 is carbon associated with rhizodeposition of extra roots = 

0.65*𝐶𝑅_𝑃𝑃 (ton C/ha), 𝑆𝐸𝑖 is fraction of the extra roots that are returned to the soil=1 

(dimensionless), and 𝐶𝑖𝑛𝑝𝑢𝑡 is total carbon input normalized by year (ton C/ha.yr). 

 

Table S1. Economic and Mass Allocation Factors of Biomass Used 

Biomass Economic allocation factor Mass allocation factor 

Eucalyptus - - 

Northern softwood 0.18 0.38 

Bamboo - - 

Switchgrass - - 

Sorghum - - 

Rice husk 0.02 0.72 

Hemp hurd 0.23 0.68 

Sugarcane bagasse 0.04 0.19 

Wheat straw 0.13 0.43 

Rice straw 0.07 0.33 

Banana fiber 0.38 0.47 

Ryegrass straw 0.14 0.82 
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Table S2. Inputs to the Carbon Footprint Software to Produce one BDt of Biomass 
from Tree Plantations (Eucalyptus) (Ortega et al. 2024) and Natural Forests 
(Northern Softwood and Natural Bamboo Stands) (Forfora et al. 2025) 

Functional Unit: 1 BDt of biomass 
 Unit Eucalyptus Northern softwood Bamboo 

Inputs 

Nitrogen 
application  

kg/ha 70.6 0 0 

Yield  m3/ha 256.2 335 0 

Yield  ton/ha/yr 0 0 4.8 

Price Residual 
Chips  

$/BDt 0 118 0 

Price Green 
Lumber  

$/BDt 0 325 0 

Transportation 
distance  

km 61.2 100 65 

Outputs 

Biomass BDt 1 1 1 
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Table S3. Inputs to the Carbon Accounting Software to Produce one BDt of 
Biomass from Dedicated Crops (Switchgrass, Sorghum) and Agro-industrial 
Residues (Rice Husk, Hemp Hurd, and Sugarcane Bagasse) (Forfora et al. 2024) 

Functional Unit: 1 BDt of biomass 
 Unit Switchgrass Sorghum  Rice Hemp Sugarcane 

Inputs 

Nitrogen 
application 

kg/ha/yr 69.5 140.5 207 92.8 196.4 

Yield  ton/ha/yr 11.9 15.9 0 11.9 76.4 

Rice straw 
removed  

ton/ha 0 0 3.85 0 0 

Rice straw 
incorporated 
into the field 

ton/ha 0 0 3.85 0 0 

Rough grain 
yield 

ton/ha 0 0 9 0 0 

Price rough 
grain 

$/ton 0 0 308 0 0 

Price rice 
straw 

$/ton 0 0 54.7 0 0 

Price rice 
husk 

$/ton 0 0 7 0 0 

Price white 
grain 

$/ton 0 0 616 0 0 

Price rice bran $/ton 0 0 191 0 0 

Price hemp 
bast 

$/ton 0 0 0 1,190 0 

Price hemp 
hurd 

$/ton 0 0 0 168 0 

Price raw 
sugar 

$/ton 0 0 0 0 352 

Price 
molasses 

$/ton 0 0 0 0 220 

Price surplus 
bagasse 

$/BDt 0 0 0 0 44 

Transportation 
distance 

km 75 50 40 120 20 

Outputs 

Biomass BDt 1 1 1 1 1 
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Table S4. Inputs to the Carbon Accounting Software to Produce one BDt of 
Biomass from Agricultural Residues (Wheat Straw, Rice Straw, Banana Fiber, 
and Ryegrass Straw) (Forfora et al. 2024) 

Functional Unit: 1 BDt of biomass 
 Unit Wheat  Rice   Banana  Ryegrass 

Inputs 

Nitrogen 
application 

kg/ha/yr 86.4 207 358.8 86.9 

Grain yield ton/ha/yr 4.76 0 0 1.91 

Wheat straw 
removed  

ton/ha 3.27 0 0 0 

Percentage 
straw removed 

% 50 0 0 0 

Price wheat 
grain 

$/ton 256.7 0 0 0 

Price straw $/ton 52.8 0 0 0 

Rice straw 
removed  

ton/ha 0 3.85 0 0 

Rice straw 
incorporated into 

the field 
ton/ha 0 3.85 0 0 

Rough grain 
yield 

ton/ha 0 9 0 0 

Price rough 
grain 

$/ton 0 308 0 0 

Price rice straw $/ton 0 54.7 0 0 

Fiber production ton/ha/yr 0 0 14.9 0 

Fruit production ton/ha/yr 0 0 60 0 

Price banana 
fiber 

$/ton 0 0 1,000 0 

Price fruit $/ton 0 0 420 0 

Ryegrass straw 
removed 

ton/ha/yr 0 0 0 4.94 

Percentage of 
straw removed 

% 0 0 0 50 

Price grain $/ton 0 0 0 694.4 

Price ryegrass 
straw 

$/ton 0 0 0 35.7 

Transportation 
distance 

km 120 64.3 40 195 

Outputs 

Biomass BDt 1 1 1 1 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518.  2510 

