

Influence of Some Biostimulants Combined with Zinc and Boron Oxides on the Performance of Date Palm

Walid F. A. Mosa ^{a,*} Khalid F. Almutairi ^{b,*} and Lidia Sas-Paszt ^c

Although chemical fertilizers increase plant growth and crop yields, their usage over a long period harms soil health, damages the beneficial microorganisms, and reduces soil fertility. Therefore, there is interest in using natural biostimulants in agriculture instead of chemical fertilizers. This study aimed to examine how spraying with zinc (ZnO) and boron (B₂O₃) oxides, as well as the biostimulants yeast extract (YE) and seaweed extract (SWE), and their combinations affect the yield and fruit quality of Barhi date palm. The trees were sprayed four times starting from mid of February with one month between each two sprays with 50 mg/L ZnO + 50 mg/L B₂O₃; 100 mg/L ZnO + 100 mg/L B₂O₃; 0.2% or 0.4% YE; 0.2% or 0.4% SWE; 50 mg/L ZnO + 50 mg/L B₂O₃ + 0.2% YE + 0.2% SWE, (combination 1); 100 mg/L ZnO + 100 mg/L B₂O₃ + 0.4% YE + 0.4% SWE (combination 2) compared to not-treated trees. The results indicated that applying ZnO and B₂O₃, YE and SWE either individually or in combination effectively enhanced the productivity and fruit quality of the date palm cv. Barhi compared to the control. The results also showed that the combined application gave a larger improvement in the measured parameters, particularly combination 2, which was the best treatment, followed by combination 1.

DOI: 10.15376/biores.20.4.9785-9803

Keywords: Date palm; Productivity; Fruit quality; Seaweed extract; Zinc; Yeast extract

Contact information: a: Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt; b: Department of Plant Production, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; c: The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skieriewice, Poland;
*Corresponding authors: walidmosa@alexu.edu.eg; almutairik@ksu.edu.sa

INTRODUCTION

Although synthetic fertilizers boost crop yields and support development, their extensive application can cause serious issues, such as soil salinity and compaction, which decrease soil fertility, enhance pesticide reliance, and pollute water sources (Shambhavi *et al.* 2017). The use of traditional mineral fertilizers has surged significantly due to rapid global population growth and rising food demand (Benson *et al.* 2018). Consequently, there is a pressing need to develop and implement new alternative inputs for crop production, such as biostimulants that improve the nutrition of plants, absorption of nutrients, productivity, and fruit (Al-Saif *et al.* 2023a).

A plant biostimulant is any substance or microorganism that, when applied to plants, enhances nutrient uptake, improves nutritional efficiency, boosts yield, improves fruit quality, and increases tolerance to abiotic stresses. The use of biostimulants is considered an effective alternative to minimize the reliance on chemical fertilizers. These biostimulants provide necessary macro- and micronutrients, as well as plant hormones such

as gibberellins, auxins, and cytokinins. They are safe for soil and do not negatively impact soil properties (Caradonia *et al.* 2019; Rouphael and Colla 2020). In addition, they are inexpensive and simple to prepare and apply (Suhail 2013).

The date palm (*Phoenix dactylifera* L.) has served as a vital food security crop in the Middle East and North Africa for over 5,000 years (Ghniimi *et al.* 2017). In Egypt, it is one of the most significant fruit crops, covering an area of 72,395 thousand hectares and yielding approximately 1,867 million tons (FAO 2023). The fruit is rich in dietary fibers, carbohydrates, proteins, vitamins, minerals, phenolic and tannin compounds, along with antioxidants (Al-Alawi *et al.* 2017; Bentrad and Hamida-Ferhat 2020). Date fruits are highly nutritious, rich in carbohydrates (mainly fructose and glucose, ~70%), dietary fiber, protein, and vitamin B-complex. They also provide fundamental minerals including Ca, Fe, Mg, K, Zn, and Se, which make them valuable food with potential health benefits (Aljaloud *et al.* 2020).

Seaweed extract (SWE) is a natural and inexpensive source of plant growth regulators; cytokinins, auxins, and gibberellins, which are related to nutrient solubility; thus, much more attention should be given to the usage of SWE to raise the immunity of the plants and improve their growth under environmental stress (Gullón *et al.* 2020). SWEs are large, multicellular organisms that are rich in lipids, proteins, carbohydrates, and enzymes, and can withstand extreme conditions like heat, salinity, drought, frost, and intense light (Patel *et al.* 2020), and a shortage of necessary elements (Battacharyya *et al.* 2015). The application of SWE improved the elongation and division of the plant cell which consequently increased the shoot length and leaf area (Colavita *et al.* 2011). SWE has been found to promote absorption of nutrients from the soil (El Boukhari *et al.* 2020). SWE is distinguished by its high content from organic and amino acids, and antioxidants, such that it can be considered a plant growth stimulator (Spinelli *et al.* 2009). Other macro- and micronutrients present in SWE include phosphorus, potassium, magnesium, carbon, sulfur, calcium, boron, cobalt, iron, silicon, molybdenum, selenium, manganese and zinc (Parthiban *et al.* 2013). Using biostimulants, such as natural extracts from SWE, offers a sustainable way to increase food production without harming the environment (Hernández-Herrera *et al.* 2014). SWE is considered a natural and inexpensive biostimulant that is rich in different components such as sterols, nitrogen-containing compounds, micro- and macronutrients, amino acids, vitamins, cytokinin, auxin, and abscisic acid. Therefore, it enhances the growth of roots, root hairs, and secondary roots, which consequently improves the fruit setting, nutrient uptake, facilitates water absorption, increases chlorophyll content, and boosts flowering and fruit formation. Additionally, SWE enhances photosynthetic activity, as well as the quantity and quality of the fruit (Begum *et al.* 2018; Nikoogoftar-Sedghi *et al.* 2023). Murtic *et al.* (2018) reported that SWE contains aspartic acid, isoleucine, proline, valine, amino acids, along with micronutrients and vitamins that enhance crop tolerance to environmental stress.

Sarhan and Abdullah (2010) documented that because Yeast Extract (YE) is characterized by a high content of many active compounds such as amino acids, hormones, and vitamins, which improve plant growth, it is considered a biostimulant. Because YE contains a combination of carbohydrates, amino acids, minerals, enzymes, vitamins, sugars, B complex vitamins, and peptides, it could be a biostimulant (Marzauk *et al.* 2014). YE functions as a microbial plant growth enhancer, promoting development and boosting productivity (El-Serafy 2018), and alleviating biotic and abiotic stresses (Fu *et al.* 2016). Moreover, YE is rich in different components, such as vitamins, minerals, amino acids, cytokinins, and auxin, so it has a remarkable influence on improving the vegetative growth,

flower formation, productivity, and carbohydrate accumulation (Dawood *et al.* 2019). Foliar application of YE enhanced growth, flower development, and final yield, due to its rich content of vitamins, amino acids, minerals, and phytohormones, particularly cytokinins and gibberellins (Hamed *et al.* 2019). Besides, YE helps in the conversion of insoluble phosphorus to a soluble form (Kalayu 2019). Because it is rich in proteins, B vitamins, amino acids, and cytokinins, YE promotes cell growth, the development of shoots and roots, chloroplast maturation, and the synthesis of nucleic acids, proteins, and chlorophyll (Hassan *et al.* 2020). YE acts as a cost-effective biofertilizer that enhances plant nourishment and vitality, increasing their resistance to abiotic stress. It is environmentally friendly and can be applied *via* soil or foliar techniques on diverse crops (Abd-Alrahman and Aboud 2021).

