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Effect of Thermal Modification Process on Acoustic
Properties Used in Musical Instrument Wood

Ayberk Aydogmus & *

Spruce (Picea orientalis), maple (Acer pseudoplatanus), and mahogany
(Khaya ivorensis) woods are commonly used wood types in making
musical instruments. In this study they were subjected to thermal
modification at 210 °C for 90 min. The changes in bending strength, sound
velocity, acoustic radiation, acoustic impedance, and static and dynamic
elasticity modulus values of wood samples after thermal modification were
investigated. The results showed that spruce wood's acoustic
performance decreased after thermal modification, while maple wood
improved. Meanwhile, the acoustic performance of mahogany wood
remained unaffected by thermal modification. Examining the alterations in
mechanical properties revealed a decline in bending strength in all wood
samples that underwent thermal modification. However, an increase in
modulus of elasticity values was observed in spruce, whereas no change
was found in mahogany and maple.
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INTRODUCTION

Throughout the history of mankind, wooden materials have been used in many
different fields, and their use in the manufacture of musical instruments dates back many
years (Conard et al. 2009). In comparison with other materials, wood is the most used
material in the production of musical instruments, both in terms of aesthetic properties and
it has a high modulus of elasticity value (Bucur 2006). Although the acoustic and
mechanical properties of wood are unique, the main disadvantage is that when used in
humid conditions, acoustical, mechanical and dimensional futures are adversely affected
(Sakai et al. 1990; Kabir ef al. 1998; Obataya et al. 1998; Calegari et al. 2011; Moreno et
al. 2011; Olivera et al. 2014; Yang et al. 2015). For this reason, researchers have attempted
to improve dimensional stability of wood material by impregnating it with various
chemicals (Rowell 2005; Hill 2006; Hill et al. 2021; Sandberg et al. 2021; Mai and Militz
2023; Aydogmus and Cetin 2024). However, because of increased environmental
awareness in the last 25 years, the use of harmful chemicals has decreased (Schultz et al.
2007). As an alternative to impregnation with these chemicals, many researchers have
investigated giving dimensional stability to wood through the use of high temperatures,
which is called thermal modification (Stamm 1956; Burmester 1975; Sarni e al. 1990; Yun
et al. 1999; Homan and Tjeerdsma 2000; Kubojima et al. 2000; Navi and Girardet 2000;
Kamdem et al. 2002; Bekhta and Niemz 2003; Yildiz et al. 2006; Esteves et al. 2007, 2008;
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Korkut et al. 2007; Esteves and Pereira 2009; Kocaefe et al. 2015; Kol et al. 2017; Nourian
2018).

Thermal modification is a physical modification process that causes permanent
changes in the chemical structure of polymers in the cell wall of wood by exposure to high
temperatures to provide dimensional stability (Rusche 1973; Burmester 1975). The main
reason for the dimensional stability induced in wood by heat treatment is due to changes in
the chemical structure that occur due to temperature (Sarni et al. 1990). The impact of
thermal treatment on wood is closely linked to the thermal stability of its main structural
components (Esteves and Pereira 2008). Among these, hemicelluloses are the most
thermally sensitive and begin to degrade at temperatures below 200 °C (Tjeerdsma et al.
1998). This vulnerability is due to their low polymerization degree, highly branched and
variable chemical structure, and amorphous nature (Kozakiewicz et al. 2020).
Hemicellulose degradation is typically accompanied by the release of organic acids (Byrne
and Nagle 1997; Weiland and Guyonnet 2003; Nuopponen et al. 2004). Amorphous
cellulose also undergoes changes relatively quickly, displaying thermal behavior similar to
hemicelluloses. The chemical alteration of polysaccharides during heat treatment results in
the loss of hydroxyl groups, thereby reducing their capacity to interact with water (Esteves
et al. 2008; Esteves and Pereira 2008). In contrast, crystalline cellulose demonstrates
considerable thermal resistance and is only slightly affected at temperatures approaching
300 °C (Kim et al. 2001). Lignin, the most thermally stable wood component, is a complex
phenolic polymer characterized by a heterogeneous structure and a variety of inter-unit
linkages (Kim et al. 2014). Its response to heat varies with temperature: initially, lignin
undergoes depolymerization, followed by acid-catalyzed cleavage of ether bonds, leading
to condensation and elimination reactions (Tjeerdsma and Militz 2005a; Yildiz et al. 2006).
Although many studies have examined changes in dimensional stability and mechanical
properties after heat treatment (Stamm 1956; Sarni et al. 1990; Yun et al. 1999; Homan
and Tjeerdsma 2000; Kubojima et al. 2000; Navi and Girardet 2000; Kamdem ef al. 2002;
Bekhta and Niemz 2003; Yildiz et al. 2006; Boonstra et al. 2007; Korkut et al. 2007, 2008;
Korkut and Guller 2008; Esteves and Pereira 2009; Metsi-Kortelainen and Viitanen 2010;
Jimenez et al. 2011; Lekounougou et al. 2011; Allegretti et al. 2012; Kacikova et al. 2013;
Morrell et al. 2014; Kocaefe et al. 2015; Navickas et al. 2015; Kol et al. 2017; Kozakiewicz
et al. 2020; Roszyk et al. 2020), few studies have investigated changes in the acoustic
properties of heat-treated wood samples (Kubojima et al. 1998; Byeon et al. 2010; Karami
et al. 2013; Del Menezzi et al. 2014; Puszynski and Warda 2014; Pfriem 2015; Zhu et al.
2016; Ahmed and Adamopoulos 2018; Kang ef al. 2019; Mania and Skrodzka 2020;
Zatloukal et al. 2021; Danihelova et al. 2022).

