
Preparation of Carbon Quantum Dots from Traditional Chinese Medicine Residues and their Application in Metal Ion Detection

Juping Yan, a,b,* Jiaxin Liu, Kaihui Feng, Jie Luo, Yiru Wang, and Ningning Zhang

* Corresponding author: yanjuping@tyust.edu.cn

DOI: 10.15376/biores.20.4.10406-10413

GRAPHICAL ABSTRACT

Preparation of Carbon Quantum Dots from Traditional Chinese Medicine Residues and their Application in Metal Ion Detection

Juping Yan, a,b,* Jiaxin Liu, Kaihui Feng, Jie Luo, Yiru Wang, and Ningning Zhang

The disposal of residues from traditional Chinese medicine results in resource waste and poses non-negligible environmental concerns. While the synthesis of carbon dots (CDs) from green raw materials has been widely studied, the use of Chinese medicine residues (CMR) which are rich in ligno-cellulosic components as a carbon source for CDs preparation remained largely unexplored. Notably, converting CMR into carbon dots (CMR-CDs) offered a dual benefit: it enhanced resource utilization and mitigated the environmental impact of these waste materials. In this study, CMR-CDs were synthesized via a simple, eco-friendly one-step hydrothermal method for metal ion detection. The CMR-CDs demonstrated highly selective fluorescence quenching toward Fe3+, with a strong linear correlation (R2 = 0.999) between fluorescence intensity and Fe³⁺ concentration (0 to 516 µmol/L). The detection limit was determined to be 6.0 µmol/L. These findings suggest that CMR-CDs hold significant potential for rapid and sensitive Fe3+ detection in future applications, while also highlighting the value of ligno-cellulosic waste in sustainable nanomaterial synthesis.

DOI: 10.15376/biores.20.4.10406-10413

Keywords: Chinese medicine residues; Carbon dots; Metal ion detection

Contact information: a: School of Environmental and Resource, Taiyuan University of Science and Technology, Taiyuan 030024, China; b: Shanxi Key Laboratory of Coordinated Management and Control for Environmental Quality, Taiyuan University of Science and Technology, Taiyuan 030024, China; *Corresponding author: yanjuping@tyust.edu.cn

INTRODUCTION

Carbon dots (CDs), as a new type of nanomaterial with a size of less than 10 nanometers, have received great attention since they were first discovered by Scrivens in early 2004 (Xu et al. 2004). They integrate the advantages of traditional semiconductors (such as inorganic quantum dots) and small molecules (such as fluorophores), and they possess excellent photobleaching resistance, photostability, biocompatibility, and stable physicochemical properties (Luo et al. 2021; Kanwal et al. 2022). Compared with other nanomaterials (Liu et al. 2019), CDs have a wide range of potential application prospects in biomedical diagnosis and treatment (Chen et al. 2023; Govindarajan et al. 2024).

CDs synthesis methods are primarily categorized into two approaches: top-down and bottom-up methods. In top-down process, the macromolecule is destroyed or dispersed into small-sized CQDs by physical or chemical methods (Wang *et al.* 2019; Luo *et al.* 2021). In the bottom-up method, CDs are synthesized from small molecular precursors such as citric acid and glucose using various techniques, including microwave-assisted synthesis (Choi *et al.* 2017; Hu *et al.* 2021), thermal decomposition (Zhang, M. *et al.* 2020;

Zhang, W. et al. 2020), or hydrothermal treatment (Tomskaya et al. 2018). Hydrothermal synthesis is the most advantageous approach for CDs preparation because it is a simple, green, and environmentally friendly method (Liu et al. 2015; Xu et al. 2017).

Ligno-cellulosic material, comprising cellulose, hemicellulose, and lignin, has emerged as a sustainable and abundant carbon source for the synthesis of functional nanomaterials, including CDs (Gan *et al.* 2023). Its sustainability (Isikgor and Becer 2015), low cost, and environmental friendliness make it an ideal precursor for the green synthesis route of CDs. Thus, there is an urgent need to explore new carbon sources derived from lignocellulosic materials for the synthesis of CDs.

Previous studies have demonstrated that Chinese medicine residues (CMR) are mainly composed of lignocellulose and are rich in various nutritional components (Li *et al.* 2024). However, inappropriate disposal methods—such as incineration, stacking and landfilling—not only lead to significant resource waste but also contribute to environmental degradation (Meng *et al.* 2018; de Azevedo *et al.* 2019). Therefore, converting CMR into CDs offers a dual benefit: it provides an innovative carbon source for CDs synthesis while promoting the recycling of valuable resources and mitigating the environmental impact associated with these residues.