Boron is an immobile element that transfers with difficulty from source organs to young buds. The resulting shortage of B results in small flowers, incomplete pistils, floral abortion, reduced pollen viability, and ultimately depression in fruit set percentage (Botelho *et al.* 2022). These problems are related to the depletion of carbohydrate translocation and lower starch content in them (Rerkasem *et al.* 2020). It also affects key metabolic processes, resulting in reduced shoot growth, lower fruit set percentages, diminished fruit quality, and altered nutrient composition of the fruits (Davarpanah *et al.* 2016). Additionally, boric acid enhances root growth by supplying carbohydrates needed for root development (Hasanuzzaman *et al.* 2018). It is an essential, immobile micronutrient vital for plant growth, particularly in pollen germination, tube elongation, and overall reproductive development (Saini *et al.* 2019; Sharafi and Raina 2021). The shortage of boron in plants delays pollen germination, reduces the growth of the pollen tube, and disrupts the flowering and fruit set (Brdar-Jokanović 2020). In fruit trees, boron supports key stages such as pollination, fertilization, and fruit set, while also playing a crucial role in carbohydrate metabolism, sugar transport, cell wall formation, and respiration. Additionally, it supports pollen viability, leaf elongation, pollen germination, and pollen tube growth, as well as being essential for flower production and retention, seed and fruit development, and facilitating the transport of water, nutrients, and carbohydrates to actively growing tissues (Hadi and Saleh 2021).

Zhao *et al.* (2012) stated that zinc enhances chlorophyll and carotenoid biosynthesis, improves the rate of photosynthesis, and inhibits interveinal chlorosis. Many authors previously stated that zinc organizes hormones, such as gibberellins, cytokinins, and auxins, which are necessary for growth and differentiation of the plant cells. It induces plant growth as well as the accumulation of fresh and dry weight by preserving the balance between these hormones (Safarzadeh *et al.* 2013). Additionally, it is fundamental for plant physiology, where it helps the organization of auxin content, reducing the oxidation process, and improving enzymatic reactions, such as carbohydrate transfer and cellulose formation (Bhalerao *et al.* 2014). Through boosting chlorophyll levels, Zn contributes to higher photosynthetic activity, which ultimately promotes better crop growth and increased yields (Yu *et al.* 2015). Additionally, zinc is important for aiding in cell division and preserving the integrity of membrane structures (Lacerda *et al.* 2018) and synthesizing photosynthetic pigments (Liu *et al.* 2022). Zinc is important in the synthesis of proteins, chlorophyll, and various enzymes (Singh *et al.* 2018). It supports hormone organization, including the synthesis of tryptophan, and it facilitates signaling through mitogen-activated protein kinases (Kaur and Garg 2021), activates enzymes, and maintains ion balance (Alsafran *et al.* 2022).

Therefore, the present study has been performed to investigate the role of some biostimulants alone or combined with zinc and boron oxides to improve the productivity of date palm cv. Barhi and reduce the dependency on mineral fertilizers.

EXPERIMENTAL

Applied Treatments, Location, and Experimental Design

The present study was performed during the 2023 and 2024 seasons on ten-year-old date palm trees cv. Barhi grown in the Wadi El-Natroun region, El-Behera governorate, Egypt, at the age of 12 years in sandy soil at a distance of $7 \times 7 \text{ m}^2$ under a drip irrigation system. Forty-five palms in the same growth and size were selected carefully to perform this study. The trees were sprayed with 50 mg/L ZnO + 50 mg/L B₂O₃; 100 mg/L ZnO + 100 mg/L B₂O₃; 0.2 and 0.4% YE; 0.2 and 0.4% Seaweed Extract (SWE); 50 mg/L ZnO + 50 mg/L B₂O₃ + 0.2 % YE + 0.2 % SWE, (combination 1); 0.4% YE + 0.4% SWE + 100 mg/L ZnO + 100 mg/L B₂O₃ (combination 2) as compared to trees that were not sprayed as a control. Yeast Extract (YE): Nutritional Additive Organic Pure Powder Yeast Extract Powder (Hangzhou Natur Foods Co., Ltd., Xiaoshan District, Hangzhou City, Zhejiang Province, China). Seaweed Extract (SWE): Plant Extract *Ascophyllum Nodosum* Flake/Powder Water Soluble Seaweed Extract Organic Fertilizer (Shenyang Everest Corporation Ltd., Shenyang, Liaoning, China).

The treatments were arranged in a randomized complete block design (RCBD), where each treatment was applied on five palms (five replicates). The trees were sprayed four times: starting from mid-February with one-month intervals between sprays. The analysis of the experimental soil is shown in Table 1.

Table 1. Physical and Chemical Characteristics of the Experimental Soil

Textural class			O.M (%)		pH		CaCO ₃ (%)			EC (dS/m)				
Sandy loam			0.25		8.3		5.8			2.8				
Soluble anions (meq/L)			Soluble cations (meq/L)					Available nutrients (mg/kg)						
								Macro nutrients			Micronutrients			
HCO ₃ ⁻	CL ⁻	SO ₄ ²⁻	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K ⁺	N	P	K	Fe	Zn	Mn		
6.12	5.5	16.91	19.22	4.50	1.66	4.42	75.5	5.2	230	0.9	0.38	0.85		

O.M.: Organic matter; EC: Electrical conductance

Table 2. Weather Data during the 2023 and 2024 Seasons

Year	2023		2024		2023	2024	2023	2024		
	Months	Temperature (°C)		Temperature (°C)						
		Minimum	Maximum	Minimum	Maximum					
January	9.21	20.31	9.26	19.46	70.27	64.46	26.70	26.20		
February	7.75	18.91	8.73	20.54	68.94	69.41	29.90	6.70		
March	11.14	24.42	10.46	24.04	59.23	62.43	14.20	8.80		
April	12.96	27.79	14.01	29.94	54.04	57.87	10.20	2.20		
May	16.05	31.75	16.80	32.44	52.39	48.06	0.40	0.00		
June	20.11	35.29	20.94	38.67	52.70	50.40	1.90	0.20		
July	22.11	38.48	22.98	38.03	54.11	53.71	0.00	0.00		
August	22.65	37.37	22.75	37.71	55.20	55.06	0.00	1.50		
September	22.28	36.39	22.08	35.17	54.88	56.40	0.20	0.00		

The impact of the aforementioned treatments was evaluated by examining their effects on the subsequent parameters.

Palm Yield

At harvest, palm yield was measured in kg by weighing the weight of bunches, and the total yield per hectare was calculated by multiplying the number of palms by their average yield.

Fruit Quality

Forty fruits from each tree (replicate), were picked in September (time of the fruit ripening) of 2023 and 2024 and transferred directly to the lab to measure the fruits' physical and chemical characteristics.

Fruit Physical Characteristics

Average fruit weight (g) was determined by calculating the mean weight of 40 individual fruits. Flesh weight (g), and seed weight (g), were measured, and the flesh/fruit ratio was calculated. Fruit length and fruit width (cm) were assessed using a digital vernier caliper (Suzhou Sunrix Precision Tools Co., Ltd., Suzhou, China). Fruit firmness (lb/inch²) was assessed using a Magness–Taylor pressure tester (mod. FT 02 (0 to 2 lb, Alfonsine, Italy).

Fruit Chemical Characteristics

Total soluble solids percentage in fresh fruits was determined using a hand refractometer (ATAGO Co., Ltd., Tokyo, Japan). Fruit acidity was determined as a percentage based on malic acid content and measured in the fruit juice through titration using 0.1 N sodium hydroxide, with phenolphthalein serving as the indicator (AOAC 2005). Total sugar content (%) was measured using the phenol-sulfuric acid method, while reducing sugars were colorimetrically determined following the procedure described by Nelson (2010).

The percentage of non-reducing sugars was calculated by subtracting reducing sugars from total sugars. The content of ascorbic acid in the juice (vitamin C) was determined through titration using 2,6-dichloro phenol-indo-phenol (Nielsen 2017). The soluble tannin content was determined using a method as described by Ogawa and Yazaki (2018).

Total chlorophyll content was estimated following the method described by Richardson *et al.* (2002), with absorbance measured spectrophotometrically at 650 nm. Similarly, fruit carotene content was determined using the procedure outlined by Aquino *et al.* (2018), with absorbance recorded at 440 nm using a spectrophotometer (Zhengzhou Resound Photoelectric Technology Research Institute Company, China).

Statistical Analysis

The results were statistically analyzed using One-Way analysis of variance (ANOVA) in a randomized complete block design (RCBD), and Least Significant Difference (LSD) at 0.05 was used compare between the means of the treatments (Snedecor and Cochran 1990) using CoHort Software 6.311 (Pacific Grove, CA, USA).

