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Anaerobic digestion (AD) is a widely recognized method for converting 
organic waste into biogas, offering a sustainable solution for both waste 
management and renewable energy generation. This review critically 
examines recent advancements in mathematical modeling and machine 
learning (ML) approaches applied to biogas production from AD 
processes. The study categorizes the models into daily and cumulative 
biogas production models, kinetic models, and hybrid AI-based predictive 
techniques. Special attention is given to the comparative evaluation of 
first-order kinetics, modified Gompertz, and Chen-Hashimoto models, 
highlighting their applicability and limitations. Furthermore, the integration 
of artificial neural networks (ANNs) and other ML algorithms is discussed 
in the context of optimizing biogas yield, understanding system dynamics, 
and reducing operational uncertainties. Research gaps are identified, 
including the need for more robust hybrid models, real-time monitoring 
systems, and studies under diverse feedstock and environmental 
conditions. The review emphasizes that combining traditional modeling 
with intelligent systems offers a powerful approach to enhancing AD 
performance and scaling sustainable energy solutions. 
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INTRODUCTION 
 

Anaerobic digestion (AD) converts organic waste into biogas (primarily CH₄ and 

CO₂), delivering simultaneous sanitation and energy recovery, and aligning with circular 

economy goals (Jameel et al. 2024; Alengebawy et al. 2024). Across common feedstocks, 

including sewage sludge, agricultural residues, food waste, and manure co-digestion, as 

well as process tuning (temperature, pH, organic loading rate (OLR), hydraulic retention 

time (HRT)), it is possible to enhance yields and stability when the system is properly 

managed (Adnane et al. 2024; Liu et al. 2025). Mathematical modeling has emerged as a 

critical tool in understanding, simulating, and scaling up AD processes across various 

substrates, including sewage sludge, agricultural residues, and municipal solid waste 

(Abdel Daiem et al. 2021). Recent advancements in kinetic and mechanistic modeling 
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approaches have significantly improved the predictive accuracy and control of AD systems 

(See Table 1). 

Unlike mathematical models, machine learning (ML) learns patterns from data, 

enabling flexible prediction and optimization of biogas production. In recent years, the 

application of ML in renewable energy has gained significant traction, particularly in 

modelling complex biological processes such as AD for biogas production (Najafi and 

Ardabili 2018; Beltramo et al. 2019; Abdel Daiem et al. 2021; Cruz et al. 2023; Komarysta 

et al. 2023; Shindell et al. 2024; Zhu et al. 2025). The nonlinear and dynamic nature of 

biogas production processes makes conventional modelling approaches less effective. In 

contrast, artificial neural networks (ANNs) offer high adaptability, pattern recognition, and 

learning capabilities, making them well-suited for predicting biogas yields from various 

organic feedstocks (Abdel Daiem et al. 2021). This is especially relevant in the context of 

sewage sludge and biomass residues, which vary in composition and behaviour during 

digestion. The integration of ANN into biogas research represents a promising direction 

for optimizing system performance and enhancing energy recovery, aligning with global 

sustainability and waste-to-energy initiatives. 

The ML techniques have become promising alternatives and complement the 

traditional mathematical models discussed in this paper, especially for dealing with AD 

processes’ non-linear, dynamic, and uncertain characteristics. Unlike deterministic models, 

such as the modified Gompertz or logistic equations, which depend on specific kinetic 

assumptions and can have difficulty handling variable feedstocks or operational conditions 

(Roberts et al. 2023; Ling et al. 2024), ML methods are data-driven and capable of 

capturing complex patterns from high-dimensional inputs without predefined mechanisms 

(Ling et al. 2024). This makes them suitable for predicting biogas yields, optimizing co-

digestion ratios, estimating uncertain parameters, and supporting monitoring of real-time 

(models that continuously update predictions and provide actionable outputs during 

ongoing AD plant operation using live SCADA data streams) in multi-dimensional AD 

systems (Asadi and McPhedran 2021). Recent studies (2019 to 2025) have utilized ML 

algorithms, such as ANNs (Cruz et al. 2023; Komarysta et al. 2023), random forests (RF), 

support vector machines (SVM), and deep learning models (LSTM) for AD, often 

comparing their performance favourably to traditional models (Yildirim and Ozkaya 2023). 

These approaches address research gaps, such as incorporating parameter uncertainty 

through probabilistic predictions and extending to multi-dimensional inputs via feature 

engineering and hybrid models  (Sappl et al. 2023). 

This review article presents a novel, integrative synthesis of recent advancements 

in the modelling and optimization of AD processes for biogas production, focusing on the 

convergence of mathematical modelling and ML techniques. While prior reviews have 

addressed modelling frameworks in isolation, this work uniquely bridges deterministic 

kinetic models with data-driven approaches, offering a comparative assessment of their 

capabilities, limitations, and future trajectories. Thus, the purpose of this study is to 

evaluate the predictive performance of widely used mathematical models, such as first-

order kinetics, modified Gompertz, and Chen–Hashimoto models, alongside ANN and 

hybrid ML models, including random forests, SVMs, and deep learning architectures. The 

review highlights how ML algorithms increasingly address the nonlinearities and 

uncertainties inherent in AD systems, particularly for complex substrates such as sewage 

sludge, food waste, and co-digested residues. Moreover, it outlines gaps in current 

modelling practices, including limited real-time adaptability, feature selection, and 
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parameter sensitivity analysis. It proposes future extensions involving hybrid modelling 

frameworks and smart digesters. Through integrating insights across computational and 

engineering domains, this review advances a comprehensive understanding of biogas 

system optimization, promoting scalable and intelligent waste-to-energy solutions aligned 

with sustainability goals. 

 

Table 1. Summary of Key Studies on Anaerobic Co-Digestion, Highlighting 
Substrates, Operating Conditions, Biogas/Methane Yields, and Kinetic/Statistical 
Model Performance 

Substrate(s) 

Co-
Digestion 

Ratio / 
Conditions 

Key Findings 
Kinetic / 

Statistical 
Model 

R² / 
Accuracy 

Study / 
Reference 

Sewage sludge, 
agricultural 
residues, 

municipal solid 
waste 

N/A 

Highlighted the 
importance of 
mathematical 
modeling in 

understanding 
and scaling AD 

processes 

General 
kinetic & 

mechanistic 
modeling 

N/A 
Abdel 

Daiem et 
al. 2021 

Food waste + 
groundnut shells 

50:50:00 

32.28% 
increase in 
biomethane 

yield vs mono-
digestion 

Gompertz, 
Modified 

Gompertz, 
Schunte 

0.97–0.99 
Olatunji et 
al. 2025 

Sewage sludge + 
wheat husk 

N/A 

Chen-
Hashimoto 

showed 
superior 

predictive 
accuracy and 

robustness; the 
ultimate biogas 
potential most 

sensitive 

First-order, 
Modified 

Gompertz, 
Chen-

Hashimoto 

Highest 
accuracy 

(not 
specified) 

Tiwari et 
al. 2025 

Food waste + 
sewage sludge + 

poultry litter 

2:1:1, 
ambient, 
summer 

Highest biogas 
output 640 

L/kgVS, 65% 
CH₄; 

temperature 
critical for 
seasonal 

optimization 

Gompertz, 
First-order 

Confirmed 
experimental 

results 

Lohani et 
al. 2025 

Sewage sludge + 
agro-industrial 

fruit & vegetable 
waste 

70:30, 
mesophilic 

Optimal 
methane yield 

542.88 mL 
CH₄/g VS; 
improved 

biodegradability 
& pathogen 
reduction 

Cone 
model 

>0.98 
Pulgarín-
Muñoz et 
al. 2025 
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Novelty and Distinctiveness 
This review differs from others in the following respects: 

1. Classical vs. ML Modeling: The review compares classical kinetic models (first-

order, Gompertz, Chen-Hashimoto) with ML approaches across daily-rate and cumulative-

yield frameworks. Findings highlight where traditional kinetics remain useful and where 

ML achieves better predictive accuracy. 

2. Multidimensional Kinetic Framework: A multidimensional framework is 

introduced, treating kinetic parameters as functions of operational variables such as 

temperature and mixing ratio. This enables response surfaces that support scenario 

mapping and process optimization, which are rarely discussed in prior AD reviews. 

3. Stochastic Parameter Uncertainty: Kinetic parameters are modeled as random 

variables using stochastic methods, including Karhunen–Loève expansions. This generates 

probabilistic biogas trajectories with means, quantiles, and variances, offering a risk-aware 

alternative to point estimates. 

4. ML Applications: Advanced ML methods (LSTM, TFT, SHAP) are synthesized 

for forecasting, optimization, and stability control in AD systems. Their performance is 

benchmarked against kinetic baselines, emphasizing practical deployment guidance. 

5. Hybrid Mechanistic–ML Framework: A hybrid framework integrates 

mechanistic kinetics with ML residual learning, enabling IoT-based smart digesters. 

Recommendations for dataset standardization and cross-validation strengthen pathways 

toward real-world implementation. 

6. Up-to-Date Coverage: The article emphasizes the most recent advances (2023–

2025), including emerging algorithms (LSTM, hybrid ML models) and updated kinetic 

formulations, which have not been synthesized elsewhere. 

