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Mathematical Modeling and Machine Learning
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Anaerobic digestion (AD) is a widely recognized method for converting
organic waste into biogas, offering a sustainable solution for both waste
management and renewable energy generation. This review critically
examines recent advancements in mathematical modeling and machine
learning (ML) approaches applied to biogas production from AD
processes. The study categorizes the models into daily and cumulative
biogas production models, kinetic models, and hybrid Al-based predictive
techniques. Special attention is given to the comparative evaluation of
first-order kinetics, modified Gompertz, and Chen-Hashimoto models,
highlighting their applicability and limitations. Furthermore, the integration
of artificial neural networks (ANNs) and other ML algorithms is discussed
in the context of optimizing biogas yield, understanding system dynamics,
and reducing operational uncertainties. Research gaps are identified,
including the need for more robust hybrid models, real-time monitoring
systems, and studies under diverse feedstock and environmental
conditions. The review emphasizes that combining traditional modeling
with intelligent systems offers a powerful approach to enhancing AD
performance and scaling sustainable energy solutions.
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INTRODUCTION

Anaerobic digestion (AD) converts organic waste into biogas (primarily CHa and
C0»), delivering simultaneous sanitation and energy recovery, and aligning with circular
economy goals (Jameel et al. 2024; Alengebawy et al. 2024). Across common feedstocks,
including sewage sludge, agricultural residues, food waste, and manure co-digestion, as
well as process tuning (temperature, pH, organic loading rate (OLR), hydraulic retention
time (HRT)), it is possible to enhance yields and stability when the system is properly
managed (Adnane et al. 2024; Liu et al. 2025). Mathematical modeling has emerged as a
critical tool in understanding, simulating, and scaling up AD processes across various
substrates, including sewage sludge, agricultural residues, and municipal solid waste
(Abdel Daiem et al. 2021). Recent advancements in kinetic and mechanistic modeling
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approaches have significantly improved the predictive accuracy and control of AD systems
(See Table 1).

Unlike mathematical models, machine learning (ML) learns patterns from data,
enabling flexible prediction and optimization of biogas production. In recent years, the
application of ML in renewable energy has gained significant traction, particularly in
modelling complex biological processes such as AD for biogas production (Najafi and
Ardabili 2018; Beltramo et al. 2019; Abdel Daiem et al. 2021; Cruz et al. 2023; Komarysta
et al. 2023; Shindell et al. 2024; Zhu et al. 2025). The nonlinear and dynamic nature of
biogas production processes makes conventional modelling approaches less effective. In
contrast, artificial neural networks (ANNSs) offer high adaptability, pattern recognition, and
learning capabilities, making them well-suited for predicting biogas yields from various
organic feedstocks (Abdel Daiem et al. 2021). This is especially relevant in the context of
sewage sludge and biomass residues, which vary in composition and behaviour during
digestion. The integration of ANN into biogas research represents a promising direction
for optimizing system performance and enhancing energy recovery, aligning with global
sustainability and waste-to-energy initiatives.

The ML techniques have become promising alternatives and complement the
traditional mathematical models discussed in this paper, especially for dealing with AD
processes’ non-linear, dynamic, and uncertain characteristics. Unlike deterministic models,
such as the modified Gompertz or logistic equations, which depend on specific kinetic
assumptions and can have difficulty handling variable feedstocks or operational conditions
(Roberts et al. 2023; Ling et al. 2024), ML methods are data-driven and capable of
capturing complex patterns from high-dimensional inputs without predefined mechanisms
(Ling et al. 2024). This makes them suitable for predicting biogas yields, optimizing co-
digestion ratios, estimating uncertain parameters, and supporting monitoring of real-time
(models that continuously update predictions and provide actionable outputs during
ongoing AD plant operation using live SCADA data streams) in multi-dimensional AD
systems (Asadi and McPhedran 2021). Recent studies (2019 to 2025) have utilized ML
algorithms, such as ANNs (Cruz et al. 2023; Komarysta et al. 2023), random forests (RF),
support vector machines (SVM), and deep learning models (LSTM) for AD, often
comparing their performance favourably to traditional models (Yildirim and Ozkaya 2023).
These approaches address research gaps, such as incorporating parameter uncertainty
through probabilistic predictions and extending to multi-dimensional inputs via feature
engineering and hybrid models (Sappl et al. 2023).

This review article presents a novel, integrative synthesis of recent advancements
in the modelling and optimization of AD processes for biogas production, focusing on the
convergence of mathematical modelling and ML techniques. While prior reviews have
addressed modelling frameworks in isolation, this work uniquely bridges deterministic
kinetic models with data-driven approaches, offering a comparative assessment of their
capabilities, limitations, and future trajectories. Thus, the purpose of this study is to
evaluate the predictive performance of widely used mathematical models, such as first-
order kinetics, modified Gompertz, and Chen—Hashimoto models, alongside ANN and
hybrid ML models, including random forests, SVMs, and deep learning architectures. The
review highlights how ML algorithms increasingly address the nonlinearities and
uncertainties inherent in AD systems, particularly for complex substrates such as sewage
sludge, food waste, and co-digested residues. Moreover, it outlines gaps in current
modelling practices, including limited real-time adaptability, feature selection, and
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parameter sensitivity analysis. It proposes future extensions involving hybrid modelling
frameworks and smart digesters. Through integrating insights across computational and
engineering domains, this review advances a comprehensive understanding of biogas
system optimization, promoting scalable and intelligent waste-to-energy solutions aligned
with sustainability goals.

Table 1. Summary of Key Studies on Anaerobic Co-Digestion, Highlighting
Substrates, Operating Conditions, Biogas/Methane Yields, and Kinetic/Statistical
Model Performance
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Novelty and Distinctiveness

This review differs from others in the following respects:

1. Classical vs. ML Modeling: The review compares classical kinetic models (first-
order, Gompertz, Chen-Hashimoto) with ML approaches across daily-rate and cumulative-
yield frameworks. Findings highlight where traditional kinetics remain useful and where
ML achieves better predictive accuracy.

2. Multidimensional Kinetic Framework: A multidimensional framework is
introduced, treating kinetic parameters as functions of operational variables such as
temperature and mixing ratio. This enables response surfaces that support scenario
mapping and process optimization, which are rarely discussed in prior AD reviews.

3. Stochastic Parameter Uncertainty: Kinetic parameters are modeled as random
variables using stochastic methods, including Karhunen—Loéve expansions. This generates
probabilistic biogas trajectories with means, quantiles, and variances, offering a risk-aware
alternative to point estimates.

4. ML Applications: Advanced ML methods (LSTM, TFT, SHAP) are synthesized
for forecasting, optimization, and stability control in AD systems. Their performance is
benchmarked against kinetic baselines, emphasizing practical deployment guidance.

5. Hybrid Mechanistic-ML Framework: A hybrid framework integrates
mechanistic kinetics with ML residual learning, enabling IoT-based smart digesters.
Recommendations for dataset standardization and cross-validation strengthen pathways
toward real-world implementation.

6. Up-to-Date Coverage: The article emphasizes the most recent advances (2023—
2025), including emerging algorithms (LSTM, hybrid ML models) and updated kinetic
formulations, which have not been synthesized elsewhere.

MATHEMATICAL MODELS

Daily Biogas Production Models

Table 2 identifies the parameters and their goodness of fit using daily biogas
production models (linear, exponential, and Gaussian models). Among the case studies
summarized in Table 2, exponential daily-rate functions consistently achieved the highest
goodness-of-fit on both rising and falling limbs (R? = 0.960-0.999), followed by Gaussian
profiles when a single, roughly symmetric peak was present (R* = 0.95). Linear fits were
acceptable mainly for descending limbs or simple substrates but tended to underfit peak
regions and onset dynamics. Practically, daily-rate forecasting should default to
exponential models unless there is strong peak asymmetry or multi-modal behavior; linear
fits are best used for quick, conservative screening.