RESULTS AND DISCUSSION

The external spraying of $ZnO + 50 \text{ mg/L } B_2O_3$, YE, SWE, and their combinations significantly improved the bunch weight, yield in kg per palm, and tons per hectare compared to unsprayed trees (Table 3). Moreover, the best treatment that achieved the most significant increments in the yield was the spraying of combination 2 over the other applied treatments.

The highest doses from the sprayed materials were more effective than the lower ones. Additionally, the effect of SWE was higher than the influence of YE. The differences between the influence of 0.4% SWE and combination 1 were insignificant in the two seasons.

Table 3. Influence of the Foliar Spraying of $ZnO + B_2O_3$, YE, SWE, and their Combinations on the Bunch Weight and Fruit Yield of Date Palm cv. Barhi during 2023 and 2024 Seasons

Treatments	Bunch Weight (kg)		Yield (kg/palm)		Yield (ton/h)	
	2023	2024	2023	2024	2023	2024
Control	15.88f	16.12f	158.80f	161.20f	30.97f	31.43f
50 mg/L $ZnO + 50 \text{ mg/L } B_2O_3$	16.42ef	16.96def	164.20ef	169.60def	32.02ef	33.07def
100 mg/L $ZnO + 100 \text{ mg/L } B_2O_3$	18.84bc	19.12c	188.4bc	191.20c	36.74bc	37.28c
0.2% YE	16.00f	16.52ef	160.00f	165.20ef	31.20f	32.21ef
0.4% YE	17.90cd	18.10cd	179.00cd	181.00cd	34.90cd	35.29cd
0.2% SWE	17.26de	17.80de	172.60de	178.00de	33.66de	34.71de
0.4% SWE	19.62b	20.4b	196.2b	204.00b	38.26b	39.78b
Combination 1	19.96b	20.68b	199.60b	206.80b	38.92b	40.33b
Combination 2	21.76a	22.12a	217.60a	221.20a	42.43a	43.13a
$LSD_{0.05}$	1.08	1.25	10.84	12.55	2.11	2.45

Treatments with the same letter in a column are not significantly different.

The spraying of $B_2O_3 + ZnO$, YE, SWE, and their combinations had a positive effect on fruit weight, fruit firmness, and flesh weight, in Barhi date palms (Table 4). The results also showed that combination 2 yielded the best result, with the highest increments in the measured parameters. Additionally, the spraying of high concentrations of $B_2O_3 + ZnO$, YE, and SWE was more effective than the lowest concentrations in both seasons. The seed weight was markedly increased with combination 2 compared to control. The differences between the effects of combination 1, 0.4% SWE, 0.2 SWE, and 0.4 YE on the seed weight were so slight to be significant.

The spraying of $ZnO + B_2O_3$, YE, SWE, and their combinations improved the fruit physical characteristics in terms of flesh-fruit weight, fruit length, and diameter compared to the control (Table 5). The highest fruit length was greatly increased by the spraying of combination 2 rather than the sprayed treatments. There were no significant differences detected between combination 2 and combination 1 on the flesh-fruit ratio and fruit diameter.

Table 4. Influence of the Foliar Spraying of ZnO + B₂O₃, YE, SWE, and their Combinations on the Weights of Fruit, Flesh, and Seed and Fruit Firmness of Date Palm cv. Barhi during 2023 and 2024 Seasons

Treatments	Fruit Weight (g)		Flesh Weight (g)		Seed Weight (g)		Fruit Firmness (lb/inch ²)	
	2023	2024	2023	2024	2023	2024	2023	2024
Control	15.1e	15.058f	13.80e	13.78e	1.30b	1.32d	18.77e	19.57e
50 mg/L ZnO + 50 mg/L B ₂ O ₃	16.872d	16.31de	15.48d	14.91de	1.39a	1.388bc	21.30d	21.1d
100 mg/L ZnO + 100 mg/L B ₂ O ₃	18.666c	18.836c	17.24c	17.494c	1.43a	1.402bc	21.77cd	22.33c
0.2% YE	15.678e	15.73ef	14.37e	14.394e	1.30b	1.35cd	19.23e	20.17e
0.4% YE	18.274c	18.498c	16.85c	17.166c	1.42a	1.402bc	21.23d	22.27c
0.2% SWE	17.078d	17.248d	15.65d	15.842d	1.43a	1.396bc	21.20d	21.23d
0.4% SWE	19.998b	20.392b	18.55b	19.068b	1.45a	1.43ab	22.47bc	22.73c
Combination 1	20.862b	21.258b	19.42b	19.848b	1.44a	1.43ab	22.70b	23.87b
Combination 2	22.00a	22.47a	20.56a	21.08a	1.44a	1.48a	23.53a	25.53a
LSD _{0.05}	1.00	1.17	1.00	1.21	0.07	0.06	0.79	0.92

Treatments with the same letter in a column are not significantly different.

Table 5. Influence of the Foliar Spraying of ZnO + B₂O₃, YE, SWE, and their Combinations on the Flesh-fruit Ratio, Fruit Length, and Diameter of Date Palm cv. Barhi during 2023 and 2024 Seasons

Treatments	Flesh-fruit Ratio		Fruit Length (cm)		Fruit Diameter (cm)	
	2023	2024	2023	2024	2023	2024
Control	91.40f	91.21e	3.29f	3.30e	2.46b	2.41b
50 mg/L ZnO + 50 mg/L B ₂ O ₃	91.73def	91.47e	3.47e	3.41d	2.59ab	2.51b
100 mg/L ZnO + 100 mg/L B ₂ O ₃	92.32cd	92.54bcd	3.62bc	3.58c	2.46b	2.55b
0.2% YE	91.67ef	91.39e	3.45e	3.39d	2.48b	2.42b
0.4% YE	92.22cde	92.40cd	3.47de	3.46d	2.53b	2.52b
0.2% SWE	91.61ef	91.84de	3.48de	3.44d	2.48b	2.53b
0.4% SWE	92.75bc	92.97abc	3.59cd	3.57c	2.454b	2.54b
Combination 1	93.08ab	93.27ab	3.72b	3.80b	2.61ab	2.57b
Combination 2	93.44a	93.41a	3.86a	3.91a	2.77a	2.77a
LSD _{0.05}	0.56	0.76	0.11	0.08	0.22	0.17

Treatments with the same letter in a column are not significantly different.

The fruit content from TSS percentage was improved by the external spraying of ZnO + B₂O₃, YE, SWE, and their combinations as compared to untreated trees (Table 6). Moreover, the results showed that the highest increments in TSS percentage were obtained with the spraying of combination 2 rather than the sprayed treatments in both seasons. The results also showed that there are no significant differences between the effect of combination 1, and 0.4% SWE in their effect. On the opposite side, the results indicate that the spraying of combination 2 markedly decreased the fruit content of acidity and tannin. Additionally, Combination 1, 0.4% SWE, 0.2% SWE, 0.4% YE, and 100 mg/L ZnO + 100

mg/L B₂O₃ positively lowered the fruit content from acidity and tannin percentages compared to untreated trees.

Table 6. Influence of the Foliar Spraying of ZnO + B₂O₃, YE, SWE, and their Combinations on the Fruit Content from TSS, Acidity, and Tannin Percentages of Date Palm cv. Barhi During 2023 and 2024 Seasons

Treatments	TSS (%)		Acidity (%)		Tannin (%)	
	2023	2024	2023	2024	2023	2024
Control	25.70f	27.24e	0.34a	0.32a	1.06a	0.954a
50 mg/L ZnO + 50 mg/L B ₂ O ₃	27.94e	28.50e	0.32ab	0.304ab	0.93b	0.854b
100 mg/L ZnO + 100 mg/L B ₂ O ₃	32.46c	34.40bc	0.29c	0.258d	0.69d	0.7306c
0.2% YE	26.70ef	27.64e	0.34a	0.318a	0.94b	0.9098a
0.4% YE	32.60c	34.30c	0.29bc	0.27cd	0.72d	0.696cd
0.2% SWE	30.16d	31.40d	0.30bc	0.286bc	0.83c	0.804b
0.4% SWE	33.94bc	34.90bc	0.27c	0.25d	0.68d	0.6744d
Combination 1	35.12b	36.00b	0.27c	0.25d	0.66d	0.608e
Combination 2	37.38a	37.88a	0.23d	0.22e	0.57e	0.5448f
LSD _{0.05}	1.45	1.57	0.03	0.02	0.08	0.05

Treatments with the same letter in a column are not significantly different.