 

  

MATHEMATICAL MODELS 
 
Daily Biogas Production Models  

Table 2 identifies the parameters and their goodness of fit using daily biogas 

production models (linear, exponential, and Gaussian models). Among the case studies 

summarized in Table 2, exponential daily-rate functions consistently achieved the highest 

goodness-of-fit on both rising and falling limbs (R² ≈ 0.960–0.999), followed by Gaussian 

profiles when a single, roughly symmetric peak was present (R² ≈ 0.95). Linear fits were 

acceptable mainly for descending limbs or simple substrates but tended to underfit peak 

regions and onset dynamics. Practically, daily-rate forecasting should default to 

exponential models unless there is strong peak asymmetry or multi-modal behavior; linear 

fits are best used for quick, conservative screening. 

Exponential daily-rate models are the most reliable across substrates and digestion 

stages, with Gaussian profiles competitive when production exhibits a single, symmetric 

peak; linear fits chiefly succeed on descending limbs and under simple matrices. Lo et al. 

(2010) and Latinwo and Agarry (2015) illustrate this pattern: exponential fits track both 

rise and fall with the highest R², Gaussian captures unimodal curves, and linear 

underestimates peak curvature. Practically, investigators often default to using exponential 

approaches for short-horizon forecasting and reserve Gaussian approaches for pronounced 

single-peak shapes; they use linear fitting only for conservative trend screening. 
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Table 2. Daily Biogas Production Models (Linear, Exponential, and Gaussian) Applied to Diverse Feedstock, with Key 
Parameters and R² values. All models Show Strong Predictive Accuracy (R² > 0.90), with Exponential Models Excelling in 
Dynamic Phases and Gaussian Models Performing Well for Heterogeneous Wastes 

Model Main Target Model Parameters Goodness of Fit R2 Sub-target (if it Exists) References 

L
in

e
a

r 

 

Organic fraction of MSW co-
digested with MSWI ashes 

𝒂 =0.8360, 𝒃 =0.1641 
 

𝒂 = 𝟏𝟔. 𝟕𝟎𝟖𝟓 , 𝒃 = - 0.4283 

The best R2 = 0.9579 
(for the ascending limb) 
The best R2 = 0.9211 

(for the descending limb) 

FA/MSW: 10 g L -1 
bioreactor 

BA/MSW: 100 g L -1 
bioreactor 

Lo et al. 
2010 

Cow dung only N/A R2 = 0.8850 (Ascending limb)  
R2 = 0.9950 (Descending limb) 

— Latinwo and 
Agarry 
2015 Mixture of cow dung and 

plantain peels 
 

N/A R2 = 0.8790 (Ascending limb) 
R2 = 0.9970 (Descending limb) 

E
x

p
o

n
e

n
ti

a
l 

 

Landfill gas generation of 
municipal solid waste after 

mechanical-biological treatment 

Eight weeks, rising limb 𝒂 =
𝟎, 𝒃 = 𝒆𝟎.𝟎𝟏𝟏𝟑, c = 0.0803 
Eight weeks, falling limb 

𝒂 = 𝟎, 𝒃 =
𝒆𝟎.𝟎𝟎𝟔𝟔, c = -0.0348 

15 weeks, rising limb 𝒂 =
𝟎, 𝒃 = 𝒆𝟎.𝟎𝟏𝟎𝟖, c = 0.0773 
15 weeks, falling limb 𝒂 =
𝟎, 𝒃 = 𝒆𝟎.𝟎𝟎𝟔𝟏, c = -0.0347 

 

R2 = 0.84 
 

R2 = 0.90 
 
 

R2 = 0.81 
 

R2 = 0.95 

— De 
Gioannis et 

al. 2009 

Organic fraction of MSW co-
digested with MSWI ashes 

Rising limb 𝒂 = 𝟐𝟎𝟏𝟔𝟎, 𝒃 =
𝟐𝟎𝟏𝟔𝟎, c = 8.135 × 𝟏𝟎−𝟔 

Falling limb 𝒂 =
𝟎. 𝟎𝟎𝟒𝟕, 𝒃 =

𝟏𝟕𝟐. 𝟔𝟓, c = - 0.0936 
 

R2 = 0.9579 
 

R2 = 0.9288 

FA/MSW: 10 g L-1 
 

FA/MSW: 10 g L-1 

Lo et al. 
2010 

Cow dung only N/A R2 = 0.9988 (rising limb) 
R2 = 0.9969 (falling limb) 

— Latinwo and 
Agarry 
2015 Mixture of cow dung and 

plantain peels 
 

N/A R2 = 0.9951 (rising limb) 
R2 = 0.9969 (falling limb) 
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Model Main Target Model Parameters Goodness of Fit R2 Sub-target (if it Exists) References 

G
a

u
s

s
ia

n
 

M
o

d
e

l 

 

Organic fraction of MSW co-
digested with MSWI ashes 

𝒂 = 𝟓. 𝟑𝟏𝟐, t𝒎

= 𝟑𝟐. 𝟔𝟖, b = 3.05696 

The best  
R2 = 0.9486 

FA/MSW: 20 g L-1 
 

Lo et al. 
2010 

Heterogeneous organic and 
inorganic wastes with the 

organic fraction of municipal 
solid waste (OFMSW) 

𝑎 = 57, t𝑚 = N/A, b = 17.24 The best R2 = 0.95 Garden wastes (9 – 
11%VS) mixture with the 

OFMSW (2.5%VS) 

Nielfa et al. 
2015 
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Linear model 

The linear model has been used to simulate and predict the daily biogas production 

resulting from AD (Rossi et al. 2022). This model assumes that the biogas production starts 

at an initial time, t𝒐 with a value P𝒐 , and then increases linearly up to a maximum value 

P𝒎𝒂𝒙 at time t𝒎, after which it decreases linearly to a final value, P𝒇 at time t𝒇. This plot 

has two limbs, an ascending limb for t𝒐 ≤ 𝑡 ≤ t𝒎 and a descending one for t𝒎 ≤ 𝑡 ≤ t𝒇 . 

Assuming the plot similarity about the maximum value, the model equation can be written 

as,  

P𝒃𝒈 =  {

 𝑎 +b (t − t𝒐) , t𝒐 ≤ 𝑡 ≤ t𝒎 
 

 𝑎 +  𝑏 (t − t𝒎), t𝒎 ≤ 𝑡 ≤ t𝒇

      (1) 

where 𝑎 and 𝑏 are two dimensionless constants to be determined for the best fitting of the 

experimental data. They may be expressed as some other constants multiplied by P𝒐  and 

(
P𝒎𝒂𝒙−P𝒐  

t𝒎−t𝒐
), respectively. Generally, this model is considered the simplest one, but its 

statistical indices are not as satisfying as those of some other models. However, this model, 

along with the exponential one, was shown by Lo et al. (2010) to have a better plot for the 

descending limb for the BA/MSW 100 g L -1 bioreactor in the process of biogas production 

from the organic fraction of MSW co-digested with MSWI ashes. Moreover, this model 

was employed to simulate the biogas production resulting from cow dung only and cow 

dung with plantain peels (Latinwo and Agarry 2015). It showed an R2 of 0.885 for the 

ascending limb and 0.995 for the descending one in the first case, while it was 0.879 and 

0.997 for the ascending and descending limbs, respectively, in the second case. These 

correlation values are not that satisfying in comparison with the other models used in the 

same study. Nevertheless, linear models can still be valuable for first‑cut assessments or 

when computational simplicity is paramount.  

  

Exponential model  

This model proposes an exponential increase in the daily biogas production with 

time up to an inevitable climax, and then it would decrease exponentially to zero (De 

Gioannis et al. 2009; Lo et al. 2010; Latinwo and Agarry 2015). The model equation is 

given by Eq. 2, 

P𝒃𝒈 = a + b exp (𝑐𝑡)         (2)  

where a and b are two constants (𝐿 𝐾𝑔−1𝑑−1) while c is another constant (𝑑−1), the latter 

has a positive value for the rising limb and a negative value for the falling one. De Gioannis 

et al. (2009) used this model in its differential form to simulate Municipal Solid Waste 

(MSW) landfill gas generation after mechanical biological treatment. Their study aimed to 

estimate the model constants after 8 and 15 weeks. Regarding R2, the model accuracy 

showed 0.84 and 0.90 for the rising and falling limbs, respectively, in the case of eight 

weeks of gasification, while it was 0.81 and 0.95 for 15 weeks. Moreover, Lo et al. (2010) 

utilized the exponential model in their work mentioned above, where the best R2 values 

were 0.9579 and 0.9288 for the rising and falling limbs, respectively, and both were 

achieved in the case of FA/MSW 10 g L-1. Furthermore, Latinwo and Agarry (2015) have 

employed this model to simulate biogas production resulting from both cow dung and cow 

dung activated by plantain peels, showing outstanding representation in both cases. The R2 
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for the ascending and descending limb was 0.9988 and 0.9969 in the first case, while 

0.9951 and 0.9969 for the second. 

 

Gaussian model  

The Gaussian distribution is usually used to plot numerous natural phenomena 

(Simon 2002; Lo et al. 2010). It has also been used to describe bacterial growth, resulting 

in biogas production during AD. Therefore, this model and some other models for growth 

and decay can be used to simulate the daily production process. The Gaussian model is 

given as Eq. 3, 

P𝒃𝒈 = a exp (− (𝑡 − t𝒎)2/2𝑏2)       (3) 

where a is a constant (𝐿 𝐾𝑔−1𝑑−1), while t𝒎 and 𝑏  are the mean and standard deviation, 

respectively, in (𝑑 ), this model has been investigated by Tonner et al. (2017) to simulate 

the differential effects of media, genetics, and stress on microbial population growth. 

