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Biomass to Biocrude: A Brief Review of Catalytic
Liquefaction
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Biomass energy is the largest source of renewable energy, accounting for
approximately 55% of global renewable energy consumption. Therefore,
it holds great importance for the efficient utilization of biomass.
Hydrothermal liquefaction (HTL) has been demonstrated to convert
biomass into liquid biofuels, with physicochemical properties comparable
to conventional crude oil. Because moisture content is a key factor in
choosing the best conversion method, HTL is especially well-suited for
fresh biomass, which usually contains a substantial amount of moisture.
This comprehensive review examines the research progress in biomass
hydrothermal liquefaction, focusing on biomass types, liquefaction
parameters, reactor configurations, and catalyst types, with particular
emphasis on a comparative analysis of catalytic mechanisms. This study
provides a structured framework for selecting optimal conversion
processes by linking biomass types, parameters, reactors, and catalysts.
Future research should prioritize the development of cost-efficient
bifunctional catalysts and optimization of continuous reaction systems with
respect to heat and mass transfer efficiency, and integration design of
catalysts, while also aiming to minimize byproduct handling costs.
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INTRODUCTION

Renewable energy sources are currently attracting significant attention worldwide.
Biomass consists predominantly of cellulose (40 to 60%), hemicellulose (20 to 40%), and
lignin (10 to 25%), forming various feedstocks (woody, herbaceous, or aquatic) (Ji et al.
2020; Li et al. 2021a; Ren et al. 2023; Wang et al. 2023; Zhang et al. 2024c; Wu et al.
2025). Biomass energy type correlates with land use patterns. Most biomass consumption
for energy is associated with biomass residues, which prevails in forestland and cropland
(Dinesh Mohan et al. 2006; Zhang et al. 2024b). Biomass can be regenerated within 1 to
10 years, which is much shorter than fossil resources, enabling sustainable utilization. Solid
municipal waste including biomass is anticipated to increase from 2.24 billion tons in 2020
to between 3.4 billion and 3.88 billion tons per year by 2050 (Konyannik and Lavie 2025).
The waste generated from agriculture and forestry is around 140 billion tons of biomass
each year (Tiwari et al. 2025). Such a large amount of waste biomass has prompted
researchers to urgently develop efficient and low-cost technologies for energy recovery
and utilization. In contrast, using biomass energy instead of fossil fuels has the potential to
cut net greenhouse gas emissions by 70 to 90% (Cherubini and Stremman 2011). The
development of integrated biorefineries combining the co-producing of bioenergy,
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biochemicals, and biochar, aligning with circular economy principles, is important (Cai et
al. 2018).

Biomass has received a lot of support from governments around the world as a
renewable energy source. The 14™ Five-Year Plan for Bioeconomy Development in China
focuses on biomass power generation and biofuel industrialization through financial
incentives and technology incubation programs (Zhang et al. 2022). In contrast, the
Renewable Energy Directive (RED) III in EU has established even more ambitious 2030
targets, including a 14.5% reduction in greenhouse gas emissions intensity and a 29% share
of renewables in transport (de Paula Leite ef al. 2025). The U.S. Inflation Reduction Act
(2022) gives more tax breaks to advanced biofuels and biogas projects and a funding of
approximately $370 billion for clean energy to reduce carbon emissions by 40% by 2030
(Gu et al. 2025). Platforms such as the IEA help with international cooperation, which
fosters with the transfer of biomass utilization technology, especially in systems that
convert lignocellulosic biomass and algae (Marquez et al. 2024).

Significant limitations lie in traditional biomass conversions, such as biochemical
(fermentation and anaerobic digestion) (Yu ef al. 2020; Chen et al. 2022; Sun et al. 2022b;
Du et al. 2023; Herrera-Balandrano et al. 2023) and physicochemical methods (extraction
and transesterification) (He et al. 2017; Tang et al. 2018). These include extended
processing times, rigorous feedstock requirements, and substantial pretreatment
procedures, which raise the operational cost and increase energy consumption (Cai et al.
2021). In contrast, thermochemical processes such as pyrolysis, gasification, and
hydrothermal liquefaction have prominent advantages (Jing et al. 2020; Cai et al. 2021; Li
et al. 2021b; Villacrés-Granda et al. 2021; Qiu et al. 2023; Shao et al. 2023). These
processes can be completed in shorter reaction times, tolerate diverse feedstocks, and
produce high-energy-density outputs such as biocrude, syngas, and biochar (Shen et al.
2019; Wang and Wu 2023). Recent advancements highlight the potential of the liquefaction
process. For instance, Cutz et al. (2025) processed crude olive pomace through
hydrothermal liquefaction, achieving biocrude yields exceeding 51 wt% with low oxygen
content. As a method that can directly process wet biomass, hydrothermal liquefaction is
attracting increased attention.
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Fig. 1. Publications on hydrothermal liquefaction from 2012 to 2024 (as indexed on the Web of
Science database)