The external spraying of ZnO + B₂O₃, YE, SWE, and their combinations greatly increased the fruit content from total, reduced, and non-reduced sugars compared to untreated trees in the two seasons (Table 7). The spraying of combination 2 remarkably increased the fruit content of total, reduced, and non-reduced sugars, rather than the other sprayed treatments. Moreover, the highest concentrations of ZnO + B₂O₃, YE, and SWE were more effective than the lowest ones in the two seasons.

Table 7. Influence of the Foliar Spraying of ZnO + B₂O₃, YE, SWE, and their Combinations on the Fruit Content from Total, Reduced, and Non-reduced Sugars Percentages of Date Palm cv. Barhi during the 2023 and 2024 Seasons

Treatments	Total Sugars (%)		Reduced Sugars (%)		Non-reduced Sugars (%)	
	2023	2024	2023	2024	2023	2024
Control	21.74f	22.36d	16.56f	17.52f	5.18d	4.84abc
50 mg/L ZnO + 50 mg/L B ₂ O ₃	23.72e	23.77d	18.30e	19.31e	5.42d	4.46c
100 mg/L ZnO + 100 mg/L B ₂ O ₃	29.25c	29.21b	23.94b	24.24bc	5.31d	4.97abc
0.2% YE	22.70ef	22.91d	17.36ef	18.18ef	5.35d	4.73bc
0.4% YE	28.70c	29.41b	22.59c	23.97c	6.11bc	5.43a
0.2% SWE	26.15d	26.17c	20.50d	21.12d	5.65bcd	5.05abc
0.4% SWE	30.09bc	30.14b	24.57b	24.74bc	5.52cd	5.40a
Combination 1	31.22b	30.78b	24.96b	25.52b	6.26ab	5.25ab
Combination 2	33.58a	32.43a	26.78a	26.94a	6.80a	5.48a
LSD _{0.05}	1.61	1.54	1.34	1.40	0.58	0.59

Treatments with the same letter in a column are not significantly different.

The spraying of date palm cv. Barhi by ZnO + B₂O₃, YE, and SWE improved fruit chemical characteristics like carotene, total chlorophyll, and vitamin C compared to untreated trees (Table 8). Moreover, the highest results were obtained by spraying the date palm trees with combination 2, which was the best treatment. Additionally, the differences between the effect of combination 1 and 0.4% SWE were so slight not enough to be significant. The effect of the application of 0.4 % SWE or YE was higher than the spraying of 0.2 % SWE or YE, and the impact of 100 mg/L from ZnO + B₂O₃ was higher than 50 mg/L.

Table 8. Influence of the Foliar Spraying of ZnO + B₂O₃, YE, SWE, and their Combinations on the Fruit Content of Carotene, Total Chlorophyll, and Vitamin C of Date Palm cv. Barhi during the 2023 and 2024 Seasons

Treatments	Carotene (mg/100 g)		Total Chlorophyll (mg/100 g)		Vitamin C (mg/100 mL)	
	2023	2024	2023	2024	2023	2024
Control	3.30f	3.23f	4.83d	5.30f	3.36e	3.35e
50 mg/L ZnO + 50 mg/L B ₂ O ₃	3.60ef	3.47f	5.30d	5.68ef	3.68d	3.48e
100 mg/L ZnO + 100 mg/L B ₂ O ₃	4.27cd	4.70cd	6.16c	7.12d	3.98c	4.10c
0.2% YE	3.40ef	3.40f	5.20d	5.48f	3.49de	3.44e
0.4% YE	4.17d	4.50d	6.02c	6.18e	3.73d	3.91d
0.2% SWE	3.63e	4.03e	6.01c	5.79ef	3.65d	3.82d
0.4% SWE	4.53bc	4.83bc	6.63c	7.94c	4.22bc	4.15c
Combination 1	4.80b	5.10b	7.64b	8.56b	4.31b	4.36b
Combination 2	5.61a	5.63a	9.10a	9.12a	4.89a	5.00a
LSD _{0.05}	0.30	0.31	0.59	0.52	0.24	0.13

Treatments with the same letter in a column are not significantly different.

Discussion

The results showed the positive influence of the application of SWE individually or combined with YE, ZnO + B₂O₃ on the performance of date palm cv. Barhi. These findings were explained by many authors in their studies. For example, many authors reported that SWE is a natural marine resource and characterized by its high content of variant biologically active substances, such as polysaccharides and hormones, gibberellins, auxins, cytokinins, abscisic acid, sterols, indole acetic acid, and polyamines, which can improve the growth, development of the plants, flowering rate, productivity, the nutritional content and fruit shelf life, and defense abiotic stresses (Górka *et al.* 2015; Ali *et al.* 2021). SWE increases the efficiency of water use and nutrient uptake (Raj *et al.* 2018). SWEs are widely recognized as a nutrient-rich resource of Ca, Mg, K, S, and P, as well as micronutrients, such as iodine, manganese, nickel, selenium, iron, cobalt, zinc, copper, molybdenum, and boron, a valuable source of vitamins A, D, B1, B2, B9, B12, K, C, and E, amino acids, such as aspartic acid, glutamic acid, and alanine, proteins, lipids, carbohydrates, as well as bioactive compounds, such as polyphenols with antioxidants. Therefore, they are utilized in agriculture as liquid fertilizers, promoting higher crop yields (Kumawat and Kumawat 2023; Kumar *et al.* 2024).

The present results agreed with those obtained by many authors who reported that the soil addition of SWE at 3 and 4 g/L improved the vegetative growth, productivity, fruit

quality, and the nutritional status of guava trees (Mosa *et al.* 2021). The spraying of SWE ameliorated the vegetative growth parameters, fruit set percentages, fruit productivity, fruit quality characteristics, and the nutritional status of the trees, compared to non-sprayed trees in apple (Mosa *et al.* 2022), olive, and apricot (Al-Saif *et al.* 2023a and b) and orange (Almutairi *et al.* 2024).

As YE contains phytohormones and amino acids, its application can induce tolerance to environmental stress, promote plant growth and chlorophyll content in plants, and increase protein and nucleic acid synthesis (Wanas 2006). YE is a natural source of cytokinins that increases cell division and induces the synthesis of proteins and chlorophyll. Besides, YE was used as a growth enhancer due to its rich composition of both micro- and macronutrients, such as nitrogen, phosphorus, magnesium, iron, and sodium, plant growth regulators including gibberellins and auxins, amino acids, proteins, vitamins, and other essential compounds, all of which positively affect carbohydrate metabolism, photosynthetic pigment levels, and enzyme activity, thereby promoting better plant growth and development (Lonhienne *et al.* 2014; Mukherjee *et al.* 2020), improve the biosynthesis of chlorophyll and raise nitrogen content, leading to improved levels of assimilation and the accumulation of organic matter (Saad-Allah *et al.* 2017).

These findings are consistent with those reported by several other authors who reported that spraying YE improved the vegetative growth parameters, productivity, fruit quality, leaf composition from nutrients; meanwhile, it markedly lowered the fruit drop and fruit acidity percentages in mango (Abd El-Motty *et al.* 2010), orange (El-Shazly and Mustafa 2015), olive (Mahmoud *et al.* 2015), apricot (Haggag *et al.* 2016), mandarin (Ahmed *et al.* 2018), and pear (Hafez *et al.* 2018). Spraying pomegranate with YE at 0.2%, 0.3% and 0.4% remarkably improved vegetative growth, fruit set percentage, fruit number, weight, size, dimensions, and firmness, productivity, fruit chemical properties from soluble solids, total and reducing sugars, anthocyanin, leaf nutritional composition from macronutrients in the two seasons. Meanwhile, these treatments reduced the percentages of drop, cracking, sunburn, and total acidity of fruits (Harhash *et al.* 2021). Similarly, in another study performed on Jujube trees, the external spraying of 1% and 2% YE markedly ameliorated the productivity, physical and chemical fruit characteristics and markedly minimized the fruit acidity percentages (Ahmed *et al.* 2023). The external application of 0.2% YE on date palm remarkably increased productivity, fruit weight, firmness, size, dimensions, as well as fruit content from soluble solids, total, reduced and non-reduced sugars, ascorbic acid, and carotene, while it decreased the fruit acidity (Al-Saif *et al.* 2023c).