Moreover, it was utilized to simulate and predict the biogas production evaluated by Lo et 

al. (2010), where the best R2 was 0.9486 in the case of FA/MSW 20 g L-1. In addition, 

Nielfa et al. (2015) used this model to simulate methane production resulting from the 

composition of heterogeneous organic and inorganic wastes with OFMSW. The highest R² 

was achieved in the case of a garden waste mixture with the OFMSW, where it was 0.95. 

However, AD operational monitoring and management depend heavily on daily 

biogas output models. Data in Table 2, together with Eqs. 1 to 3, indicate that although 

basic models such as Gaussian, exponential, and linear can fit the ascending and 

descending limbs of daily production, their accuracy is strongly influenced by the substrate 

and process conditions. For example, the exponential model can achieve excellent fits (R² 

up to 0.9988) for certain organic fractions and waste combinations, while the linear model 

performs reasonably well (R² up to 0.96) but is often outperformed. The Gaussian model, 

with good fits (R² = 0.95) for heterogeneous organic wastes, also demonstrates robustness 

and usefulness in simulating the symmetric rise and fall of daily production rates in specific 

systems.  

For operations, daily-rate models are most useful for short-term scheduling, 

diagnosing inhibition or overload patterns, and checking whether a feeding change alters 

rise or fall constants as expected. Exponential forms are a sensible default for forecasting 

both sides; Gaussian is informative when production shows a single, symmetric peak, while 

linear fits act as conservative trend indicators rather than control-relevant predictors. These 

choices help operators prioritize sampling frequency and decide if a perturbation requires 

adjusting the OLR or mixing strategy in the next cycle.  

 Linear, exponential, and Gaussian daily-rate forms implicitly assume a unimodal 

production curve under a stable operating regime over the day, with negligible gas-

holding/back-pressure effects. In continuous or semi-batch operation, feed pulses, 

temperature swings, transient inhibition (e.g., ammonia, sulfide, long-chain fatty acids), 

foaming, or mixing disruptions can create asymmetric or multi-peak profiles that a single 

exponential or Gaussian cannot reproduce, biasing rise/fall constants and peak timing (Lo 

et al. 2010; Altaş 2009). In such cases, segmented fits or multi-population kinetics are 

preferable; at minimum, re-fit pre-/post-perturbation windows and avoid extrapolating 

across regime shifts (Ling et al. 2024). 
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Cumulative Biogas Production Models  
 Table 3 summarizes cumulative-yield models and reveals a clear pattern: the 

modified Gompertz consistently achieves near-perfect fits across various substrates and 

operating conditions (R² ≈ 0.98 to 1.00), often outperforming the logistic and modified-

logistic models. The exponential rise-to-maximum model performs exceptionally well in 

landfill BMP contexts (R² ≈ 0.99 to 0.996), while simple logistic models are mainly 

competitive for more homogeneous feedstocks (e.g., manure). In practice, A (ultimate 

potential) and λ (lag) are the most influential parameters in modified-Gompertz fits, 

emphasizing the importance of accurate estimation or uncertainty ranges. 

Engineering interpretation of cumulative-yield parameters directly supports design 

and start-up. The ultimate potential A informs gasholder/CHP sizing and energy contracts; 

the lag λ frames warm-up and acclimation windows; and the maximal rate Dm or kinetic 

constant k links to target HRT and expected time to plateau. Sensitivity analyses around A 

and λ are therefore recommended before committing to co-digestion ratios or pre-treatment 

choices, especially where substrate supply is seasonal or heterogeneous.  

 

Logistic kinetic model  

The model assumes an exponential increase up to a maximum value and remains 

constant (Latinwo and Agarry 2015). It has three parameters: A, which is the biogas 

production potential (𝐿 𝐾𝑔−1𝑑−1); b, a dimensionless constant; and k, another constant 

(𝑑−1). Equation 4 expresses this model: 

Pbg=A / (1 + b exp (-k  t))        (4) 

 

The modified Gompertz model most consistently attains near-perfect cumulative 

fits across feedstocks and operating regimes, with A (ultimate potential) and λ (lag) 

dominating sensitivity; exponential rise-to-maximum excels in landfill/BMP contexts; 

while logistic/modified-logistic forms are competitive for homogeneous manures. Lo et al. 

(2010), Nielfa et al. (2015), and Deepanraj et al. (2017) embody these trends, modified 

Gompertz captures lag and plateau robustly, exponential rise-to-maximum performs in 

mid-range, and simple logistic is adequate when variability is low. Design-wise, use A for 

gasholder/CHP sizing, λ for start-up windows, and Dm or K to inform HRT and time-to-

plateau. 

 

Modified logistic model 

This model is based on the bacterial population growth, which leads to the biogas 

production during the AD process using Eq. 5 (Amleh and Al-Freihat 2025),  

Pbg=A / (1+exp (
4μ 

A
(λ- t)+2))       (5) 

where A is as defined before, 𝜇 is the maximum rate of cumulative biogas production, and 

λ is the lag (delay) time for the start of biogas production. This model was studied by Jafari-

Sejahrood et al. (2019) to plot and predict the biogas production from cow manure, where 

its R2 was 0.993. Moreover, the inhibitory effect of four heavy metals on the methane-

producing anaerobic granular sludge was studied using the same model by Altaş (2009).
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Table 3. Biogas Production Kinetic Models (Exponential, Logistic, Modified Gompertz, Modified Richards) Showing High 
Predictive Accuracy across Substrates, with Modified Gompertz Achieving R² > 0.99 in Most Cases 

Model Main Target Model Parameters Goodness of Fit 
R2 

Sub-target (if it 
Exists) 

References 

E
x

p
o

n
e

n
ti

a
l 
ri

s
e
-t

o
- 

m
a

x
im

u
m

  

The biochemical methane potential of 
landfilled solid waste 

A = 0.2327, k = 0.0823 R2 = 0.9961 for 
R1  

-- Bilgili et al. 
2009 

A = 0.2768, k = 0.0759 R2 = 0.9942 for 
R2  

Organic fraction of MSW co-digested with 
MSWI ashes 

A = 241.9, k = 0.0112 R2 = 0.9907 
 

In a case-control 
bioreactor without ash 

addition 

Lo et al. 2010 

Cow dung only A = 7.616 × 105, k = 1.15 × 10-7 R2 = 0.8543 A in (dm3/gm) Latinwo and 
Agarry 2015 Mixture of cow dung and plantain peels A=8.26 × 105 , k = 1.247 × 10-7 R2 = 0.8561 

Heterogeneous organic and inorganic 
wastes with the OFMSW 

A= 140 , k = 0.24 R2 = 0.99 OFMSW only Nielfa et al. 
2015 

L
o

g
is

ti
c

 

k
in

e
ti

c
 Cow dung only A = 10.55 ,b = 80.15, k = 0.1249 R2 = 0.9859 -- Latinwo and 

Agarry 2015 Mixture of cow dung and plantain peels A = 4.918 , b = 55.12,  k = 0.1766 R2 = 0.9775 

M
o

d
if

ie
d

 l
o

g
is

ti
c

  Biogas production from cow manure A = 𝟏𝟒. 𝟒𝟖𝟗 , μ
 
= 0.326,  

λ  = 12.099 

R2 = 0.9930 -- Jafari-
Sejahrood et al. 

2019 

The inhibitory effect of four of these 
metals on the on methane-producing 

anaerobic granular sludge 

A = 0.65 to 44.14, 
μ = 0.12 to 3.21, 

λ = 6.40 to 68.66 

-- -- Altaş 2009 

The biogas production of food wastes co-
digested with poultry manure 

A = 9764.9, 

μ = 841.3, 
λ = 3.1 

R2 = 0.9991 Ultrasonication (US) Deepanraj et al. 
2017 

M
o

d
if

ie
d

 

G
o

m
p

e
rt

z
 Cow dung only A = 4.733,  Dm  = 0.0059, 

λ = 7.178 
R2 = 0.9834 -- Latinwo and 

Agarry 2015 

Mixture of cow dung and plantain peels A = 5.660, Dm  = 0.0134, λ = 6.11 R2 = 0.9895 

Inhibition of heavy metals on fermentative 
hydrogen production 
by granular sludge 

A = 171 to 10,  
 Dm  = 4.9 to 0.1, 
λ = 4.6 to 29.9 

R2 > 0.95 (in all 
cases) 

For Zn concentrations 
(0 to 5000) 

Li and Fang 
2007 
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Model Main Target Model Parameters Goodness of Fit 
R2 

Sub-target (if it 
Exists) 

References 

M
o

d
if

ie
d

 G
o

m
p

e
rt

z
 

The effects of ionic Cr, Cu, and Zn on the 
fermentative hydrogen production of 

sewage sludge 

A = 12.8 to 177, 

 Dm  = 0.8 to 19.2, 
λ = 3 to 33.7 

R2 = 0.9912 to 
0.9998 

Investigating the Cu 
effect 

Lin and Shei 
2008 

Bio-hydrogen production from food waste 
and sewage sludge in the presence of 
aged refuse excavated from the refuse 

landfill 

A = 193.85 , 
 Dm  = 94.35 , 

λ = 15.28 

R2 = 0.9821 -- Li et al. 2008 

The inhibitory effect of four of these 
metals on the on methane-producing 

anaerobic granular sludge 

A = 0.65 to 38.73, 
 Dm  = 0.11 to 2.94, 

λ = 5.57 to 66.45 

R2 > 0.99 (in all 
cases except that 

for Cr) 