Exponential daily-rate models are the most reliable across substrates and digestion
stages, with Gaussian profiles competitive when production exhibits a single, symmetric
peak; linear fits chiefly succeed on descending limbs and under simple matrices. Lo et al.
(2010) and Latinwo and Agarry (2015) illustrate this pattern: exponential fits track both
rise and fall with the highest R?, Gaussian captures unimodal curves, and linear
underestimates peak curvature. Practically, investigators often default to using exponential
approaches for short-horizon forecasting and reserve Gaussian approaches for pronounced
single-peak shapes; they use linear fitting only for conservative trend screening.
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Table 2. Daily Biogas Production Models (Linear, Exponential, and Gaussian) Applied to Diverse Feedstock, with Key
Parameters and R? values. All models Show Strong Predictive Accuracy (R? > 0.90), with Exponential Models Excelling in
Dynamic Phases and Gaussian Models Performing Well for Heterogeneous Wastes

Model Main Target Model Parameters Goodness of Fit R? Sub-target (if it Exists) | References
Organic fraction of MSW co- a =0.8360, b =0.1641 The best R2 = 0.9579 FA/MSW:10 gL Lo et al.
digested with MSWI ashes (for the ascending limb) bioreactor 2010
a=16.7085,b =-0.4283 The best R2 = 0.9211 BA/MSW: 100 g L -
s (for the descending limb) bioreactor
2 Cow dung only N/A R? = 0.8850 (Ascending limb) — Latinwo and
| R? = 0.9950 (Descending limb) Agarry
Mixture of cow dung and N/A R? = 0.8790 (Ascending limb) 2015
plantain peels R? = 0.9970 (Descending limb)
Landfill gas generation of Eight weeks, rising limb a = R?=0.84 — De
municipal solid waste after 0,b = %0113 ¢ =0.0803 Gioannis et
mechanical-biological treatment Eight weeks, falling limb R?=0.90 al. 2009
a=0,b=
€%0066 ¢ =.0.0348
15 weeks, rising limb a = R?=0.81
0,b = e%0108 ¢ =0.0773
15 weeks, falling limb a = R?=0.95
_Tg 0,b = e%0061 ¢ =.0.0347
c
% Organic fraction of MSW co- Rising limb a = 20160,b = R? =0.9579 FA/MSW: 10 g L' Lo et al.
3 digested with MSWI ashes 20160,c=8.135x 107° 2010
L Falling limb a = R? =0.9288 FA/MSW: 10 g L™
0.0047,b =
172.65, c =-0.0936
Cow dung only N/A R? = 0.9988 (rising limb) — Latinwo and
R? = 0.9969 (falling limb) Agarry
Mixture of cow dung and N/A R? = 0.9951 (rising limb) 2015
plantain peels R? = 0.9969 (falling limb)
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Model Main Target Model Parameters Goodness of Fit R? Sub-target (if it Exists) | References
Organic fraction of MSW co- a=>5.312,t, The best FA/MSW: 20 g L Lo et al.
S — digested with MSWI ashes = 32.68, b = 3.05696 R2=0.9486 2010
g S Heterogeneous organic and a =57,t, =N/A,b=17.24 The best R2=0.95 Garden wastes (9 — Nielfa et al.
3 E° inorganic wastes with the 11%VS) mixture with the 2015
o organic fraction of municipal OFMSW (2.5%VS)
solid waste (OFMSW)
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Linear model

The linear model has been used to simulate and predict the daily biogas production
resulting from AD (Rossi et al. 2022). This model assumes that the biogas production starts
at an initial time, ¢, with a value P, , and then increases linearly up to a maximum value
Ppay at time £, after which it decreases linearly to a final value, Ps at time ;. This plot

has two limbs, an ascending limb for 7, < t < £, and a descending one for 1, <t < ¢ .
Assuming the plot similarity about the maximum value, the model equation can be written
as,

a+b(t —ty,),ty <t <tpy

Pbg: (1)
a+ b(t —ty)tm <t=<t

where a and b are two dimensionless constants to be determined for the best fitting of the
experimental data. They may be expressed as some other constants multiplied by P, and

Pmax—Po
( Im—1to
statistical indices are not as satisfying as those of some other models. However, this model,
along with the exponential one, was shown by Lo et al. (2010) to have a better plot for the
descending limb for the BA/MSW 100 g L ! bioreactor in the process of biogas production
from the organic fraction of MSW co-digested with MSWI ashes. Moreover, this model
was employed to simulate the biogas production resulting from cow dung only and cow
dung with plantain peels (Latinwo and Agarry 2015). It showed an R? of 0.885 for the
ascending limb and 0.995 for the descending one in the first case, while it was 0.879 and
0.997 for the ascending and descending limbs, respectively, in the second case. These
correlation values are not that satisfying in comparison with the other models used in the
same study. Nevertheless, linear models can still be valuable for first-cut assessments or
when computational simplicity is paramount.

), respectively. Generally, this model is considered the simplest one, but its

Exponential model

This model proposes an exponential increase in the daily biogas production with
time up to an inevitable climax, and then it would decrease exponentially to zero (De
Gioannis et al. 2009; Lo et al. 2010; Latinwo and Agarry 2015). The model equation is
given by Eq. 2,

Ppg =a + bexp (ct) (2)

where a and b are two constants (L Kg~1d~1) while c is another constant (d 1), the latter
has a positive value for the rising limb and a negative value for the falling one. De Gioannis
et al. (2009) used this model in its differential form to simulate Municipal Solid Waste
(MSW) landfill gas generation after mechanical biological treatment. Their study aimed to
estimate the model constants after 8 and 15 weeks. Regarding R?, the model accuracy
showed 0.84 and 0.90 for the rising and falling limbs, respectively, in the case of eight
weeks of gasification, while it was 0.81 and 0.95 for 15 weeks. Moreover, Lo ef al. (2010)
utilized the exponential model in their work mentioned above, where the best R? values
were 0.9579 and 0.9288 for the rising and falling limbs, respectively, and both were
achieved in the case of FA/MSW 10 g L', Furthermore, Latinwo and Agarry (2015) have
employed this model to simulate biogas production resulting from both cow dung and cow
dung activated by plantain peels, showing outstanding representation in both cases. The R?
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for the ascending and descending limb was 0.9988 and 0.9969 in the first case, while
0.9951 and 0.9969 for the second.

Gaussian model

The Gaussian distribution is usually used to plot numerous natural phenomena
(Simon 2002; Lo et al. 2010). It has also been used to describe bacterial growth, resulting
in biogas production during AD. Therefore, this model and some other models for growth
and decay can be used to simulate the daily production process. The Gaussian model is
given as Eq. 3,

Ppg =aexp (— (t — 1,,)?/2b?) 3)

where a is a constant (L Kg~'d~1), while t,, and b are the mean and standard deviation,
respectively, in (d ), this model has been investigated by Tonner et al. (2017) to simulate
the differential effects of media, genetics, and stress on microbial population growth.
Moreover, it was utilized to simulate and predict the biogas production evaluated by Lo et
al. (2010), where the best R? was 0.9486 in the case of FA/MSW 20 g L', In addition,
Nielfa et al. (2015) used this model to simulate methane production resulting from the
composition of heterogeneous organic and inorganic wastes with OFMSW. The highest R?
was achieved in the case of a garden waste mixture with the OFMSW, where it was 0.95.

However, AD operational monitoring and management depend heavily on daily
biogas output models. Data in Table 2, together with Eqgs. 1 to 3, indicate that although
basic models such as Gaussian, exponential, and linear can fit the ascending and
descending limbs of daily production, their accuracy is strongly influenced by the substrate
and process conditions. For example, the exponential model can achieve excellent fits (R?
up to 0.9988) for certain organic fractions and waste combinations, while the linear model
performs reasonably well (R? up to 0.96) but is often outperformed. The Gaussian model,
with good fits (R? = 0.95) for heterogeneous organic wastes, also demonstrates robustness
and usefulness in simulating the symmetric rise and fall of daily production rates in specific
systems.

For operations, daily-rate models are most useful for short-term scheduling,
diagnosing inhibition or overload patterns, and checking whether a feeding change alters
rise or fall constants as expected. Exponential forms are a sensible default for forecasting
both sides; Gaussian is informative when production shows a single, symmetric peak, while
linear fits act as conservative trend indicators rather than control-relevant predictors. These
choices help operators prioritize sampling frequency and decide if a perturbation requires
adjusting the OLR or mixing strategy in the next cycle.