The positive effect of boron may be because it enhances rates of pollen germination, pollen tube development, and fruit set percentages. In addition, it influences nucleic acids and plant hormones. Additionally, it promotes enzyme activity, boosts phytohormones and nucleic acid production, enhances nutrient uptake, and helps plants tolerate salinity. Besides, it increases carbohydrate and sugar translocation, stimulates phenol metabolism, and ultimately lowers fruit drop percentages and improves productivity (Marschner 2011; Ahmad *et al.* 2012). Besides, it is a fundamental nutrient for increasing the percentage of flowers, fruit set and yield, activation of plant hormones, cell wall synthesis, and cell membrane integrity (Davarpanah *et al.* 2016; Zhang *et al.* 2023). The positive influence of boron is attributed to its vital roles in enhancing the respiration rate, protein metabolism, and the synthesis and metabolism of auxins, such as indole-3-acetic acid (IAA) and phenols (Khalaj *et al.* 2016). It is also vital for raising the pollen grains' viability and pollen tube development (Naeem *et al.* 2020), improving blooming rate, raising the nitrogen absorption

rate, the amount of water, and carrying phytohormones more easily, leading to improved cell division and elongation (Taiz *et al.* 2023). The spraying of B₂O₃ markedly improved the vegetative growth attributes, fruit set percentages, productivity, fruit quality in terms of fruit weight, size, length, and diameter as well as fruit content from soluble solids such as sugars. It was noticed that B₂O₃ remarkably reduced the fruit acidity and fruit drop percentages in apple (Mosa *et al.* 2015) and in sweet cherry (Sajid *et al.* 2024). The external application of strawberries with borax at 0.6% markedly increased the fruit set and fruit retention percentages, fruit weight, pulp weights, total sugar, TSS, and fruit productivity. However, it reduced the fruit drop percentage (Tiwari *et al.* 2023).

Zinc is an essential micronutrient for plants because it is involved in the metabolism of starch and nucleic acids, and the biosynthesis of protein, the transfer of carbohydrate, the activity of various enzymes, such as RNA and DNA polymerases, and it plays a role in maintaining membrane structure and improving the photosynthesis process (Ojeda-Barrios *et al.* 2014; Valizadeh and Milic 2016). Besides, it is necessary for plant growth and development by participating in numerous physiological and enzymatic activities. It acts as a component, catalyst, or structural cofactor of enzymes involved in energy generation, macromolecule metabolism, and chlorophyll formation, enhancing root growth, regulating water absorption and transport, and protecting plants against abiotic stresses. Zinc is also essential for the synthesis of necessary plant hormones such as auxins, gibberellins and cytokinins (Szöllösi *et al.* 2020). Besides, zinc application enhances the absorption of nitrogen, phosphorus, potassium, sulfur, and magnesium (Islam *et al.* 2018), stimulates the production of tryptophan and auxins, supports pollen tube development, and promotes higher fruit set (Fei *et al.* 2016). Zn affects the growth of fruit as it is a precursor of tryptophan, which is required for the biosynthesis of indole acetic acid therefore it helps in division and elongation of cells, which can help to ameliorate productivity (Faizan *et al.* 2020). Spraying of orange with ZnO at 75 ppm increased shoot length, leaf area, fruit productivity, number, weight and volume of fruit, the fruit content from total chlorophyll, sugars, free amino acids, soluble phenols and tryptophan compared with the control. Additionally, zinc also significantly increased the concentration of GA₃, IAA, and ABA, and leaf mineral composition from P, K, N, Mg, Fe, Zn, Cu, and Mn (Ahmed *et al.* 2012). The external application of ZnO on apple at 100, 200, and 300 mg/L improved total chlorophyll, fruit set %, yields, fruit weight, size, dimensions, firmness, and fruit content from soluble solids. Meanwhile, these treatments significantly reduced the fruit drop percentages and fruit acidity (Aly *et al.* 2022).

The combined application of Zn and B enhanced the biosynthesis of chlorophyll a and b, total chlorophyll content, and carotenoids, along with leaf area expansion, resulting in increased nut yield in the 'Bhaskara' cashew variety (Lakshmiipathi *et al.* 2018). The external application of 0.5% ZnSO₄ + 0.4% borax on Kagzi lime trees markedly increased the fruit set %, fruit number, and productivity; meanwhile, this treatment notably reduced the fruit drop percentage compared with untreated trees (Venu and Delvadia 2018).

CONCLUSIONS

1. The results indicate that spraying ZnO + B₂O₃, yeast extract (YE), and seaweed extract (SWE) improved both fruit productivity and quality in Barhi date palms compared to the control.

2. The combined application proved more effective than individual treatments, with the best results in yield and fruit quality achieved using combination 2, rather than other treatments.
3. The application of YE and SWE as biostimulants on date palm demonstrates clear potential for improving plant vigor, growth, and productivity. Generally, integrating yeast and seaweed extracts into date palm management programs can support sustainable agriculture by reducing dependence on synthetic fertilizers, enhancing soil fertility, and promoting healthier, more resilient trees. Future studies should focus on optimizing dosage, application frequency, and the combined use of these biostimulants to maximize yield and fruit quality in date palm cultivation.

Funding

This research was funded by Ongoing Research Funding program, (ORF-2025-561), King Saud University, Riyadh, Saudi Arabia

ACKNOWLEDGMENTS

The authors extend their appreciation to Ongoing Research Funding program, (ORF-2025-561), King Saud University, Riyadh, Saudi Arabia.

REFERENCES CITED

Abd El-Motty, E. Z. A., Shahin, M. F. M., El-Shiekh, M. H. and El-Abd- Migeed, M. M. M. (2010). "Effect of algae extract and yeast application on growth, nutritional status, yield and fruit quality of Keitte mango trees," *Am. J. Agric. Biol. Sci.* 1(3), 421-429.

Abd-Alrahman, H. A., and Aboud, F. S. (2021). "Response of sweet pepper plants to foliar application of compost tea and dry yeast under soilless conditions," *Bull. Natl. Res. Cent.* 45(119), 1-9. DOI: 10.1186/s42269-021-00578-y

Ahmad, W., Zia, M. H., Malhi, S. S., Niaz, A., and Ullah, S. (2012). "Boron deficiency in soils and crops: A review," *Crop. Plant.* 65-97.

Ahmed, A. A. A., Talib, Z. A., bin Hussein, M. Z., and Zakaria, A. (2012). "Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn-Al layered double hydroxide," *J. Alloys Compounds* 539, 154-160.

Ahmed, F. F., Abdel aal, A. H., Mohamed, A. A. E., and Shoug, M. A. (2018). "Behaviour of balady mandarin trees to some yeast, amino acid and salicylic acid treatments," *New York J. Sci.* 11(3), 9-19.

Ahmed, M. A. A., Alebidi, A., Al-Obeed, R., and Omar, A. (2023). "Effect of foliar spray of yeast extract and potassium nitrate on yield and fruit quality on *Ziziphus jujuba* L. trees," *Acta Sci. Pol., Hortorum Cultus.* 22(1), 3-10.