-- Altaş 2009 

Kinetics of hydrogen production from 
sucrose by mixed anaerobic cultures 

N/A R2 = 0.994 -- (Mu et al. 2007) 

Mixture of manure and rumen (ratio = 1:1), 
(MR 11) 

A = 172.51 ± 6.64, 
 Dm  = 3.89 ± 0.28, 

λ = 7.25 ± 1.65 

R2 = 0.9983226 -- (Budiyono et al. 
2010) 

Mixture of manure and water (ratio = 1:1), 
(MR 11) 

A = 73.81 ±  4.01, 
Dm = 1.74 ± 0.13, 
λ = 14.75 ± 2.87 

R2 = 0.9987334 

The co-digestion of horse and cow dung A = 360, Dm = 36.99, λ = 8.07 R2 = 0.998 Case of 75% horse 
dung and 25% cow 

dung 

(Yusuf et al. 
2011) 

Organic fraction of MSW co-digested with 
MSWI ashes 

A = 165.4, Dm = 4.507, λ = 5.67 The best R2 = 
0.9977 

In case of FA/MSW 10 
g L-1 

(Lo et al. 2010) 

Modeling biogas production kinetics of 
various heavy metals exposed anaerobic 

fermentation process 

A = 34.18, Dm = 2.05, λ = 3.99 The best R2 = 
0.9989 

In case of Cu with 
concentration 500 mg 

L-1 
 

(Tian et al. 
2020) 

Heterogeneous organic and inorganic 
wastes with OFMSW 

A = 299, Dm = 21.42, λ = 2.54 The best R2 = 
1.00 

In case of meat/fish 
wastes 

(Nielfa et al. 
2015) 

The biogas production of food wastes co-
digested with poultry manure 

A = 8964.3, Dm = 712.6, λ = 2.8 The best R2 = 
0.9995 

In case of NT (Deepanraj et 
al. 2017) 
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Model Main Target Model Parameters Goodness of Fit 
R2 

Sub-target (if it 
Exists) 

References 

M
o

d
if

ie
d

 

R
ic

h
a

rd
s
 

The inhibitory effect of four of these 
metals on the on methane-producing 

anaerobic granular sludge 

A = 0.65 to 44.83, μ
m 

 = 0.11 

to 2.94, λ = 5.57 to 67.24, 𝝂  -
1,0,1 

R2 > 0.99 (in all 
cases except that 

for Cr) 

-- (Altaş 2009) 

The kinetics of hydrogen production from 
sucrose by mixed cultures 

N/A 𝑅2 = 0.994 -- Mu et al. 2007 
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These studied metals were zinc, nickel, cadmium, and chromium, where the 

correlation coefficient R2 was greater than 0.99 for all metals except chromium. In addition, 

Mu et al. (2007) investigated the kinetics of hydrogen production from sucrose by mixed 

anaerobic cultures. They used this model, which shows an R2 of 0.9916. Concerning the 

food waste, Deepanraj et al. (2017) studied the biogas production of food waste co-digested 

with poultry manure. They considered four types of digestate pre-treatment: autoclave 

(AC), microwave (MW), ultrasonication (US), and a no-pre-treatment case (NT). The best 

fit of this model for the US is where R² = 0.9991.  

 

Exponential rise-to-maximum model  

The exponential rise to maximum model describes many physical phenomena in 

various fields, including biology, physics, economics, and finance. The model has two 

parameters: A and k. The first one, A, is the biogas production potential (𝐿 𝐾𝑔−1𝑑−1), while 

k is another constant (d-1), and is given as the following equation (Bilgili et al. 2009): 

Pbg=A (1- exp(-k t))         (6)  

Bilgili et al. (2009) investigated the exponential rise to maximum model for 

predicting the biochemical methane potential of landfilled solid waste. They designed two 

landfill reactors; R1 operated with leachate recirculation and R2 without it. The best R2 was 

0.9961 for R1 and 0.9942 for R2 after 400 days of operation for both reactors. For the same 

problem treated above by Lo et al. (2010), this model was applied, where the best R2 was 

0.9907 in the case of the control bioreactor without ash addition. Moreover, Latinwo and 

Agarry (2015) studied it for the two instances of cow dung only and cow dung with plantain 

peels where it showed less R2 of 0.9907 in the first case and 0.8543 for the second case.  

  

Gompertz model 

The Gompertz model equation contains three constants, A, 𝑏, and 𝑐. The constant 

A is the biogas production potential (𝐿 𝐾𝑔−1𝑑−1), while 𝑏 is a dimensionless constant, and 

𝑐 is another constant in (𝑑−1) (Zwietering et al. 1990; Mueller et al. 1995; Lo et al. 2010; 

Peleg and Corradini 2011): 

P𝑏𝑔 = A 𝑒𝑥𝑝 (−exp (𝑏 − 𝑐𝑡) )       (7) 

 

Modified Gompertz model 

The modified Gompertz model is one of the most notable models and presented by 

Eq. 8 (Zwietering et al. 1990; Li and Fang 2007; Budiyono et al. 2010; Lo et al. 2010): 

P𝑏𝑔 =A exp (- exp (
 Dm e

A
(λ- t)+1))       (8) 

This model equation has the constant A as defined before,  Dm  is the maximal daily 

biogas production rate (𝐿 𝐾𝑔−1𝑑−1), λ is the lag phase (𝑑 ), and e is Euler’s number. This 

model was extensively applied in many AD problems because of its high correlation. Li 

and Fang (2007) used this model to simulate the inhibition of H2 production potential due 

to the effect of six heavy metals on the activity of a granular sludge. They calculated the 

model constants for different concentrations of these metals, where 𝑅2 > 0.95 in all cases. 

Moreover, Lin and Shei (2008) studied the effects of ionic Cr, Cu, and Zn on the 

fermentative hydrogen production of sewage sludge. They used different dosages for each 
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metal and estimated the model constants and correlation in all cases. The model was nearly 

perfect for the experimental data, with the best R² values of 0.9981, 0.9998, and 0.9923 for 

investigating the effects. Combined with emerging data analytics, these extensions promise 

to bridge the gap between theoretical modelling and practical implementation in diverse 

operational contexts of Cr, Cu, and Zn, respectively. In addition, Altaş (2009) studied the 

inhibitory effect of four of these metals as mentioned above, where it was shown that R2 

was greater than 0.99 for all metals except Cr. Additionally, Tian et al. (2020) studied the 

kinetic evaluation of the biogas potential from a heavy-metal-stressed anaerobic 

fermentation process. The model showed good correlation for most studied metals with 

different concentrations, where the best R2 was 0.9989. Furthermore, Li et al. (2008) 

investigated the enhancement of bio-hydrogen production from food waste and sewage 

sludge in the presence of aged refuse excavated from a refuse landfill. They applied the 

modified Gompertz model to plot the biogas production, which showed a relatively high 

correlation with R2 of 0.9820. In another work concerning food waste, Deepanraj et al. 

(2017) used this model to simulate the four cases of digestate, as mentioned before. The 

best was 0.9995 in the case of NT. Moreover, Mu et al. (2007) used this model in the 

problem mentioned, showing an R2 of 0.9940. Budiyono et al. (2010) predicted the biogas 

production rate from cattle manure. They employed this model for two substrates to 

investigate the effect of liquid rumen to cumulative biogas production. The first substrate 

consisted of 100 g manure and 100 mL rumen (MR 11), while the second one consisted of 

manure and water in equal weight ratio (MW 11). The biogas production from both 

substrates was studied, the model parameters were estimated and R2 was 0.9983 for MR 

11 and 0.9987 for MW 11. In addition, they have performed further experiments in room 

temperature and 38.5 °C to investigate the temperature effect on the biogas production from 

both substrates. Furthermore, this model has been used to plot the biogas production 

resulted from the co-digestion of horse and cow dung (Yusuf et al. 2011), where they 

designed five different mixtures of these dungs based on weight. The maximum biogas 

production potential and the best R2 were achieved for the ratio of 75% horse dung and 

25% cow dung, where R2 was 0.998. Moreover, it was utilized to simulate and predict the 

biogas production evaluated by Lo et al. (2010), where the best R2 was 0.9977 in case of 

FA/MSW 10 g L-1. Furthermore, concerning the MSW, Nielfa et al. (2015) used this model 

to simulate the methane production as mentioned before. The best R2 was achieved for the 

meat/fish mixture with the OFMSW, which was 1.00.  

Furthermore, cumulative biogas production models are critical for estimating total 

biogas yield, which is an essential parameter for system design and economic viability. 

Data in Table 3, together with Equations (4–8), indicate that the Logistic, Modified 

Gompertz, and Exponential Rise-to-Maximum models consistently achieve high prediction 

accuracy (R² typically >0.98–0.99) across a variety of substrates, including cow manure 

and complex industrial wastes. The Modified Gompertz model stands out for its broad 

applicability and reliability, successfully fitting data even under inhibitory conditions such 

as heavy metal exposure. This consistently high performance underscores its prominence 

as the preferred kinetic model for comprehensively understanding the digestion process 

and predicting ultimate gas potential. 

