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Carbon Footprint Software for Market Pulp: Kraft and
APMP Processes across Twelve Biomass Types with
Soil Carbon Sequestration
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Current carbon footprint tools for the pulp and paper industry focus on
conventional wood fibers and overlook alternative biomass and soil
organic carbon (SOC) sequestration. This study developed a software tool
for market pulp production comparing conventional eucalyptus and
Northern Bleached Softwood Kraft (NBSK) against alternative non-wood
fibers (bamboo, switchgrass, sorghum, rice husk, hemp hurd, sugarcane
bagasse, wheat straw, rice straw, banana fiber, and ryegrass straw). The
tool models kraft and alkaline peroxide mechanical pulping (APMP),
integrates 1ISO 14040-44 standards, and incorporates SOC sequestration
based on cultivar morphology. While applicable to diverse market pulps,
tissue production is the primary application. Results identify Brazilian
Eucalyptus Kraft (BEK) as the most environmentally favorable option.
Specifically, the kraft process delivers lower carbon footprints (504 to 794
kg CO2eq/ADt) than APMP (1,015 to 1,320 kg CO2eq/ADt) because lignin
combustion provides superior energy self-sufficiency. Energy sources
critically affect APMP, with wheat straw ranging from 643 to 1,715 kg
CO2eq/ADt (hydropower versus coal), while NBSK varied minimally (631
to 779 kg CO2eq/ADt). Across the twelve biomasses, high SOC
stabilization factors reduced carbon footprints by up to 86%, while low
factors showed less than 1% variation. This tool provides a practical
platform for industry decision-making and sustainability education.
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INTRODUCTION

Carbon footprint accounting, the systematic recognition, evaluation, and
monitoring of greenhouse gas emissions across value chains, has become a critical business
imperative, yet it remains expensive and complex (Stechemesser and Guenther 2012).
Companies face costs ranging from $237,000 to $677,000 for comprehensive carbon
analyses, while grappling with data quality challenges, boundary adjustments, and
stakeholder coordination barriers (Lee and Inaba 2004; Brock 2022; Saavedra-Rubio et al.
2022; Zargar et al. 2022).

Despite these challenges, regulatory mandates are intensifying. California’s climate
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disclosure laws (SB-253 and SB-261) and the U.S. SEC climate disclosure rule now require
detailed greenhouse gas reporting, including Scope 3 emissions (Dalton 2024; Naishadham
2024). Market pressures reinforce this shift, with record participation in the Carbon
Disclosure Project (CDP) and 86% of S&P 500 firms voluntarily disclosing climate data
to meet investor demands (Khan 2024). Carbon transparency has evolved from compliance
requirement to strategic asset, fostering stakeholder trust and competitive advantage in the
low-carbon economy (Lindell 2025).

Digital transformation offers a solution pathway, with specialized carbon
accounting software automating data collection and enabling advanced analytics (Vial
2019). The global carbon footprint software market is projected to grow from $18.52
billion in 2024 to $100.84 billion by 2032 at a CAGR of 23.6% (Fortune Business Insights
2025). However, this growth predominantly serves generic applications, creating
opportunities for industry-specific solutions.

Several industry-specific tools have been developed for the pulp and paper industry
over the past two decades. Early developments include the GHG Calculation Tools for Pulp
& Paper Mills, developed by the National Council for Air and Stream Improvement
(NCASI) in 2002, which provide Excel-based models to estimate CO2 emissions from
fossil fuel combustion, methane, and nitrous oxide from combustion processes, and
emissions from landfills and wastewater treatment for US and Canadian markets (NCASI
2005). The Paper Calculator, launched in 2005 by the Environmental Defense Fund and
now managed by the Environmental Paper Network, is a web-based tool grounded in Life
Cycle Assessment (LCA) methodology that enables users to compare environmental
performance based on fiber source and recycled content. Version 4.0, released in 2018,
evaluates 14 paper grades according to ISO 14044 standards (Schultz and Suresh 2018). In
2006, the GHG protocol adopted the NCASI tool for the Mexican pulp and paper industry
(United States-Mexico Foundation for Science (USMFS/FUMEC) 2006).

More recent developments include the FisherSolve® 2018 integration of
sustainability modules with carbon-benchmarking capabilities for global pulp and paper
mills measuring scope 1, 2, and 3 emissions (FisherSolve® 2025). The World Wildlife
Fund (WWEF) released the Biogenic Carbon Footprint Calculator for Harvested Wood
Products in 2020, which accounts for dynamic forest carbon gaps and storage benefits
(Gmiinder et al. 2020). NCASI introduced the Footprint Estimator for Forest Products
(FEFPro™) in 2024, a sector-specific tool enabling pulp and paper companies to estimate
product carbon footprints using harmonized data and methods tailored to forest-based value
chains (NCASI 2024). VPK Group’s Product Carbon Footprint Calculator, announced in
2024, uses the Partnership for Carbon Transparency (PACT) methodology to provide
cradle-to-gate carbon intensity data aligned with the GHG Protocol and ISO standards
(“vpk” 2025).

Despite these advancements, current industry-specific tools predominantly focus
on conventional wood fibers and overlook alternative biomass feedstocks. This gap is
particularly significant for the hygiene tissue sector, which is one of the fastest-growing
paper categories globally, with a compound annual growth rate (CAGR) of 3.3% (Statista
2026). The tissue industry has emerged as a primary driver for fiber diversification as it
seeks to mitigate risks related to the long-term supply and pricing of traditional fibers like
Northern Bleached Softwood Kraft (NBSK) (Urdaneta ef al. 2024a, Urdaneta et al. 2025).

Recent research has highlighted the viability of chemi-mechanical pulping
processes, particularly alkaline peroxide mechanical pulping (APMP) and chemi-
thermomechanical pulp (CTMP), for converting agricultural residues such as wheat straw
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into tissue-grade pulp (Urdaneta et al. 2024a). Furthermore, the utilization of alternative
fibers such as bamboo, wheat straw, and miscanthus has shown significant potential for
tissue production, offering a pathway for small-scale, low-investment operations that
bypass the economic barriers of traditional kraft recovery systems (Urdaneta et al. 2025).
This shift in processing is fundamentally tied to the physical and chemical characteristics
of the biomass. For example, while kraft pulping is the industry standard for dense, resinous
softwoods like pine (NBSK) to handle high lignin content (Smook 2016), agro-industrial
residues such as rice husk, agricultural residues like wheat straw, and grasses such as
miscanthus and bamboo present a vastly different morphology (Mansaray and Ghaly 1997;
Urdaneta et al. 2025). These materials often possess higher silica content, lower bulk
density, and shorter fibers, making chemi-mechanical processes such as APMP more
suitable to manage their brittle structure while preserving yield (Urdaneta et al. 2025).
Beyond APMP and CTMP, recent research has demonstrated the potential of sulfite
pulping for alternative fibers (Vivas et al. 2024). Moreover, existing tools do not
incorporate the potential benefits of Soil Organic Carbon (SOC) sequestration, which
recent studies have identified as significantly contributing to climate mitigation (Forfora et
al. 2024; Lan et al. 2024). This gap underscores the need for a specialized tool that
compares conventional and alternative fibers while integrating SOC sequestration
assessments.

To address these limitations, this study developed a comprehensive carbon
footprint software tool to compare the carbon footprint of conventional and alternative
fibers processed via kraft pulping and APMP from cradle to gate. While the tool is designed
for the broader market pulp industry, it is uniquely positioned to support the tissue sector’s
transition toward alternative biomass by providing the necessary carbon transparency for
these emerging supply chains. The tool evaluates twelve biomass types across five
categories: tree plantations (eucalyptus), natural forests (northern softwood and bamboo
natural stands), dedicated crops (switchgrass and sorghum), agro-industrial residues (rice
husk, hemp hurd, sugarcane bagasse), and agricultural residues (wheat straw, rice straw,
banana fiber, ryegrass straw). The software incorporates SOC sequestration potential by
modeling carbon input based on the root-to-shoot ratios of different cultivars and soil
carbon stabilization factors (Forfora et al. 2024). This work represents the first
comprehensive software tool to simultaneously evaluate diverse biomass types with
integrated SOC assessment for pulping applications.