Al-Alawi, R. A., Al-Mashiqri, J. H., Al-Nadabi, J. S., Al-Shihi, B. I., and Baqi, Y. (2017). "Date palm tree (*Phoenix dactylifera* L.): Natural products and therapeutic options," *Front. Plant Sci.* 8, article 845. DOI: 10.3389/fpls.2017.00845

Ali, O., Ramsubhag, A., and Jayaraman, J. (2021). "Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production," *Plants* 10, 531. DOI: 10.3390/plants10030531

Aljaloud, S., Colleran, H. L., and Ibrahim, S. A. (2020). "Nutritional value of date fruits and potential use in nutritional bars for athletes," *Food Nutr. Sci.* 11(06), article 463. DOI: 10.4236/fns.2020.116034

Almutairi, K. F., Sas-Paszt, L., and Mosa, W. F. (2024). "The role of some biostimulants in improving the productivity of orange," *Sustainability* 16(16), article 7131. DOI: 10.3390/su16167131

Alsafran, M., Usman, K., Ahmed, B., Rizwan, M., Saleem, M. H., and Al Jabri, H. (2022). "Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances," *Front. Plant Sci.* 13, article 881242. DOI: 10.3389/fpls.2022.881242

Al-Saif, A. M., Sas-Paszt, L., Awad, R. M., and Mosa, W. F. (2023a). "Apricot (*Prunus armeniaca*) performance under foliar application of humic acid, brassinosteroids, and seaweed extract," *Horticulturae* 9(4), article 519. DOI: 10.3390/horticulturae9040519

Al-Saif, A. M., Ali, M. M., Ben Hifaa, A. B., and Mosa, W. F. (2023b). "Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (*Olea europaea* L.) under salinity," *Horticulturae* 9(7), article 825. DOI: 10.3390/horticulturae9070825

Al-Saif, A. M., Sas-Paszt, L., Saad, R. M., Abada, H. S., Ayoub, A., and Mosa, W. F. (2023c). "Biostimulants and nano-potassium on the yield and fruit quality of date palm," *Horticulturae* 9(10), article 1137. DOI: 10.3390/horticulturae9101137

Aly, M.A.M., Muhsin, A.T., Abdelsalam, N. R. and Mosa. W.F. (2022). "Effect of some nano fertilizers on yield and fruit quality of apple," *Egypt. Acad. J. Biol. Sci., H Botany* 13(2), 59-64.

AOAC (2005). *Official Methods of Analysis*, 18th Ed., W. Hortwitz, and G. W. Latimer (eds.), Association of Official Analytical Chemists-International AOAC, Gaithersburg, MD, USA, pp. 20877-2417.

Aquino, C. F., Salomão, L. C. C., Pinheiro-Sant'ana, H. M., Ribeiro, S. M. R., Siqueira, D. L. D., and Cecon, P. R. (2018). "Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages," *Rev. Ceres.* 65, 217-226. DOI: 10.1590/0034-737X201865030001

Battacharyya, D., Babgohari, M. Z., Rathor, P., and Prithiviraj, B. (2015). "Seaweed extracts as biostimulants in horticulture," *Sci. Hortic.* 196, 39-48. DOI: 10.1016/j.scienta.2015.09.012

Begum, M., Bordoloi, B. C., Singha, D. D., and Ojha, N. J. (2018). "Role of seaweed extract on growth, yield and quality of some agricultural crops: A review," *Agric. Rev.* 39(4), 321-326. DOI: 10.18805/ag.R-1838

Benson, T., Lavelle, F., Bucher, T., McCloat, A., Mooney, E., Egan, B., Collins, C. E., and Dean, M. (2018). "The impact of nutrition and health claims on consumer perceptions and portion size selection: Results from a nationally representative survey," *Nutr.* 10(5), article 656. DOI: 10.3390/nu10050656

Bentrad, N., and Hamida-Ferhat, A. (2020). "Date palm fruit (*Phoenix dactylifera*): Nutritional values and potential benefits on health," in: *The Mediterranean Diet*, Academic Press, Cambridge, MA, USA, pp. 239-255. DOI: 10.1016/B978-0-12-818649-7.00022-9

Bhalerao, P. P., Patel, B. N., Patil, S. J., and Gaikwad, S. S. (2014). "Effect of foliar application of Ca, Zn, Fe and B on growth, yield and quality of papaya (*Carica papaya*) cv. Taiwan Red Lady," *Curr. Hortic.* 2(2), 35-39.

Botelho, R. V., Müller, M. M. L., Umburanas, R. C., Laconski, J. M. O., and Terra, M. M. (2022). "Boron in fruit crops: plant physiology, deficiency, toxicity, and sources for fertilization," in: *Boron in Plants and Agriculture*, Academic Press, Cambridge, MA, USA, pp. 29-50. DOI: 10.1016/B978-0-323-90857-3.00015-1

Brdar-Jokanović, M. (2020). "Boron toxicity and deficiency in agricultural plants," *Int. J. Mol. Sci.* 21(4), article 1424. DOI: 10.3390/ijms21041424

Caradonia, F., Battaglia, V., Righi, L., Pascali, G., and La Torre, A. (2019). "Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level," *J. Plant Growth Regul.* 38, 438-448. DOI: 10.1007/s00344-018-9853-4

Colavita, G., Spera, N., Blackhall, V., and Sepulveda, G. (2011). "Effect of seaweed extract on pear fruit quality and yield," *Acta Hortic.*, 601-607. DOI: 10.17660/ActaHortic.2011.909.72

Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., and Khorasani, R. (2016). "Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (*Punica granatum* cv. Ardestani) fruit yield and quality," *Sci. Hortic.* 210, 57-64. DOI: 10.1016/j.scienta.2016.07.003

Dawood, M. G., Sadak, M. S., Abdallah, M. M. S., Bakry, B. A., and Darwish, O. M. (2019). "Influence of biofertilizers on growth and some biochemical aspects of flax cultivars grown under sandy soil conditions," *Bull. Nat. Res. Cent.* 43(1), 1-13. DOI: 10.1186/s42269-019-0122-x

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., and Lyamlouli, K. (2020). "Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems," *Plants* 9(3), article 359. DOI: 10.3390/plants9030359

El-Serafy, R. S. (2018). "Growth and productivity of roselle (*Hibiscus sabdariffa* L.) as affected by yeast and humic acid," *Sci. J. Flowers Ornamen. Plants* 5(2), 195-203. DOI: 10.21608/sjfop.2018.18129

EL-Shazly, S.M. and Mustafa, N.S. (2015). "Enhancement yield, fruit quality and nutritional status of Washington navel orange trees by application of some bio stimulants," *Acta Hortic.* 1065(165), 1303-1309. DOI: 10.17660/ActaHortic.2015.1065.165

Faizan, M., Faraz, A., and Hayat, S. (2020). "Effective use of zinc oxide nanoparticles through root dipping on the performance of growth, quality, photosynthesis and antioxidant system in tomato," *J. Plant Biochem. Biotechnol.* 29(3), 553-567. DOI: 10.1007/s13562-019-00525-z

FAO. (2023). "FAO Statistical Databases," Food and Agriculture Organization of the United Nations, Available online: <https://www.fao.org/faostat/>, Accessed 23 Aug 2023.

Fei, X., Fu, X.-Z., Wang, N.-Q., Xi, J.-L., Huang, Y., Wei, Z., Ling, L.-L., and Peng, L.-Z. (2016). "Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (*Citrus sinensis*)," *J. Integr. Agric.* 15(4), 803-811. DOI: 10.1016/S2095-3119(15)61276-X

Fu, S.-F., Sun, P.-F., Lu, H.-Y., Wei, J.-Y., Xiao, H.-S., Fang, W.-T., Cheng, B.-Y., and Chou, J.-Y. (2016). "Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of *Drosera spatulata* Lab," *Fungal Biol.* 120(3), 433-448. DOI: 10.1016/j.funbio.2015.12.006

Ghnnimi, S., Umer, S., Karim, A., and Kamal-Eldin, A. (2017). "Date fruit (*Phoenix dactylifera* L.): An underutilized food seeking industrial valorization," *NFS J.* 6, 1-10. DOI: 10.1016/j.nfs.2016.12.001

Górka, B., Lipok, J., and Wieczorek, P. P. (2015). "Biologically active organic compounds, especially plant promoters, in algae extracts and their potential application in plant cultivation," in: *Marine Algae Extracts: Processes, Products, Application*, S.-K. Kim, and K. Chojnacka (eds.), Wiley-VCH, Weinheim, Germany, pp. 659-680. DOI: 10.1002/9783527679577.ch37

Gullón, B., Gagaoua, M., Barba, F. J., Gullón, P., Zhang, W., and Lorenzo, J. M. (2020). "Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products," *Trends Food Sci. Technol.* 100, 1-18. DOI: 10.1016/j.tifs.2020.03.039

Hadi, A., and Saleh, S. (2021). "Response of apple trees (cv. Ibrahim) to the time of foliar application with zinc and boron," *IOP Conference Series: Earth and Environmental Science* 904, article 012048. DOI: 10.1088/1755-1315/904/1/012048

Hafez, O.M., Hamouda, H., EL-Dahshouri, M. and EL-Saady, A. (2018). "Response of Le Conte pear trees to some nutrients, salicylic acid and yeast foliar application under newly reclaimed soil," *Middle East J. Appl. Sci. Technol.* 8(1), 251-258.