This study developed an approach utilizing CMR to synthesize green fluorescent CMR-derived carbon dots (CMR-CDs) through a one-step hydrothermal method. These CMR-CDs were successfully employed for metal ion detection, demonstrating their potential for practical applications in environmental monitoring and providing a sustainable solution for CMR utilization.

EXPERIMENTAL

Materials

CMR were provided by the pharmacy of a traditional Chinese medicine hospital in Shanxi province. The chemical reagents were purchased from Tianjin Comieo Chemical Reagent Co., Ltd. All reagents were used directly without further purification.

Preparation of the CMR-CDs

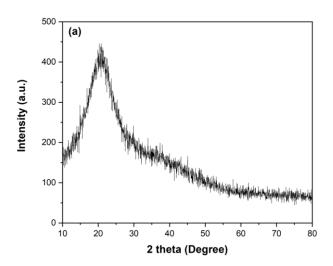
The CMR was dried in the constant temperature oven for 24 h, and then crushed in a pulverizer and passed through a 24-mesh sieve. Next, 1.5 g of CMR's powder and 60 mL of ultrapure water were added to a beaker. The mixed solution was stirred with a glass rod for 5 minutes, and then transferred to the high-pressure reaction kettle. The hydrothermal reaction was conducted at a constant temperature of 180 °C for 6 h. After cooling to room temperature, the untreated solution of CMR-CDs was filtered by a 0.22 μ m filter paper to remove large impurities. A total of 25 mL of supernatant was transferred into a dialysis bag with cut-off of 1000Da; the purified CMR-CDs solution was obtained after 18 h. The solution was freeze-dried and stored.

Characterization Methods

The carbon structure of CMR-CDs was analyzed by X-ray diffractometer (Fringer Class, LANScientific, China). An infrared spectrometer (IRXross, Shimadzu, Japan) was employed to analyze the functional group and chemical composition of CMR-CDs. The fluorescence intensity of CMR-CDs was measured by a fluorescence spectrophotometer (F2710, Hitachi, Japan). The ultraviolet absorption spectrum of CMR-CDs was determined

using a UV spectrophotometer (TU-1901, Puxi, China).

Detection of Fluorescence Process


The mother liquors solution of Fe³⁺, K⁺, Na⁺, Mg²⁺, Ni⁺, Cu²⁺, Mn²⁺, Co²⁺ and Al³⁺ were 0.05 mol/L, and 30 μ L of the above solutions were pipetted for each experiment in the ion selectivity experiment. Mother liquors solution (570 μ g/mL) was prepared by dissolving 2.85 mg of CMR powder in 5 mL ultrapure water, which was subsequently diluted to 57 μ g/mL for the selectivity experiments of metal ions. Five minutes were waited after mixing Fe(III) ions with the CQDs before measuring fluorescence. The fluorescence intensity of the CMR-CDs solution without and with metal ions was recorded as F_0 and F, respectively. Finally, the ratio between (F_0 -F) and F_0 was calculated.

The fluorescence intensity of CMR-CDs (1.6 mL, 2000 μ g/mL) with different concentration of Fe³⁺ were investigated. The fluorescence intensity of the mixed solution of Fe³⁺ and CMR-CDs were recorded as F, and the fluorescence intensity of CMR-CDs solution without Fe³⁺ were recorded as F_0 , finally the linear correlation coefficient (R²) were calculated based on the value of F_0/F under different concentration of Fe³⁺.

RESULTS AND DISCUSSION

Characterization of the CQDs Structural

The XRD pattern of the CDs (Fig. 1a) displays a strong peak at ca. 21 °, which reveals the amorphous carbon structure of the CDs. The functional groups of the CMR-CDs were presented in the infrared spectrum of CMR-CDs with the wavelength range of $4000 \text{ to } 1000 \text{ cm}^{-1}$.

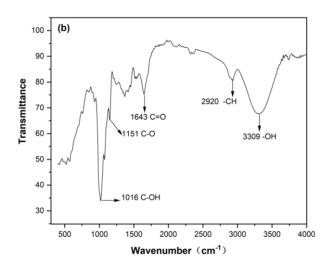
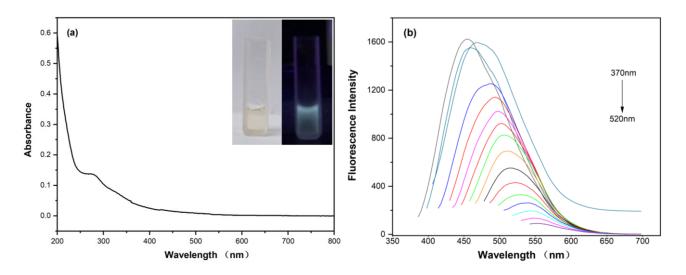