 
Fig. S1. System boundary for biomass cultivation (Forfora et al. 2024) 

 

Table S5. LCI of Inputs to Produce one ADt of Market Pulp from Natural Forest 
(Bamboo), Dedicated Crops (Switchgrass and Sorghum), Agro-industrial 
Residues (Rice Husk, Hemp Hurd, and Sugarcane Bagasse), and Agricultural 
Residues (Wheat Straw, Rice Straw, Banana Fiber, and Ryegrass Straw) using 
the APMP Process (Urdaneta et al. 2024b) 

Functional Unit: 1 ADt of market pulp (sold at 90% consistency) 

Process: APMP 

 Unit/
ADt 

Wheat 
straw 

Hemp 
hurd 

Switchgrass Sorghum Bamboo Other 

Inputs 

Process 
yield 

% 75.3 79.8 75.5 71.6 75.9 75 

NaOH  kg 70.2 70.2 70.2 70.2 70.2 70.2 

H2O2 kg 70.2 70.2 70.2 70.2 70.2 70.2 

DTPA kg 5.8 5.8 5.8 5.8 5.8 5.8 

Natural gas m3 142 142 142 142 142 142 

Purchased 
electricity 

kWh 875 875 875 875 875 875 

Outputs 

Pulp fiber ADt 1 1 1 1 1 1 

Other: Rice straw, rice husk, sugarcane bagasse, banana fiber, ryegrass straw 
DTPA: Diethylene-triaminepentaacetic acid  
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Table S6. Ecoinvent Unit Processes Selected for Each Inputs to Produce One 
ADt of Market Pulp from Natural Forest (Bamboo), Dedicated Crops (Switchgrass 
and Sorghum), Agro-industrial Residues (rice husk, hemp hurd, and sugarcane 
bagasse), and Agricultural Residues (Wheat Straw, Rice Straw, Banana Fiber, 
and Ryegrass Straw) using the APMP Process (Urdaneta et al. 2024b) 

Ecoinvent unit process APMP (USA) 

NaOH 

Market for sodium hydroxide, without water, in 
50% solution state | sodium hydroxide, 

without water, in 50% solution state | Cutoff, U 
– Global 

H2O2 

Market for hydrogen peroxide, without water, 
in 50% solution state | hydrogen peroxide, 

without water, in 50% solution state | Cutoff, U 
– RoW 

DTPA 

Market for DTPA, 
diethylenetriaminepentaacetic acid | DTPA, 

diethylenetriaminepentaacetic acid | Cutoff, U 
– RoW 

Natural gas 
Market for natural gas, high pressure | natural 

gas, high pressure | Cutoff, U - US 

Purchased electricity 
Electricity, high voltage, production mix | 

electricity, high voltage | Cutoff, U – SERC 

 

 
Fig. S2. System boundary for APMP process (Urdaneta et al. 2024b) 
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Table S7. LCI of Inputs to Produce one ADt of Market Pulp from Tree Plantations 
(Eucalyptus) (Ortega et al. 2024) and Natural Forests (Northern Softwood and 
Bamboo) using a Kraft Pulping Process (Forfora et al. 2025) 

Functional Unit: 1 ADt of market pulp (sold at 90% consistency) 
 Unit/ADt BEK (Brazil) NBSK (Canada) BBK (China) 