This article presents the methodology for data acquisition and modeling, the model
framework and computational modeling, and the software capabilities. The results section
demonstrates software validation through comparative analysis against published literature
and explores the impact of electricity sources and SOC sequestration factors on process
emissions. The findings advance carbon accounting methodologies for the pulp industry
while supporting the pulp and paper industry with decision-making tools.

EXPERIMENTAL

This section outlines the systematic approach employed to develop a
comprehensive carbon footprint software. The methodology is presented in three
subsections. The first subsection, data acquisition and modeling, addresses the procedures
for collecting Life Cycle Inventory (LCI) data and developing the mathematical routines
that constitute the computational backbone of the tool. The second subsection, the model
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framework and computational modeling, presents the design and implementation of the
software architecture, including database integration, modular coding, and user interface
development. The third subsection, software capabilities, describes the validation of the
tool and the functionalities that enable scenario analysis, visualization, and recommended
carbon comparisons.

Data Acquisition and Modeling

Figure 1 illustrates the comprehensive process of tool development, implementing
the ISO 14040/14044 LCA framework within an extended modeling framework for carbon
footprint assessment software development.

A systematic literature review of agricultural practices was conducted to extract the
LCI data for biomass production, following the methodology described in previous work
(Forfora et al. 2024). This process considered 187 literature sources, including peer-
reviewed articles, government reports, and personal communications. From these sources,
arobust dataset of 122 individual data points was compiled, specifically extracted to satisfy
the study’s twenty carbon footprint equations (S1-S20) as shown in Table 1. These points
cover transportation distances, annual productivity, nitrogen application, and market
prices. To enable linear correlations, a triad of data points representing the minimum, mean,
and maximum values found in the literature characterized key variables. The review
encompassed twelve biomass types grouped into five categories: tree plantation
(eucalyptus), natural forest (northern softwood and bamboo natural stands), dedicated
crops (sorghum and switchgrass), agro-industrial residues (rice husk, hemp hurd, and
sugarcane bagasse) and agricultural residues (wheat straw, rice straw, banana fiber, and
ryegrass straw). Emissions equations were derived from biomass LCI as a function of
biomass yield, nitrogen application rates, transportation distances, fertilizer types and
quantities, seed requirements, fuel consumption (Forfora et al. 2024). Table 1 summarizes
the emission equations by biomass category and the economic and mass allocation factors
used for each biomass are described in Table S1.
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Fig. 1. Data acquisition and modeling framework integrating ISO 14040/14044 LCA principles
with extended modeling for carbon footprint software development
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Table 1. Emission Equations by Biomass Category

Biomass i Allocation Equation
Category Specific Type Method Co-products Reference
Tree plantation Eucalyptus N/A N/A S1
Northern Economic Green lumber, S2
softwood Mass saw dust, bark S3
Natural forest Bamboo natural
u N/A N/A S4
stands
Dedicated crops Switchgrass N/A N/A S5
P Sorghum N/A N/A S6
Rice husk Economic White grain, rice S7
Mass bran, rice straw S8
. . Economic Hemp bast fiber, S9
Agro-mdustrlal Hemp hurd Mass hemp dust 510
residues -
s Economic Surplus bagasse, S11
ugarcane
bagasse Mass molasses, raw S12
sugar
Economic . S13
Wheat straw Mass Wheat grain 314
. Economic . S15
Agricultural Rice straw Mass Paddy rice S16
residues Banana fiber Economic Pseudo-stem, fruit S17
Mass S18
Ryegrass straw Economic Ryegrass grain S19
yeg Mass yegrass 9 S20

The upstream data source required for determining the regression parameters in
equations S1 to S20 were obtained from the ecoinvent 3.8 database (cut-off) (Wernet et al.
2016). Mass and energy balances for pulp production were established using Valmet’s
WinGEMS software (Valmet 1990) through chemical and mechanical process simulations.

LClIs were collected for Bleached Eucalyptus Kraft (BEK) (Ortega et al. 2024),
NBSK, and Bleached Bamboo Kraft (BBK) (Forfora et al. 2025). The APMP process
regional selection focused on the southeastern United States (Vivas et al. 2024), with the
LCI collected from previous research (Urdaneta et al. 2024b). Upstream data for fuels,
electricity, and chemicals for both processes was obtained from the ecoinvent 3.8 database
(cut-off) (Wernet et al. 2016).

The LCA framework was implemented following ISO 14040-44 principles,
encompassing goal and scope definition with system boundaries from cradle to pulp mill
gate, LCI compilation from literature and simulations, life cycle impact assessment
executed using openLCA software (Ciroth 2007) and TRACI methodology (Bare et al.
2012), and interpretation of results with both mass-based and economic allocation methods
applied (Finkbeiner et al. 2006). The declared units for analysis were one bone-dry ton
(BDt) for biomass and one air-dried ton (ADt, 10% moisture) for pulp fiber.

The extended modeling framework refers to the inclusion of potential soil organic
carbon modeling, represented by equations S21 to S23, which was implemented to estimate
SOC accumulation by incorporating root-to-shoot ratios with assumptions of uniform soil
properties and constant climatic conditions over a 100-year time horizon (Forfora et al.
2024). This extended framework enables comprehensive carbon footprint assessment by
incorporating carbon sequestration potential alongside emission calculations, providing a
more complete picture of the environmental impacts associated with different biomass
sources for pulp production.
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Finally, the tool development involves the integration of computational models and
software implementation. The carbon footprint calculation for pulp production
incorporates biomass production emissions, processing energy and material requirements,
transportation impacts, and soil organic carbon sequestration potential. The graphical user
interface (GUI) was developed using Visual Basic .NET, targeting the NET Framework
4.7.2 (Microsoft 2018) and Visual Studio 2022 (Microsoft 2022), providing an integrated
environment for front-end and back-end coding. The .NET Framework was selected due
to its robust performance, ease of integration with Windows-based systems, and extensive
library support, which streamlined the development process and facilitated efficient
coupling of the computational models with the user interface (Microsoft 2018). The GUI
was designed to facilitate user interaction with the models by providing an intuitive
platform for data input and visualization of results.

Model Framework and Computational Implementation

The computational framework was developed using a structured sequential process
to ensure the rigorous integration of the literature-derived data points and the underlying
ISO 14040/14044 LCA principles. This approach, illustrated in Fig. 2, progressed through
five primary stages: analysis, design, implementation, testing, and maintenance (Royce
1987).

The analysis phase established the model’s core requirements, detailing the purpose
and scope of the twenty emission equations (S1 to S20) and soil organic carbon models
(S21 to S23). During the subsequent design phase, the software architecture was
established, algorithms were developed, and the database schema was designed to manage
the complexity of twelve biomass types and multiple allocation methods (Bassil 2012). In
the implementation phase, these specifications were transformed into a working executable
program, utilizing modular programming to handle diverse computational requirements
(Bassil 2012).

[ Analysis ]7
4[ Design ]7
{ Implementation ]7

L 3

Testin F—
L s

]

Maintenance ]

Fig. 2. Sequential framework for model development and computational implementation (Bassil
2012)
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The implementation resulted in a comprehensive computational tool incorporating
complex repetition structures and algorithmic optimizations to handle the diverse
requirements of carbon footprint assessment. The software architecture employed modular
design principles to manage the complexity of twelve biomass types and extensive
mathematical computations. The codebase utilized object-oriented programming to
efficiently process the emission equations while maintaining the flexibility required for
various pulping processes.

The testing phase, which incorporated verification and validation processes,
ensured that the software met the specified requirements and functioned as intended
(Geraci 1991). Finally, the maintenance phase involved iterative modifications to improve
accuracy and enhance algorithmic performance (Stellman and Greene 2005).

Over three years, the framework underwent 91 iterations of algorithmic refinement
before reaching its current validated state. These refinements focused primarily on
optimizing the carbon footprint calculation algorithms and enhancing data integration to
accommodate the diverse biomass LCI data.