Haggag, L. F., Fawzi, M., Shahin, M., and EL-Hady, E. S. (2016). "Effect of yeast, humic acid, fulvic acid, citric acid, potassium citrate and some chelated micro-elements on yield, fruit quality and leaf minerals content of 'Canino' apricot trees," *Int. J. Chem. Technol. Res.* 9(4), 07-15.

Hamed, S. A., Zewail, R., Abdalrahman, H., Fekry, G. E.-A., Khatov, B., and Park, K. W. (2019). "Promotion of growth, yield and fiber quality attributes of Egyptian cotton by bacillus strains in combination with mineral fertilizers," *J. Plant Nutr.* 42(18), 2337-2348. DOI: 10.1080/01904167.2019.1655045

Harhash, M. M., Saad, R. M., and Mosa, W. F. A. (2021). "Response of "wonderful" pomegranate cultivar to the foliar application of some biostimulants," *Plant Archives* (09725210), 21(2). <https://cabidigitallibrary.org> by 156.192.152.169, on 09/12/25.

Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., and Hawrylak-Nowak, B. (2018). *Plant Nutrients and Abiotic Stress Tolerance*, Springer, Singapore, pp. 269-295. DOI: 10.1007/978-981-10-9044-8

Hassan, N. M., Marzouk, N. M., Fawzy, Z. F., and Saleh, S. A. (2020). "Effect of bio-stimulants foliar applications on growth, yield, and product quality of two cassava cultivars," *Bull. Nat. Res. Cent.* 44, 1-9. DOI: 10.1186/s42269-020-00317-9

Hernández-Herrera, R. M., Virgen-Calleros, G., Ruiz-López, M., Zañudo-Hernández, J., Délano-Frier, J. P., and Sánchez-Hernández, C. (2014). "Extracts from green and brown seaweeds protect tomato (*Solanum lycopersicum*) against the necrotrophic fungus *Alternaria solani*," *J. Appl. Phycol.* 26, 1607-1614. DOI: 10.1007/s10811-013-0193-2

Islam, M. M., Karim, M. R., Oliver, M. M. H., Urmi, T. A., Hossain, M. A., and Haque, M. M. (2018). "Impacts of trace element addition on lentil (*Lens culinaris* L.) agronomy," *Agronomy* 8(7), article 100. DOI: 10.3390/agronomy8070100

Kalayu, G. (2019). "Phosphate solubilizing microorganisms: promising approach as biofertilizers," *Int. J. Agron.* 253(129), 1-28. article 4917256. DOI: 10.1155/2019/4917256

Kaur, H., and Garg, N. (2021). "Zinc toxicity in plants: A review," *Planta* 253(6), article 129. DOI: 10.1007/s00425-021-03642-z

Khalaj, K., Ahmadi, N., and Souri, M. K. (2016). "Improvement of postharvest quality of Asian pear fruits by foliar application of boron and calcium," *Horticulturae* 3(1), article 15. DOI: 10.3390/horticulturae3010015

Kumar, G., Nanda, S., Singh, S. K., Kumar, S., Singh, D., Singh, B. N., and Mukherjee, A. (2024). "Seaweed extracts: Enhancing plant resilience to biotic and abiotic stresses," *Front. Marine Sci.* 11, article 1457500. DOI: 10.3389/fmars.2024.1457500

Kumawat, P., and Kumawat, V. (2023). "Seaweed marine algae: Nutritional values and plant growth regulators for sustainable agriculture," *Int. J. Environ. Agric. Res.* 9(10), 21-26. DOI: 10.5281/zenodo.10054276

Lacerda, J. S., Martinez, H. E., Pedrosa, A. W., Clemente, J. M., Santos, R. H., Oliveira, G. L., and Jifon, J. L. (2018). "Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality," *Crop Sci.* 58(3), 1360-1370. DOI: 10.2135/cropsci2017.06.0373

Lakshmipathi, J., Adiga, D., Kalaivanan, B., Muralidhara, M., and Preethi, P. (2018). "Effect of zinc and boron application on leaf area, photosynthetic pigments, stomatal number and yield of cashew," *Intl. J. Curr. Microbiol. Appl. Sci.* 7(1), 1786-1795. DOI: 10.20546/ijcmas.2018.701.216

Liu, L., Nian, H., and Lian, T. (2022). "Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). A review," *Plant Physiol. Biochem.* 185, 91-100. DOI: 10.1016/j.plaphy.2022.05.032

Lonhienne, T., Mason, M. G., Ragan, M. A., Hugenholtz, P., Schmidt, S., and Paungfoo-Lonhienne, C. (2014). "Yeast as a biofertilizer alters plant growth and morphology," *Crop Sci.* 54(2), 785-790. DOI: 10.2135/cropsci2013.07.0488

Mahmoud, T. S., Kassim, N. E., and Rayya, M. (2015). "Effect of foliar application with dry yeast extract and benzyl adenine on growth and yield of Manzanillo olive trees," *Res. J. Pharm., Biol. Chem. Sci.* 6(2), 1573-1583.

Marschner, H. (2011). *Marschner's Mineral Nutrition of Higher Plants*, Academic Press, Cambridge, MA, USA. DOI: 10.1016/C2009-0-02402-7

Marzauk, N. M., Shafeek, M. R., Helmy, Y. I., Ahmed, A. A., and Shalaby, M. A. F. (2014). "Effect of vitamin E and yeast extract foliar application on growth, pod yield and both green pod and seed yield of broad bean (*Vicia faba* L.)," *Middle East J. Appl. Sci.* 4(1), 61-67.

Mosa, W. F. A., Abd EL-Megeed, N. A., and Sas-Paszt L. (2015). "The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of 'Anna' apple trees," *A. J. Exp. Agric.* 8(4), 224-234.

Mosa, W. F., Sas-Paszt, L., Głuszek, S., Górnik, K., Anjum, M. A., Saleh, A. A., Abada, H. S., and Awad, R. M. (2022). "Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple," *Horticulturae*, 9(1), article 32. DOI: 10.3390/horticulturae9010032

Mosa, W. F., Sas-Paszt, L., Gornik, K., Ali, H. M., and Salem, M. Z. (2021). "Vegetative growth, yield, and fruit quality of guava (*Psidium guajava* L.) cv. maamoura as affected by some biostimulants," *BioResources* 16(4), article 7379. DOI: 10.15376/biores.16.4.7379-7399.

Mukherjee, A., Verma, J. P., Gaurav, A. K., Chouhan, G. K., Patel, J. S., and Hesham, A. E.-L. (2020). "Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture," *Appl. Microbiol. Biotechnol.* 104, 1497-1510. DOI: 10.1007/s00253-019-10321-3

Murtic, S., Oljaca, R., Murtic, M. S., Vranac, A., Koleska, I., and Karic, L. (2018). "Effects of seaweed extract on the growth, yield and quality of cherry tomato under different growth conditions," *Acta Agric. Slov.* 111(2), 315-325. DOI: 10.14720/aas.2018.111.2.07

Naeem, M., Ansari, A. A., and Gill, S. S. (2020). *Contaminants in Agriculture: Sources, Impacts and Management*, N. Gauri, A. A. Ansari, and S. S. Gill (eds.), Springer Nature, Cham, Switzerland. DOI: 10.1007/978-3-030-41552-5

Nielsen, S. S. (2010). "Phenol-sulfuric acid method for total carbohydrates," in: *Food Analysis Laboratory Manual, Food Science Texts Series*, S. S. Nielsen (ed.), Springer, Boston, MA, USA, pp. 47-53. DOI: 10.1007/978-1-4419-1463-7_6

Nielsen, S. S. (2017). "Vitamin C determination by indophenol method," in: *Food Analysis Laboratory Manual, Food Science Texts Series*, Springer, Springer, Cham, Switzerland, pp. 143-146. DOI: 10.1007/978-3-319-44127-6_15