Fig. 1. (a) The XRD pattern of the CQDs and (b) Fourier transform infrared spectrum of CMR-CDs


As shown in Fig. 1b, the absorption peak at 1016 cm⁻¹ corresponds to the stretching vibration of C-OH, and the peak at 1643 cm⁻¹ is produced by stretching vibration of carbonyl. The absorption peak at 2920 cm⁻¹ corresponds to the C-H stretching vibration, which may arise due to the methyl or methylene groups associated with aliphatic hydrocarbon (Yang *et al.* 2022). The broad absorption peak at 3309 cm⁻¹ corresponds to the stretching vibration of -OH group (Dai *et al.* 2023). Therefore, CMR-CDs contain

water-soluble functional groups such as carboxyl, hydroxyl, and carbonyl on the surface. The presence of the carboxyl groups yields a negative ionic charge at the surface of the CMR-CDs, as well as a good water solubility.

Optical Properties of CQDs

As shown in Fig. 2a, there was an absorbance peak of CMR-CDs in the ultraviolet region at 273 nm, which is attributed to the π - π * energy transitions of the C=C bond with sp² hybridization (Xing *et al.* 2024; Yang *et al.* 2024). As shown in the inset photograph of Fig. 2a, the CMR-CDs solution was brownish yellow under sunlight and emitted bright green fluorescence under ultraviolet light (365 nm), which demonstrated that the CMR-CDs had the excellent capacity to absorb UV light of that wavelength.

CDs luminescence is dependent on the excitation wavelength (Xing et al. 2024). As shown in Fig. 2b, the excitation wavelength of CMR-CDs increased from 370 nm to 520 nm with the increase of 10 nm, while the emission wavelength shifted from 454 nm to 522 nm. The fluorescence intensity gradually decreased when the excitation wavelength increased, and the optimal excitation wavelength was 370 nm. These results were consistent with previous reports. The dependence of excitation wavelength may be due to particle size and surface defects (LeCroy et al. 2017; Nguyen et al. 2020).

Fig. 2. (a) UV-visible absorption spectra of CMR-CDs. Inset photographs of CMR-CDs solutions under sunlight (left) and ultraviolet light (right) and (b) Emission spectra of CMR-CDs at different excitation wavelength

Application of CMR-CDs in Metal Ion Detection

The selectivity was investigated by adding Fe^{3+} and other metal ions, including K^+ , Na^+ , Ba^{2+} , Ni^+ , Mg^{2+} , Mg^{2+} and Co^{2+} ions. As shown in Fig. 3, the quenching ratio (Fo-F)/ F_0 for CMR-CDs in Fe^{3+} solution was nearly 96%, while the quenching ratio of CMR-CDs in other metal ions was below 10%, which indicated that the CMR-CDs had higher selectivity for Fe^{3+} .

As shown in the Fig. 4a, the fluorescence intensity of the CQDs decreased as the Fe³⁺ concentration increased. A linear relationship was observed for the Fe³⁺ concentration in the range 0 to 516 μ mol/L (Fig. 4b), with the corresponding calibration curves $F_0/F=0.0045[Fe^{3+}]+0.9613$ (R²=0.999). Previous studies demonstrated that the detection

limit of the ion can be calculated as the ratio of three times of the standard deviation of blank experiment to the slope of the calibration curve (Yang *et al.* 2022). In this study, the detection limit of Fe³⁺ ion was 6.0 μ mol/L, which indicated that CMR-CDs can quantitatively analyze Fe³⁺ and had potential application value in environmental detection.

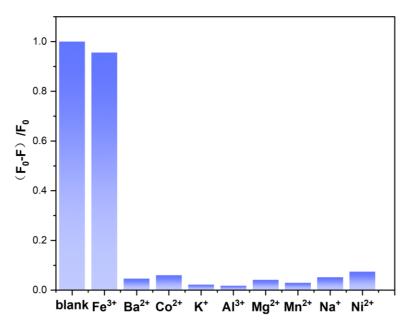
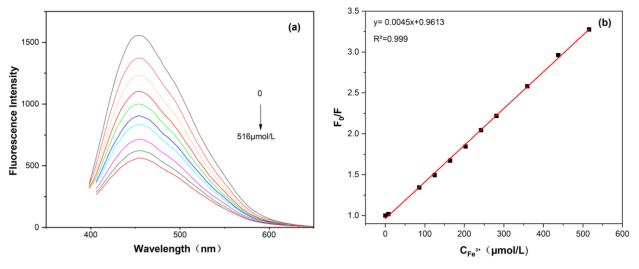