Key challenges included integrating diverse data sources from the ecoinvent
database and literature review, optimizing the accuracy and efficiency of carbon
accounting algorithms for the twenty emission equations and three soil organic carbon
models, and designing a user-friendly GUI that could effectively visualize results across
multiple allocation methods. Continuous feedback from domain experts and stakeholders
spurred repeated refinements to both the computational models and the software interface,
ultimately ensuring the reliability and effectiveness of the tool. This iterative development
process was instrumental in refining the carbon footprint software and ensuring its capacity
to perform accurate assessments while maintaining the scientific rigor of the underlying
ISO 14040/14044 LCA framework and extended modeling components.

Software Capabilities

Figure 3 illustrates the modular capabilities of the carbon footprint software,
demonstrating how the ISO 14040/14044 LCA framework is extended through SOC
sequestration modeling. The software comprises six interconnected modules that enable
comprehensive comparison of carbon footprint assessments.

Module 1 evaluates the carbon footprint of biomass production across the twelve-
biomass types, while Module 2 extends this analysis by incorporating the potential for SOC
sequestration to provide a net carbon footprint assessment. Module 3 focuses on the carbon
footprint of the APMP pulping process, while Module 4 integrates SOC sequestration
potential into the APMP process evaluation. Module 5 assesses the carbon footprint of the
kraft pulping process, and Module 6 combines this evaluation with SOC sequestration
effects. This modular design allows users to compare conventional LCA results (Modules
1, 3, 5) with extended assessments that account for carbon sequestration benefits (Modules
2, 4, 6), providing a more comprehensive understanding of the environmental impacts
across different biomass sources and pulping technologies.

The software incorporates comprehensive input parameters for biomass cultivation,
organized by feedstock category. Average input parameters for tree plantations and natural
forests are detailed in Table S2. Dedicated crops and agro-industrial residues parameters
are presented in Table S3, while agricultural residues are specified in Table S4. The
software displays specific system boundaries for each feedstock type, with eucalyptus
plantations provided as an illustrative example in Fig. S1.
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Fig. 3. Modular modeling framework showing ISO 14040/14044 LCA framework integration with
extended SOC sequestration modeling capabilities. Arrows indicate recommended comparisons
between standard and SOC-inclusive approaches.

The APMP process configuration is detailed in Table S5, showing average inputs
with corresponding ecoinvent unit processes described in Table S6. The APMP process
system boundary is represented in Fig. S2. Input parameters for APMP encompass
production capacity, process yield, power boiler fuel selection, electricity sources, and
chemical requirements, facilitating comprehensive comparisons between conventional and
alternative fiber processes.

For kraft pulping processes applied to tree plantations and natural forests, LClIs are
presented in Table S7, with corresponding ecoinvent unit processes described in Table S8.
Each kraft process has its own system boundary description, exemplified by the eucalyptus
processing boundary illustrated in Fig. S3. Input parameters for kraft pulping include
production capacity, process yield, fuels used in power boilers and lime kilns, electricity
sources, and chemical requirements for makeup, bleaching, and chlorine dioxide
generation.

The extended modeling framework incorporates morphological properties of
cultivars and soil carbon stabilization factors, with input values specified in Table S9. This
integration enables the software to account for long-term carbon sequestration effects
alongside traditional LCA assessments.

The software provides flexible energy configuration options to accommodate
diverse operational scenarios. Users can evaluate multiple fuel options by selecting from
wood waste, coal, fuel oil, and natural gas for various process requirements. The software
supports comprehensive electricity selection, enabling users to choose from electricity
sources across various regions in the USA and Brazil, as well as average electricity profiles
from China, Portugal, Canada, Chile, and Uruguay, as detailed in Table S10. Additionally,
users can distinguish between renewable sources (hydro, wind, nuclear, and solar) and non-
renewable sources (coal), allowing for detailed assessment of energy source impacts on
carbon footprint calculations.
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Through the integration of data acquisition, mathematical modeling, and
comprehensive software development, the carbon footprint tool can evaluate diverse
scenarios and perform detailed comparisons of conventional and alternative fibers
produced via kraft pulping and APMP processes. The software enables assessments both
with and without SOC sequestration effects, providing flexibility for different analytical
approaches. The tool facilitates extensive sensitivity analyses on process parameters and
SOC scenarios, allowing users to understand the impact of variable inputs on carbon
footprint outcomes.

The software’s user-friendly interface provides intuitive access to all analytical
capabilities while maintaining the scientific rigor of the underlying computational models.
For comprehensive guidance on user engagement with the carbon footprint software,
readers are encouraged to refer to Fig. S4, which demonstrates the software's interface and
operational workflow.

RESULTS AND DISCUSSION

The results are presented in two subsections. First, the software is validated by
comparing calculated GWP values for kraft pulping of eucalyptus plantations in Brazil and
natural forests (Northern softwood in Canada and natural bamboo stands in China) against
published literature benchmarks. Second, scenario analyses examine how electricity
sources (renewable vs. non-renewable) influence the carbon footprint of mechanical and
chemical pulping processes. The study also evaluates how different soil-carbon
stabilization factors affect the carbon footprint of these processes.

Biomass
Fuel direct emissions
Fuel extraction

Electricity
Chemicals

Global warming potential (kg CO:=eq/ADt)

Fig. 4. Validation results of kraft pulping process per ADt of market pulp in the carbon footprint
software using economic allocation
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Software Validation

The validation results presented in Fig. 4 confirm the accuracy of the carbon
footprint software for carbon footprint assessments. The close alignment between software
calculated GWP values and published literature benchmarks across all three fiber types
(bamboo, northern softwood and eucalyptus) demonstrates the tool's capability to
accurately model complex pulping processes.

The software successfully captured the relative contributions of individual impact
categories, with fuel direct emissions consistently representing the dominant component
(approximately 38% to 44% of total GWP), followed by chemicals (24% to 42%), biomass
(7% to 20%), and electricity (3% to 25%), mirroring the patterns reported in peer-reviewed
studies. The consistent performance across geographically diverse operations, from
eucalyptus plantations in Brazil to northern softwood forests in Canada and bamboo stands
in China, validates the software’s robustness in handling varying regional conditions,
energy sources, and raw material characteristics.

The validation results have significant implications for industrial decision-making
and policy development in the pulp and paper sector. The software's capability to model
diverse feedstocks and processing conditions addresses a critical gap in current carbon
accounting methodologies, where most existing tools focus on conventional wood-based
feedstocks. This comprehensive approach enables pulp producers to make evidence-based
decisions about feedstock diversification strategies, particularly relevant as the industry
faces increasing pressure to adopt alternative fiber sources to reduce environmental impacts
and enhance supply chain resilience.

Scenario Exploration on Processes Energy Consumption and Soil Organic
Carbon Sequestration Potential

Figure 5 presents the sensitivity analysis of electricity sources for APMP wheat
straw and kraft pulping processes (BBK and NBSK). The results reveal that APMP pulps
are highly sensitive to electricity source, demonstrating substantially greater variability in
carbon impact compared to kraft processes.

Figure 5 illustrates significant differences between hydropower and coal-based
electricity scenarios across different pulp production methods. When hydropower is used,
BBK demonstrates the lowest carbon footprint at 597 kg CO2eq/ADt, followed by NBSK
at 631 kg CO2eq/ADt, and APMP wheat straw at 643 kg CO.eq/ADt. Under coal-based
electricity scenarios, the carbon footprints increase substantially to 779 kg COzeq/ADt for
NBSK, 1,070 kg CO2eq/ADt for BBK, and 1,715 kg CO2eq/ADt for APMP wheat straw.
The differences between these two energy scenarios reveal markedly different sensitivities:
APMP wheat straw exhibits the most pronounced sensitivity with a range of 1,072 kg
CO2eq/ADt, BBK shows a moderate difference of 473 kg CO.eq/ADt, while NBSK
exhibits the smallest variation at 148 kg CO.eq/ADt. This substantial variation in APMP
wheat straw underscores the critical role of electricity sourcing in APMP operations, where
the carbon footprint increases by 167% when switching from hydropower to coal-based
electricity. In contrast, NBSK’s carbon footprint increases by only 23% under the same
transition, demonstrating how energy source dramatically affects the environmental profile
of different pulping processes.