Kubojima et al. (1998) subjected spruce (Picea sitchensis) wood samples to
thermal modification at different temperatures (ranging from 120 to 200 °C) and for
different durations (ranging from 0.5 to 16 h). It was determined that the density of the
samples decreased due to the increase in temperature and duration after thermal
modification. Additionally, the dynamic elastic modulus value exhibited an increase with
thermal modification up to 160 °C, while this value decreased with increasing temperature
and reaction time. The findings of the study indicated that there was an improvement in the
elastic modulus values along with a decrease in moisture content and an increase in
crystallinity in the wood samples.

Another study was conducted to investigate the changes in sound resistance values
of spruce (Picea jezoensis) samples after undergoing heat treatment. The findings revealed
a negative correlation between crystallinity and sound resistance, indicating that as
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crystallinity increased, sound resistance decreased (Zhu et al. 2016). Zatloukal et al. (2021)
conducted research on the change in sound velocity of spruce (Picea abies) wood samples
after heat treatment at 180 and 200 °C. The thermal treatment performed at 180 °C
demonstrated no effect on acoustic properties; however, an increase in temperature resulted
in a 2% increase in sound velocity. Furthermore, an increase in tand value was observed
following all thermal treatment temperatures. Likewise, it was determined that the density
of spruce (Picea abies) and maple (Acer pseudoplatanus) wood decreased as the
temperature increased after the thermal modification process (Danihelova et al. 2022).
Following the thermal modification process, an increase in the wood’s MOE, acoustic
impedance, and sound velocity was observed, while a decrease in damping capacity was
determined (Danihelova et al. 2022). A similar outcome was observed for spruce (Picea
abies) wood samples, which exhibited an 11% increase in dynamic elasticity modulus and
a 5% increase in musical constant after undergoing thermal treatment at various
temperatures (Mania and Gasiorek 2020). This was in parallel with Puszynski and Warda
(2014), who found that after subjecting ash wood samples to heat treatment, the dynamic
elasticity modulus and sound transmission velocity values increased by an average of 7%
and 16%, respectively.

In another study, the effect of heat treatment on the modal frequency and
logarithmic decay coefficient of spruce (Picea abies) wood samples was investigated. The
results indicated that there was no significant change in modal frequency values after
thermal modification. However, it was stated that there was a 10% decrease in the modal
frequency after heat treatment for frequency values in the 2300 and 3500 Hz range.
Furthermore, the logarithmic decreament coefficient exhibited a decline following the
thermal modification process (Mania and Skrodzka 2020). Another study reported that
thermal treatment at 180 °C resulted in an increase in vibration performance for beech
(Fagus slyvatica) wood samples, while no such increase was observed for spruce wood
samples (Buchelt et al. 2023). In a another study, the sound absorption properties of
tulipwood (Liriodendron tulipifera), paulownia (Paulownia coreana), red pine (Pinus
densiflora), and birch (Betula costata) wood samples following heat treatment at 175 and
200 °C were examined. The results indicated that the sound absorption coefficient of the
samples increased with rising temperature (Byeon et al. 2010).