Linear, exponential, and Gaussian daily-rate forms implicitly assume a unimodal
production curve under a stable operating regime over the day, with negligible gas-
holding/back-pressure effects. In continuous or semi-batch operation, feed pulses,
temperature swings, transient inhibition (e.g., ammonia, sulfide, long-chain fatty acids),
foaming, or mixing disruptions can create asymmetric or multi-peak profiles that a single
exponential or Gaussian cannot reproduce, biasing rise/fall constants and peak timing (Lo
et al. 2010; Altas 2009). In such cases, segmented fits or multi-population kinetics are
preferable; at minimum, re-fit pre-/post-perturbation windows and avoid extrapolating
across regime shifts (Ling et al. 2024).
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Cumulative Biogas Production Models

Table 3 summarizes cumulative-yield models and reveals a clear pattern: the
modified Gompertz consistently achieves near-perfect fits across various substrates and
operating conditions (R? = 0.98 to 1.00), often outperforming the logistic and modified-
logistic models. The exponential rise-to-maximum model performs exceptionally well in
landfill BMP contexts (R* = 0.99 to 0.996), while simple logistic models are mainly
competitive for more homogeneous feedstocks (e.g., manure). In practice, A (ultimate
potential) and A (lag) are the most influential parameters in modified-Gompertz fits,
emphasizing the importance of accurate estimation or uncertainty ranges.

Engineering interpretation of cumulative-yield parameters directly supports design
and start-up. The ultimate potential A informs gasholder/CHP sizing and energy contracts;
the lag 4 frames warm-up and acclimation windows; and the maximal rate Dm or kinetic
constant & links to target HRT and expected time to plateau. Sensitivity analyses around A4
and 4 are therefore recommended before committing to co-digestion ratios or pre-treatment
choices, especially where substrate supply is seasonal or heterogeneous.

Logistic kinetic model

The model assumes an exponential increase up to a maximum value and remains
constant (Latinwo and Agarry 2015). It has three parameters: 4, which is the biogas
production potential (L Kg~—1d~1); b, a dimensionless constant; and k, another constant
(d~1). Equation 4 expresses this model:

Py=A/ (1 +bexp (-k t)) 4)

The modified Gompertz model most consistently attains near-perfect cumulative
fits across feedstocks and operating regimes, with A4 (ultimate potential) and 4 (lag)
dominating sensitivity; exponential rise-to-maximum excels in landfil/BMP contexts;
while logistic/modified-logistic forms are competitive for homogeneous manures. Lo et al.
(2010), Nielfa ef al. (2015), and Deepanraj et al. (2017) embody these trends, modified
Gompertz captures lag and plateau robustly, exponential rise-to-maximum performs in
mid-range, and simple logistic is adequate when variability is low. Design-wise, use A4 for
gasholder/CHP sizing, A for start-up windows, and D» or K to inform HRT and time-to-
plateau.

Modified logistic model
This model is based on the bacterial population growth, which leads to the biogas
production during the AD process using Eq. 5 (Amleh and Al-Freihat 2025),

Pyy=A/ (1 +exp (2 - t)+2)) )

where A is as defined before, u is the maximum rate of cumulative biogas production, and
A 1s the lag (delay) time for the start of biogas production. This model was studied by Jafari-
Sejahrood et al. (2019) to plot and predict the biogas production from cow manure, where
its R? was 0.993. Moreover, the inhibitory effect of four heavy metals on the methane-
producing anaerobic granular sludge was studied using the same model by Altas (2009).
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Table 3. Biogas Production Kinetic Models (Exponential, Logistic, Modified Gompertz, Modified Richards) Showing High
Predictive Accuracy across Substrates, with Modified Gompertz Achieving R? > 0.99 in Most Cases

Model Main Target Model Parameters Goodness of Fit Sub-target (if it References
R? Exists)
The biochemical methane potential of A=0.2327, k=0.0823 R2=0.9961 for - Bilgili et al.
& landfilled solid waste R1 2009
- A=0.2768, k =0.0759 R? = 0.9942 for
8¢ R2
=5 Organic fraction of MSW co-digested with | A=241.9, k=0.0112 R?=0.9907 In a case-control Lo et al. 2010
S E MSWI ashes bioreactor without ash
c X i
o addition
5 E Cow dung only A=7616x10° k=1.15x 107 R?=0.8543 Ain (dm%gm) Latinwo and
3 Mixture of cow dung and plantain peels A=8.26 x 10° , k= 1.247 x 107 R?=0.8561 Agarry 2015
w Heterogeneous organic and inorganic A=140,k=0.24 R?=0.99 OFMSW only Nielfa et al.
wastes with the OFMSW 2015
o Cow dung only A=10.55,b=80.15, k=0.1249 R?=0.9859 -- Latinwo and
7 }-3 Mixture of cow dung and plantain peels A=4918,b=5512, k=0.1766 R2=0.9775 Agarry 2015
D
= L4
Biogas production from cow manure A=14.489, u=0.326, R? = 0.9930 -- Jafari-
.j__{ A =12.099 Sejahrood et al.
i) 2019
5’ The inhibitory effect of four of these A=0.65to 44.14, -- - Altas 2009
o metals on the on methane-producing p=0.121t0 3.21,
g.“:_’ anaerobic granular sludge A = 6.40 to 68.66
3 The biogas production of food wastes co- A=9764.9, R? =0.9991 Ultrasonication (US) | Deepanraj et al.
= digested with poultry manure M= 841.3, 2017
A=31
Cow dung only A=4733, D, =0.0059, R?=0.9834 -- Latinwo and
b 8 A=7.178 Agarry 2015
e 8 Mixture of cow dung and plantain peels A=5.660,D, =0.0134, A =6.11 R?=0.9895
3 g Inhibition of heavy metals on fermentative A=1711t0 10, R2?>0.95 (in all For Zn concentrations Li and Fang
=0 hydrogen production D, =49t00.1, cases) (0 to 5000) 2007
by granular sludge A=4.61029.9
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Model Main Target Model Parameters Goodness of Fit Sub-target (if it References
R? Exists)
The effects of ionic Cr, Cu, and Zn on the A=12810 177, R2=0.9912 to Investigating the Cu Lin and Shei
fermentative hydrogen production of D, =0.8t019.2, 0.9998 effect 2008
sewage sludge A=31033.7
Bio-hydrogen production from food waste A=193.85, R? =0.9821 -- Li et al. 2008
and sewage sludge in the presence of D, =94.35,
aged refuse excavated from the refuse A=15.28
landfill
The inhibitory effect of four of these A=0.65to 38.73, R?>0.99 (in all -- Altas 2009
metals on the on methane-producing D, =0.11t02.94, cases except that
anaerobic granular sludge A =5.57 t0 66.45 for Cr)
Kinetics of hydrogen production from N/A RZ=0.994 -- (Mu et al. 2007)
N sucrose by mixed anaerobic cultures
E Mixture of manure and rumen (ratio = 1:1), A=172.51 + 6.64, R%=0.9983226 -- (Budiyono et al.
g— (MR 11) D,, =3.89 £+ 0.28, 2010)
o A=7.25+1.65
g Mixture of manure and water (ratio = 1:1), A=73.81 + 4.01, R?=0.9987334
@ (MR 11) D,=1.74 +0.13,
5 A=14.75+ 2.87
§ The co-digestion of horse and cow dung A =360, D, =36.99, A =8.07 RZ=0.998 Case of 75% horse (Yusuf et al.
dung and 25% cow 2011)
dung
Organic fraction of MSW co-digested with | A=165.4, D,,=4.507, A = 5.67 The best R? = In case of FA/IMSW 10 | (Lo et al. 2010)
MSWI ashes 0.9977 gL’
Modeling biogas production kinetics of A=34.18,D,=2.05 A=3.99 The best R? = In case of Cu with (Tian et al.
various heavy metals exposed anaerobic 0.9989 concentration 500 mg 2020)
fermentation process L
Heterogeneous organic and inorganic A=299, D,=21.42,A=2.54 The best R? = In case of meat/fish (Nielfa et al.
wastes with OFMSW 1.00 wastes 2015)
The biogas production of food wastes co- | A=8964.3, D,,=712.6,A=2.8 The best R? = In case of NT (Deepanraj et
digested with poultry manure 0.9995 al. 2017)
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Model Main Target Model Parameters Goodness of Fit Sub-target (if it References
R? Exists)
The inhibitory effect of four of these A=0.651t044.83,y, =0.11 R?>0.99 (in all -- (Altas 2009)
= metals on the on methane-producing t02.94, A=5571067.24, v - cases except that
ol anaerobic granular sludge 1.0.1 for Cr)
58 —
§ ;—:’ The kinetics of hydrogen production from N/A R? =0.994 -- Mu et al. 2007
sucrose by mixed cultures
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These studied metals were zinc, nickel, cadmium, and chromium, where the
correlation coefficient R was greater than 0.99 for all metals except chromium. In addition,
Mu et al. (2007) investigated the kinetics of hydrogen production from sucrose by mixed
anaerobic cultures. They used this model, which shows an R? of 0.9916. Concerning the
food waste, Deepanraj et al. (2017) studied the biogas production of food waste co-digested
with poultry manure. They considered four types of digestate pre-treatment: autoclave
(AC), microwave (MW), ultrasonication (US), and a no-pre-treatment case (NT). The best
fit of this model for the US is where R? = 0.9991.