The reduced sensitivity of kraft pulping processes stems from their energy self-
sufficiency through black liquor combustion, which provides substantial internal energy
generation and reduces dependence on external electricity sources. This inherent
characteristic of kraft mills buffers them against variations in external electricity sources,
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whereas APMP processes, which rely heavily on mechanical refining and external
electricity, experience dramatic shifts in their environmental performance based on the
energy mix.

APMP - Wheat straw (US) 1 1,715

BBK {China)

Pulp type

NBSK (Canada) { @ Average GWP
B Impact from hydropower

mmm Impact from coal-based electricity

600 800 1,000 1,200 1,400 1,600 1,800
Global warming potential (kg CO;eq/ADt}

Fig. 5. Carbon footprint sensitivity to electricity source for pulping processes. Blue bars show
impact from hydropower; gray bars show impact from coal-based electricity. Red diamonds mark
average GWP for each pulp type. Numbers indicate total global warming potential (kg
CO2eq/ADt) for each scenario

The positioning of each process relative to its average carbon footprint baseline
(marked by red diamonds) further emphasizes these energy-related impacts. Under
hydropower scenarios, both APMP and kraft processes achieve carbon footprints below
their respective coal-scenario values. The magnitude of this reduction, however, varies
dramatically—APMP processes show large reductions from their baseline, while kraft
processes remain relatively stable. Under coal-based electricity scenarios, APMP processes
shift dramatically above their average baseline, whereas kraft processes show more modest
increases, demonstrating their lower sensitivity to electricity supply source.

These sensitivity patterns are independent of the allocation method employed, as
allocation approaches scale absolute values proportionally without altering the relative
differences between energy scenarios. This ensures that the observed sensitivity rankings
and process comparisons remain robust regardless of whether economic or mass allocation
is applied. For a detailed breakdown of the scenario exploration for each process, see Table
S11.

Figure 6 presents the scenario exploration for SOC stabilization factors on the
carbon footprint for both kraft pulping and APMP processes across the twelve biomasses
studied. The results reveal distinct sensitivity patterns among different biomass categories,
with dedicated crops and woody biomasses demonstrating substantially higher sensitivity
to SOC stabilization factors compared to agricultural and agro-industrial residues.

Figure 6 illustrates significant differences between 5% and 25% SOC stabilization
scenarios across different biomass types. Under the 25% SOC stabilization scenario (green
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bars), BEK (Brazil) demonstrates the lowest carbon footprint at 74 kg CO.eq/ADt,
followed by NBSK at 213 kg CO.eq/ADt, BBK at 387 kg CO.eq/ADt, and APMP
switchgrass at 539 kg COzeq/ADt. Agricultural and agro-industrial residues show higher
values, ranging from 815 kg CO.eq/ADt for APMP bamboo to 1,124 kg CO2eq/ADt for
APMP sugarcane bagasse. Under the 5% SOC stabilization scenario (orange bars), the
carbon footprints increase to 404 kg CO2eq/ADt for BEK, 525 kg CO2eq/ADt for NBSK,
685 kg CO2eq/ADt for BBK, and 1,005 kg CO:eq/ADt for APMP switchgrass, while
agricultural residues range from 975 kg CO:eq/ADt for APMP bamboo to 1,212 kg
CO2eq/ADt for APMP banana fiber.

APMP - Banana fiber (US) 1,119 '
APMP - Sugarcane bagasse (US) 1,124 ’
APMP - Rice straw (US) 1,111+
APMP - Hemp hurd (US) 1,053 '
APMP - Wheat straw (US) 1,015 '
APMFP - Rice husk (US) 1,021+
a
=
*S_ APMP - Ryegrass straw {US) 989 .
&

APMP - Sorghum (US) 830 -
APMP - Bamboo (US) 815 -
APMP - Switchgrass (US) 539 -
BBK (China) as7 -

NBSK (Canada) 213 -
€ Average GWP (15% SOC factor)

BEK (Brazil)|{ 74 - EE Impact from 25% SOC factor

Impact from 5% SOC factor

0 200 400 600 800 1,000 1,200
Global warming potential (kg CO,eq/ADt)

Fig. 6. Carbon footprint sensitivity to SOC stabilization factors for pulping processes across
twelve biomass types. Green bars: 25% SOC factor; orange bars: 5% SOC factor; red diamonds:
baseline at 15% SOC factor. Values indicate total GWP (kg CO,eq/ADt) using economic
allocation.

The differences between these two SOC scenarios reveal markedly different
sensitivities across biomass types. APMP switchgrass exhibits the most pronounced
sensitivity with a difference of 466 kg CO.eq/ADt (from 539 to 1,005 kg CO2eq/ADt),
representing an 86% increase when moving from high to low SOC stabilization. BEK
shows a difference of 330 kg CO2eq/ADt (446% increase), NBSK demonstrates 312 kg
CO2eq/ADt (147% increase), and BBK exhibits 298 kg CO.eq/ADt (77% increase). In
contrast, agricultural and agro-industrial residues show minimal sensitivity: APMP rice
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husk exhibits the smallest variation at only 3 kg CO.eq/ADt (0.3% increase), APMP rice
straw shows 13 kg CO2eq/ADt (1% increase), and APMP sugarcane bagasse demonstrates
28 kg CO2eq/ADt (2% increase). This remarkable contrast underscores the critical
importance of soil carbon sequestration potential in dedicated energy crops and woody
biomass production compared to agro-industrial and agricultural residues.

The high sensitivity patterns in dedicated crops and woody biomasses reflect the
significant root biomass and soil carbon input potential associated with perennial woody
species, which typically exhibit higher root-to-shoot ratios and longer growing cycles
compared to annual crops. The reduced sensitivity of agricultural and agro-industrial
residues stems from the fact that these materials are byproducts of agricultural systems
where the primary crop has already been harvested, and the residues themselves contribute
minimally to additional soil organic carbon accumulation.

The positioning of each biomass relative to its average carbon footprint baseline
(marked by red diamonds) further emphasizes the soil carbon sequestration impacts. Under
high SOC stabilization scenarios (25%), dedicated crops and woody biomasses achieve
carbon footprints substantially below their baseline values, demonstrating significant
climate benefits through soil carbon sequestration. Under low SOC stabilization scenarios
(5%), these same biomasses shift above their baseline values, while agricultural residues
remain relatively stable near their baseline regardless of the SOC factor applied.

These findings have significant implications for biomass selection in pulp
production. Dedicated crops such as switchgrass and woody biomasses such as eucalyptus
may offer substantial climate benefits when high soil carbon stabilization is achieved but
could show less favorable performance under conservative stabilization assumptions.
Conversely, agricultural residues provide more predictable and stable carbon footprints
regardless of soil carbon uncertainties. The pronounced sensitivity of woody biomasses
and dedicated crops to SOC factors highlights the importance of site-specific soil carbon
measurements and long-term monitoring programs to accurately quantify the carbon
footprint benefits of these feedstocks in pulp production systems.

These sensitivity patterns are independent of the allocation method employed, as
allocation approaches scale absolute values proportionally without altering the relative
differences between SOC stabilization scenarios. This ensures that the observed sensitivity
rankings and biomass comparisons remain robust regardless of whether economic or mass
allocation is applied. For a detailed breakdown of the scenario exploration for each process,
see Table S12.

The favorable carbon footprint outcomes for BEK (Brazil) and NBSK (Canada), as
illustrated in Fig. 6, are primarily driven by biomass-to-pulp conversion efficiency and mill
energy self-sufficiency. BEK mills typically demonstrate a higher degree of power self-
sufficiency compared to NBSK operations. By generating a larger share of their energy
from biomass-derived black liquor, these mills significantly reduce their reliance on
external fossil-fuel-intensive energy.