 

Less-used models 

Some models are rarely used to plot the biogas production resulting from the AD 

process. This may be due to their complicated formulas, which may contain more than one 
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constant, and hence their difficulty in application. This group of models includes Richard, 

Stannard, Schunte, and their modified versions. This model used the equation of Richards’s 

model which is represented by the following equation (Hsieh 2009), 

Pbg=A (1+𝜈 exp (− 𝑘(𝜏-t)))
(−1/𝜈)

       (9)  

where A, k, and 𝜏 are the biogas production potential, delay time, and a constant, 

respectively, while 𝜈 is an additional constant that provides more flexibility for the biogas 

production simulation, as shown by Eq. 10:  

Pbg=A (1+𝜈 exp(1+𝜈) . exp (
μm 

A
(1+𝜈) (1+

1 

𝜈
) (λ- t)))

(−1/𝜈)

   (10)  

Consider v = m-1, and depending on the value of m, Eq. 10 will be reduced to: the 

Gompertz equation if m→1, monomolecular equation if m = 1, logistic equation if m = 2, 

or the von Bertalanffy if m = 2/3 (Fan et al. 2004).  

This model was used by Mu et al. (2007) to investigate the kinetics of hydrogen 

production from sucrose by mixed cultures, where it showed a good correlation to the 

experimental data, as R² was 0.994. In addition, it was utilized to investigate the inhibitory 

effect of four heavy metals on the methane-producing anaerobic granular sludge by Altaş 

(2009), and R² was greater than 0.99.  

In contrast, the Stannard model equation is represented in Eq. 11 (Zwietering et al. 

1990), 

Pbg=A (1+exp (− 
(l+kt) 

p
))

−𝑝

       (11)  

where l, k, and p are constants. The modified version of the Stannard equation is the same 

as the modified Richards' equation, which is given by Eq. 12: 

Pbg=A (1+𝜈 exp(1+𝜈) . exp (
μm 

A
(1+𝜈) (1+

1 

𝜈
) (λ- t)))

(−1/𝜈)

  (12)  

One more model that belongs to this section is the Schunte model, which is 

represented by Eq. 13 (Zwietering et al. 1990), 

 Pbg= (𝑦1
𝑏+(𝑦2

𝑏-𝑦1
𝑏) . 

1- exp(-a (t−𝜏1
 ))

1- exp(-a (𝜏2
 −𝜏1

 ))
)

(1/𝑏)

      (13) 

and its modified version equation is given by Eq. 14 (Zwietering et al. 1990):  

Pbg= (μ
m 

(1−𝑏) 

a
) ( . 

1- b exp(aλ +1−𝑏−𝑎𝑡 )

1−𝑏
)

(1/𝑏)

     (14)  

However, no key works were addressed in the literature using both Stannard and 

Schunte models and their modified versions.  

Sigmoidal equations (logistic/modified Gompertz, Richards/Schunte) presume a 

single dominant population and constant biodegradability; co-digestion, pre-treatment, or 

staged hydrolysis–acidogenesis–methanogenesis often produce shoulders or long tails 

(multiple inflections) that a one-sigmoid curve cannot capture (Nielfa et al. 2015; 

Deepanraj et al. 2017). Parameter equifinality is common: λ often trades off with Dm or K 
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when sampling is sparse (e.g., < daily), and A can absorb gas losses, leakage, or incomplete 

degassing, inflating uncertainty (Bilgili et al. 2009; Lo et al. 2010). Inhibition episodes 

flatten mid-slope and shift apparent lag (Altaş 2009; Tian et al. 2020). Mitigations include 

higher early-phase sampling, consistent methane normalization (STP, dry gas, per gVS), 

mass-balance checks, and reporting parameter CIs or Bayesian posteriors rather than single 

best fits. 

 

Machine Learning Approaches  
Table 4 summarizes key peer-reviewed studies emphasizing ML applications 

related to biogas production in AD. Table 4 details the algorithms used, data sources, 

performance metrics (e.g., correlation coefficient (R²) and root mean square error 

(RMSE)), comparisons with traditional models when available, and specific AD contexts. 

The studies reviewed show a shift from mechanistic to data-driven modelling, with ML 

consistently achieving higher accuracy (R² often above 0.90) than traditional kinetic 

models like Gompertz or logistic, especially in co-digestion scenarios involving sewage 

sludge, agricultural waste, or food waste (Asadi and McPhedran 2021; Ling et al. 2024). 

For example, tree-based models (RF, XGBoost) perform well in full-scale systems because 

they handle non-linearity and feature importance through SHAP, highlighting key variables 

like OLR, pH, and biomass input (Zou et al. 2024). Deep learning methods, such as LSTM 

with attention or TFT, provide probabilistic forecasts and capture long-term dependencies, 

addressing parameter uncertainty with quantile regression and data augmentation (Jeong et 

al. 2021). The regression-based models can be updated with new data, but they usually 

require explicit recalibration or retraining, whereas ML (especially online learning or 

adaptive ML). Hybrid techniques incorporating GA or PSO for optimization improve 

biogas yield and stability management (Salamattalab et al. 2024). 

Feature engineering and data quality are crucial, as high-frequency SCADA data or 

derived indices (e.g., VFA/ALK) improve predictions without needing extensive lab 

measurements (Zou et al. 2024). Incorporating genomics or pre-treatment data expands the 

input space, connecting microbial communities to performance (Adeleke et al. 2025). 

Explainable AI tools address the "black-box" issue, building trust and enabling integration 

with biokinetic equations for physics-informed hybrids (Gupta et al. 2023). 

This extension fills gaps in traditional models by enabling multi-dimensional 

simulations, such as with variable selection networks, and managing stochastic parameters, 

for instance, through ensembles. Future research should focus on creating standardized 

datasets, facilitating real-time IoT integration, and developing hybrid ML-mechanistic 

frameworks to deploy robust AD systems on a large scale. 

Therefore, Table 4 shows that ML methods consistently outperform traditional 

kinetic models in predicting biogas production, particularly for the co-digestion of diverse 

wastes. Tree-based models (RF, XGBoost) and deep learning approaches (LSTM, TFT) 

effectively handle non-linearity, probabilistic forecasting, and feature importance. Hybrid 

optimization techniques (GA, PSO) further improve biogas yield and process stability. 

High-frequency SCADA data, feature engineering, and genomics enhance prediction 

accuracy, while explainable AI tools (e.g., SHAP) increase operational trust and allow 

integration with biokinetic models. These advancements fill gaps in traditional approaches 

and enable multi-dimensional simulations. 
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Table 4. Applications of ML in AD (ANN, LSTM, TFT, RF, etc.) Showing High Predictive Performance across Substrates and 
Processes, often Surpassing Classical Kinetic Models and Enabling Real-time Optimization and Decision Support 

AD Application ML Algorithms and Data Key Outcomes (Metrics, Comparison) References 

Combined microbial electrolysis–AD 
system; real-time optimization 

ANN, ANFIS; pH, oxidation-reduction 
potential, solids, HRT, OLR, voltage, current 

R² ≈ 0.984 (ANN); RMSE ≈ 188 mL day⁻¹ 
(ANFIS); outperforms deterministic 

models 
Tufaner et al. 2025 

Lignocellulosic biomass pre-
treatment; biomethane yield 

optimization 

ANN, RF, SVM, DT; NaOH-pretreated Xyris 
capensis biomass; SHAP, k-means 

RF: RMSE ≈ 3.15, MAPE ≈ 5.75%; 
superior to kinetic models; exposure time 

key 
Adeleke et al. 2025 

Global AD review; perturbation 
detection, parameter estimation 

ANN, FL, ANFIS, SVM, RF, GA, PSO; hybrid 
GA-ANN 

R² ≈ 0.9986 (GA-ANN); ML outperforms 
deterministic models; SCADA integration 

Ling et al. 2024 

Dry AD of kitchen waste; real-time 
stability control 

Eight algorithms (CatBoost); data from four 
dry AD plants; SHAP 

CatBoost: R² = 0.604–0.915 (biogas), 
0.618–0.768 (VFA/ALK); soft sensors 

Zou et al. 2024 

Municipal wastewater AD; emission 
prediction 

Non-linear regression vs. ANN, ANFIS, GA, 
VFA, solids, pH, flow 

R ≈ 0.81 (regression); ANN/ANFIS higher 
but uncertain; rates 22.0 to 28.6 m³ min⁻¹ 

Asadi and McPhedran 
2021 

Full-scale co-digestion; raw 
wastewater influence 

LSTM with GA feature selection; raw 
wastewater, sludge data; BOD₅, COD, TSS 

R² ≈ 0.84 to 0.90; GA improves LSTM; 
HRT essential 

Salamattalab et al. 
2024 

Food-waste AD; feedstock 
configuration 

Mixup augmentation + global-attention LSTM; 
food-waste data 

Accuracy ≈ 0.988; prevents overfitting; 
better than classical models 

Geng et al. 2024 

Time-series quantile prediction; 
operational planning 

Temporal Fusion Transformer (TFT); high-
frequency data, categorical features 

MAPE < 8% (7-day); probabilistic 
quantiles; interpretability via attention 

Sappl et al. 2023 

WWTP biogas prediction; decision 
support under limited input data 

Eight ML models tested; 3-model voting 
ensemble; full-scale WWTP sludge data; 