Over the past decade, more than 5000 articles have been published on the topic of
biomass liquefaction, indicating the importance of this field. Figure 1A represents the
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publication tendency of biomass hydrothermal liquefaction based on the Web of Science
database since 2012. It shows increased interest in liquefaction of biomass in the past 12
years. The frequency of the keywords was counted and visualized by VOSViewer software
based on the content of relevant publications (Fig. 1B). Most existing reviews lack
systematic integration of catalytic mechanisms or pay insufficient attention to the
quantitative correlation between catalysts and product performance. Thus, this review
gives a brief survey of the liquefaction process and discusses the up-to-date liquefaction
mechanism towards different catalysts.

HYDROTHERMAL LIQUEFACTION OF BIOMASS

Feedstocks

Based on the biochemical composition, biomass can be conventionally categorized
into three primary types: 1) woody biomass (Wu et al. 2025), 2) lipid-rich biomass (Ding
et al. 2020a), and 3) organic waste streams (Sarker ef al. 2025). The utilization of biomass
has evolved over three historical stages: primitive combustion (pre-industrial era), first-
generation biofuel production (19" to 20" century), and advanced biorefinery development
(21% century onwards) (Demirbas 2008). The conversions of microalgae, algae, and sludge
represent prominent research areas contributing to the most publications in the
hydrothermal liquefaction research field (Fig. 2).
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Fig. 2. Distribution of publications based on different feedstocks (as indexed on the Web of
Science database from 2012 to 2024)

Microalgae exhibit rapid growth rates, together with high lipid and protein contents,
which could enhance biocrude yield during liquefaction (Wang et al. 2023; Yin et al. 2023;
Shah et al. 2024). Their low lignin content further reduces the energy requirement for
depolymerization, enabling efficient conversion at moderate temperatures (250 to 350 °C).
Macroalgae, such as seaweeds, are rich in carbohydrates (Otero et al. 2023), which
hydrolyze into monosaccharides under subcritical water conditions (Kulikova et al. 2022).
However, their high ash and low lipid content make them unsuitable for biofuel production
by liquefaction (Kulikova et al. 2022). Sewage sludge is a byproduct of wastewater
treatment containing a large amount of lipids bound within microbial cell walls (Yuan et
al. 2021), in which the total average of saturated fatty acids reaches 55% (Fan et al. 2022).
Hydrothermal liquefaction disrupts extracellular polymeric substances at 300 to 350 °C,
thereby enhancing biocrude synthesis (Hassan et al. 2021; Liu et al. 2025; Nazari et al.
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2025). This process enables concurrent mineralization of heavy metals into stable residues,
decreasing disposal costs (Sun ef al. 2022a). Sludge with over 80 wt% moisture can be
directly handled through the liquefaction without extra solvent supply, offering a carbon-
negative pathway for sludge treatment (Hu et al. 2021).

Liquefaction Process

The HTL has undergone continuous development over several decades. The early
liquefaction study started during the oil crisis period (1970s to 1980s). As the 1990s began,
the attention changed to model molecules (such cellulose and lignin) to learn more about
chemical pathways (Sawayama et al. 1999). At that time, Goudriaan and Peferoen (1990)
patented the HTU® process for wastewater sludge liquefaction. During the 2000s, the US
National Renewable Energy Laboratory highlighted the potential of algal HTL, achieving
high biocrude yields (Dutta et al. 2016). From the 2010s to the present, research has
focused on co-liquefaction, catalysis, and integration of biorefining (Nahar ef al. 2025;
Pathak and Vairakannu 2025).

Hydrothermal liquefaction is a thermochemical conversion process that transforms
wet biomass into an aqueous phase (containing biocrude), gas, and solid residue under
subcritical conditions (typically 250 to 400 °C, 5 to 25 MPa) (Durak et al. 2026). This
process circumvents the energy-intensive pre-drying stage, making it an ideal route to
convert feedstocks with high moisture content like algae, sewage sludge, and food waste
(Gollakota et al. 2018; Okoro et al. 2025). During liquefaction, water acts as both solvent
and reactant (Luo et al. 2018; Zhang et al. 2018). There are a few important steps in the
procedure. Biopolymers, including cellulose, hemicellulose, lignin, proteins, and lipids,
break down into monomers including glucose, fatty acids, and amino acids in the first step
(Lu et al. 2022; Chen et al. 2024). Especially, the glycosidic bond in cellulose is broken to
form glucose intermediates, while the scission of the f-O-4 bond in lignin releases phenolic
compounds (Feng et al. 2019; Ji et al. 2020; do Couto Fraga et al. 2021; Han et al. 2021).
The second step involves monomer dehydration and decarboxylation, forming relative
intermediates (Kruse et al. 2013). In the last step, these intermediates recombine through
Maillard reactions (proteins + sugars) or Diels-Alder pathways, yielding nitrogenous
compounds or polyaromatic hydrocarbons (Zhang et al. 2019b; Chen et al. 2020; Li et al.
2020). Because there are significant differences in the composition of biomass, the
mechanisms and involved reactions are consequently complex. To date, the detailed
mechanism of hydrothermal liquefaction has not been fully elucidated in the literature.