Within this scope, this article investigated the changes in the acoustic properties of
spruce (Picea orientalis), maple (Acer pseudoplatanus), and mahogany (Khaya ivorensis),
which are the most commonly used wood species in musical instrument making, after
thermal modification. It is believed that this study will contribute to the literature by
simultaneously examining the acoustic performance of both softwood, hardwood and
exotic wood samples after thermal modification, particularly in terms of preferred species.

EXPERIMENTAL

Materials

All wood samples, spruce (Picea orientalis), maple (Acer pseudoplatanus,) and
mahogany (Khaya ivorensis) were kindly supplied from Kortiirk Kereste Co. The test
samples, 20 spruce, 20 maple, and 19 mahogany, were prepared in the dimensions of 380
x 25 x 25 mm? for thermal modification.
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Thermal modification process

Thermal modification was completed in a reactor from Tantimber Co. in Diizce,
applied TanWood thermal modification, where wood samples were subjected to steam
heating in a closed system at 1.0 MPa pressure and maximum heating temperature at 210
°C for 90 min. To elaborate further on the thermal treatment stages, the samples were
subjected to gradual heating over a period of four hours until they reach a temperature of
100 °C. Subsequently, at 4-hour intervals, the temperature was incrementally elevated to
the range 130 to 160 and 180 °C, respectively, thereby reducing the moisture content within
the sample to zero. When the final target temperature of 210 °C was reached, the process
was maintained for a duration of 90 min. Thereafter, the cooling rate was augmented to
approximately 12.5 °C per hour, resulting in a return to 100 °C after a total elapsed time of
8 h. After that the temperature was gradually reduced. The specimens were cooled and
moisturized using condensed heat transfer. Wood samples were exposed to a total heat
treatment period of 41 h.

Mechanical properties measurements

The bending strength and static bending elasticity modulus (MOE) values of the
modified samples were determined on the LLYOD LS100 universal testing machine
according to ISO 13061-3 (2014) and ISO 13061-4 (2014) standards.

Acoustical properties measurements

The ultrasonic sound transmission speeds (sound velocity) of the thermally
modified wood samples were determined using the Slyvatest Duo (CBS-CBT, Paris,
France), which measures the transmission time (time of flight, ToF) of an ultrasonic wave
(us) through two conical piezoelectric transducers (one emitter and one receiver) vibrating
at 22 kHz. Medicinal gel was applied to the test specimens to ensure proper contact between
the wood and the transducers. This gel improves the transmission of the ultrasonic wave at
the interface, preventing interferences in the signal. The sound velocity was determined by
dividing the time of sound propagation by the length of the sample was calculated through
the acquisition. The sound velocity was obtained using Eq. 1,

X

v=1 (1)

t

where v is velocity (m/sn), t is the time of flight (sound transmission time, ps), and x is
length of specimen (m). The dynamic elasticity modulus was obtained with Eq. 2,

Edynamic :\/zy (2)

where Egynamic 18 dynamic elasticity modulus (N/mm?), v is velocity (m/sn), and y is the
relative density (kg/m?) of specimen. Another value that indicates the acoustic performance
of wood is the acoustic radiation value. The following Eq. 3 was used to calculate the
acoustic radiation constant,

Acoustic radiation (R) :\/% 3)

where E is dynamic elasticity modulus (N/mm?) and vy is the relative density (kg/m®) of
specimen. Moreover, the sound radiation coefficient describes how much the vibration of
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a body is damped due to sound radiation. The following formula was used to calculate the
sound radiation constant:

Sound radiation = \/% “4)

In addition to these values, the acoustic impedance value also indicates the resistance to
sound wave propagation in wood. Therefore, a low value is advantageous for instrument
making. The acoustic impedance constant was obtained by Eq. 5:

Acoustic impedance (z) =,/E -y (5)

Logarithmic damping (depending on distance) measurements

The distance dependent sound damping was calculated by the pencil break method
(Hsu and Breckenridge 1981). Using a four-channel MISTRAS micro-II digital acoustic
emission system with R 15 AE (acoustic emission) sensor and 2/4/6 preamplifier,
piezoelectric transducers, operating at frequency of 50 to 200 kHz with a threshold of 35 dB
were used to pick up the AE signals from the sample surfaces. Breaking a 0.3 mm tip pencil
on wood samples at 3, 10, 17, 24, and 30 cm away from the sensor, and determining the
decrease in amplitude values depending on the distance. AEwinTM software was used for
data acquisition and to calculate a linear/logarithmic function. The slope of this function
was used as the distance dependent damping coefficient.