SHAP for feature importance 

R² = 0.778, RMSE = 0.306; return sludge 
and influent temperature key features 

Sun et al. 2023 

Municipal co-digestion; short-term 
forecasting 

MLP; daily lab + minute-SCADA data; 11 
derived features 

Adjusted R² ≈ 0.78, MAPE ≈ 13.4%; 
SCADA nearly as good as lab; 

outperforms others 

Schroer and Just 
2023 

Industrial AD; continuous monitoring 
and stability 

RF, ANN, KNN, SVR, XGBoost; industrial-
scale AD data 

RF best: R² ≈ 0.924; suggests IoT 
integration; tree-based superior for large 

datasets 

Yildirim and Ozkaya 
2023 

Municipal wastewater AcoD; process 
optimization and prediction under 

missing data 

Hybrid DL: DA-LSTM + Variable Selection 
Network (VSN); 2-year AcoD data 

R²: LSTM = 0.38 → DA-LSTM = 0.68 → 
DA-LSTM-VSN = 0.76; VSN improves 
interpretability via feature importance 

Jeong et al. 2021 

 



 

PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu 

 

 

Galal et al. (2025). “Math modeling biogas production,” BioResources 20(4), 11237-11266.  11254 

Across pilot and full-scale settings, ML methods generally outperform classical 

kinetic baselines for short-term forecasting and stability proxies, with many studies 

reporting usable accuracy (often R² ≥ 0.80) for operational decision-making. Tree-based 

ensembles (RF, XGBoost/CatBoost) are the most reliable with tabular SCADA inputs, 

while sequence models (LSTM/TFT) capture temporal dependencies and enable 

probabilistic (quantile) forecasts.  

Explainability tools (SHAP/attention) consistently identify OLR, pH, temperature, 

and feed configuration as primary levers, and soft-sensor surrogates (e.g., VFA/ALK) 

enhance early warning. Practically, plants can retain modified-Gompertz-type fits for 

design/batch contexts and layer ML for online supervision, provided basic hygiene (outlier 

handling, rolling/external validation) is in place to limit overfitting and improve 

transferability. In practice, ANN models may overfit small datasets and fail to generalize 

to new substrates or variable operating conditions. Industrial deployment is further 

constrained by the high cost of sensors, limited data availability, and the complexity of 

integrating ML models into real-time control systems. 

 
Comparative Performance of Models 

To evaluate the relative strengths of different modelling approaches, a comparative 

analysis was conducted between mathematical models and ML by using ANN techniques 

applied to biogas production from co-digestion systems. This comparison assessed 

predictive accuracy using statistical indicators such as R² and RMSE. The results provide 

insights into the trade-offs between classical kinetic formulations and advanced data-driven 

methods.  

Table 5 presents a comparative analysis between classical and ML models’ 

performance metrics for predicting biogas production from co-digestion systems for the 

same dataset (Abdel Daiem et al. 2021). The comparative analysis highlights the 

performance of both traditional TDMMs and ANN approaches in predicting biogas 

production from co-digestion systems.  

Among the mathematical models, the logistic kinetic formulation emerged as the 

most accurate, with an R² value of 0.9879, although all mathematical models achieved 

strong correlations (R² > 0.97). Nevertheless, their relatively large RMSE > 1000 indicates 

limited predictive precision when applied to dynamic and nonlinear digestion processes, 

underscoring their inability to capture the complexity of anaerobic digestion fully. In 

contrast, ANN-based approaches demonstrated considerably lower error margins (RMSE 

< 10), highlighting their superior capacity to model process variability and nonlinear 

relationships.  

Conventional ANN training methods such as back-propagation, Marquardt–

Levenberg, and ant colony optimization yielded moderate-to-high predictive accuracy (R² 

between 0.89 and 0.92); however, the integration of metaheuristic optimization techniques 

substantially improved performance. Specifically, the MFFNN-MFO model achieved near-

perfect predictive accuracy (R² = 0.9994; RMSE = 3.86), clearly outperforming both 

conventional ANN structures and mathematical models. These findings illustrate the value 

of ANN models, particularly when coupled with advanced optimization algorithms, in 

addressing the complexity of anaerobic digestion systems and emphasize the potential of 

hybrid ANN–optimization frameworks as robust and reliable predictive tools for biogas 

production modelling. 
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Table 5. Comparative Analysis between Classical and ML Models’ Performance 
Metrics for Predicting Biogas Production from Co-digestion Systems (Abdel 
Daiem et al. 2021) 

Model R² (Correlation 
Coefficient) 

RMSE (Root 
Mean Square 

Error) 

Notes 

Logistic Kinetic Model  0.9879 1079.00 
Best-performing 

mathematical model 

Exponential Rise-to-
Maximum 

0.9753 1540.00 
Lower accuracy than 

logistic 

Modified Gompertz 0.9815 1334.20 Good fit but less robust 

Modified Logistic 0.9845 1221.00 
Reliable, close to a 

logistic model 

ANN-BP (Back 
Propagation) 

0.8990 7.20 Acceptable, but weaker 

ANN-ML (Marquardt-
Levenberg) 

0.9200 3.94 
Improved ANN 
performance 

ANN-ACO (Ant Colony 
Optimization) 

0.900 7.50 Like BP 

MFFNN-MFO (Proposed 
ANN with Moth Flame 
Optimization) 

0.9994 3.86 
Highest predictive 

accuracy 

 

 
RESEARCH GAPS AND AVAILABLE FUTURE EXTENSIONS 
 

Following the previous review of the mathematical modelling of the AD process, 

some research gaps have arisen, which can be considered promising candidates for future 

extensions. These gaps may be concluded as follows.  

 
Future Extensions: Actionable Directions AD 

Recent practice in AD has introduced dosing of conductive materials (e.g., biochar, 

Fe₃O₄) to stimulate direct interspecies electron transfer (DIET) (Lo et al. 2010). A natural 

extension is to augment cumulative kinetic models (e.g., Chen–Hashimoto, modified 

Gompertz) with a conductivity/DIET factor, 

keff = k₀ [1 + α φβ / (1 + γ d)]       (15) 

where ϕ denotes the mass fraction of conductive additive and d a representative particle 

size, this formulation preserves parameter interpretability while explicitly linking additive 

dosing to performance. Calibration requires only routine operational data (biogas rate, 

temperature) supplemented with two readily available proxies: oxidation, reduction 

potential, and slurry conductivity. Toxic inhibition (e.g., free NH₃, sulfide, LCFA) can be 

included multiplicatively via Haldane-type terms, allowing operators to evaluate when 

inhibitory effects offset DIET benefits and to adjust set-points accordingly (Lo et al. 2010). 

For control-oriented applications, the process can be represented by two coupled 

states, hydrolysis/acidogenesis and methanogenesis, driven by measurable or soft-sensed 

variables. The following equations define a minimal state-space model, 

x = [S_VFA, X_meth]        (16) 

ẋ = f(x, OLR, T, pH),        (17) 
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with outputs including biogas flow and a soft VFA/ALK indicator derived from pH, 

alkalinity, and gas rate. An extended Kalman filter or moving-horizon estimator can 

integrate SCADA data with the soft sensor to reconstruct unmeasured states and provide 

(1 to 3) day acidification risk bands, enabling operators to connect forecasts to actionable 

levers (e.g., OLR ramping, temporary set-point changes, co-substrate throttling) (Schroer 

and Just 2023). 

Given the prevalence of small, noisy datasets, plant-level kinetic parameters should 

be treated as random effects, e.g., (A, λ, Dm)_j ~ N(μ, Σ) for plant j. Partial pooling stabilizes 

estimates in data-scarce settings while retaining site-specific behaviour. Multi-facility 

fitting with leave-one-plant-out validation quantifies transferability, producing plant-

specific posterior distributions with credible intervals. These can be propagated into risk-

aware dashboards and sustainability KPIs (e.g., GWP per kWh, LCOE), ensuring that 

uncertainty is explicitly visible in decision-making (Gala 2021). 

For forecasting with tree- or sequence-based ML models, embedding domain 

constraints is essential: monotonicity of biogas rate with OLR (within safe ranges), positive 

correlation of VFA with OLR, and soft penalties for mass-balance violations. Residual-

based change-point detection (e.g., CUSUM, Bayesian online methods) can flag 

operational regime shifts (feedstock change, mixer outage). These triggers initiate 

lightweight re-tuning and widen predictive intervals, transforming ML from a static 

predictor into an operator-safe assistant (Ling et al. 2024). 

Finally, the experimental design can be optimized to reduce the cost of BMP and 

pilot trials. Starting from a Latin-hypercube of feed ratios and pre-treatments, cumulative 

or hybrid models are fitted, and the next experimental point is selected by maximizing 

expected reduction in parameter uncertainty under safety constraints (e.g., VFA/ALK ≤ 

threshold). This adaptive loop accelerates the development of decision-quality models for 

novel feedstock mixtures while minimizing resource requirements (Tiwari et al. 2025). 

 

Incorporating Parameter Uncertainty 
Estimating the model parameters is one of the main objectives when simulating 

biogas production over the AD process using mathematical modelling. However, if the 

same AD process has been repeated enough times, these parameters are expected to vary 

slightly from time to time. Few studies estimated the ranges of some model parameters to 

investigate their variations. For example, Kumar et al. (2004) achieved a qualitative 

assessment study of different methane emission data using municipal solid waste disposal 

sites; Danner (2006) considered the parameter uncertainty for some of the growth models; 

Budiyono et al. (2010) estimated the parameters' ranges in the modified Gompertz equation 

that was used to simulate the biogas production resulting from cattle manure.  