Exponential rise-to-maximum model

The exponential rise to maximum model describes many physical phenomena in
various fields, including biology, physics, economics, and finance. The model has two
parameters: 4 and k. The first one, 4, is the biogas production potential (L Kg~*d~1), while
k is another constant (d™!), and is given as the following equation (Bilgili et al. 2009):

Pyg=A (1- exp(-k 1)) (6)

Bilgili et al. (2009) investigated the exponential rise to maximum model for
predicting the biochemical methane potential of landfilled solid waste. They designed two
landfill reactors; R1 operated with leachate recirculation and R? without it. The best R? was
0.9961 for R1 and 0.9942 for R? after 400 days of operation for both reactors. For the same
problem treated above by Lo et al. (2010), this model was applied, where the best R? was
0.9907 in the case of the control bioreactor without ash addition. Moreover, Latinwo and
Agarry (2015) studied it for the two instances of cow dung only and cow dung with plantain
peels where it showed less R? of 0.9907 in the first case and 0.8543 for the second case.

Gompertz model

The Gompertz model equation contains three constants, 4, b, and c. The constant
A is the biogas production potential (L Kg~1d 1), while b is a dimensionless constant, and
c is another constant in (d~1) (Zwietering et al. 1990; Mueller et al. 1995; Lo et al. 2010;
Peleg and Corradini 2011):

Ppg =Aexp (—exp (b —ct)) (7)

Modified Gompertz model
The modified Gompertz model is one of the most notable models and presented by
Eq. 8 (Zwietering et al. 1990; Li and Fang 2007; Budiyono ef al. 2010; Lo et al. 2010):

Ppg =A exp (- exp (% (4- t)+])) (8)

This model equation has the constant 4 as defined before, D,, is the maximal daily
biogas production rate (L Kg=1d™1), 1 is the lag phase (d ), and e is Euler’s number. This
model was extensively applied in many AD problems because of its high correlation. Li
and Fang (2007) used this model to simulate the inhibition of H2 production potential due
to the effect of six heavy metals on the activity of a granular sludge. They calculated the
model constants for different concentrations of these metals, where R? > 0.95 in all cases.
Moreover, Lin and Shei (2008) studied the effects of ionic Cr, Cu, and Zn on the
fermentative hydrogen production of sewage sludge. They used different dosages for each
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metal and estimated the model constants and correlation in all cases. The model was nearly
perfect for the experimental data, with the best R? values of 0.9981, 0.9998, and 0.9923 for
investigating the effects. Combined with emerging data analytics, these extensions promise
to bridge the gap between theoretical modelling and practical implementation in diverse
operational contexts of Cr, Cu, and Zn, respectively. In addition, Altas (2009) studied the
inhibitory effect of four of these metals as mentioned above, where it was shown that R?
was greater than 0.99 for all metals except Cr. Additionally, Tian ef al. (2020) studied the
kinetic evaluation of the biogas potential from a heavy-metal-stressed anaerobic
fermentation process. The model showed good correlation for most studied metals with
different concentrations, where the best R?> was 0.9989. Furthermore, Li et al. (2008)
investigated the enhancement of bio-hydrogen production from food waste and sewage
sludge in the presence of aged refuse excavated from a refuse landfill. They applied the
modified Gompertz model to plot the biogas production, which showed a relatively high
correlation with R? of 0.9820. In another work concerning food waste, Deepanraj et al.
(2017) used this model to simulate the four cases of digestate, as mentioned before. The
best was 0.9995 in the case of NT. Moreover, Mu et al. (2007) used this model in the
problem mentioned, showing an R? of 0.9940. Budiyono et al. (2010) predicted the biogas
production rate from cattle manure. They employed this model for two substrates to
investigate the effect of liquid rumen to cumulative biogas production. The first substrate
consisted of 100 g manure and 100 mL rumen (MR 11), while the second one consisted of
manure and water in equal weight ratio (MW 11). The biogas production from both
substrates was studied, the model parameters were estimated and R? was 0.9983 for MR
11 and 0.9987 for MW 11. In addition, they have performed further experiments in room
temperature and 38.5 °C to investigate the temperature effect on the biogas production from
both substrates. Furthermore, this model has been used to plot the biogas production
resulted from the co-digestion of horse and cow dung (Yusuf et al. 2011), where they
designed five different mixtures of these dungs based on weight. The maximum biogas
production potential and the best R?> were achieved for the ratio of 75% horse dung and
25% cow dung, where R? was 0.998. Moreover, it was utilized to simulate and predict the
biogas production evaluated by Lo et al. (2010), where the best R* was 0.9977 in case of
FA/MSW 10 g L!. Furthermore, concerning the MSW, Nielfa et al. (2015) used this model
to simulate the methane production as mentioned before. The best R? was achieved for the
meat/fish mixture with the OFMSW, which was 1.00.

Furthermore, cumulative biogas production models are critical for estimating total
biogas yield, which is an essential parameter for system design and economic viability.
Data in Table 3, together with Equations (4-8), indicate that the Logistic, Modified
Gompertz, and Exponential Rise-to-Maximum models consistently achieve high prediction
accuracy (R? typically >0.98-0.99) across a variety of substrates, including cow manure
and complex industrial wastes. The Modified Gompertz model stands out for its broad
applicability and reliability, successfully fitting data even under inhibitory conditions such
as heavy metal exposure. This consistently high performance underscores its prominence
as the preferred kinetic model for comprehensively understanding the digestion process
and predicting ultimate gas potential.

Less-used models
Some models are rarely used to plot the biogas production resulting from the AD
process. This may be due to their complicated formulas, which may contain more than one
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constant, and hence their difficulty in application. This group of models includes Richard,
Stannard, Schunte, and their modified versions. This model used the equation of Richards’s
model which is represented by the following equation (Hsieh 2009),

Pp,=A (1 +vexp (— k(‘r—t)))(_l/V) 9)

where A4, k, and 7 are the biogas production potential, delay time, and a constant,
respectively, while v is an additional constant that provides more flexibility for the biogas
production simulation, as shown by Eq. 10:

-1/v)
Py=A <1 +v exp(I+V) . exp (“7’" (1+v) (1+ ’;) (- z))) (10)

Consider v = m-1, and depending on the value of m, Eq. 10 will be reduced to: the
Gompertz equation if m—1, monomolecular equation if m = 1, logistic equation if m = 2,
or the von Bertalanfty if m = 2/3 (Fan et al. 2004).

This model was used by Mu et al. (2007) to investigate the kinetics of hydrogen
production from sucrose by mixed cultures, where it showed a good correlation to the
experimental data, as R” was 0.994. In addition, it was utilized to investigate the inhibitory
effect of four heavy metals on the methane-producing anaerobic granular sludge by Altas
(2009), and R* was greater than 0.99.