Inputs 

Biomass kg 2,120 2,400 2,440 

Woodwaste kg 155 73.6 0 

NaOH  kg 20.25 40.2 26.8 

Na2SO4 kg 0 0.8 2 

H2O2 kg 6.40 1.9 1.8 

CaO kg 14.5 18.7 18.1 

NaClO3 kg 15.8 38.2 21 

Cl2 kg 1.16 0 0 

CH3OH kg 1.65 3.7 2.2 

O2 kg 30.7 24.6 35.8 

H2SO4 kg 10.2 28 15.3 

MgSO4 kg 1.63 1.9 1.9 

Natural gas m3 32.7 96.1 22.6 

Biogas m3 4.45 0 0 

Fuel oil 
number 6 

kg 21.4 3.6 21.1 

Fuel oil 
number 2 

kg 2.28 0 0 

Coal kg 23.7 5.92 0 

Purchased 
electricity 

kWh 0 122.5 386.6 

Outputs 

Pulp fiber ADt 1 1 1 

BEK: Bleached Eucalyptus Kraft, NBSK: Northern Bleached Softwood Kraft, BBK: Bleached 
Bamboo Kraft 
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Table S8. Ecoinvent Unit Processes Selected for Each Process of Inputs to 
Produce One ADt of Market Pulp from Tree Plantations Eucalyptus) (Ortega et 
al. 2024) and Natural Forests (Northern Softwood and Bamboo) using a Kraft 
Pulping Process (Forfora et al. 2025) 

Ecoinvent 
unit process 

BEK (Brazil) NBSK (Canada) BBK (China) 

NaOH  

Market for sodium 
hydroxide, without water, in 
50% solution state | sodium 
hydroxide, without water, in 
50% solution state | Cutoff, 

U - Global 

Market for sodium 
hydroxide, without 

water, in 50% 
solution state | 

sodium hydroxide, 
without water, in 50% 
solution state | Cutoff, 

U - Global 

Market for sodium 
hydroxide, without 

water, in 50% 
solution state | 

sodium hydroxide, 
without water, in 50% 
solution state | Cutoff, 

U - GLO 

Na2SO4 - 

Market for sodium 
sulfate, anhydrite | 

sodium sulfate, 
anhydrite | Cutoff, U - 

RoW 

Market for sodium 
sulfate, anhydrite | 

sodium sulfate, 
anhydrite | Cutoff, U - 

RoW 

H2O2 

Market for hydrogen 
peroxide, without water, in 

50% solution state | 
hydrogen peroxide, without 

water, in 50% solution state | 
Cutoff, U - RoW 

Market for hydrogen 
peroxide, without 

water, in 50% 
solution state | 

hydrogen peroxide, 
without water, in 50% 
solution state | Cutoff, 

U - RoW 

Market for hydrogen 
peroxide, without 

water, in 50% 
solution state | 

hydrogen peroxide, 
without water, in 50% 
solution state | Cutoff, 

U - RoW 

CaO 
Market for quicklime, milled, 
packed | quicklime, milled, 
packed | Cutoff, U - RoW 

Market for quicklime, 
milled, packed | 

quicklime, milled, 
packed | Cutoff, U - 

RoW 

Market for quicklime, 
milled, packed | 

quicklime, milled, 
packed | Cutoff, U - 

RoW 

NaClO3 
Market for sodium chlorate, 
powder | sodium chlorate, 
powder | Cutoff, U - RoW 

Market for sodium 
chlorate, powder | 
sodium chlorate, 

powder | Cutoff, U - 
RoW 

Market for sodium 
chlorate, powder | 
sodium chlorate, 

powder | Cutoff, U - 
RoW 

Cl2 
Market for chlorine, gaseous 
| chlorine, gaseous | Cutoff, 

U - RoW 
- - 

CH3OH 
Market for methanol | 

methanol | Cutoff, U - Global 

Market for methanol | 
methanol | Cutoff, U - 

GLO 

Market for methanol | 
methanol | Cutoff, U - 

GLO 

O2 
Market for oxygen, liquid | 
oxygen, liquid | Cutoff, U - 

RoW 

Market for oxygen, 
liquid | oxygen, liquid 

| Cutoff, U - RoW 

Market for oxygen, 
liquid | oxygen, liquid 

| Cutoff, U - RoW 

H2SO4 
Market for sulfuric acid | 
sulfuric acid | Cutoff, U - 

RoW 

Market for sulfuric 
acid | sulfuric acid | 

Cutoff, U - RoW 

Market for sulfuric 
acid | sulfuric acid | 

Cutoff, U - RoW 

MgSO4 
Market for magnesium 

sulfate | magnesium sulfate | 
Cutoff, U - Global 

Market for 
magnesium sulfate | 
magnesium sulfate | 

Cutoff, U - Global 

Market for 
magnesium sulfate | 
magnesium sulfate | 

Cutoff, U - Global 

Natural gas 
Market for natural gas, high 
pressure | natural gas, high 
pressure | Cutoff, U - RoW 