Mathematically, to express these parameters more accurately, they may be 

described as random variables rather than deterministic ones. In such a case, a general 

parameter, 𝛾, can be expressed by the following equation (Ghanem and Spanos 2003), 

𝛾(𝜃) = 𝛾(1 + 𝜀𝛾 𝜉(𝜃)) 
 
       (18) 

where 𝜀𝛾 is a controlling factor for the random part and 𝜉(𝜃) is a random variable that 

describes the expected uncertainty in the deterministic value of 𝛾. The random variable 

𝜉(𝜃) is a real-valued measurable function defined on a probability space as 𝜉(𝜃): Ω 
 

→ 𝑅, defined on the triple probability space (Ω, ℱ, 𝑃) . This random variable can be 

assigned entirely by repeating the AD process a relatively large number of times, then 

estimating the model parameters in each time. For each parameter, the obtained values can 
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then be plotted to determine its probability distribution and its statistical moments such as 

mean, variance, skewness, and kurtosis, so that a complete definition for this uncertain 

parameter will be available. The repetition of the AD process several times to determine 

the parameter uncertainty requires short-time processes and many reactors working 

simultaneously. Moreover, when the parameter uncertainty is more complicated and 

expected to have higher fluctuations with time, the random part can be expressed as a 

random process as Eq. 16, 

 𝛾(𝑡, 𝜃) = 𝛾(1 + 𝜀 Ф(𝑡; 𝜃))        (19)  

where Ф(𝑡; 𝜃) is a second-order random process with a finite variance. This random 

process can be expanded into random variables multiplied by deterministic constants using 

K-L expansion, as Eq. 17 (Ghanem and Spanos 2003), 

𝛾(𝑡; 𝜃) = 𝛾̅(𝑡) + ∑ √𝜆𝑖
∞
𝑖=1  𝑓𝑖(𝑡) 𝜉𝑖(𝜃)      (20) 

where 𝛾(𝑡) is the mean value of 𝛾𝑡;𝜃, 𝜉𝑖𝜃𝑖=1∞ is a set of uncorrelated random variables, 

𝜆𝑖,𝑓𝑖𝑡 are the eigenvalues and Eigen functions, respectively. Both 𝜆𝑖 , 𝑓𝑖(𝑡) can be evaluated 

by solving the integral Eq. 18, 

∫ 𝐶 𝛾𝛾(𝑡1, 𝑡2 ) 𝑓𝑖(𝑡1) 𝑑𝑡1
 

𝐷
= 𝜆𝑖𝑓𝑖(𝑡2)       (21) 

where D is the time domain over which 𝛾(𝑡; 𝜃) is defined and 𝑡1, 𝑡2 ∈ 𝐷. 
Including these parameters, uncertainty in the model equation yields a probability 

distribution curve for the biogas production every time. This provides the expected value 

(mean), variance, different quartiles, required threshold values, and statistical moments for 

the biogas production. This probably gives a clear vision of the AD process. Such stochastic 

approaches could also incorporate sensitivity analysis to identify dominant parameters 

influencing biogas yield variability. This concept has been applied successfully in many 

fields (Galal 2013, 2021) and could provide the designers with the system’s random 

response due to these uncertain parameters.  

 

Multidimensional Mathematical Models 
The existing models usually plot the biogas production with time under certain 

conditions, such as the operating temperature, mixing ratio, heavy metal concentration, etc. 

This yields a single plot for the biogas production versus time for each realization of these 

conditions. However, these models can be extended to cases with two or more dimensions. 

This extension to multidimensional modelling can be conducted through an equal number 

of curve-fitting steps. To implement this extension to a multi-dimensional case, consider a 

mathematical model with three parameters A, b, and k , then consider several variables such 

as the time, which is defined as t ∈ { 𝑡1, 𝑡2, …….,𝑡𝑙}, the mixing ratio defined as r ∈ { 
𝑟1, 𝑟2, …….,𝑟𝑚}, the operating temperature defined as T∈ { 𝑇1, 𝑇2, …….,𝑇𝑛}, and so on. 

First, the biogas production is plotted versus all time values, t ∈ { 𝑡1, 𝑡2, …….,𝑡𝑙} at 𝑟1 and 

𝑇1. Then, the A, b, and k values are estimated for the best correlation with the experimental 

data. This will be repeated for (𝑟2, 𝑇1), ……., (𝑟𝑚, 𝑇1). This yields a set of m values for 

each parameter varying with r. A second step of curve fitting is then performed to 

determine the best function with the highest correlation for each parameter in r. Using the 

MATLAB program (2022), many functions are available to plot the model parameters 

versus r, such as the exponential, rational, power, spline, Gaussian, Weibull, Fourier, and 
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sum of sine, and polynomial functions with different degrees. The function selection is 

based on the best curve fitting results determined by R² and RMSE. 

In some cases, a function shows a higher R2 value, but it is excluded if its curve 

does not match the expected behaviour of the experimental data in particular intervals. The 

previous curve fitting step will be repeated for 𝑇2 , 𝑇3, … … . . , 𝑇𝑛. This yields another n set 

of parameter values varying with T, which will be plotted, through a third step of curve 

fitting for the best correlation, obtaining another function for these parameters in both r 

and T. Finally, the model parameters are obtained as functions; i-e: = 𝑓(𝑟 , 𝑇 ) , = 𝑔(𝑟 , 𝑇 ), 

and 𝑘 = ℎ(𝑟 , 𝑇 ). Substituting these obtained functions in the model equation provides a 

multidimensional version of this model. 

This technique was applied successfully in the case of anaerobic co-digestion 

process of waste activated sludge with wheat straw by Abdel Daiem et al. (2021). They 

considered time as the first variable and mixing ratio as the second one, and then biogas 

production was expressed as a function of both variables. This was applied to a group of 

models that contains a logistic kinetic model, a modified logistic model, an exponential 

rise-to-maximum model, and a modified Gompertz model. The introduced two-

dimensional models were highly correlated to the experimental data, as the R2 ranged from 

0.9753 to 0.9879. Extending this strategy to hybrid mechanistic‑machine‑learning 

surrogates could reduce data requirements while maintaining physical interpretability. 

However, the same concept explained above can be applied to include more variables as 

inputs and be extended to all the known models.  

 

Machine Learning 
Despite the growing use of ANNs in modelling biogas production, several research 

gaps remain. Most existing studies are based on small-scale, laboratory, or pilot datasets, 

which may not accurately reflect the variability and complexity of full-scale AD systems. 

Moreover, many models lack external validation, limiting their generalizability across 

different feedstocks, climates, and reactor types. Few studies have addressed temporal 

dynamics in biogas production, such as seasonality or real-time operational fluctuations. 

Additionally, the integration of ANN with other advanced methods—such as hybrid ML 

models (e.g., ANN-GA, ANN-PSO), deep learning frameworks (e.g., LSTM, CNN), and 

Internet of Things (IoT)-based sensor networks—is still in its early stages. There is also a 

need for explainable AI techniques to enhance the interpretability of ANN predictions for 

plant operators and decision-makers. Future extensions should focus on developing 

adaptive, self-learning ANN models capable of real-time prediction and control and trained 

on diverse and large-scale datasets. Furthermore, coupling ANN models with life cycle 

assessment (LCA) and techno-economic analysis (TEA) tools can provide a more holistic 

understanding of sustainability and system performance. These improvements would 

significantly enhance the operational reliability, economic viability, and environmental 

benefits of biogas systems, especially in decentralized rural and urban applications. 

Future research should focus on developing hybrid models that combine the 

strengths of multiple ML techniques (e.g., ANN-GA, RF-PSO, or LSTM-CNN) to enhance 

robustness and generalizability. There is also significant potential in integrating ML with 

IoT sensors for real-time monitoring, as well as with LCA or TEA to evaluate sustainability 

and economic performance. Additionally, explainable AI (XAI) can improve model 

transparency and stakeholder confidence. Through addressing these gaps, ML can play a 

transformative role in optimizing biogas systems, improving resource efficiency, and 
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supporting climate-resilient waste management strategies, particularly in countries with 

abundant biomass resources. 

Beyond laboratory datasets, several full-scale and pilot studies demonstrate 

operational value from ML in live operating biogas plants. In an industrial-scale AD 

facility, tree-based models achieved high forecasting accuracy (RF, R² ≈ 0.924), supporting 

routine set-point decisions (Yildirim and Ozkaya 2023). In a full-scale WWTP digester, an 

ensemble approach delivered usable accuracy (R² = 0.778; RMSE = 0.306), with 

temperature and return sludge emerging as key levers (Sun et al. 2023). Across four dry-

AD plants processing kitchen waste, CatBoost models reached R² = 0.604–0.915 for biogas 

and enabled a VFA/ALK soft sensor to anticipate instability (Zou et al. 2024). A large-

scale study coupling LSTM with genetic algorithms improved short-term prediction (R² ≈ 

0.84–0.90) and highlighted HRT sensitivity (Salamattalab et al. 2024). For municipal co-

digestion, deep models with data-augmentation and variable-selection networks increased 

robustness under missing data (e.g., LSTM → DA-LSTM-VSN, R² from 0.38 to 0.76), 

clarifying driver importance for operators (Jeong et al. 2021). Similarly, feature-engineered 

MLPs using minute-rate SCADA achieved an adjusted R² ≈ of 0.78 (MAPE ≈ 13.4%), 

showing that soft-sensor surrogates can approach lab-assisted baselines (Schroer and Just 

2023). 