In contrast, the Stannard model equation is represented in Eq. 11 (Zwietering et al.
1990),

-p
Pye=A <1+exp (— (H:) )) (11)

where /, k, and p are constants. The modified version of the Stannard equation is the same
as the modified Richards' equation, which is given by Eq. 12:

(=1/v)
Pp,=A <] +v exp(I1+v) . exp (% (1+v) (1+ ];) (1- t))) (12)

One more model that belongs to this section is the Schunte model, which is
represented by Eq. 13 (Zwietering et al. 1990),

s ena ey \ O
- exp\-a —T
Pye= (y{’+(y£’-y{’)- p—1)> (13)

1- exp(—a (5-71)

and its modified version equation is given by Eq. 14 (Zwietering et al. 1990):

I-b I- b exp(ai +1-b—at )\ (/D)
Puc= (1, 57 (- =5

However, no key works were addressed in the literature using both Stannard and
Schunte models and their modified versions.

Sigmoidal equations (logistic/modified Gompertz, Richards/Schunte) presume a
single dominant population and constant biodegradability; co-digestion, pre-treatment, or
staged hydrolysis—acidogenesis—methanogenesis often produce shoulders or long tails
(multiple inflections) that a one-sigmoid curve cannot capture (Nielfa er al. 2015;
Deepanraj ef al. 2017). Parameter equifinality is common: 4 often trades off with Dy or K

(14)

Galal et al. (2025). “Math modeling biogas production,” BioResources 20(4), 11237-11266. 11251



PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu

when sampling is sparse (e.g., < daily), and 4 can absorb gas losses, leakage, or incomplete
degassing, inflating uncertainty (Bilgili et al. 2009; Lo et al. 2010). Inhibition episodes
flatten mid-slope and shift apparent lag (Altag 2009; Tian et al. 2020). Mitigations include
higher early-phase sampling, consistent methane normalization (STP, dry gas, per gVS),
mass-balance checks, and reporting parameter Cls or Bayesian posteriors rather than single
best fits.

Machine Learning Approaches

Table 4 summarizes key peer-reviewed studies emphasizing ML applications
related to biogas production in AD. Table 4 details the algorithms used, data sources,
performance metrics (e.g., correlation coefficient (R?) and root mean square error
(RMSE)), comparisons with traditional models when available, and specific AD contexts.
The studies reviewed show a shift from mechanistic to data-driven modelling, with ML
consistently achieving higher accuracy (R? often above 0.90) than traditional kinetic
models like Gompertz or logistic, especially in co-digestion scenarios involving sewage
sludge, agricultural waste, or food waste (Asadi and McPhedran 2021; Ling ef al. 2024).
For example, tree-based models (RF, XGBoost) perform well in full-scale systems because
they handle non-linearity and feature importance through SHAP, highlighting key variables
like OLR, pH, and biomass input (Zou ef al. 2024). Deep learning methods, such as LSTM
with attention or TFT, provide probabilistic forecasts and capture long-term dependencies,
addressing parameter uncertainty with quantile regression and data augmentation (Jeong et
al. 2021). The regression-based models can be updated with new data, but they usually
require explicit recalibration or retraining, whereas ML (especially online learning or
adaptive ML). Hybrid techniques incorporating GA or PSO for optimization improve
biogas yield and stability management (Salamattalab et al. 2024).

Feature engineering and data quality are crucial, as high-frequency SCADA data or
derived indices (e.g., VFA/ALK) improve predictions without needing extensive lab
measurements (Zou et al. 2024). Incorporating genomics or pre-treatment data expands the
input space, connecting microbial communities to performance (Adeleke et al. 2025).
Explainable Al tools address the "black-box" issue, building trust and enabling integration
with biokinetic equations for physics-informed hybrids (Gupta et al. 2023).

This extension fills gaps in traditional models by enabling multi-dimensional
simulations, such as with variable selection networks, and managing stochastic parameters,
for instance, through ensembles. Future research should focus on creating standardized
datasets, facilitating real-time IoT integration, and developing hybrid ML-mechanistic
frameworks to deploy robust AD systems on a large scale.

Therefore, Table 4 shows that ML methods consistently outperform traditional
kinetic models in predicting biogas production, particularly for the co-digestion of diverse
wastes. Tree-based models (RF, XGBoost) and deep learning approaches (LSTM, TFT)
effectively handle non-linearity, probabilistic forecasting, and feature importance. Hybrid
optimization techniques (GA, PSO) further improve biogas yield and process stability.
High-frequency SCADA data, feature engineering, and genomics enhance prediction
accuracy, while explainable Al tools (e.g., SHAP) increase operational trust and allow
integration with biokinetic models. These advancements fill gaps in traditional approaches
and enable multi-dimensional simulations.
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Table 4. Applications of ML in AD (ANN, LSTM, TFT, RF, etc.) Showing High Predictive Performance across Substrates and
Processes, often Surpassing Classical Kinetic Models and Enabling Real-time Optimization and Decision Support

AD Application

ML Algorithms and Data

Key Outcomes (Metrics, Comparison)

References

Combined microbial electrolysis—AD
system; real-time optimization

ANN, ANFIS; pH, oxidation-reduction
potential, solids, HRT, OLR, voltage, current

R? = 0.984 (ANN); RMSE = 188 mL day™
(ANFIS); outperforms deterministic
models

Tufaner et al. 2025

Lignocellulosic biomass pre-
treatment; biomethane yield
optimization

ANN, RF, SVM, DT; NaOH-pretreated Xyris
capensis biomass; SHAP, k-means

RF: RMSE = 3.15, MAPE = 5.75%);
superior to kinetic models; exposure time
key

Adeleke et al. 2025

Global AD review; perturbation
detection, parameter estimation

ANN, FL, ANFIS, SVM, RF, GA, PSO; hybrid
GA-ANN

R? = 0.9986 (GA-ANN); ML outperforms
deterministic models; SCADA integration

Ling et al. 2024

Dry AD of kitchen waste; real-time
stability control

Eight algorithms (CatBoost); data from four
dry AD plants; SHAP

CatBoost: R? = 0.604-0.915 (biogas),
0.618-0.768 (VFA/ALK); soft sensors

Zou et al. 2024

Municipal wastewater AD; emission

Non-linear regression vs. ANN, ANFIS, GA,

R = 0.81 (regression); ANN/ANFIS higher

Asadi and McPhedran

prediction VFA, solids, pH, flow but uncertain; rates 22.0 to 28.6 m® min™ 2021
Full-scale co-digestion; raw LSTM with GA feature selection; raw R?=0.84 to 0.90; GA improves LSTM,; Salamattalab et al.
wastewater influence wastewater, sludge data; BODs, COD, TSS HRT essential 2024

Food-waste AD; feedstock
configuration

Mixup augmentation + global-attention LSTM,;
food-waste data

Accuracy = 0.988; prevents overfitting;
better than classical models

Geng et al. 2024

Time-series quantile prediction;
operational planning

Temporal Fusion Transformer (TFT); high-
frequency data, categorical features

MAPE < 8% (7-day); probabilistic
quantiles; interpretability via attention

Sappl et al. 2023

WWTP biogas prediction; decision
support under limited input data

Eight ML models tested; 3-model voting
ensemble; full-scale WWTP sludge data;
SHAP for feature importance

R2=0.778, RMSE = 0.306; return sludge
and influent temperature key features

Sun et al. 2023

Municipal co-digestion; short-term
forecasting

MLP; daily lab + minute-SCADA data; 11
derived features

Adjusted R? = 0.78, MAPE = 13.4%;
SCADA nearly as good as lab;
outperforms others

Schroer and Just
2023

Industrial AD; continuous monitoring
and stability

RF, ANN, KNN, SVR, XGBoost; industrial-
scale AD data

RF best: R = 0.924; suggests loT
integration; tree-based superior for large
datasets

Yildirim and Ozkaya
2023

Municipal wastewater AcoD; process
optimization and prediction under
missing data

Hybrid DL: DA-LSTM + Variable Selection
Network (VSN); 2-year AcoD data

R2 LSTM = 0.38 — DA-LSTM = 0.68 —
DA-LSTM-VSN = 0.76; VSN improves
interpretability via feature importance

Jeong et al. 2021
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Across pilot and full-scale settings, ML methods generally outperform classical
kinetic baselines for short-term forecasting and stability proxies, with many studies
reporting usable accuracy (often R* > 0.80) for operational decision-making. Tree-based
ensembles (RF, XGBoost/CatBoost) are the most reliable with tabular SCADA inputs,
while sequence models (LSTM/TFT) capture temporal dependencies and enable
probabilistic (quantile) forecasts.