Nikoogoftar-Sedghi, M., Rabiei, V., Razavi, F., Molaei, S., and Khadivi, A. (2023). "The effect of foliar application of *Ascophyllum nodosum* (L.) Le Jol. seaweed extract on biochemical traits related to abiotic stresses in pistachio (*Pistacia vera* L. cv. Kaleh-Ghoochi)," *BMC Plant Biol.* 23(1), article 635. DOI: 10.1186/s12870-023-04654-5

Ogawa, S., and Yazaki, Y. (2018). "Tannins from *Acacia mearnsii* De Wild. Bark: Tannin determination and biological activities," *Mol.* 23(4), article 837. DOI: 10.3390/molecules23040837

Ojeda-Barrios, D. L., Perea-Portillo, E., Hernández-Rodríguez, O. A., Avila-Quezada, G., Abadía, J., and Lombardini, L. (2014). "Foliar fertilization with zinc in pecan trees," *HortSci.* 49(5), 562-566. DOI: 10.21273/HORTSCI.49.5.562

Parthiban, C., Saranya, C., Girija, K., Hemalatha, A., Suresh, M., and Anantharaman, P. (2013). "Biochemical composition of some selected seaweeds from Tuticorin coast," *Adv. Appl. Sci. Res.* 4(3), 362-366.

Patel, J. S., Selvaraj, V., Gunupuru, L. R., Rathor, P. K., and Prithiviraj, B. (2020). "Combined application of *Ascophyllum nodosum* extract and chitosan synergistically activates host-defense of peas against powdery mildew," *BMC Plant Biol.* 20, 1-10. DOI: 10.1186/s12870-020-2287-8

Raj, T. S., Nishanthi, P., Graff, K. H., and Suji, H. A. (2018). "Seaweed extract as a biostimulant and a pathogen controlling agent in plants," *Int. J. Trop. Agric.* 36(3), 563-580.

Rerkasem, B., Jamjod, S., and Pusadee, T. (2020). "Productivity limiting impacts of boron deficiency, a review," *Plant Soil* 455(1), 23-40. DOI: 10.1007/s11104-020-04676-0

Richardson, A. D., Duigan, S. P., and Berlyn, G. P. (2002). "An evaluation of noninvasive methods to estimate foliar chlorophyll content," *New Phytol.* 153(1), 185-194. DOI: 10.1046/j.0028-646X.2001.00289.x

Rouphael, Y. and Colla, G. (2020). "Biostimulants in Agriculture," *Front. Plant Sci.* 11, article 40. DOI: 10.3389/fpls.2020.00040

Saad-Allah, K. M., Fetouh, M. I., and Elhaak, M. A. (2017). "Induction of milk thistle (*Silybum marianum* L. Gaertn) growth and phytochemicals production by natural stimulants," *J. Appl. Res. Med. Aromat. Plants.* 6, 101-110. DOI: 10.1016/j.jarmap.2017.02.006

Safarzadeh, S., Ronaghi, A., and Karimian, N. (2013). "Effect of cadmium toxicity on micronutrient concentration, uptake, and partitioning in seven rice cultivars," *Arch. Agron. Soil Sci.* 59(2), 231-245. DOI: 10.1080/03650340.2011.622752

Saini, H., Vijay, S., and Saini, P. (2019). "Differential responses of Fe, Zn, B, Cu and Mg on growth and quality attributes of fruit crops," *J. Pharmacog. Phytochem.* 8(5), 01-05.

Sajid, M., Basit, A., Shah, S.T., Khan, A., Ullah, I., Bilal, M., Khan, M.S., and Khan, W. (2024). "Enhancing the quality and fruit yield of sweet cherry (*Prunus Avium*) cultivars by foliar application of boron," *Appl. Fruit Sci.* 66(2), 485-494. <https://doi.org/10.1007/s10341-023-01023-2>

Sarhan, T., and Abdullah, O. K. (2010). "Effect of Azotobacter inoculation. Dry bread yeast suspension varying levels of urea on growth of potato cv. Desiree," in: *World Food System — A Contribution from Europe*, Tropentag, Zurich, Switzerland.

Shambhavi, S., Kumar, R., Sharma, S., Verma, G., Sharma, R., and Sharma, S. K. (2017). "Long-term effect of inorganic fertilizers and amendments on productivity and root dynamics under maize-wheat intensive cropping in an acid Alfisol," *J. Appl. Nat. Sci.* 9(4), 2004 -2012.

Sharafi, Y., and Raina, M. (2021). "Effect of boron on pollen attributes in different cultivars of *Malus domestica* L.," *Natl. Acad. Sci. Lett.* 44(3), 189-194. DOI: 10.1007/s40009-020-00986-0

Singh, A., Singh, N. á., Afzal, S., Singh, T., and Hussain, I. (2018). "Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants," *J. Mater. Sci.* 53(1), 185-201. DOI: 10.1007/s10853-017-1544-1

Snedecor, G. W., and Cochran, W. G. (1990). *Statistical Methods*, 6th Ed., Iowa State University Press, Ames, IA, USA.

Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., and Costa, G. (2009). "Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees," *J. Hortic. Sci. Biotechnol.* 84, 131-137. DOI: 10.1080/14620316.2009.11512610

Suhail, F. M. (2013). "Effect of mycorrhizal fungi inoculation and seaweed extract spray on some growth characters and yield of cucumber (*Cucumis sativus* L.)," *J. Genet. Environ. Resour.* 1, 209-214.

Szöllösi, R., Molnár, Á., Kondak, S., and Kolbert, Z. (2020). "Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. Phytotoxicity," *Plants* 9(12), article 1745. DOI: 10.3390/plants9121745

Taiz, L., Møller, I. M., Murphy, A., and Zeiger, E. (2023). *Plant Physiology and Development*, Seventh Edition, Sinauer Associates, Oxford University Press, Oxford, UK. DOI: 10.1093/hesc/9780197614204.001.0001

Tiwari, S., Gautam, R., Dwivedi, A., Pratap, R., Shukla, J. K., and Shukla, A. (2023). "Effect of foliar application of boron, zinc and gibberellic acid on fruit drop, fruit yield and quality parameter of Aonla cv. NA-7," *Int. J. Stat. Appl. Math.* 8, 644-647.

Valizadeh, M., and Milic, V. (2016). "The effects of balanced nutrient managements and nano-fertilizers effects on crop production in semi-arid areas," *Cur. Opin. Agric.* 5, article 31.

Venu, A., and Delvadia, D. V. (2018). "Effect of zinc, boron, and iron application on flowering and yield of acid lime (*Citrus aurantifolia* L) cv. Kagzi Lime," *Int. J. Microbiol. Res.* 10(4), 1164-1165.

Wanas, A. (2006). "Response of squash plants grown in winter season to some natural extracts and antioxidants," *Ann. Agric. Sci., Moshtohor.* 44(4), 1571-1591.

Yu, J., Wang, M., Dong, C., Xie, B., Liu, G., Fu, Y., and Liu, H. (2015). "Analysis and evaluation of strawberry growth, photosynthetic characteristics, biomass yield and quality in an artificial closed ecosystem," *Sci. Hortic.* 195, 188-194. DOI: 10.1016/j.scienta.2015.09.009

Zhang, Q., Ackah, M., Wang, M., Amoako, F. K., Shi, Y., Wang, L., Dari, L., Li, J., Jin, X., and Jiang, Z. (2023). "The impact of boron nutrient supply in mulberry (*Morus alba*) response to metabolomics, enzyme activities, and physiological parameters," *Plant Physiol. Bioch.* 200, article 107649. DOI: 10.1016/j.plaphy.2023.107649

Zhao, H., Wu, L., Chai, T., Zhang, Y., Tan, J., and Ma, S. (2012). "The effects of copper, manganese, and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator *Phytolacca americana*," *J. Plant Physiol.* 169(13), 1243-1252. DOI: 10.1016/j.jplph.2012.04.016

Article submitted: August 6, 2025; Peer review completed: August 23, 2025; Revised version received: September 12, 2025; Accepted: September 15, 2025; Published: September 24, 2025.

DOI: 10.15376/biores.20.4.9785-9803