 

From Prediction to Sustainability Metrics (LCA/TEA) 
Linking ML outputs to sustainability assessment enhances the relevance of 

predictive modelling in decision-making by translating results into policy and financial 

metrics. In practice, probabilistic forecasts of methane production rates, 𝑟CH4 (t), and biogas 

composition can be transformed into environmental and economic key performance 

indicators (KPIs), such as global warming potential (GWP, expressed as kg CO₂-eq per 

kWh delivered) and the levelized cost of energy/biogas (LCOE/LCBG) (Said et al. 2020). 

By defining a clear functional unit (e.g., “per kWh of electricity exported” or “per tonne 

VS fed”) and system boundary, ML predictions can be mapped to life-cycle inventory 

flows (electricity and heat generated through CHP efficiency, auxiliary energy for heating 

and mixing, flaring episodes or CH₄ slip, digestate mass and nutrient proxies) as well as to 

financial cash flows (CAPEX annualization; OPEX for energy, chemicals, and labour; 

tipping fees; and revenues from energy and fertilizer products). The resulting KPIs are 

computed through straightforward transformations of predicted flows. 

This coupling enables direct scenario testing on operational levers identified by 

explainable ML (e.g., organic loading rate, hydraulic retention time, temperature set-point, 

or co-substrate ratio). Operators can explore feasible parameter sets, propagate forecast 

uncertainty through quantile or bootstrap ensembles to generate 5 to 95% confidence bands 

for GWP and LCOE, and then identify Pareto-efficient operating points (e.g., minimizing 

GWP while keeping LCOE below a defined threshold). Additional credits and burdens, 

such as displacement of grid electricity, heat recovery, avoided landfill emissions, or 

nutrient substitution from digestate, can be incorporated modularly, provided assumptions 

and units are transparently reported for transferability. 

 
Field-Scale Evidence and Engineering Implications 

From a model-selection perspective, cumulative-yield kinetics remain the most 

practical option when only batch/BMP tests or limited monitoring data are available. The 

modified Gompertz typically provides the most accurate fit across substrates, with 

parameters A (ultimate potential) and λ (lag) being highly sensitive and directly guiding 
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gasholder sizing and start-up expectations; the exponential rise-to-maximum is particularly 

effective in landfill/BMP contexts (Bilgili et al. 2009; Lo et al. 2010; Latinwo and Agarry 

2015; Nielfa et al. 2015). When digester operation is affected by syntrophic interactions or 

direct interspecies electron transfer, Chen-Hashimoto-type models can outperform simpler 

kinetics and should be considered during scenario screening (Li et al. 2018). 

In continuously fed plants with SCADA data, forecasting and stability control 

benefit from ML pipelines that use 5 to 15-minute aggregates of standard sensors (biogas 

flow, temperature, pH, influent characteristics), supplemented by soft sensors such as 

VFA/ALK estimators (Zou et al. 2024). Practical deployment involves routine outlier 

handling, rolling cross-validation to account for seasonal shifts, and external validation on 

unseen weeks. Probabilistic time-series models (e.g., LSTM/TFT with quantiles) transform 

predictions into risk bands that operators can map to actions such as moderating OLR 

ramps, adjusting HRT, or temporarily reducing recalcitrant co-substrates before 

acidification escalates (Sappl et al. 2023; Jeong et al. 2021; Salamattalab et al. 2024). 

Hybrid mechanistic-ML approaches provide a balanced solution when both 

interpretability and accuracy are needed: a kinetic core captures the mass-balance structure, 

while ML learns residuals and context-specific effects (Gupta et al. 2023; Ling et al. 2024; 

Geng et al. 2024). This framework naturally fits with IoT-enabled “smart digesters,” where 

uncertainty-aware forecasts, explainable features, and control heuristics are integrated into 

operator dashboards to increase energy yield, reduce downtime, and support TEA/LCA 

decision-making for co-digestion and pre-treatment options. 

In full-scale digesters, non-ideal hydraulics (dead zones, short-circuiting), variable 

RTD, and intermittent sensors violate the homogeneity and stationarity assumed by both 

kinetic and ML models. SCADA streams are irregularly sampled, exhibit drift, and are 

frequently unsynchronized with gas-quality measurements; without resampling, 

calibration, and basic QC, models learn artefacts (Sun et al. 2023; Zou et al. 2024). 

Seasonal substrate shifts and co-substrate swings cause distribution shift that degrades 

accuracy unless rolling validation and periodic recalibration are used (Yildirim and Ozkaya 

2023; Ling et al. 2024). Standardizing units (e.g., mL CH₄ gVS⁻¹ at STP, dry gas) and 

documenting feed configuration are prerequisites for model transfer across sites. 

Full-scale and pilot experiences increasingly show that data-driven models can 

directly improve operations when used with routine plant instrumentation. In industrial and 

municipal environments, tree-based ensembles and sequence models have provided 

reliable short-term forecasts and soft-sensor surrogates, with performance generally 

ranging from R² ≈ 0.60 to 0.99 depending on horizon, inputs, and plant variability (Schroer 

et al. 2023; Yildirim and Ozkaya 2023; Zou et al. 2024; Sun et al. 2023; Salamattalab et 

al. 2024; Jeong et al. 2021). Feature attribution methods (e.g., SHAP, attention) 

consistently identify OLR, pH, temperature, and feed configuration as the main factors, 

supporting targeted set-point tuning and early-warning dashboards (Ling et al. 2024; Zou 

et al. 2024; Gupta et al. 2023).  

From an economic perspective, the adoption of advanced ML models requires 

substantial investment in sensors, automated data acquisition systems, and skilled 

personnel for calibration and maintenance. Operational costs for energy, data storage, and 

software infrastructure may limit uptake, particularly in resource-constrained contexts. 

From an engineering standpoint, integrating predictive models into real-time plant control 

is complex, as biogas systems are subject to fluctuations in feedstock supply, microbial 

community dynamics, and environmental conditions. The operational reliability of IoT-

enabled monitoring, communication latency, and data quality further constrain 
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implementation. These challenges highlight the importance of coupling modelling studies 

with TEA and LCA to ensure decision relevance. Beyond established frameworks, future 

research should prioritize the development of hybrid mechanistic–machine learning models 

tailored specifically for anaerobic digestion. For example, coupling ANN architectures 

with AD-specific kinetic equations (e.g., hydrolysis–acidogenesis–methanogenesis 

dynamics) could combine predictive accuracy with mechanistic interpretability. Such 

models, trained on large-scale, multi-site datasets, would enable adaptive real-time control 

strategies unique to AD. This approach moves beyond general ML challenges, offering 

concrete, novel pathways for advancing AD modelling. 

 

 

CONCLUSIONS 
 

This review has presented a comprehensive analysis of the recent developments in 

mathematical modeling and ML applications for biogas production through anaerobic 

digestion. The findings indicate that while classical kinetic models like the first order and 

Gompertz provide proper baseline estimations, their assumptions such as limit performance 

under complex and dynamic AD conditions. In contrast, ANN and ML techniques 

demonstrate superior predictive accuracy, adaptability, and capability in managing 

nonlinear and multivariate systems. Nonetheless, the absence of standardized datasets, 

model interpretability issues, and lack of integration with real-time control systems remain 

challenges. Future research should focus on hybrid modeling approaches that leverage the 

strengths of both deterministic and data-driven methods, supported by advanced sensing 

technologies and cross-disciplinary collaboration. By addressing these gaps, the AD 

process can be optimized for enhanced energy recovery, system stability, and 

environmental sustainability, which will contribute significantly to circular economy 

strategies and global clean energy goals. 

This review has integrated deterministic kinetics with modern ML for AD, 

providing a side-by-side appraisal of daily-rate vs. cumulative-yield families and clarifying 

when first-order, modified Gompertz, or Chen–Hashimoto formulations are most 

defensible. It advances a multidimensional parameterization that elevates kinetic 

parameters to functions of operating variables, and it frames parameter uncertainty using 

stochastic (random-variable/process) treatments to yield probabilistic production 

envelopes. By consolidating study-level metrics and sensitivity emphases (notably A and 

λ, the work offers a reproducible basis for model selection, benchmarking, and future 

hybrid mechanistic–ML development. 

For practitioners, the review distills field-scale evidence that ML (ensembles and 

sequence models) can provide short-horizon forecasts and soft-sensor proxies at accuracy 

suitable for day-to-day control, while retaining modified-Gompertz-type kinetics for 

design and batch/BMP contexts. It maps explainable features (OLR, pH, temperature, feed 

configuration) to actionable levers, outlines a pragmatic deployment recipe (clean SCADA 

ingestion, rolling/external validation, probabilistic outputs), and proposes a hybrid 

mechanistic–ML blueprint compatible with IoT “smart digester” dashboards. These 

guidance points translate model choice into concrete decisions on OLR ramps, HRT 

adjustments, co-substrate scheduling, and risk-aware operations. 

Finally, we recommend reporting sustainability KPIs (e.g., GWP per kWh, 

LCOE/LCBG) alongside predictive accuracy and using probabilistic ML outputs to 
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propagate uncertainty into LCA/TEA, enabling Pareto-based selection of operating set-

points and co-digestion strategies. 
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