Explainability tools (SHAP/attention) consistently identify OLR, pH, temperature,
and feed configuration as primary levers, and soft-sensor surrogates (e.g., VFA/ALK)
enhance early warning. Practically, plants can retain modified-Gompertz-type fits for
design/batch contexts and layer ML for online supervision, provided basic hygiene (outlier
handling, rolling/external validation) is in place to limit overfitting and improve
transferability. In practice, ANN models may overfit small datasets and fail to generalize
to new substrates or variable operating conditions. Industrial deployment is further
constrained by the high cost of sensors, limited data availability, and the complexity of
integrating ML models into real-time control systems.

Comparative Performance of Models

To evaluate the relative strengths of different modelling approaches, a comparative
analysis was conducted between mathematical models and ML by using ANN techniques
applied to biogas production from co-digestion systems. This comparison assessed
predictive accuracy using statistical indicators such as R and RMSE. The results provide
insights into the trade-offs between classical kinetic formulations and advanced data-driven
methods.

Table 5 presents a comparative analysis between classical and ML models’
performance metrics for predicting biogas production from co-digestion systems for the
same dataset (Abdel Daiem et al. 2021). The comparative analysis highlights the
performance of both traditional TDMMs and ANN approaches in predicting biogas
production from co-digestion systems.

Among the mathematical models, the logistic kinetic formulation emerged as the
most accurate, with an R? value of 0.9879, although all mathematical models achieved
strong correlations (R?> 0.97). Nevertheless, their relatively large RMSE > 1000 indicates
limited predictive precision when applied to dynamic and nonlinear digestion processes,
underscoring their inability to capture the complexity of anaerobic digestion fully. In
contrast, ANN-based approaches demonstrated considerably lower error margins (RMSE
< 10), highlighting their superior capacity to model process variability and nonlinear
relationships.

Conventional ANN training methods such as back-propagation, Marquardt—
Levenberg, and ant colony optimization yielded moderate-to-high predictive accuracy (R?
between 0.89 and 0.92); however, the integration of metaheuristic optimization techniques
substantially improved performance. Specifically, the MFFNN-MFO model achieved near-
perfect predictive accuracy (R? = 0.9994; RMSE = 3.86), clearly outperforming both
conventional ANN structures and mathematical models. These findings illustrate the value
of ANN models, particularly when coupled with advanced optimization algorithms, in
addressing the complexity of anaerobic digestion systems and emphasize the potential of
hybrid ANN-optimization frameworks as robust and reliable predictive tools for biogas
production modelling.
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Table 5. Comparative Analysis between Classical and ML Models’ Performance
Metrics for Predicting Biogas Production from Co-digestion Systems (Abdel
Daiem et al. 2021)

Model R? (Correlation RMSE (Root Notes
Coefficient) Mean Square
Error)

Logistic Kinetic Model 0.9879 1079.00 Best-performing

mathematical model
Equnentlal Rise-to- 0.9753 1540.00 Lower accuracy than
Maximum logistic
Modified Gompertz 0.9815 1334.20 Good fit but less robust
Modified Logistic 0.9845 1221.00 Reliable, close to a

logistic model
ANN-BP (Back 0.8990 7.20 Acceptable, but weaker
Propagation)
ANN-ML (Marquardt- 0.9200 3.94 Improved ANN
Levenberg) performance
ANN-ACO (Ant Colony 0.900 7.50 Like BP
Optimization)
MFFNN-MFO (Proposed Highest predictive
ANN with Moth Flame 0.9994 3.86 ghestp
L accuracy

Optimization)

RESEARCH GAPS AND AVAILABLE FUTURE EXTENSIONS

Following the previous review of the mathematical modelling of the AD process,
some research gaps have arisen, which can be considered promising candidates for future
extensions. These gaps may be concluded as follows.

Future Extensions: Actionable Directions AD

Recent practice in AD has introduced dosing of conductive materials (e.g., biochar,
Fes04) to stimulate direct interspecies electron transfer (DIET) (Lo ef al. 2010). A natural
extension is to augment cumulative kinetic models (e.g., Chen—Hashimoto, modified
Gompertz) with a conductivity/DIET factor,

kett=ko [1 + a0 P / (1 +y d)] (15)

where ¢ denotes the mass fraction of conductive additive and d a representative particle
size, this formulation preserves parameter interpretability while explicitly linking additive
dosing to performance. Calibration requires only routine operational data (biogas rate,
temperature) supplemented with two readily available proxies: oxidation, reduction
potential, and slurry conductivity. Toxic inhibition (e.g., free NHs, sulfide, LCFA) can be
included multiplicatively via Haldane-type terms, allowing operators to evaluate when
inhibitory effects offset DIET benefits and to adjust set-points accordingly (Lo et al. 2010).

For control-oriented applications, the process can be represented by two coupled
states, hydrolysis/acidogenesis and methanogenesis, driven by measurable or soft-sensed
variables. The following equations define a minimal state-space model,

x=[S_VFA, X _meth] (16)
%= f(x, OLR, T, pH), (17)
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with outputs including biogas flow and a soft VFA/ALK indicator derived from pH,
alkalinity, and gas rate. An extended Kalman filter or moving-horizon estimator can
integrate SCADA data with the soft sensor to reconstruct unmeasured states and provide
(1 to 3) day acidification risk bands, enabling operators to connect forecasts to actionable
levers (e.g., OLR ramping, temporary set-point changes, co-substrate throttling) (Schroer
and Just 2023).

Given the prevalence of small, noisy datasets, plant-level kinetic parameters should
be treated as random effects, e.g., (4, 4, Dm) j~ N(u, 2) for plant j. Partial pooling stabilizes
estimates in data-scarce settings while retaining site-specific behaviour. Multi-facility
fitting with leave-one-plant-out validation quantifies transferability, producing plant-
specific posterior distributions with credible intervals. These can be propagated into risk-
aware dashboards and sustainability KPIs (e.g., GWP per kWh, LCOE), ensuring that
uncertainty is explicitly visible in decision-making (Gala 2021).

For forecasting with tree- or sequence-based ML models, embedding domain
constraints is essential: monotonicity of biogas rate with OLR (within safe ranges), positive
correlation of VFA with OLR, and soft penalties for mass-balance violations. Residual-
based change-point detection (e.g., CUSUM, Bayesian online methods) can flag
operational regime shifts (feedstock change, mixer outage). These triggers initiate
lightweight re-tuning and widen predictive intervals, transforming ML from a static
predictor into an operator-safe assistant (Ling ef al. 2024).

Finally, the experimental design can be optimized to reduce the cost of BMP and
pilot trials. Starting from a Latin-hypercube of feed ratios and pre-treatments, cumulative
or hybrid models are fitted, and the next experimental point is selected by maximizing
expected reduction in parameter uncertainty under safety constraints (e.g., VFA/ALK <
threshold). This adaptive loop accelerates the development of decision-quality models for
novel feedstock mixtures while minimizing resource requirements (Tiwari et al. 2025).

Incorporating Parameter Uncertainty

Estimating the model parameters is one of the main objectives when simulating
biogas production over the AD process using mathematical modelling. However, if the
same AD process has been repeated enough times, these parameters are expected to vary
slightly from time to time. Few studies estimated the ranges of some model parameters to
investigate their variations. For example, Kumar et al. (2004) achieved a qualitative
assessment study of different methane emission data using municipal solid waste disposal
sites; Danner (2006) considered the parameter uncertainty for some of the growth models;
Budiyono et al. (2010) estimated the parameters' ranges in the modified Gompertz equation
that was used to simulate the biogas production resulting from cattle manure.