The outcomes identified in this study are indeed sensitive to the methodology used
for biogenic carbon accounting. Following the ISO 14040-44, a biogenic neutrality
assumption was applied, treating the COz absorbed during biomass growth as equivalent
to the COz released during combustion or decomposition within the same rotation. This
approach distinguishes biogenic carbon from fossil-fuel-emitted carbon, which represents
a net addition of carbon to the active atmosphere.

Regarding the temporal and ecological assumptions underlying carbon accounting,
this study follows the standard attributional LCA approach (ISO 14040-44), which assumes
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a steady-state biogenic carbon cycle. However, the future ability of the environment to
assimilate CO2 may not mirror recent historical patterns. Factors such as increased
frequency of forest disturbances, and the potential saturation of terrestrial carbon sinks
introduce a level of non-stationarity into future climate scenarios (Hubau et al. 2020; Seidl
et al. 2017). Nevertheless, even if the net-neutrality of biogenic carbon were to be re-
evaluated in future frameworks, the relative performance of the fiber sources analyzed here
would likely persist. The fundamental drivers of a low carbon footprint—specifically high
biomass-to-pulp conversion efficiency and high mill energy self-sufficiency—are
engineering parameters that minimize fossil fuel dependence. These factors remain the
primary levers for decarbonization in the pulp and paper industry, regardless of the
evolving capacity of the global carbon sink.

The scenario explorations presented in Figs. 5 and 6 demonstrate the robust
capability of the carbon footprint software to capture and quantify the impact of key
process variables and the intrinsic characteristics of the twelve-biomass types considered.
The software successfully demonstrates its capability to simultaneously assess 12 different
biomass types across multiple pulping processes (APMP and kraft), maintain
methodological consistency across economic and mass allocation methods, generate
quantitative benchmarks for carbon footprint variability in pulp production systems, and
handle complex interactions between feedstock characteristics and process requirements.

These findings validate the tool’s ability to generate scientifically robust carbon
footprint estimates when evaluating conventional and alternative fibers in pulp production.
The validated software tool provides the pulp industry with comprehensive capabilities to
assess alternative fiber strategies while maintaining scientific rigor in carbon accounting
methodologies.

Future developments will involve incorporation of additional pulping processes
such as CTMP (Chemi-Thermo-Mechanical Pulping) and sulfite processes to provide more
comprehensive process coverage across all major industrial pulping technologies. After
completing the remaining processes, Techno-Economic Analysis (TEA) capabilities will
be included to enable simultaneous evaluation of environmental and economic
performance metrics, allowing users to optimize both sustainability and profitability in
their decision-making processes. Finally, an intelligent Chatbot interface will be developed
to incorporate product-performance data from the SAFI consortium to provide real-time
decision support and enhanced user accessibility specifically for tissue products
applications.

CONCLUSIONS

1. Validation against published literature benchmarks for kraft pulping of eucalyptus,
northern softwood, and bamboo confirmed the software’s accuracy.

2. The validated software addresses a critical gap in current carbon accounting
methodologies by enabling simultaneous assessment of twelve biomass types across
economic and mass allocation methods while maintaining methodological consistency.

3. The carbon footprint software reduces the time and cost of environmental assessments
compared to traditional methods.

4. Alkaline peroxide mechanical pulp (APMP) processes demonstrated high sensitivity to
electricity sources, with wheat straw showing a difference of 1,072 kg CO2eq/ADt
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between hydropower and coal-based scenarios.

5. Renewable energy adoption for mechanical pulping operations is strongly
recommended based on these findings.

6. Kraft pulping processes exhibited greater power self-sufficiency through black liquor
combustion, with variations ranging from only 148 to 473 kg CO2eq/ADt for northern
bleached softwood kraft (NBSK) and bleached bamboo kraft (BBK) respectively.

7. Dedicated crops and woody biomasses, particularly switchgrass and eucalyptus,
showed substantial sensitivity to soil organic carbon (SOC) factors, with potential
swings exceeding 466 kg CO2eq/ADt between stabilization scenarios.

8. The software capabilities empower the pulp industry to make evidence-based decisions
about alternative fiber strategies, particularly relevant as environmental pressures and
supply chain resilience concerns drive feedstock diversification.
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APPENDIX

The emissions of eucalyptus plantations in kg CO2eq/BDt are estimated by Eq. S1,

__3297.3+10.193%X
Y*0.47

E «1.12 + 3.0571 + (2.44 x %) (S1)

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg N/ha), Y is yield
(m>/ha), and D is transportation distance (km).

The emissions of northern softwood managed forest in kg CO2eq/BDt are estimated
using Eq. S2 considering economic allocation,

E= ((%95 + 18.5) %3.053 + 75.88) PO S— (2.44 x L) (S2)

Prc+(Pglx1.61) 13.2

where E is emission (kg CO2eq/BDt), Y is yield (m*/ha), Prc is price residual chips
($/BDt), Pgl is price green lumber ($/BDt), and D is transportation distance (km).

The emissions of northern softwood managed forest in kg CO2eq/BDt are estimated
using Eq. S3 considering mass allocation,

E= ((&;’5 +185) *3.053 + 75.88) r——+ (2444 ) (S3)

1+1.61 13.2

where E is emission (kg CO2eq/BDt), Y is yield (m3/ha), and D is transportation distance
(km).

The emissions of natural bamboo forest in kg CO2eq/BDt are estimated using Eq.
S4,

_ (8.36+1.28+Y)%0.479
- Y+(1-0.15)

E

+17.11+ (207 + 2) (S4)

where E is emission (kg CO2eq/BDt), Y is yield (ton/ha/yr), and D is transportation distance
(km).

The emissions of switchgrass plantations in kg CO2eq/BDt are estimated using Eq.
Ss,

_ (2087.3+10%10.199%X)

E
Y%(1-0.184)+10

+6.75+ (2.07+2) (S5)

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg N/ha/yr), Y is yield
(ton/ha/yr), and D is transportation distance (km).
The emissions of sorghum plantations in kg CO2eq/BDt are estimated using Eq. S6,

_ (375.89+10.187%X)
- Y+(1-0.16)

E +647 + (207 + =) (S6)

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg N/ha/yr), Y is yield
(ton/ha/yr), and D is transportation distance (km).
The emissions of rice husk in kg CO2eq/BDt are estimated using Eq. S7 considering
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economic allocation,

.5

/ 6.4939*X+1018.4+27.124-*RSIF*(1—0.08)—0.0084+<<160*1.586*((1+0.29*RSR*(1—0.08))0 9))*25)

E - *
Y*(1-0.2)

( PRG*Y
PRG*Y+PRS*RSR

0.2
(PRH*0.2)+(PWGx0.7)+(PRB*0.1)

)) +572 | *5+356.2 | ((PRH x )) +3.28 + (2.07 x

), (57)
where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha), RSIF is rice straw
incorporated in field (ton/ha), RSR is rice straw removed (ton/ha), Y is rough grain yield
(ton/ha), PRG is price rough grain ($/ton), PRS is price rice straw ($/ton), PRH is price
rice husk ($/ton), PWG is price wheat grain ($/ton), PRB is price rice bran ($/ton), and D
is transportation distance (km).

The emissions of rice husk in kg CO2eq/BDt are estimated using Eq. S8 considering
mass allocation,

0.59
6.4939*X+1018.4-+27.124*RSIF*(1—0.08)—0.0084+<(160*1.586*((1+0.29*RSR*(1—0.08)) ))*25)

[

( Y*(1-0.2) ) +5.72 | *5+356.2 | *(0.2) +3.28 + (2.07 * %) (S8)

Y*(1—-0.2)+RSR+(1-0.08)

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha), RSIF is rice straw
incorporated in field (ton/ha), RSR is rice straw removed (ton/ha), Y is rough grain yield
(ton/ha), and D is transportation distance (km).