FTIR analysis

The FTIR analysis of chemically modified and unmodified wood was obtained
using the KBr (potassium bromide) technique with a Shimatzu 8400s FTIR spectrometer.
The spectra were collected over the 4000 to 400 cm™ wavenumber range, at a resolution of
4 cm™ (40 scans).

Statistical analysis

The analysis of variance (ANOVA) was used to determine the effect of thermal
modification on the acoustic and mechanical properties using IBM SPSS software. The
resulting F value was compared to the tabular F value at the 95% level of confidence. Once
the F-tests revealed significant differences (p < 0.05), Tukey's post-hoc test was used to
make comparisons and identify exactly which groups differ from each other.

RESULTS AND DISCUSSION

Acoustic Properties Changes

In general, wood with high specific dynamic modulus (£/y) combined with a low
acoustic impedance (z) is desired for piano, guitar, and violin soundboards (Wegst 2006).
The changes in acoustic properties (velocity, acoustic impedance, E/y acoustic radiation,
and dynamic elasticity modulus) of wood samples after heat treatment are shown in Table
1, Fig. 1, and Fig. 2.

A statistically significant difference (p < 0.05) was found for all values (sound
velocity, modulus of elasticity, E/y, and acoustic impedance) after heat treatment for spruce
wood except acoustic and sound radiation value. According to the results obtained, the
sound velocity, dynamic modulus of elasticity, £/y value, and the acoustic impedance value
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decreased in spruce wood after thermal modification, while the acoustic and sound
radiation value did not change. Heat treatment had a reducing effect on the acoustic
properties of spruce wood. In the literature, a similar decrease in dynamic modulus value
was found for spruce samples after heat treatment at 210 °C for 90 min (Kacikova et al.
2013). Likewise, Kamdem et al. (2002) found that the MOE value decreased after heat
treatment between 1 and 24 h at temperatures above 200 °C. In the study by Holecek et al.
(2017), it was stated that the MOE value decreased after modification in spruce wood that
was subjected to the Thermowood process for 1 h at 210 °C. Buchelt et al. (2023)
emphasized a similar decrease in spruce wood subjected to heat treatment in a nitrogen
atmosphere for 8 h at 180 °C. Zatloukal et al. (2021) also found a decrease in E/y and
sound velocity after modification for spruce samples heat-treated at 180 to 200 °C for 8 h.
In contrast, Navickas ef al. (2015) exhibited a 1.5% increase in MOE following the heat
treatment of spruce wood at 190 °C for 1 to 3 h. Moreover, Danihelova et al. (2022) found
an increase in MOE, sound radiation, and sound velocity after modification of spruce heat-
treated at 185 °C for 50 min. Similarly, Mania and Skrodzka (2020) stated in his study that
there was a 3% increase in sound velocity for spruce (Picea abies) heat-treated at 180 °C
for 3h. Zhu et al. (2016) observed an increase in £/y value and sound radiation value after
subjecting the spruce wood to heat treatment at 210 °C for 2 to 4 h. It is worth mentioning
that Karami et al. (2013) emphasized that there was no difference in the £/y and damping
values of spruce after hygrothermal modification at 150 °C.

For maple wood, it was found that there was no statistically significant difference
in the values of Young’s modulus and acoustic impedance (p > 0.05), while there was a
statistically significant difference in the other values (sound velocity, E/y, and acoustic
radiation) after heat treatment (p < 0.05). Analyzing the results obtained, there was an
increase in the values of sound velocity, E/y, and acoustic radiation after thermal
modification, while there was a decrease in the value of acoustic impedance. Although
there was a numerical increase in the dynamic elasticity modulus values after the
modification process, this increase was not statistically significant (p > 0.05). In literature,
Danihelovi ef al. (2022) reported an increase in MOE, sound , and sound radiation values
after modification for maple exposed to heat treatment at 185 °C for 50 min. Similarly,
Ahmed and Adamopoulos (2018) observed an increase in sound velocity for birch, poplar,
and ash woods subjected to the Thermowood process in his study. Moreover, Lekounougou
et al. (2011) found an increase in the MOE value of white birch samples after heat
treatment at 215 °C. In addition, Puszynski and Warda (2014) and Roszyk et al. (2020)
also reported an increase in MOE and sound velocity after heat treatment of ash wood at
210 °C in their studies. In contrast, a study by Kaya (2023) revealed a decline in the MOE
value of maple and cypress woods following heat treatment at temperatures of 200 °C for
3h.