Mathematically, to express these parameters more accurately, they may be
described as random variables rather than deterministic ones. In such a case, a general
parameter, y, can be expressed by the following equation (Ghanem and Spanos 2003),

y(@) =y(1+ & ¢(0) (18)

where €, is a controlling factor for the random part and ¢(6) is a random variable that
describes the expected uncertainty in the deterministic value of y. The random variable
&(0) is a real-valued measurable function defined on a probability space as £(0): Q
— R, defined on the triple probability space (Q, F,P). This random variable can be
assigned entirely by repeating the AD process a relatively large number of times, then
estimating the model parameters in each time. For each parameter, the obtained values can
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then be plotted to determine its probability distribution and its statistical moments such as
mean, variance, skewness, and kurtosis, so that a complete definition for this uncertain
parameter will be available. The repetition of the AD process several times to determine
the parameter uncertainty requires short-time processes and many reactors working
simultaneously. Moreover, when the parameter uncertainty is more complicated and
expected to have higher fluctuations with time, the random part can be expressed as a
random process as Eq. 16,

y(t,0) =y(1+ & D(t; 0)) (19)

where @(t;0) is a second-order random process with a finite variance. This random
process can be expanded into random variables multiplied by deterministic constants using
K-L expansion, as Eq. 17 (Ghanem and Spanos 2003),

y(t;0) = 7(t) + L2144 fi(®) &(6) (20)

where y(t) is the mean value of yt;0, {ifi=1x is a set of uncorrelated random variables,
AL fit are the eigenvalues and Eigen functions, respectively. Both 4;, f;(t) can be evaluated
by solving the integral Eq. 18,

fD Cyy(tn, tz) fi(ty) dty = A;f;(E2) (21

where D is the time domain over which y(t; 0) is defined and t;, t, € D.

Including these parameters, uncertainty in the model equation yields a probability
distribution curve for the biogas production every time. This provides the expected value
(mean), variance, different quartiles, required threshold values, and statistical moments for
the biogas production. This probably gives a clear vision of the AD process. Such stochastic
approaches could also incorporate sensitivity analysis to identify dominant parameters
influencing biogas yield variability. This concept has been applied successfully in many
fields (Galal 2013, 2021) and could provide the designers with the system’s random
response due to these uncertain parameters.

Multidimensional Mathematical Models

The existing models usually plot the biogas production with time under certain
conditions, such as the operating temperature, mixing ratio, heavy metal concentration, efc.
This yields a single plot for the biogas production versus time for each realization of these
conditions. However, these models can be extended to cases with two or more dimensions.
This extension to multidimensional modelling can be conducted through an equal number
of curve-fitting steps. To implement this extension to a multi-dimensional case, consider a
mathematical model with three parameters 4, b, and &, then consider several variables such
as the time, which is defined as t € {t, t,, ....... ,t;/, the mixing ratio defined as r € {
71,72, e ,tm /> the operating temperature defined as T€{T;, T, ....... ,T,}, and so on.
First, the biogas production is plotted versus all time values, ¢t € {t;, t,, ....... ,t; fatr; and
T,. Then, the A, b, and k values are estimated for the best correlation with the experimental
data. This will be repeated for (1, T;), ....... , (1, T1). This yields a set of m values for
each parameter varying with ». A second step of curve fitting is then performed to
determine the best function with the highest correlation for each parameter in 7. Using the
MATLAB program (2022), many functions are available to plot the model parameters
versus r, such as the exponential, rational, power, spline, Gaussian, Weibull, Fourier, and
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sum of sine, and polynomial functions with different degrees. The function selection is
based on the best curve fitting results determined by R” and RMSE.

In some cases, a function shows a higher R? value, but it is excluded if its curve
does not match the expected behaviour of the experimental data in particular intervals. The
previous curve fitting step will be repeated for T, , T, ... ....., T;,. This yields another n set
of parameter values varying with 7, which will be plotted, through a third step of curve
fitting for the best correlation, obtaining another function for these parameters in both r
and T. Finally, the model parameters are obtained as functions; i-e: = f(r,T) , = g(r,T),
and k = h(r,T). Substituting these obtained functions in the model equation provides a
multidimensional version of this model.

This technique was applied successfully in the case of anaerobic co-digestion
process of waste activated sludge with wheat straw by Abdel Daiem et al. (2021). They
considered time as the first variable and mixing ratio as the second one, and then biogas
production was expressed as a function of both variables. This was applied to a group of
models that contains a logistic kinetic model, a modified logistic model, an exponential
rise-to-maximum model, and a modified Gompertz model. The introduced two-
dimensional models were highly correlated to the experimental data, as the R? ranged from
0.9753 to 0.9879. Extending this strategy to hybrid mechanistic-machine-learning
surrogates could reduce data requirements while maintaining physical interpretability.
However, the same concept explained above can be applied to include more variables as
inputs and be extended to all the known models.

Machine Learning

Despite the growing use of ANNs in modelling biogas production, several research
gaps remain. Most existing studies are based on small-scale, laboratory, or pilot datasets,
which may not accurately reflect the variability and complexity of full-scale AD systems.
Moreover, many models lack external validation, limiting their generalizability across
different feedstocks, climates, and reactor types. Few studies have addressed temporal
dynamics in biogas production, such as seasonality or real-time operational fluctuations.
Additionally, the integration of ANN with other advanced methods—such as hybrid ML
models (e.g., ANN-GA, ANN-PSO), deep learning frameworks (e.g., LSTM, CNN), and
Internet of Things (IoT)-based sensor networks—is still in its early stages. There is also a
need for explainable Al techniques to enhance the interpretability of ANN predictions for
plant operators and decision-makers. Future extensions should focus on developing
adaptive, self-learning ANN models capable of real-time prediction and control and trained
on diverse and large-scale datasets. Furthermore, coupling ANN models with life cycle
assessment (LCA) and techno-economic analysis (TEA) tools can provide a more holistic
understanding of sustainability and system performance. These improvements would
significantly enhance the operational reliability, economic viability, and environmental
benefits of biogas systems, especially in decentralized rural and urban applications.

Future research should focus on developing hybrid models that combine the
strengths of multiple ML techniques (e.g., ANN-GA, RF-PSO, or LSTM-CNN) to enhance
robustness and generalizability. There is also significant potential in integrating ML with
IoT sensors for real-time monitoring, as well as with LCA or TEA to evaluate sustainability
and economic performance. Additionally, explainable AI (XAI) can improve model
transparency and stakeholder confidence. Through addressing these gaps, ML can play a
transformative role in optimizing biogas systems, improving resource efficiency, and
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supporting climate-resilient waste management strategies, particularly in countries with
abundant biomass resources.

Beyond laboratory datasets, several full-scale and pilot studies demonstrate
operational value from ML in live operating biogas plants. In an industrial-scale AD
facility, tree-based models achieved high forecasting accuracy (RF, R? = 0.924), supporting
routine set-point decisions (Yildirim and Ozkaya 2023). In a full-scale WWTP digester, an
ensemble approach delivered usable accuracy (R? = 0.778; RMSE = 0.306), with
temperature and return sludge emerging as key levers (Sun et al. 2023). Across four dry-
AD plants processing kitchen waste, CatBoost models reached R* = 0.604—0.915 for biogas
and enabled a VFA/ALK soft sensor to anticipate instability (Zou et al. 2024). A large-
scale study coupling LSTM with genetic algorithms improved short-term prediction (R? =
0.84-0.90) and highlighted HRT sensitivity (Salamattalab et al. 2024). For municipal co-
digestion, deep models with data-augmentation and variable-selection networks increased
robustness under missing data (e.g., LSTM — DA-LSTM-VSN, R? from 0.38 to 0.76),
clarifying driver importance for operators (Jeong ef al. 2021). Similarly, feature-engineered
MLPs using minute-rate SCADA achieved an adjusted R? = of 0.78 (MAPE = 13.4%),
showing that soft-sensor surrogates can approach lab-assisted baselines (Schroer and Just
2023).

From Prediction to Sustainability Metrics (LCA/TEA)

Linking ML outputs to sustainability assessment enhances the relevance of
predictive modelling in decision-making by translating results into policy and financial
metrics. In practice, probabilistic forecasts of methane production rates, rcu4 (t), and biogas
composition can be transformed into environmental and economic key performance
indicators (KPIs), such as global warming potential (GWP, expressed as kg CO:-eq per
kWh delivered) and the levelized cost of energy/biogas (LCOE/LCBG) (Said et al. 2020).
By defining a clear functional unit (e.g., “per kWh of electricity exported” or “per tonne
VS fed”) and system boundary, ML predictions can be mapped to life-cycle inventory
flows (electricity and heat generated through CHP efficiency, auxiliary energy for heating
and mixing, flaring episodes or CHa slip, digestate mass and nutrient proxies) as well as to
financial cash flows (CAPEX annualization; OPEX for energy, chemicals, and labour;
tipping fees; and revenues from energy and fertilizer products). The resulting KPIs are
computed through straightforward transformations of predicted flows.