The emissions of hemp hurd in kg CO2eq/BDt are estimated using Eq. S9
considering economic allocation,

_ [ (11.459+x+548.78 PHH D
E= (( Y*(1-0.13) ) *1.66 + 97'89> * (0'6 * 0.3*PHB+0.6*PHH) +4.46+ (2'07 * 12) (S9)

where X is nitrogen application (kg/ha/yr), Y is hemp fiber yield (ton/ha/yr), PHH is price
hemp hurd ($/ton), PHB is price hemp bast ($/ton), and D is transportation distance (km).

The emissions of hemp hurd in kg CO2eq/BDt are estimated using Eq. S10
considering mass allocation,
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Y*(1-0.13)

E = ((—11'459*’”548'78) «1.66 + 97.89) % 0.667 + 4.46 + (2.07 " %) (S10)

where X is nitrogen application (kg/ha/yr), Y is hemp fiber yield (ton/ha/yr), and D is
transportation distance (km).

The emissions of sugarcane bagasse in kg CO2eq/BDt are estimated using Eq. S11
considering economic allocation,

E= ((M +13.12) + 14.12 + 45.17) « PSB ) 144+ 383 + 11 + (207«

Y*(1-0.7) PSB+5.42¥PRS+2.06xPM

2) (S11)

where X is nitrogen application (kg/ha/yr), Y is sugarcane yield (ton/ha/yr), PSB is price
surplus bagasse ($/BDt), PRS is price raw sugar ($/ton), PM is price molasses ($/ton), and
D is transportation distance (km).

The emissions of sugarcane bagasse in kg CO2eq/BDt are estimated using Eq. S12
considering mass allocation,

E= <(—1°'”7*X+2686'3 +1312) 1412 + 45.17) (oo s) * 144 + 383 + 11+

Y*(1-0.7) 145.42+2.06

(207+3) (S12)

where X is nitrogen application (kg/ha/yr), Y is sugarcane yield (ton/ha/yr), and D is
transportation distance (km).

The emissions of wheat straw in kg CO2eq/BDt are estimated using Eq. S13
considering economic allocation,

E= ((10.285*X+389.56)+(78.502*(WSR*(1—0.098))+0.0638)) . ( WSR+PS ) 1518 4+
B WSR*(1-0.098) WSR*PS+Y+PWG '

(207 +2) (S13)

10.6

where X is nitrogen application (kg/ha), WSR is wheat straw removed (ton/ha), PS is price
straw ($/BDt), Y is wheat grain yield (ton/ha), PWG is price wheat grain ($/ton), and D is
transportation distance (km).

The emissions of wheat straw in kg CO2eq/BDt are estimated using Eq. S14
considering mass allocation,

__ ((10.285%X+389.56)+(78.502+(WSR*(1-0.098))+0.0638) WSR*(1-0.098)
E= ( WSR*(1-0.098) ) * (WSR*(1—0.098)+Y*(1—o.15)> +518 + (2'07 *

D
o) (S14)
where X is nitrogen application (kg/ha), WSR is wheat straw removed (ton/ha), Y is wheat
grain yield (ton/ha), and D is transportation distance (km).

The emissions of rice straw in kg CO2eq/BDt are estimated using Eq. SI5
considering economic allocation,
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.5
(6.4939*X+1018.4)+<(160*1.586*((1+0.29*RSIF*(1—0.08))0 9))*25)+(27.124—*RSR*(1—0_08)—0_0084)
E =

*
RSR%(1-0.08)

((M)) +5.98+(2.07 + ) (S15)

D
RSR+*PRS+Y*PRG 10.3

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha), RSIF is rice straw
incorporated in field (ton/ha), RSR is rice straw removed (ton/ha), Y is rough grain yield
(ton/ha), PRG is price rough grain ($/ton), PRS is price rice straw ($/ton), PRH is price
rice husk ($/ton), PWG is price wheat grain ($/ton), PRB is price rice bran ($/ton), and D
is transportation distance (km).

The emissions of rice straw in kg CO2eq/BDt are estimated using Eq. S16
considering mass allocation,

0.59
(6.4939*X+1018.4)+<(160*1.586*((1+0.29*RSIF*(1—0.08)) ))*25)+(27.124—*RSR*(1—0.08)—0.0084—)
E =

*
RSR*(1-0.08)

RSR*(1-0.08) D
((RSR*(1—0.08)+Y*(1—0.2))) +598+ (2'07 * E) (816)

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha), RSIF is rice straw
incorporated in field (ton/ha), RSR is rice straw removed (ton/ha), Y is rough grain yield
(ton/ha), and D is transportation distance (km).

The emissions of banana fiber in kg CO2eq/BDt are estimated using Eq. S17
considering economic allocation,

10.199%xX+2892.3 FP+PBF
E=( )+ (

)+612+ 01717+ 1.11+ D (S17)
FPx(1-0.1) PBF+«FP+FrP*PFr

where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha/yr), FP is fiber
production (ton/ha/yr), PBF 1is price banana fiber ($/ton), FrP is fruit production
(ton/ha/yr), PFr is price fruit ($/ton), and D is transportation distance (km).

The emissions of banana fiber in kg CO2eq/BDt are estimated using Eq. S18
considering mass allocation,

_ (10.199+X+2892.3 FPx(1-0.1)
E= ( FP+(1-0.1) ) (FP*(l—O.l)+FrP*(1—0.7366)) +612+ 01717+111+D (Sl8)
where E is emission (kg CO2eq/BDt), X is nitrogen application (kg/ha/yr), FP is fiber
production (ton/ha/yr), FrP is fruit production (ton/ha/yr), and D is transportation distance
(km).
The emissions of ryegrass straw in kg CO2eq/BDt are estimated using Eq. S19
considering economic allocation,

_ (12.683*X+307.24-) " ( PRS*RSR

D
RSR*(1—0.13) PRS*RSR+PG*Y) +6.25+ 2.07 » 15.6 (S19)

where X is nitrogen application (kg/ha/yr), RSR is ryegrass straw removed (ton/ha/yr),
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PRS is price ryegrass straw ($/ton), Y is ryegrass grain yield (ton/ha/yr), PG is price grain
($/ton), and D is transportation distance (km).

The emissions of ryegrass straw in kg CO2eq/BDt are estimated using Eq. S20
considering mass allocation,

_(12.683*X+307.24) ( RSR*(1-0.13)
~ \ RSRx(1-0.13) RSR*(1—0.13)+Y*(1-0.425)

) +6.25 + 2.07 + (S20)
where X is nitrogen application (kg/ha/yr), RSR is ryegrass straw removed (ton/ha/yr), Y
is ryegrass grain yield (ton/ha/yr), and D Transportation distance (km).

The SOC sequestration potential was included for each biomass, considering the
morphological properties of each cultivar, following the methodology developed by
(Forfora et al. 2024), which is described in equations S21 to S23, as follows,

CR_PP = AGB * RSR * XC * XPP (821)

Total Cinput =21 Cinputi =21 CRppi * SRi + CEppl. * SEi (522)
Total Cipput

Cinput = Rotation tzzme (823)

where Cg,_pp 1s carbon in coarse roots (ton C/ha), AGB is aboveground biomass (ton C/ha),
RSR is root-to-shoot ratio (dimensionless), X is carbon mass fraction (dimensionless), X,
is allocation factor (dimensionless), Total Cjppy, 1 total carbon input to soil (ton C/ha), n
is rotation time, i is iteration index, Sg, is fraction of the coarse roots that are returned to
the soil=1 (dimensionless), C Eppi is carbon associated with rhizodeposition of extra roots =
0.65*Cg pp (ton C/ha), Sg, is fraction of the extra roots that are returned to the soil=1
(dimensionless), and Ciyypy, 1s total carbon input normalized by year (ton C/ha.yr).