Comparison of Liquefaction with Pyrolysis

Pyrolysis and liquefaction are the predominant thermochemical processes
exhibiting high biofuel conversion efficiency from various feedstocks. Pyrolysis has been
widely studied for energy recovery from both dry and moist feedstocks (Li et al. 2025;
Zhang et al. 2025b). Pyrolysis is categorized into three kinds based on the heating rate.
Slow pyrolysis involves low heating rates (5 to 30 °C/min) and long residence times
(minutes to hours), favoring biochar production (Patra et al. 2021; Huang et al. 2025). Fast
pyrolysis is associated with elevated heating rates (= 100 °C/s) and short residence times
(< 2 s), maximizing biocrude production (60 to 75 wt%) (Mohan ef al. 2006; Rahman et
al. 2024). Flash pyrolysis means that there is extremely rapid heating (= 1000 °C/s) for
enhanced liquid production (Pielsticker et al. 2025; Song et al. 2025). The oil phase is also
the major product of pyrolysis. The typical product distributions from liquefaction and
pyrolysis of microalgae, macroalgae, and lignocellulosic biomass are compared in Fig. 3.
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Fig. 3. Product distribution (A) and biocrude oil elemental analysis (B) of hydrothermal
liquefaction (300 °C) and pyrolysis (500 °C) with different feedstocks (Hognon et al. 2015; Hu et
al. 2018)

Hognon et al. (2015) reported that the biocrude yield from hydrothermal
liquefaction of Chlamydomonas reinhardtii is comparable with that from the pyrolysis
route. The product distribution varies with reaction conditions, resulting from complex
reactions within the process. Proteins in microalgae were found to contribute most
significantly to pyrolysis oil, while both lipids and proteins are crucial in the production of
HTL biocrude. Hu ef al. (2018) compared the liquefaction and pyrolysis of Enteromorpha
and rice husk (Hu ef al. 2018). They reported a higher oil phase yield in the hydrothermal
liquefaction of both feedstocks. From the elemental analysis of the oil phase, hydrothermal
liquefaction reduced oxygen content while retaining more carbon (Hu et al. 2018). Asafu-
Adjaye et al. conducted a preliminary investigation on hydrothermal liquefaction and
pyrolysis of southern yellow pine (Asafu-Adjaye ef al. 2022). They highlighted the higher
oil phase productivity of liquefaction than pyrolysis, and the pyrolysis route did not yield
any esterified compounds. Haarlemmer et al. investigated the liquefaction and pyrolysis
properties of beech wood, which contains higher lignin content compared with southern
yellow pine (Haarlemmer ef al. 2016). They reported low oil phase yield for both routes.
In the case of liquefaction, alkaline additives can adjust the system pH, leading to increased
biocrude production and reduced oil viscosity. For pyrolysis, increasing the temperature
causes more unsaturation and a loss in biocrude yield (Haarlemmer et al. 2016). Chernova
et al. (2022) carried out liquefaction and pyrolysis experiments for Arthrospira platensis.
They confirmed that the oil phase yield obtained by HTL was significantly higher than that
of pyrolysis. At the same time, the biochar yields using both technologies were almost the
same.

Liquefaction Reactors

Batch reactors, which have simple structures, are widely used in laboratory-scale
liquefaction studies. However, these systems encounter challenges, such as uneven heating,
secondary reactions during cooling, and pressure fluctuations during processing (Lak et al.
2023; Zhang et al. 2025a). Non-uniform heating usually happens in the autoclaves applying
outer heating furnaces, resulting in localized overheating and carbide formation, which
adversely impacts the overall conversion efficiency and product yield (Ekuase et al. 2022).
The incorporation of stirring configurations can improve the heat and mass transfer
characteristics within the liquefaction system, causing higher conversion efficiency (Zhang
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et al. 2019a). Figure 4 shows a schematic diagram of a typical batch reactor used for
biomass liquefaction. Batch reactor systems typically consist of a gas supply module, a
reactor made of Inconel or stainless steel, a furnace with a temperature controller, a drying
unit, and a gas collection or detection module. Batch systems offer enhanced process
control (temperature, pressure, and residence time), higher result reproducibility, and
compatibility compared with continuous or semi-continuous operations. To achieve higher
heating rates and uniform temperature distribution within the reactor, several miniature
batch reactors for biomass hydrothermal liquefaction were investigated. Prestigiacomo et
al. (2020) constructed a mini reactor with 16 mL volume using a Swagelok® VCR male
union and caps (316SS). They reported a higher biocrude yield when using the mini reactor
compared with the conventional autoclave in the same conditions. A fused-silica capillary
reactor system comprising silica capillary tubes with internal diameters of 300 um to 2 mm
combined with a microscope and a digital camera was used in biomass liquefaction.
Applying this silica system, continuous observation of phase changes during liquefaction
is possible (Xie ef al. 2017; Wang et al. 2018).