Fig. 3. Selectivity of CMR-CDs to Fe³⁺ ions

Fig. 4. (a) Fluorescence spectra of CMR-CDs in response to different Fe³⁺ concentrations and (b) Linear relationship between F₀/F and Fe³⁺ in the range of 0 to 516 μ mol/L

CONCLUSIONS

1. A simple, green, and promising route for the synthesis of carbon dots (CDs) with onestep hydrothermal process was established using Chinese traditional medicine residues (CMR) as a carbon source. The prepared CMR-CDs with good water solubility, and abundant water-soluble functional groups on the surface. This study highlights the

- potential application value of CMR, which is rich in lignocellulose, in the synthesis of CDs, indicating its potential to become a sustainable raw material.
- 2. The CMR-CDs emitted green fluorescence under the UV-Visible light. The CMR-CDs equipped the excitation wavelength-dependence property. The optimal excitation and emission wavelength were 370 nm and 454 nm.
- 3. CMR-CDs exhibited excellent selective fluorescence quenching response to Fe³⁺. The low detection limit and the broad detection range of the Fe³⁺, which are promising for wide applications in environmental monitoring.

ACKNOWLEDGMENTS

This research was supported by scientific and technological innovation programs of higher education institutions in Shanxi (2023L-184).

REFERENCES CITED

- Chen, R., Ma, H. G., Li, X. P., Wang, M. J., Yang, Y. B., Wu, T., Zhang, Y., Kong, H., Qu, H. H., and Zhao, Y. (2023). "A novel drug with potential to treat hyperbilirubinemia and prevent liver damage induced by hyperbilirubinemia: Carbon dots derived from *Platycodon grandiflorum*," *Molecules* 28, article 2720. DOI: 10.3390/molecules28062720
- Choi, Y., Jo, S., Chae, A., Kim, Y. K., Park, J. E., Lim, D., Park, S. Y., and In, I. (2017). "Simple microwave-assisted synthesis of amphiphilic carbon quantum dots from A3/B2 polyamidation monomer set," *ACS Appl. Mater. Interfaces* 9, 30356-30363. DOI: 10.1021/acsami.7b06066
- Dai, F.W., Zhuang, Q.Y., Huang, G., Deng, H.Z., and Zhang, X. (2023). "Infrared spectrum characteristics and quantification of OH groups in coal," *ACS Omega* 8, 17064-17076. DOI: 10.1021/acsomega.3c01336
- de Azevedo, A. R. G., Alexandre, J., Pessanha, L. S. P., Manhaes, R. D.T., de Brito, J., and Marvila, M. T. (2019). "Characterizing the paper industry sludge for environmentally-safe disposal," *Waste Manage*. 95, 43-52. DOI: 10.1016/j.wasman.2019.06.001
- Gan, J., Chen, L., Chen, Z., Zhang, J., Yu, W., Huang, C., Wu, Y., and Zhang, K. (2023). "Lignocellulosic biomass-based carbon dots: Synthesis processes, properties, and applications," *Small* 19, article 2304066. DOI: 10.1002/sml1.202304066
- Govindarajan, P. R., Antony, J. A., Palanisamy, S., Ayrilmis, N., Khan, T., Junaedi, H., and Sebaey, T. A. (2024). "Advances in manufacturing of carbon-based molecular nanomaterials based on rice husk/hull waste," *BioResources* 19(4), 9834-9852. DOI: 10.15376/biores.19.4.Govindarajan
- Hu, X., Li, Y., Xu, Y., Gan, Z., Zou, X., Shi, J., Huang, X., Li, Z., and Li, Y. (2021). "Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of *Escherichia coli* in milk," *Food Chem.* 342, article 127775. DOI: 10.1016/j.foodchem.2020.127775
- Isikgor, F. H., and Becer, C. R. (2015). "Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers," *Polym. Chem.* 6, 4497-4559. DOI: 10.1039/c5py00263j