Table S1. Economic and Mass Allocation Factors of Biomass Used

Biomass Economic allocation factor Mass allocation factor
Eucalyptus - -
Northern softwood 0.18 0.38
Bamboo - -
Switchgrass - -
Sorghum - -
Rice husk 0.02 0.72
Hemp hurd 0.23 0.68
Sugarcane bagasse 0.04 0.19
Wheat straw 0.13 0.43
Rice straw 0.07 0.33
Banana fiber 0.38 0.47
Ryegrass straw 0.14 0.82
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Table S2. Inputs to the Carbon Footprint Software to Produce one BDt of Biomass
from Tree Plantations (Eucalyptus) (Ortega et al. 2024) and Natural Forests

(Northern Softwood and Natural Bamboo Stands) (Forfora et al. 2025)

Functional Unit: 1 BDt of biomass

|  Unit | Eucalyptus | Northernsoftwood | Bamboo
Inputs
Nitrogen kg/ha 70.6 0
application
Yield m®ha 256.2 335
Yield ton/halyr 0 0 4.8
Price Residual
Chips $/BDt 0 118 0
Price Green
Lumber $/BDt 0 325 0
Tran_sportatlon km 61.2 100 65
distance
Outputs
Biomass | BDt | 1 | 1 1
Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518. 2507
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Table S3. Inputs to the Carbon Accounting Software to Produce one BDt of
Biomass from Dedicated Crops (Switchgrass, Sorghum) and Agro-industrial
Residues (Rice Husk, Hemp Hurd, and Sugarcane Bagasse) (Forfora et al. 2024)

Functional Unit: 1 BDt of biomass

| Unit | Switchgrass | Sorghum | Rice | Hemp | Sugarcane
Inputs
Nitrogen kg/halyr 69.5 140.5 207 92.8 196.4
application
Yield ton/halyr 11.9 15.9 0 11.9 76.4
Rice straw |4 ha 0 0 3.85 0 0
removed
Rice straw
incorporated ton/ha 0 0 3.85 0 0
into the field
Rough grain |4 0 0 9 0 0
yield
Price rough | ¢ 0 0 308 0 0
grain
Price rice $iton 0 0 54.7 0 0
straw
Price rice
husk $/ton 0 0 7 0 0
Price white
grain $/ton 616 0
Price rice bran $/ton 191 0
Price hemp
bast $/ton 0 1,190
Price hemp
hurd $/ton 0 0 0 168 0
Price raw $iton 0 0 0 0 352
sugar
Price $iton 0 0 0 0 220
molasses
Price surplus $/BDt 0 0 0 0 44
bagasse
Transportation | 75 50 40 120 20
distance
Outputs
Biomass | BDt | 1 1 1 | 1 1
Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518. 2508
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Table S4. Inputs to the Carbon Accounting Software to Produce one BDt of
Biomass from Agricultural Residues (Wheat Straw, Rice Straw, Banana Fiber,
and Ryegrass Straw) (Forfora et al. 2024)

Functional Unit: 1 BDt of biomass
| Unit | Wheat | Rice | Banana | Ryegrass
Inputs
Nitrogen kg/halyr 86.4 207 358.8 86.9
application
Grain yield ton/halyr 4.76 0 0 1.91
Wheat straw ton/ha 3.27 0 0 0
removed
Percentage o
straw removed & 50 0 0 0
Price wheat $/ton 256.7 0 0
grain
Price straw $/ton 52.8 0 0
Rice straw ton/ha 0 3.85
removed
Rice straw
incorporated into ton/ha 0 3.85 0 0
the field
Rough grain ton/ha 0 9 0 0
yield
Price rough $/ton 0 308 0 0
grain
Price rice straw $/ton 0 54.7 0 0
Fiber production ton/halyr 0 0 14.9 0
Fruit production ton/halyr 0 0 60 0
Price banana
fiber $/ton 0 0 1,000 0
Price fruit $/ton 0 0 420 0
Ryegrass straw | 0 nanr 0 0 0 4.94
removed
Percentage of o
straw removed Yo 0 0 0 50
Price grain $/ton 0 0 0 694.4
Price ryegrass $/ton 0 0 0 35.7
straw
Transportation km 120 64.3 40 195
distance
Outputs
Biomass | BDt | 1 | 1 | 1 | 1
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Fig. S1. System boundary for biomass cultivation (Forfora et al. 2024)

Table S5. LCI of Inputs to Produce one ADt of Market Pulp from Natural Forest
(Bamboo), Dedicated Crops (Switchgrass and Sorghum), Agro-industrial
Residues (Rice Husk, Hemp Hurd, and Sugarcane Bagasse), and Agricultural
Residues (Wheat Straw, Rice Straw, Banana Fiber, and Ryegrass Straw) using
the APMP Process (Urdaneta et al. 2024b)

Functional Unit: 1 ADt of market pulp (sold at 90% consistency)
Process: APMP
Unit/ | Wheat | Hemp .
ADt straw hurd Switchgrass | Sorghum | Bamboo | Other
Inputs
P';f;gl‘zss % 75.3 79.8 75.5 716 75.9 75
NaOH kg 70.2 70.2 70.2 70.2 70.2 70.2
H202 kg 70.2 70.2 70.2 70.2 70.2 70.2
DTPA kg 5.8 5.8 5.8 5.8 5.8 5.8
Naturalgas | m® 142 142 142 142 142 142
Purchased | \\v, | g75 | 875 875 875 875 875
electricity
Outputs
Pulpfiber | ADt [ 1 | 1 | 1 | 1 | 1 | 1

Other: Rice straw, rice husk, sugarcane bagasse, banana fiber, ryegrass straw
DTPA: Diethylene-triaminepentaacetic acid

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518. 2510
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Table S6. Ecoinvent Unit Processes Selected for Each Inputs to Produce One
ADt of Market Pulp from Natural Forest (Bamboo), Dedicated Crops (Switchgrass
and Sorghum), Agro-industrial Residues (rice husk, hemp hurd, and sugarcane
bagasse), and Agricultural Residues (Wheat Straw, Rice Straw, Banana Fiber,
and Ryegrass Straw) using the APMP Process (Urdaneta et al. 2024Db)

Ecoinvent unit process APMP (USA)

Market for sodium hydroxide, without water, in
50% solution state | sodium hydroxide,
without water, in 50% solution state | Cutoff, U
— Global

NaOH

Market for hydrogen peroxide, without water,
in 50% solution state | hydrogen peroxide,
without water, in 50% solution state | Cutoff, U
— RoW

H202

Market for DTPA,
diethylenetriaminepentaacetic acid | DTPA,
diethylenetriaminepentaacetic acid | Cutoff, U
— RoW

DTPA

Market for natural gas, high pressure | natural

Natural gas gas, high pressure | Cutoff, U - US

Electricity, high voltage, production mix |
electricity, high voltage | Cutoff, U — SERC

Purchased electricity

Atmospheric
Emissions J Land

ﬁ Water
Feedstock I i
G -‘_. Choppmgand Washing |
cultivation ! screening

I :
: Boiler
Chemicals -‘
|
|
: L
|
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v
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I

Fig. S2. System boundary for APMP process (Urdaneta et al. 2024b)
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Table S7. LCI of Inputs to Produce one ADt of Market Pulp from Tree Plantations

(Eucalyptus) (Ortega et al. 2024) and Natural Forests (Northern Softwood and
Bamboo) using a Kraft Pulping Process (Forfora et al. 2025)
Functional Unit: 1 ADt of market pulp (sold at 90% consistency)
| Unit/ADt | BEK(Brazill | NBSK (Canada) | BBK (China)
Inputs
Biomass kg 2,120 2,400 2,440
Woodwaste kg 155 73.6 0
NaOH kg 20.25 40.2 26.8
Na2SO4 kg 0 0.8 2
H202 kg 6.40 1.9 1.8
CaO kg 14.5 18.7 18.1
NaClOs kg 15.8 38.2 21
Cl2 kg 1.16 0 0
CH3sOH kg 1.65 3.7 2.2
o kg 30.7 24.6 35.8
H2S04 kg 10.2 28 15.3
MgSO4 kg 1.63 1.9 1.9
Natural gas m3 32.7 96.1 22.6
Biogas m? 4.45 0 0
Fuel ol kg 21.4 3.6 21.1
Fuel ol
number 2 kg 2.28 0 0
Coal kg 23.7 5.92 0
Purchased KWh 0 1225 386.6
electricity
Outputs
Pulp fiber | ADt | 1 | 1 | 1
BEK: Bleached Eucalyptus Kraft, NBSK: Northern Bleached Softwood Kraft, BBK: Bleached
Bamboo Kraft
Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518. 2512
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Table S8. Ecoinvent Unit Processes Selected for Each Process of Inputs to
Produce One ADt of Market Pulp from Tree Plantations Eucalyptus) (Ortega et
al. 2024) and Natural Forests (Northern Softwood and Bamboo) using a Kraft
Pulping Process (Forfora et al. 2025)