C

Gas analyzer

Purge gas Autoclave

Fig. 4. Schematic diagram of the batch reactor system

Continuous flow systems are essential for scaling up the chemical processes,
providing benefits in efficiency, controllability, and scalability compared to batch systems
(Ubene et al. 2022). The plug flow reactor system displays high heat and mass transfer
efficiency profits from the laminar flow (Wodotazski and Smolinski 2025). Because
hydrothermal liquefaction conditions are complex, plug flow reactors are more appropriate
for continuous flow systems (Tran and Khanh-Quang 2016). Figure 5 shows a schematic
diagram of a typical plug flow reactor system used for biomass liquefaction. However,
several disadvantages are also reported in the literature, including the risk of clogging from
solid residue and intermediates (Cheng et al. 2019b), limited feedstock types, and non-
uniform mixing of the feedstock with heterogeneous catalysts (Chen et al. 2019; Ruiz et
al. 2020). The solid residue is one of the major products from the liquefaction of biomass,
especially the woody feedstock. Thus, the residue combined with heavy oil product
increases the plugging risk of the continuous reactor (Lappa ef al. 2016). Such plugging is
more prevalent at turning points with steeper angles within the system. Therefore, in the
design of the reactor, it should be alleviated by using an inner wall of the reactor that is as
smooth as possible and by reducing sharp elbows with large angles (Cheng et al. 2019b).
Using an optimized pumping strategy, applying a relatively higher temperature, and using
a suitable biomass slurry loading can effectively reduce the risk of reactor plugging (Cheng
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et al. 2019a). Cheng et al. (2019a) successfully operated a continuous-flow reactor for 4 h
at 350 °C and 17 MPa (with a 5 wt% loading) using algal biomass. No blockages occurred
during this period. Biocrude with a yield of 28.1 wt% and a calorific value of 38 to 39
MlJ/kg was obtained. Furthermore, the quality of light oil compounds produced from the
plug-flow reactor was similar to that produced from the batch reactor (Cheng et al. 2019a).
To further prevent the reactor blockages, Wagner et al. (2017) applied an in-situ collection
module for the solid reaction products by introducing a double-tube design, which
enhanced the overall heating rates, leading to extended reaction time. They achieved
maximum biocrude yields of 21.9 wt% with 5 wt% algae loading at around 320 °C, which
1s comparable to that from batch experiments.

Heat exchanger & Cooling Sampling vessel

Jacketed reactor Filter

Pre-heater

Feed tank Pump

Fig. 5. Schematic diagram of the plug flow reactor system

Advanced reactor systems such as nozzle reactors have garnered significant
attention due to enhanced reaction kinetics and product yields through controlled fluid
dynamics. Rapid heat and mass transfer makes this reactor suitable for fast biomass
hydrothermal liquefaction (Khanh-Quang ef al. 2017). Intense mixing and shear forces
generated by high-velocity fluid jets (Prades et al. 2020) significantly reduce reaction time
from hours to seconds, while minimizing undesirable secondary char formation (Khanh-
Quang 2020). However, material corrosion and structure defects of the mixing reactors
cause limitations (Migliorino et al. 2022).