- Kanwal, A., Bibi, N., Hyder, S., Muhammad, A., Ren, H., Liu, J., and Lei, Z. (2022). "Recent advances in green carbon dots (2015-2022): Synthesis, metal ion sensing, and biological applications," *Beilstein J. Nanotechnol.* 13, 93-106. DOI: 10.3762/bjnano.13.93
- LeCroy, G. E., Messina, F., Sciortino, A., Bunker, C. E., Wang, P., Fernando, K. A. S., and Sun, Y. P. (2017). "Characteristic excitation wavelength dependence of fluorescence emissions in carbon 'quantum' dots," *J. Phys. Chem. C* 121, 208-215. DOI: 10.1021/acs.jpcc.7b10129
- Li, X.-Y., Zhang, C.-C., Cheng, M., Chen, M., Qian, D., Tian, K., and Yang, G. (2024). "Main nutrients content in different specifications of *Gastrodiae Rhizoma*," *Zhongguo Zhong Yao Za Zhi* 49(4), 104-110. DOI: 10.19540/j.cnki.cjcmm.20240216.104
- Liu, R. L., Zhang, J., Gao, M. P., Li, Z. L., Chen, J. Y., Wu, D. Q., and Liu, P. (2015). "A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers," *RSC Adv.* 5(6), 4428-4433. DOI: 10.1039/c4ra12077a
- Liu, Y.-X., Chen, G., Tian, C., Gupta, R., Wang, X. G., and Zeng, H. B. (2019). "Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury," *Environ. Technol.* 40(27), 3602-3610. DOI: 10.1080/09593330.2018.1482372
- Luo, W.-K., Zhang, L.-L., Yang, Z.-Y., Guo, X.-H., Wu, Y., Zhang, W., Luo, J.-K., Tang, T., and Wang, Y. (2021). "Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing," *J. Nanobiotechnol.* 19, article 320. DOI: 10.1186/s12951-021-01072-3
- Meng, X.-C., Du, H.-W., Wei, W.-F., and Huo, J.-H. (2018). "Problems and countermeasures in development of Chinese materia medica resource," *Chin. Tradit. Herb. Drugs*, 49(16), 3735-3741. DOI: 10.7501/j.issn.0253-2670.2018.16.002
- Nguyen, H. A., Srivastava, I., Pan, D., and Gruebele, M. (2020). "Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution," *ACS Nano* 14(5), 6127-6137. DOI: 10.1021/acsnano.0c01924
- Tomskaya, A. E., Egorova, M. N., Kapitonov, A. N., Nikolaev, D. V., Popov, V. I., Fedorov, A. L., and Smagulova, S. A. (2018). "Synthesis of luminescent N-doped carbon dots by hydrothermal treatment," *Phys Status Solidi B* 255(1), article 222. DOI: 10.1002/pssb.201700222
- Wang, X., Feng, Y., Dong, P., and Huang, J. (2019). "A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application," *Front. Chem.* 7, 671. DOI: 10.3389/fchem.2019.00671
- Xing, Y., Wang, Y. N., and Li, H. C. (2024). "Synthesis of carbon quantum dots based on quinoa straw and their application in alkali metal ions detection," *BioResources* 19(2), 3319-3327. DOI: 10.15376/biores.19.2.3319-3327
- Xu, X. Y., Ray, R., Gu, Y. L., Ploehn, H. J., Gearheart, L., Raker, K., and Scrivens, W. A. (2004). "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments," *J. Am. Chem. Soc.* 126(40), 12736-12737. DOI: 10.1021/ja040082h
- Xu, Y. H., Li, D., Liu, M. L., Niu, F. S., Liu, J. Q., and Wang, E. K. (2017). "Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass *Enteromorpha prolifera*: Synthesis, posttreatment, applications and mechanism study," *Sci. Rep-UK*. 7(1), 4499-4510. DOI:10.1038/s41598-017-04754-x
- Yang, J. L., Guo, Z. J., and Yue, X. T. (2022). "Preparation of carbon quantum dots from corn straw and their application in Cu²⁺ detection," *BioResources* 17(1), 604-615. DOI: 10.15376/biores.17.1.604-615

- Yang, X. D., Fu, S. Y., Basta, A. H., and Lucia, L. (2024). "A true biomass standout: Preparation and application of biomass-derived carbon quantum dots," *BioResources* 19(3), 6838-6945. DOI: 10.15376/biores.19.3. Yang
- Zhang, M., Cheng, J., Zhang, Y., Kong, H., Wang, S., Luo, J., Qu, H., and Zhao, Y.J.N. (2020). "Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice," *Nanomedicine* 15(9), 851-869. DOI: 10.2217/nnm-2019-0369
- Zhang, W., Wu, B., Li, Z., Wang, Y., Zhou, J., and Li, Y. (2020). "Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples," *Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy* 229, article 117931. DOI: 10.1016/j.saa.2019.117931

Article submitted: August 25, 2025; Peer review completed: September 18, 2025; Revised version received and accepted: September 30, 2025; Published: October 17, 2025.

DOI: 10.15376/biores.20.4.10406-10413