An increase in the acoustic properties of wood can be attributed to the impact of
heat treatment on the location of OH-bonds. Thermal treatment has been shown to reduce
the amount of amorphous regions in cellulose and hemicellulose, which ultimately leads to
a decrease in the adsorption of water from the atmosphere. Consequently, this results in a
reduction of the equilibrium moisture content of the wood. It has been demonstrated that
wood with a lower moisture content tends to exhibit higher acoustic properties (Del
Menezzi et al. 2014).

The phenomenon of decreased modulus of elasticity following thermal
modification can be attributed to the degradation of wall materials resulting from heat
treatment. This degradation leads to a change in the modulus of elasticity (Holecek et al.
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2017). Furthermore, cracks that emerge in wood samples following heat treatment may
also exert an influence. Moreover, the decline in density resulting from weight loss has a
negative impact on the MOE. As the modulus of elasticity diminishes due to a reduction in
cell wall material, acoustic properties also decrease (Buchelt ez al. 2023).

For mahogany wood, it was found that there was no statistically significant
difference in all values (sound transmission rate, modulus of elasticity, E/y, acoustic
impedance, and acoustic radiation). It was found that the acoustic properties of the
mahogany samples did not change statistically after the thermal modification process. In
other words, there is no effect of the acoustic properties of mahogany after heat treatment.
A review of the literature pertaining to the alteration of acoustic properties in exotic woods
following heat treatment reveals several notable findings. Del Menezzi et al. (2014)
observed that Simarouba amara wood exhibited no statistically significant change after
being exposed to temperatures of 200 °C for a duration of 70 min. Similarly, Wu et al.
(2016) found that Metasequoia glyptostroboides wood demonstrated no discernible change
when subjected to temperatures of 220 °C for 30 min. Furthermore, de Jesus ef al. (2022)
reported that Bertholletia excelsa wood exhibited no significant alterations following
thermally modified conditions at 200 °C for a duration of 1 h. These observations are
consistent with the results obtained in this study, suggesting that the heat treatment process
does not induce substantial changes in the acoustic properties of exotic woods.
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Fig. 1. Sound velocity of the spruce, maple, and mahogany wood for unmodified and modified
with heat treatment
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Fig. 2. Dynamic elasticity modulus of the spruce, maple, and mahogany wood for unmodified and

modified with heat treatment
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Fig. 3. Bending strength of the spruce, maple, and mahogany wood for unmodified and modified

with heat treatment
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Fig. 4. Static elasticity modulus of the spruce, maple, and mahogany wood for unmodified and
modified with heat treatment

Mechanical properties changes

The changes in mechanical properties (bending strength and static elasticity
modulus) of wood samples after heat treatment are shown in Table 1, Fig. 3, and Fig. 4.