Parameter Effects

Among critical operating parameters, reaction temperature has a significant impact
on the product distribution and liquefaction pathway (Zhou et al. 2017; Tiwari and Mallick
2025). Research indicates that the optimal temperature window for maximizing the yield
of biocrude is 280 to 350 °C (Madsen and Glasius 2019; Sudibyo et al. 2021). Below 280
°C, lignocellulose components (such as cellulose and hemicellulose) are not completely
depolymerized, and large amounts of oxygen-rich compounds are formed (Tang et al.
2018). When the reaction temperature exceeds 350 °C, due to the intensification of
decarboxylation and dehydration reactions, the organic macromolecules from biocrude will
undergo secondary cracking, generating gaseous by-products (CHs, CO2) and biochar,
which in turn decreases biocrude yield (Rana et al. 2019; Bai et al. 2023). In the
hydrothermal liquefaction process, pressure and temperature collaboratively maintain the
solvent in a liquid state, prevent evaporation, and enhance mass transfer (Yu et al. 2022).
System pressure affects water density, which influences the solubility of organic matter
and the reaction kinetics (Toor et al. 2025). Increased pressure facilitates the formation of
stable reactive intermediates (such as free radicals and glucose derivatives), which
promotes repolymerization to form more hydrophobic oil compounds (Wang et al. 2019).
However, excessively high pressure (> 30 MPa) may hinder the recombination of free
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radicals, thereby reducing the biocrude yield (Zhang et al. 2007). Reaction time affects the
processes of hydrolysis, dehydration, and recombination in the hydrothermal liquefaction
of biomass (Barreiro et al. 2013). The optimal reaction time depends on reaction
temperature. At relatively low temperatures, longer durations are typical to achieve higher
conversion rates and biocrude yields (Liu et al. 2025). However, when the reaction
temperature is high enough, longer duration (about 60 min) would cause further
degradation of oil products through Maillard reaction or cracking reactions (Sarker et al.
2025). Recent research has identified a time threshold (30 to 45 min) to balance
intermediate transitions and stability (Shahbeik et al. 2024).

CATALYSTS

Hydrothermal liquefaction biocrude usually exhibits unfavorable characteristics,
such as high oxygen and nitrogen content, high acidity, and high viscosity, which limit its
direct use as a transportation fuel and requires further refining (Hao ez al. 2021; Shah et al.
2022).

Table 1. Summary of Catalyst Types on Biocrude Production Rate

Author Feedstock Catalysts Conditions Yields (wt%)
Ahmed Food waste Fe, 350 °C, 60 With COa2: Fe (39
Ebrahim NiMo/Al20s, min with CO2 | wt%)>Non>Ru/Al203With Ha:
etal. Ru/Al20s, or Hz, 3 to NiMo/Al203 (58 wt%)>Non>
2022 Pd/Al203, 4.6% catalyst Fe
Pt/Al203
Alper et Wood KF/AI203 250 to 350 KF/Al203 achieved the highest
al. 2019 °C, 1510 60 biocrude yield (14 wt%) at
min, 10 to 300 °C
40% catalyst
Cheng et Sawdust Ni/HZSM-5, 300 °C, 60 K2CO3 (67 wt.%)>HZSM-
al. 2017 K2COs, HZSM-5 min 5>12%Ni/HZSM-
5>6%Ni/HZSM-5>Non
Ding et al. Cellulose KH2PO4, 280 to 360 KsPO4 (25
2020b KzHPO4, KsPO4 °C, 30 min, | wt.%)>K2HPO4>KH2PO4>Non
5% catalyst (320°C)
Durak et Sinapis FelTiO2, 275 to 325 Al/TiO2(30.8
al. 2026 arvensis Al/TiO2, °C, 30 min, | wt.%)>Fe/TiO2>Fe+Al/TiO2>N
Fe-Al/TiO2 10% catalyst on (300°C)
Hong et Penicillin HCOOH, 280°C, 3 h, 1 Organic acids give similar
al. 2021 residue CHsCOOH, to 10% biocrude yield as alkaline
NaCOs, catalyst catalysts (around 30 wt%).
NaOH, MCM-48 obtained the highest
MCM-41, yield of 36.44 wt%.
MCM-48
Zhang et Cotton H2S04, HCI, 220°C,4 h, 1 Inorganic acid inhabited the
al. 2024a stalks HNO3, NaOH, mol/L catalyst production of biocrude.
KOH, NazCOs,
K2COs
Motavaf | Food waste | Ni/C, Pt/C, Ru/C, 350 °C, 40 Non (41 wt%)>Pt/C (27
et al. Pd/C min, 50% wt%)>Ru/C>Pd/C
catalyst
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The complexity of biomass composition and the elaborate reaction network
occurring under hydrothermal conditions result in unstable yield and quality of the
biocrude (Deniel ef al. 2017). To promote the biomass conversion and biocrude production,
the application of catalysts has become an important means. Several types of catalysts have
demonstrated negligible effects on either biocrude production rate or the quality (Table 1).
Reaction pathways can be optimized through catalyst modification (Shah et al. 2022),
affecting the relative abundance of different compound categories (phenols, ketones, acids,
esters, and hydrocarbons) (Yan ef al. 2018; Hong et al. 2021; Liu et al. 2024). Catalysts
primarily influence the kinetic rates and selectivity of key reactions, such as deoxidation,
denitrification, cracking, and hydrogenation, to adjust the composition, energy density, and
combustion performance of biocrude (Hao et al. 2021; Shah et al. 2022). Reactivity and
selectivity under HTL conditions of the catalyst are influenced by parameters such as pH,
redox properties, surface area, pore structure, and stability in subcritical water (Robin et
al. 2015; Zhang et al. 2024a). Comprehending the specific functions and mechanisms of
the catalysts is crucial for developing efficient and economical HTL processes. This section
reviews the roles and characteristics of various types of catalysts in the hydrothermal
liquefaction of biomass, with a focus on homogeneous catalysts, noble metal catalysts, and
transition metal catalysts.