Ecoinvent BEK (Brazil) NBSK (Canada) BBK (China)
unit process
Market for sodium Market for sodium
Market for sodium hydroxide, without hydroxide, without
hydroxide, without water, in water, in 50% water, in 50%
NaOH 50% solution state | sodium solution state | solution state |
hydroxide, without water, in sodium hydroxide, sodium hydroxide,
50% solution state | Cutoff, | without water, in 50% | without water, in 50%
U - Global solution state | Cutoff, | solution state | Cutoff,
U - Global U-GLO
Market for sodium Market for sodium
sulfate, anhydrite | sulfate, anhydrite |
Naz2S04 - sodium sulfate, sodium sulfate,
anhydrite | Cutoff, U - | anhydrite | Cutoff, U -
RoW RoW
Market for hydrogen Market for hydrogen
Market for hydrogen peroxide, without peroxide, without
peroxide, without water, in water, in 50% water, in 50%
H.0» 50% solution state | solution state | solution state |
hydrogen peroxide, without hydrogen peroxide, hydrogen peroxide,
water, in 50% solution state | | without water, in 50% | without water, in 50%
Cutoff, U - RoW solution state | Cutoff, | solution state | Cutoff,
U - RoW U - RoW
Market for quicklime, | Market for quicklime,
Market for quicklime, milled, milled, packed | milled, packed |
CaO packed | quicklime, milled, quicklime, milled, quicklime, milled,
packed | Cutoff, U - RoW packed | Cutoff, U - packed | Cutoff, U -
RoW RoW
Market for sodium Market for sodium
Market for sodium chlorate, chlorate, powder | chlorate, powder |
NaClOs powder | sodium chlorate, sodium chlorate, sodium chlorate,
powder | Cutoff, U - RoW powder | Cutoff, U - powder | Cutoff, U -
RoW RoW
Market for chlorine, gaseous
Clz | chlorine, gaseous | Cutoff, - -
U - RoW
CHiOH Market for methanol | | 82 Tt TR R ] | L athanol | Cutof, U
3 methanol | Cutoff, U - | methanol | Cutoff, U -
methanol | Cutoff, U - Global GLO GLO
Market for oxygen, liquid | Market for oxygen, Market for oxygen,
02 oxygen, liquid | Cutoff, U - liquid | oxygen, liquid | liquid | oxygen, liquid
RoW | Cutoff, U - RoW | Cutoff, U - RoW
Market for sulfuric acid | Market for sulfuric Market for sulfuric
H2S04 sulfuric acid | Cutoff, U - acid | sulfuric acid | acid | sulfuric acid |
RoW Cutoff, U - RoW Cutoff, U - RoW
. Market for Market for
Market for magnesium . .
MaSO sulfate | magnesium sulfate | magnesium sulfate | magnesium sulfate |
goU4 g
Cutoff. U - Global magnesium sulfate | magnesium sulfate |
' Cutoff, U - Global Cutoff, U - Global
Market for natural gas, high Market group for Market for natural
Natural gas pressure | natural gas, high natural gas, high gas, high pressure |
pressure | Cutoff, U - RowW pressure | natural natural gas, high

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518.
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gas, high pressure |
Cutoff, U - CA

pressure | Cutoff, U -
RoW

Treatment of biowaste by

voltage | Cutoff, U -
CA-ON
16 kWh
electricity, high
voltage, production
mix | electricity, high
voltage | Cutoff, U -
CA-AB 14.9 kWh
electricity, high
voltage, production
mix | electricity, high
voltage | Cutoff, U -
CA-QC

Biogas anaerobic digestion | biogas - -
| Cutoff, U - RoW
Fuel oil Market for heavy fuel oil | Market for heavy fuel | Market for heavy fuel
number 6 heavy fuel oil | Cutoff, U - oil | heavy fuel oil | oil | heavy fuel oil |
RoW Cutoff, U - RoW Cutoff, U - RoW
Fuel oil Market for hgavy fuel oil |
number 2 heavy fuel oil | Cutoff, U - - -
RoW
Market for hard coal | | Market for hard coal |
Coal Market for hard coal | hard hard coal | Cutoff, U - | hard coal | Cutoff, U -
coal | Cutoff, U - RoW
RoW CN
64.2 kWh electricity,
high voltage,
production mix |
electricity, high
voltage | Cutoff, U - 207.4 kWh
CA-BC 4.8 kWh electricity, high
electricity, high voltage, production
voltage, production mix | electricity, high
mix | electricity, high voltage | Cutoff, U -
voltage | Cutoff, U - CN-SC
CA-NB 22.6 kWh 55 kWh
electricity, high electricity, high
Purchased vgltage, prlOSjuctipn vgltage, prlOSjuctipn
o - mix | electricity, high mix | electricity, high
electricity

voltage | Cutoff, U -
CN-CQ
124.2 kWh
electricity, high
voltage, production
mix | electricity, high
voltage | Cutoff, U -
CN-GZ
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Fig. S3. System boundary for eucalyptus kraft pulping process (Ortega et al. 2024)

Table S9. Average Root-to-Shoot Ratios of Biomasses and Soil Carbon
Stabilization Factor (Forfora et al. 2024)

Biomass Root-to-shoot ratio Soil carbon stabilization
factor over 100 years (%)
Eucalyptus 0.21
Northern softwood 0.32
Bamboo natural forest 0.46
Switchgrass 1.5
Sorghum 0.353
Rice husk 0.14
Hemp hurd 0.18
Sugarcane bagasse 0.16 15
Wheat straw 0.21
Rice straw 0.14
Banana fiber 0.1
Ryegrass straw 0.322

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518.
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Table S$10. Energy Regions Considered in the Carbon Footprint Software

(Ortega et al. 2024; Urdaneta et al. 2024b; Forfora et al. 2025)

bioresources.cnr.ncsu.edu

Country Grid region
WECC
MRO
RF
USA TEXAS RE
NPCC
SERC
Northern
North-eastern
Brazil Mid-eastern
South-eastern
Southern
Chile Country average
China Country average
Portugal Country average
Uruguay Country average
Canada Country average

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518.
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Table S$11. Scenario Exploration of Carbon Footprint for Kraft Pulping and APMP
Processes Under Different Electricity Sources Using Economic Allocation

Carbon footprint impact Carbon footprint impact
Process from hydropower from coal energy
(kg CO2eq/ADt) (kg CO2eq/ADt)
NBSK -19 129
BBK -197 276
APMP -449 623

Table S12. Scenario Exploration of the Carbon Footprint for Kraft Pulping and
APMP Processes under Different Soil Carbon Stabilization Factors Using

Economic Allocation

5% soil carbon 25% soil carbon
Biomass category Bi stabilization stabilization
iomass
(process type) factor factor
(kg CO2eq/ADt) (kg CO2eq/ADt)
Agro-industrial residue .
(APMP) Rice husk 2 -1
Agricultural residue Rice straw 7 6
(APMP)
Agro-industrial residue | Sugarcane bagasse 14 -14
(APMP) Hemp hurd 20 -20
Ryegrass straw 30 -30
Agricultural residue
(APMP) Wheat straw 30 -31
Banana fiber 47 -46
Natural forest
(APMP) Bamboo 80 -80
Dedicated crop (APMP) Sorghum 141 -141
Natural forest Bamboo 149 -149
(Kraft pulping) Northern softwood 156 -156
Tree plantation
(Kraft pulping) Eucalyptus 165 -165
Dedicated crop (APMP) Switchgrass 233 -233

Ortega et al. (2026). “Carbon footprint software,” BioResources 21(1), 2484-2518.
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