The spruce wood was analyzed and it was found that there was a statistically
significant difference in the values of the bending resistance and the static modulus of
elasticity (p < 0.05). According to the results, the bending strength of the spruce decreased
after thermal modification, but the static MOE increased after thermal modification. In a
review of the literature, Bengtsson et al. (2002) found a decrease in bending strength values
after heat treatment for spruce samples. Similarly, Bonastra (2007) stated that the bending
resistance values of spruce wood decreased approximately 30% after heat treatment with
the PLATO process. In contrast, Allegretti et al. (2012) reported that there was no
statistically significant difference in the static MOE and bending resistance values after
heat treatment with the Thermowood method for Picea abies. However, Tankut et al.
(2014) found an 18% decrease in the bending strength and static modulus of elasticity
values of spruce wood after Thermowood process at 180 °C for 2 h. In contrast,
Kozakiewicz et al. (2014) stated that there was some increase in the bending strength and
static modulus of elasticity values of yellow pine samples after heat treatment at 180 °C.
Similarly, Holecek ef al. (2017) emphasized that spruce wood showed some increase in
static modulus of elasticity after heat treatment at 210 °C. In contrast, Kubojima et al.
(2000) determined that static modulus of elasticity and bending strength decreased in
spruce after heat treatment at 160 °C. Likewise, for spruce, after heat treatment at 200 °C,
a reduction in bending strength of 44 to 50% was observed (Bekhta and Niemz 2003).
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Bending Static Modulus Dynamic Sound E/ Acoustic Acoustic Sound
N Strength of Elasticity Elasticity Velocity MPa- }; Ik Radiation Impedance Radiation
(MPa) (MPa) Modulus (MPa) (m/s) (MPa:m*/Kg) | (m4/kg-s) | (MPa-s/m) | (m*/kg-s)
Mable — Control 20 170.9 11817.3 16656.5 4965.2 27.34 8.57 3.18 270.99
P (31.1) (2126.1) (1877.1) (291.1) (3.3) (0.63) (0.57) (21.05)
Mable — TM* 20 136.8 12674.3 17617.2 5276.3 30.69 9,.80 4.82 308.86
P (22.1) (2365.1) (1044.1) (328.1) (1.86) (0.72) (0.78) (18.72)
Spruce — 20 126.4 8291.8 14080.5 5596 32.54 13.22 2.46 419.80
Control (24.9) (1781.1) (1316.1) (291.1) (2.4) (0.63) (0.27) (20.67)
Soruce — TM* 20 104.1 9488.1 11876.2 5438.4 29.31 13.43 2.32 424.69
P (21,1) (1780.1) (1202.1) (178.1) (3.6) (0.82) (0.20) (25.72)
Mahogany — 19 134.5 9104.8 13408.3 4362.7 20.87 7.10 2.90 224.63
Control (26.8) (1915.1) (4173.1) (409.1) (1.96) (0.73) (0.53) (23.5)
Mahogany — 19 80.1 9435.6 1501.9 4507.7 24.31 7.43 277 252.99
T™* (26.6) (2623.1) (4703.1) (505.1) (1.26) (0.85) (0.57) (27.57)
TM*: Thermally modified; Numbers in parentheses represent as a standard deviation
Table 2. Logarithmic Damping Values of the Samples Depending on the Distance
3 | 10 Dls|tance fro1n; Sensors| (cm) 24 | 31 Logarithmic Decreasing
Curve Equation
dB
Maple — Control 86.69 80.42 76.61 69.53 66.04 y=-13.076 In(x) + 88.644
Maple — Thermally 87.67 81.80 76.79 72.43 69.91 y= -11.202 In(x) + 88.446
Modified
Spruce — Control 91.1 81.63 76.99 70.5 62.01 y=-12.344 In(x) + 89.559
Spruce — Thermally 89.35 81.73 75.48 72.28 69.95 y=-12.852 In(x) + 90.299
Modified
Mahogany — Control 89.83 81.89 74.02 69.42 64.48 =-15.729 In(x) + 90.989
Mahogany — Thermally 89.08 81.20 74.44 68.79 64.20 y=-15.415 In(x) + 90.902
Modified
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An examination of maple and mahogany woods revealed a statistically significant
decline in bending resistance values for both species after undergoing heat treatment.
However, while numerical increases and decreases in MOE values were observed for
maple and mahogany, respectively, these changes were not statistically significant. In other
words, for maple and mahogany after heat treatment, no difference in MOE was found. In
the literature, according to Korkut et al. (2008), studies have shown that the flexural
strength of red maple (Acer trautvetteri) wood remains constant following the heat
treatments within the temperature range of 150 to 180 °C. Similarly, Kozakiewicz et al.
(2020) found no significant difference between the static MOE values of black poplar
(Populus nigra) after 2 h heat treatment at 220 °C. Furthermore, Rokeya et al. (2021) found
a similar reduction in bending strength values after heat treatment in mahogany, Jimenez
et al. (2011) in Malapaya, and Owoyemi et al. (2016) in Gmelina arborea wood.

It is thought that the decrease in mechanical properties is due to wood polymers
degrading as a result of acidic by-products (e.g., acetic acid) being released during thermal
modification (Stamm and Tarkow 1947; Tjeerdsma and Militz 2005a; Hon and Shiraishi
2013). Moreover, it is also assumed that the decrease in bending strength of wood due to
heat treatment is correlated with an increase in mass loss (Tankut ef al. 2014).

In contrast, it was hypothesized that the observed increases in mechanical
properties would be attributable to a decrease in the moisture content of the wood material
following heat treatment, rather than a chemical change in the wood polymers resulting
from thermal modification (Kollmann and Co6té 1968; Sakai et al. 1990; Tsoumis 1991;
Obataya et al. 1998).

FTIR analysis

The thermal modification of all wood blocks was characterized by FTIR spectra
analysis. The FTIR spectra of modified and unmodified (control) groups are shown in (Fig.
5).