Homogeneous Catalysts

Homogeneous catalysts are solubilized in the reaction medium facilitating intimate
interaction with feedstock and reaction intermediates, potentially leading to high catalytic
activity (Shah ef al. 2022). A range of homogeneous catalysts, such as inorganic acids,
bases, and inorganic salts, have been examined in biomass hydrothermal liquefaction.
These catalysts predominantly influence the initial hydrolysis and depolymerization stages,
along with subsequent cracking and dehydrogenation reactions (Zhang et al. 2024a;
Yamashita and Suzuki 2025). Alkaline homogeneous catalysts, such as sodium hydroxide,
potassium carbonate, sodium carbonate, and potassium hydroxide, have been extensively
investigated in biomass hydrothermal liquefaction. For penicillin residues, sodium
carbonate was reported to increase the biocrude yield from 26.09 wt% to 31.44 wt% (Hong
et al. 2021). Sodium hydroxide significantly increased soluble organics in the aqueous
phase, while reducing acids and furfural in the biocrude, and hindered the production of
solid residues during sugarcane liquefaction (Yan ef al. 2018). Similarly, sodium hydroxide
reported the highest activity in liquefaction of cotton stalk compared with potassium
carbonate, sodium carbonate, and potassium hydroxide (Zhang et al. 2024a). Alkaline
catalysts facilitate the breakdown of biomass macromolecules, particularly lignin and other
carbohydrates, thus enhancing the biocrude yield and minimizing solid residues (Yan ef al.
2018; Zhang et al. 2024a). The proposed mechanisms of alkaline catalysis include the
cleavage of ester and ether bonds and the disruption of lignin-carbohydrate complex
structure by ionic expansion, promoted hydrolysis and cracking reactions (Zhang et al.
2024a). However, the impact of homogeneous catalysts on biocrude yield varies with
feedstock types. Although these catalysts are active in biomass liquefaction, there are two
major drawbacks of homogeneous alkaline catalysts: difficulty in separating them from
complex liquid product mixtures and potential corrosion of equipment (Shah et al. 2022;
Zhang et al. 2024a).

Acidic homogeneous catalysts, including inorganic acids, such as hydrochloric
acid, sulfuric acid, and nitric acid, along with certain metal salts, have also been
investigated in HTL of biomass. Acidic catalysts have been reported to effectively promote
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the hydrolysis of polysaccharides into sugars (Xu et al. 2025). Research on cotton stalk
demonstrates that acidic catalysts affect the yield and composition of biocrude; however,
their conversion rate and oil phase productivity improvement is inferior to that of alkaline
catalysts (Zhang et al. 2024a). Unlike alkaline catalysts, acidic environments typically
facilitate the production of furfural and dehydration byproducts (Xu et al. 2025).
Nonetheless, similar to alkaline catalysts, acidic catalysts also face challenges such as
separation issue and potential reactor corrosion (Shah et al. 2022). Yamashita et al.
established that zinc chloride in hydrothermal liquefaction of castor cake increased the
yield of biocrude and favored hydrocarbon generation, suggesting that it played a role in
promoting cracking and deoxygenation reactions (Yamashita and Suzuki 2025). Potassium
phosphate (KH2PO.4, K:HPO., and KsPO.) demonstrated the ability to modify the
degradation pathways of biomass model compounds (Ding et al. 2020b). Nickel salts were
documented to promote the generation of hydrogen and biocrude rich in C1-C3 acids, 5-
hydroxymethylfurfural (HMF) and furfural (Shende et al. 2015). Despite the homogeneous
catalysts that have high activity due to their close contact with reactants, their recovery and
reutilization pose significant challenges, resulting in increased process costs and adverse
environmental impacts (Shah ef al. 2022). These limitations encourage vigorous research
on heterogeneous catalysts that are readily separable and potentially reusable.