Market group for 
natural gas, high 
pressure | natural 

Market for natural 
gas, high pressure | 

natural gas, high 
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gas, high pressure | 
Cutoff, U - CA 

pressure | Cutoff, U - 
RoW 

Biogas 
Treatment of biowaste by 

anaerobic digestion | biogas 
| Cutoff, U - RoW 

- - 

Fuel oil 
number 6 

Market for heavy fuel oil | 
heavy fuel oil | Cutoff, U - 

RoW 

Market for heavy fuel 
oil | heavy fuel oil | 

Cutoff, U - RoW 

Market for heavy fuel 
oil | heavy fuel oil | 

Cutoff, U - RoW 

Fuel oil 
number 2 

Market for heavy fuel oil | 
heavy fuel oil | Cutoff, U - 

RoW 
- - 

Coal 
Market for hard coal | hard 

coal | Cutoff, U - RoW 

Market for hard coal | 
hard coal | Cutoff, U - 

RoW 

Market for hard coal | 
hard coal | Cutoff, U - 

CN 

Purchased 
electricity 

- 

64.2 kWh electricity, 
high voltage, 

production mix | 
electricity, high 

voltage | Cutoff, U - 
CA-BC 4.8 kWh  
electricity, high 

voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 
CA-NB 22.6 kWh 
electricity, high 

voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 

CA-ON 
16 kWh  

electricity, high 
voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 
CA-AB 14.9 kWh 
electricity, high 

voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 

CA-QC 

207.4 kWh 
electricity, high 

voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 

CN-SC 
55 kWh  

electricity, high 
voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 

CN-CQ 
 124.2 kWh 

 electricity, high 
voltage, production 
mix | electricity, high 
voltage | Cutoff, U - 

CN-GZ 
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Fig. S3. System boundary for eucalyptus kraft pulping process (Ortega et al. 2024) 

 

Table S9. Average Root-to-Shoot Ratios of Biomasses and Soil Carbon 
Stabilization Factor (Forfora et al. 2024) 

Biomass Root-to-shoot ratio 
Soil carbon stabilization 
factor over 100 years (%) 

Eucalyptus 0.21  
 
 
 
 
 
 

15 
 
 
 
 
 

Northern softwood 0.32 

Bamboo natural forest 0.46 

Switchgrass 1.5 

Sorghum 0.353 

Rice husk 0.14 

Hemp hurd 0.18 

Sugarcane bagasse 0.16 

Wheat straw 0.21 

Rice straw 0.14 

Banana fiber 0.11 

Ryegrass straw 0.322 
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Table S10. Energy Regions Considered in the Carbon Footprint Software 
(Ortega et al. 2024; Urdaneta et al. 2024b; Forfora et al. 2025)  

Country Grid region 

USA 

WECC 

MRO 

RF 

TEXAS RE 

NPCC 

SERC 

Brazil 

Northern 

North-eastern 

Mid-eastern 

South-eastern 

Southern 

Chile Country average 

China Country average 

Portugal Country average 

Uruguay Country average 

Canada Country average 
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Table S11. Scenario Exploration of Carbon Footprint for Kraft Pulping and APMP 
Processes Under Different Electricity Sources Using Economic Allocation 
 

Process 
Carbon footprint impact 

from hydropower 
(kg CO2eq/ADt) 

Carbon footprint impact 
from coal energy 
(kg CO2eq/ADt) 

NBSK -19 129 

BBK -197 276 

APMP -449 623 

 

Table S12. Scenario Exploration of the Carbon Footprint for Kraft Pulping and 
APMP Processes under Different Soil Carbon Stabilization Factors Using 
Economic Allocation 
 

Biomass category 
(process type) 

Biomass 

5% soil carbon 
stabilization 

factor 
(kg CO2eq/ADt) 

25% soil carbon 
stabilization 

factor 
(kg CO2eq/ADt) 

Agro-industrial residue 
(APMP) 

Rice husk 2 -1 

Agricultural residue 
(APMP) 

Rice straw 7 -6 

Agro-industrial residue 
(APMP) 

Sugarcane bagasse 14 -14 

Hemp hurd 20 -20 

Agricultural residue 
(APMP) 

Ryegrass straw 30 -30 

Wheat straw 30 -31 

Banana fiber 47 -46 

Natural forest 
(APMP) 

Bamboo 80 -80 

Dedicated crop (APMP) Sorghum 141 -141 

Natural forest 
(Kraft pulping) 

Bamboo 149 -149 

Northern softwood 156 -156 

Tree plantation 
(Kraft pulping) 

Eucalyptus 165 -165 

Dedicated crop (APMP) Switchgrass 233 -233 

 

 

 

 