The presence of increasing peaks between 1054, 1176 and 1236 cm’! were
indicative of the cellulose component and were associated with the content in crystallized
and amorphous cellulose. The intensity of these bands increased for all wood species,
indicating that amorphous cellulose was more affected during the heat treatment process.
The presence of increasing peaks between 1054 and 1176 cm™ can be attributed to the
stretching of C-O and C-O-C bonds of cellulose and wood hydrocarbons (Ozgeng et al.
2017).

The enhancement of the peak at 1360 cm™ indicates the C-H deformation of the
lignin (CHs)-carbohydrate (CH2) complexes. Moreover, the peak around 1426 and 1515
cm’! are ascribed to the aromatic structures of C=C lignin. The increase in absorption at
these wavenumbers was predominantly attributable to the rise in relative lignin content
observed in the heat treatment samples (Silverstein et al. 2005; Timar et al. 2016). A
reduction in the peak at approximately 2900 cm™ is attributable to the CH2— CH3 sp®
hybridization of hemicelluloses, as these components are subject to degradation following
heat treatment.

Furthermore, the peak observed at 3405 cm™ corresponds to the O-H stretching
vibration (Kotilainen et al. 2000; Lyu et al. 2024). A reduction in peak intensity at 2900
and 3405 cm™' was observed in wood samples that had undergone thermal modification
(Fengel and Wegener 1984; Hill et al. 2021).
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Fig. 5. (A) FTIR spectra of thermally modified maple, (B) FTIR spectra of maple, (C) FTIR spectra
of thermally modified mahogany, (D) FTIR spectra of mahogany, (E) FTIR spectra of thermally
modified spruce, (F) FTIR spectra of spruce

Changes in absorbance peaks are believed to occur due to an increase in lignin and
cellulose and a decrease in hemicellulose in wood after thermal modification (Pandey
2005; Tjeerdsma and Militz 2005b; Pandey and Vuorinen 2008; Lyu et al. 2024).

Damping changes (distance depending)

The logarithmic decrement of wood influences its acoustic properties. Many
researchers (Yano 1994; Obataya et al. 1998, 2000; Matsunaga et al. 2000; Wegst 2006)
have stated that wood with a lower damping ratio is ideal for good wooden sounding
boards.

It was found that all wood samples in this study exhibited a decrease in damping
values after the thermal modification process (Fig. 6). Kang et al. (2016) reported a
decrease in the logarithmic decrement values after heat treatment for spruce and oak wood
samples, while this value increased for pine wood samples. Similarly, Zatloukal et al.
(2021) found that the damping properties of spruce wood decreased after heat treatment.
Moreover, in his studies, Merhar (2024) stated that the damping of spruce (Picea abies)
wood first decreased and then increased as moisture content increased. A study was
conducted to investigate the damping behaviour of 130-year-old and new spruce wood
samples; it was found that the damping of new spruce wood was generally higher than that
of old spruce wood. Furthermore, the results showed that damping in new wood is less

Aydogmus (2025). “Acoustics of thermal wood,” BioResources 20(4), 10532-10551. 10543



PEER-REVIEWED ARTICLE

bioresources.cnr.ncsu.edu

sensitive to changes in moisture content (Goken 2021). Additionally, Ono and Norimoto
(1984) reported that the damping ratio was mainly influenced by the S2 layer orientation
of the cell wall. Therefore, the changes in the S2 layer after heat treatment should also be

investigated in another study.
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Fig. 6. Damping curves depending on distance by using pencil break method

CONCLUSIONS

1.

The thermal modification process improved the acoustic performance of maple wood
but reduced the acoustic performance of spruce wood. However, there was no change
in the acoustic values of mahogany wood after thermal modification.

Examining changes in mechanical properties revealed a decrease in bending strength
in all wood samples after thermal modification. In contrast, an increase in modulus of
elasticity (MOE) values was observed in spruce, while no change was observed in
mahogany and maple woods.

The Fourier transform ingrared (FTIR) analysis revealed an increase in the intensity of
the 1054, 1176, 1350, and 1515 cm™ absorbance peaks. Meanwhile, a decrease in the
2900 and 3405 cm’! peaks were observed in the wood samples after thermal
modification. These changes are believed to stem from a reduction in hemicellulose
content and an increase in lignin and cellulose content following thermal modification.

For all wood samples in this study, it was exhibited that there was a decrease in
damping values after the thermal modification processes.
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