Noble Metals

Noble metal catalysts, including platinum (Pt), ruthenium (Ru), palladium (Pd), and
rhodium (Rh), are recognized for their high activity in hydrogenation and deoxygenation
reactions, which reduce oxygen and increase hydrogen content, thereby improving the
quality of biocrude (Hao et al. 2021). Because of their high cost, noble metals are typically
dispersed as small metal nanoparticles with minimal loading on high surface area supports.
Motavaf et al. (2021) investigated the activity of supported catalysts (Pt/C, Ru/C, Pt/Al203,
and Ru/AL203) in food waste liquefaction and found no increase in biocrude yield for any
of those catalysts. This was also confirmed by Ahmed Ebrahim et al. (2022), who
conducted liquefaction with a Pt-based catalyst but observed minimal impact of the catalyst
on biocrude yield. Yang et al. (2014) applied a 5 wt% loaded Pt/C catalyst for HTL of
microalgae, showing an enhancement in the quality of biocrude compared to experiments
that without a catalyst. The biocrude contained large amounts of light compounds and a
significant fraction of small molecules. The Pt/C catalyst effectively diminished nitrogen
and oxygen levels in the biocrude, highlighting its hydrogenation and de-nitrogenation
capabilities. The proposed mechanism involves catalyzing the hydrogenation and
hydrolysis reactions of oxygen-containing functional groups (such as hydroxyl, carbonyl,
carboxylic acid, and ether) and nitrogen-containing compounds (such as amide, amine, and
indole) at active sites, thereby forming hydrocarbons, water, and ammonia (Yang et al.
2014; Hao et al. 2021).

Ruthenium is another commonly applied noble metal catalyst for biomass
liquefaction, which yields relatively high-quality biocrude. Lu et al. (2025) synthesized a
supported Ru/Zr02-Si02 catalyst by depositing ruthenium particles onto a mixed oxide
support and found a significant positive impact on biocrude composition. An increase in
hydrocarbon compound concentration and a decrease in carboxylic acids and esters content,
confirming that ruthenium exerts a substantial hydrodeoxygenation impact (Lu et al. 2025).
The main advantage of noble metal catalysts is their exceptional activity in hydrogenation
and deoxygenation, resulting in biocrude with reduced oxygen level and elevated calorific
value. However, Zhu ef al. (2022) showed an increase of less than 5% in biocrude yield
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with the addition of Ru/C in the hydrothermal liquefaction of barley straw, significantly
lower than the yields obtained with alkaline catalysts, suggesting a limited capacity for
enhancing oil phase production. Nguyen et al. (2021) even demonstrated an inhibitory
effect of commercial Ru/C on biocrude yield during hydrothermal liquefaction of
Cladophora socialis. Moreover, the high cost and potential failure of noble metals in harsh
hydrothermal conditions due to mechanisms, such as leaching, coking, and poisoning,
remain significant obstacles to their large-scale application (Robin et al. 2015; Shah et al.
2022).

Transition Metals

Transition metal catalysts, including various catalysts based on iron (Fe), nickel
(N1), cobalt (Co), copper (Cu), molybdenum (Mo), vanadium (V), manganese (Mn),
titanium (T1), and zinc (Zn), are more economical than noble metals while still offering
multiple catalytic activities for HTL (Shah ef al. 2022; Amarasekara et al. 2025). These
catalysts manifest in diverse configurations, including unsupported oxides, mixed metal
oxides, or loaded on supports such as zeolites, silica, or alumina. Their catalytic activity
originates from involvement in redox reactions, providing acidic or basic sites based on the
nature of the active component and the support (Robin ef al. 2015; Bu et al. 2018; Zhang
et al. 2024a).

Supported transition metal catalysts, especially those with zeolites, such as HZSM-
5, MCM-41, and MCM-48, have garnered significant interest because of their bifunctional
properties. These catalysts integrate the hydrogenation/dehydrogenation activity of the
metal with the cracking and isomerization activity of the support to achieve efficient
biocrude production (Cheng et al. 2017; Liu et al. 2024). Compared to unmodified HZSM-
5, NiI/HZSM-5 has been found to exhibit higher activity in improving the biocrude quality
by diminishing undesired oxygenated components and augmenting hydrocarbon content
(Cheng et al. 2017). The bifunctionality of Ni/HZSM-5 enables both the cracking of larger
molecules through the acidic zeolite and dehydrogenation/hydrogenation reactions through
the scattered nickel active sites, thereby generating a superior grade biocrude. Among the
evaluated catalysts, 6% Ni/HZSM-5 achieved the highest hydrocarbon content in the
biocrude (Cheng et al. 2017). Robin et al. (2015) deposited Mo, Cu, and Fe onto HZSM-5
and examined their catalytic activity in the hydrothermal liquefaction of microalgae. They
reported excellent stability for these catalysts under hydrothermal conditions. Mo-based
catalysts increased the formation of aromatic compounds, while Ni- and Cu-based ones
demonstrated higher deoxygenation efficiency (Robin ef al. 2015).