This coupling enables direct scenario testing on operational levers identified by
explainable ML (e.g., organic loading rate, hydraulic retention time, temperature set-point,
or co-substrate ratio). Operators can explore feasible parameter sets, propagate forecast
uncertainty through quantile or bootstrap ensembles to generate 5 to 95% confidence bands
for GWP and LCOE, and then identify Pareto-efficient operating points (e.g., minimizing
GWP while keeping LCOE below a defined threshold). Additional credits and burdens,
such as displacement of grid electricity, heat recovery, avoided landfill emissions, or
nutrient substitution from digestate, can be incorporated modularly, provided assumptions
and units are transparently reported for transferability.

Field-Scale Evidence and Engineering Implications

From a model-selection perspective, cumulative-yield kinetics remain the most
practical option when only batch/BMP tests or limited monitoring data are available. The
modified Gompertz typically provides the most accurate fit across substrates, with
parameters A (ultimate potential) and 4 (lag) being highly sensitive and directly guiding
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gasholder sizing and start-up expectations; the exponential rise-to-maximum is particularly
effective in landfill/BMP contexts (Bilgili et al. 2009; Lo et al. 2010; Latinwo and Agarry
2015; Nielfa et al. 2015). When digester operation is affected by syntrophic interactions or
direct interspecies electron transfer, Chen-Hashimoto-type models can outperform simpler
kinetics and should be considered during scenario screening (Li et al. 2018).

In continuously fed plants with SCADA data, forecasting and stability control
benefit from ML pipelines that use 5 to 15-minute aggregates of standard sensors (biogas
flow, temperature, pH, influent characteristics), supplemented by soft sensors such as
VFA/ALK estimators (Zou et al. 2024). Practical deployment involves routine outlier
handling, rolling cross-validation to account for seasonal shifts, and external validation on
unseen weeks. Probabilistic time-series models (e.g., LSTM/TFT with quantiles) transform
predictions into risk bands that operators can map to actions such as moderating OLR
ramps, adjusting HRT, or temporarily reducing recalcitrant co-substrates before
acidification escalates (Sappl et al. 2023; Jeong et al. 2021; Salamattalab et al. 2024).

Hybrid mechanistic-ML approaches provide a balanced solution when both
interpretability and accuracy are needed: a kinetic core captures the mass-balance structure,
while ML learns residuals and context-specific effects (Gupta ef al. 2023; Ling et al. 2024;
Geng et al. 2024). This framework naturally fits with loT-enabled “smart digesters,” where
uncertainty-aware forecasts, explainable features, and control heuristics are integrated into
operator dashboards to increase energy yield, reduce downtime, and support TEA/LCA
decision-making for co-digestion and pre-treatment options.

In full-scale digesters, non-ideal hydraulics (dead zones, short-circuiting), variable
RTD, and intermittent sensors violate the homogeneity and stationarity assumed by both
kinetic and ML models. SCADA streams are irregularly sampled, exhibit drift, and are
frequently unsynchronized with gas-quality measurements; without resampling,
calibration, and basic QC, models learn artefacts (Sun et al. 2023; Zou et al. 2024).
Seasonal substrate shifts and co-substrate swings cause distribution shift that degrades
accuracy unless rolling validation and periodic recalibration are used (Yildirim and Ozkaya
2023; Ling et al. 2024). Standardizing units (e.g., mL CHas gVS™! at STP, dry gas) and
documenting feed configuration are prerequisites for model transfer across sites.

Full-scale and pilot experiences increasingly show that data-driven models can
directly improve operations when used with routine plant instrumentation. In industrial and
municipal environments, tree-based ensembles and sequence models have provided
reliable short-term forecasts and soft-sensor surrogates, with performance generally
ranging from R? = 0.60 to 0.99 depending on horizon, inputs, and plant variability (Schroer
et al. 2023; Yildirim and Ozkaya 2023; Zou et al. 2024; Sun et al. 2023; Salamattalab et
al. 2024; Jeong et al. 2021). Feature attribution methods (e.g., SHAP, attention)
consistently identify OLR, pH, temperature, and feed configuration as the main factors,
supporting targeted set-point tuning and early-warning dashboards (Ling et al. 2024; Zou
et al. 2024; Gupta et al. 2023).

From an economic perspective, the adoption of advanced ML models requires
substantial investment in sensors, automated data acquisition systems, and skilled
personnel for calibration and maintenance. Operational costs for energy, data storage, and
software infrastructure may limit uptake, particularly in resource-constrained contexts.
From an engineering standpoint, integrating predictive models into real-time plant control
is complex, as biogas systems are subject to fluctuations in feedstock supply, microbial
community dynamics, and environmental conditions. The operational reliability of IoT-
enabled monitoring, communication latency, and data quality further constrain
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implementation. These challenges highlight the importance of coupling modelling studies
with TEA and LCA to ensure decision relevance. Beyond established frameworks, future
research should prioritize the development of hybrid mechanistic-machine learning models
tailored specifically for anaerobic digestion. For example, coupling ANN architectures
with AD-specific kinetic equations (e.g., hydrolysis—acidogenesis—methanogenesis
dynamics) could combine predictive accuracy with mechanistic interpretability. Such
models, trained on large-scale, multi-site datasets, would enable adaptive real-time control
strategies unique to AD. This approach moves beyond general ML challenges, offering
concrete, novel pathways for advancing AD modelling.

CONCLUSIONS

This review has presented a comprehensive analysis of the recent developments in
mathematical modeling and ML applications for biogas production through anaerobic
digestion. The findings indicate that while classical kinetic models like the first order and
Gompertz provide proper baseline estimations, their assumptions such as limit performance
under complex and dynamic AD conditions. In contrast, ANN and ML techniques
demonstrate superior predictive accuracy, adaptability, and capability in managing
nonlinear and multivariate systems. Nonetheless, the absence of standardized datasets,
model interpretability issues, and lack of integration with real-time control systems remain
challenges. Future research should focus on hybrid modeling approaches that leverage the
strengths of both deterministic and data-driven methods, supported by advanced sensing
technologies and cross-disciplinary collaboration. By addressing these gaps, the AD
process can be optimized for enhanced energy recovery, system stability, and
environmental sustainability, which will contribute significantly to circular economy
strategies and global clean energy goals.

This review has integrated deterministic kinetics with modern ML for AD,
providing a side-by-side appraisal of daily-rate vs. cumulative-yield families and clarifying
when first-order, modified Gompertz, or Chen—Hashimoto formulations are most
defensible. It advances a multidimensional parameterization that elevates kinetic
parameters to functions of operating variables, and it frames parameter uncertainty using
stochastic (random-variable/process) treatments to yield probabilistic production
envelopes. By consolidating study-level metrics and sensitivity emphases (notably 4 and
A, the work offers a reproducible basis for model selection, benchmarking, and future
hybrid mechanistic-ML development.

For practitioners, the review distills field-scale evidence that ML (ensembles and
sequence models) can provide short-horizon forecasts and soft-sensor proxies at accuracy
suitable for day-to-day control, while retaining modified-Gompertz-type kinetics for
design and batch/BMP contexts. It maps explainable features (OLR, pH, temperature, feed
configuration) to actionable levers, outlines a pragmatic deployment recipe (clean SCADA
ingestion, rolling/external validation, probabilistic outputs), and proposes a hybrid
mechanistic-ML blueprint compatible with IoT “smart digester” dashboards. These
guidance points translate model choice into concrete decisions on OLR ramps, HRT
adjustments, co-substrate scheduling, and risk-aware operations.

Finally, we recommend reporting sustainability KPIs (e.g., GWP per kWh,
LCOE/LCBG) alongside predictive accuracy and using probabilistic ML outputs to
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propagate uncertainty into LCA/TEA, enabling Pareto-based selection of operating set-
points and co-digestion strategies.
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