Liu et al. performed hydrothermal liquefaction of herbal residue utilizing MCM-41
supported Fe, Ni, and Co single-metal catalysts (Liu et al. 2024). The findings showed that
biocrude production of single-metal catalysts was significantly higher than that without
catalysts, with Co/MCM-41 yielding the greatest oil production (27.05 wt%). Unsupported
metal oxides also exhibit superior catalytic performance. Nirmal ef al. (2025) employed
nanostructured magnetic Fe3Os4 as a catalyst for the hydrothermal liquefaction of
microalgae (Nannochloropsis). These economical and reusable catalysts increased the
yield (up to 31.4%) and improved the quality of biocrude. The Fe3O4 was recycled up to
five cycles with minimal reduction in activity, demonstrating its potential in large-scale
industrial applications (Nirmala et al. 2025). Amarasekara et al. (2025) developed
transition metal catalysts employing the concept of dual active components (Fe-MOx/Si02,
where M = V, Mn, Co, Ni, Cu, Mo) and evaluated their activity under hydrothermal
liquefaction conditions. Compared to the single metal oxides, these dual metal oxides
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increased the biocrude yield, with Fe-CuOx/SiO:2 attaining the maximum value of 78.8
wt%. The Fe-CuOx/SiO:2 catalyst exhibited good performance even after five cycles
(Amarasekara et al. 2025). Other transition metal oxides, such as TiO2 and CeO2, have also
been explored. TiO: demonstrated significant catalytic activity in the hydrothermal
liquefaction of urban sewage sludge, yielding high-quality biocrude and an aqueous phase
containing recoverable nutrients (Kumar ef al. 2022). At a moderate temperature of 220
°C, CeO2 exhibited considerable activity for cotton stalk liquefaction (Zhang et al. 2024a).
The combination of Ce**/Ce*" redox cycling, OH-LCC disruption, and ionic expansion
facilitates biomass liquefaction. The total pore volume and average pore width of the oxide
have a negative correlation with catalytic efficiency, while the acidic/basic sites on the
oxide surface affect the conversion efficiency. A greater concentration of weak bases is
associated with an elevated yield of biocrude (Zhang et al. 2024a). Furthermore, Alper et
al. (2019) introduced KF/AL2Os3 in the pinewood liquefaction process and documented an
increased yield of biocrude, with reduced solid residue yield.

FUTURE DIRECTIONS

Based on the current state of research, several key areas require further
investigation to advance the field of catalytic biomass HTL: (1) Conduct the
comprehensive Lifecycle Assessment (LCA) of catalysts: To minimal the environmental
footprints, evaluating the environmental impacts of catalysts throughout their entire
lifecycle in crucial, including material acquisition, preparation, application, and disposal.
It is also important to optimize the recycling processes for spent catalysts to achieve high
sustainability of the system. (2) Consider the Techno-Economic Assessment (TEA) of
using catalysts: This includes the development of high-performance transition metal
catalysts and non-metal catalysts that can match the activity of noble metals for key
reactions is crucial for process cost reduction. The exploration of earth-abundant elements,
such as iron, in novel formulations is promising. (3) Integration with Machine Learning for
catalyst design: Biomass exhibits significant variation in composition. Designing catalysts
specifically tailored to the unique characteristics of different biomass can optimize
conversion efficiency and product distribution. Machine learning can predict the
performance of catalysts with different physicochemical properties and also the reaction
pathways in HTL conditions using regression algorithms or neural networks. This
predictive capability guides the rational design of novel catalysts, reducing the
experimental costs. (4) Novel catalyst-reactor integration: The optimization of interactions
between catalyst properties and reactor design is critical for maximizing catalyst
performance and process efficiency. (5) Valorization of aqueous phase: The aqueous phase
from HTL is a significant byproduct containing dissolved organics and nutrients. The
development of catalysts for the treatment or valorization of this stream is important for
improving the overall sustainability and economics of the HTL process.

CONCLUDING REMARKS

Through hydrothermal liquefaction, biomass can be directly converted into liquid
fuels. Subcritical liquefaction technology has been extensively studied, with a primary
focus on product distribution and related mechanisms. The objective of this review has
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been to provide a comprehensive understanding of the liquefaction process by examining
the up-to-date research on biocrude generation and emphasizing the challenges and
opportunities. This review has presented current knowledge and understanding of the
effects of hydrothermal liquefaction driving factors on the yield and quality of biocrude.
Various aspects have been discussed, including biomass types, liquefaction reactors,
liquefaction parameters, and catalysts. The mechanistic influences of homogeneous and
heterogeneous catalysts on the hydrolysis, decomposition, and polymerization of
biomolecules during the hydrothermal liquefaction process have been preliminarily
elucidated. However, the focus of future attention will mainly regard parameter
optimization, novel reactor design, catalysts development with stability, reusability, and
long-term availability.
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