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The loss factor of wood material is frequency related, which directly affects 
the calculation method of dynamic responses for wood structures. In this 
paper, the relationship between loss factor and damping coefficient was 
determined based on equal dissipated energy. Combined with the time-
domain and frequency-domain methods, a modal superposition method 
was proposed to calculate the dynamic response of wood structures. 
Compared with the frequency-domain method, the proposed method can 
additionally consider the transient vibration responses of wood structures. 
Compared with the equivalent time-domain method based on constant 
loss factor, the proposed method can additionally consider the influence 
of frequency related loss factor. The proposed method should be preferred 
to calculate dynamic responses of wood structures. 
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INTRODUCTION 
 

Wood, as a natural building material, has the advantages of being environmentally 

friendly and easy to process (Nam et al. 2023). Wood structures have good energy 

dissipation performance and play an effective role in earthquake resistance and wind 

resistance (Sun et al. 2024a; Vutukuru et al. 2024; Jensen et al. 2025). However, the 

damping parameter of wood material is frequency related (Zhang and Zhou 2023). Ouis 

(2003) analyzed the loss factor of wood with different species, and found a dependence on 

vibration frequency. Elie et al. (2013) analyzed the loss factors in the low- and the mid-

frequency domains based on the subspace method, respectively. The loss factor of wood 

structures has been found to vary with frequency. It is important to know how to calculate 

the dynamic responses of wood structures. The traditional time-domain calculation 

methods cannot be directly used to calculate the dynamic responses of structures with 

frequency related loss factor (Jiang et al. 2010). Kazemirad et al. (2013) analyzed the 

dynamic properties of frequency-dependent damping systems with soft materials. Sun et 

al. (2024b) constructed the complex modal superposition of multi-degree-of-freedom 

systems with frequency related loss factor. However, the calculation processes of these 

methods are complex, and these methods are difficult to apply to wood structures. 

In this paper, the relationship between loss factor and damping coefficient was 

determined based on equal dissipated energy. A modal superposition method is proposed 

to calculate the dynamic response of wood structures with frequency related damping 
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parameter. Moreover, the frequency-domain method based on frequency related loss factor, 

the equivalent time-domain method based on constant loss factor, and the proposed method 

are compared and analyzed. 

 
 
MODAL SUPERPOSITION METHOD OF WOOD STRUCTURES WITH 
FREQUENCY RELATED DAMPING PARAMETER 
 
Construction of Damping Matrix 

The time-domain motion equation of a single-degree-of-freedom system can be 

expressed according to Nkibeu et al. (2024), 

 ( ) ( ) ( )mx t cx t kx t f+ + =        (1) 

where m  is the mass; c  is the damping coefficient; k  is the stiffness; and f  is the 

external excitation; ( )x t  is the displacement; ( )x t  is the velocity; and ( )x t  is the 

acceleration. 

The displacement response of a single-degree-of-freedom system under harmonic 

action is: 

 ( ) sinx t A t=          (2) 

where A is the amplitude of the structural displacement response and  is the vibration 

frequency of the external excitation harmonic. 

Under the influence of harmonics, the energy dissipated per cycle in a single-

degree-of-freedom system based on the viscous damping model is (Clough and Penzien 

1993): 

 
2

0
( ) ( )E cx t dx t



 =          (3) 

Substituting Eq. 2 into Eq. 3:  

 2E c A  =          (4) 

In the process of harmonic vibration, the maximum potential energy within one 

cycle is (Clough and Penzien 1993): 

 
21

2
U kA=          (5) 

The loss factor of dissipated energy is (Li et al. 2025): 

 
2

E

U





=          (6) 

The dissipated energy based on the loss factor is: 
 

∆𝐸 = 𝜋𝜂𝑘𝐴2         (7) 
 

Eq. 4 is then set equal to Eq. 7, namely: 

 
k

c



=           (8) 
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The relationship between loss factor and damping coefficient is shown in Eq. 8. 

The vibration frequency can be further expanded from the external excitation frequency to 

the entire frequency domain (Bert 1973), Eq. 8 can be rewritten as, 

 c k



=          (9) 

where   is the structural vibration frequency. 

However, the wood loss factor is a function related to the vibration frequency (Jiang 

et al. 2010). The constant loss factor can be replaced with loss factor function (McDaniel 

et al. 2000). Equation 9 can be further expressed as: 

 
( )

c k
 


=          (10) 

The expression for the damping matrix can be further obtained from Eq. 10, which is: 

 
( ) 


=C K          (11) 

 

 

MODAL SUPERPOSITION METHOD 
 

The time-domain motion equation of multi-degree-of-freedom systems for wood 

structures is, 

 ( ) ( ) ( )t t t+ + =Mx Cx Kx f        (12) 

where M  is mass matrix; K  is stiffness matrix; C  is damping matrix; ( )tx  is structural 

displacement vector; and f is the vector of external excitation. 

The modal vector of Eq. 12 is: 

  1 2l N=            (13) 

The damping matrix ( )tx  can be linearly expressed by the complex mode vector, namely: 

 
1

( ) ( )
N

n n

n

t q t
=

=x          (14) 

Equation 14 is substituted into Eq. 12, which can be decoupled into N single degree 

of freedom equations. The single degree of freedom equation of the n-th vibration mode 

can be expressed as: 

 2 2( )
( ) ( ) ( )n n n n n nq t q t q t

 
  


+ + =       (15) 

where, 

 T

n n nm = M           (16) 

 T

n n nk = K           (17) 
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T

T

n
n

n n

 =
f

M



 
         (18) 

 n
n

n

k

m
 =          (19) 

and n  is the natural frequency of the n-th vibration mode. 

It is assumed that, 

 
,t ,s( ) ( ) ( )n n nq t q t q t= +         (20) 

where 
,t ( )nq t  is the general solution of homogeneous equation of Eq. 12; 

,s ( )nq t  is the 

special solution of non-homogeneous equation of Eq. 12. 

Eq. 20 is substituted into Eq. 15, namely: 

 
2 2

,t ,t ,t

( )
( ) ( ) ( ) 0n n n n nq t q t q t

 
 


+ + =      (21) 

 2 2

,s ,s ,s

( )
( ) ( ) ( )n n n n n nq t q t q t

 
  


+ + =      (22) 

For Eq. 21, the vibration frequency is approximately equal to the natural frequency. 

Eq. 21 can be rewritten as: 

 2 2

,t ,t ,t

( )
( ) ( ) ( ) 0n

n n n n n

n

q t q t q t
 

 


+ + =      (23) 

To solve Eq. 23, the time is discretized as: 

     ( 0,1,2, )kt k t k=  =        (24) 

Equation 24 is substituted into Eq. 23, and the solution of Eq. 23 is obtained as 

(Wang et al. 2023), 

 
( )

,t 1 ,d 2 ,d( ) e cos ( ) sin ( )n kt t

n n k n kq t A t t A t t
  − −  = − + −     (25) 

where: 

 
2

,d

1
( )

2

1
1 ( )

4

n n

n n

  

   


=


 = −


       (26) 

In Eq. 22, the loss factor is a function of vibration frequency. The time-domain 

method cannot be directly applied to solve the Eq. 22. Therefore, the frequency-domain 

method is considered for solving the Eq. 22. Based on Fourier transform method, the 

frequency-domain expression of Eq. 22 can be obtained as, 

 2 2 2

,s ,s( ) i ( ) ( ) ( )n n n n nQ Q       − + + = −     (27) 
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where 
,s ( )nQ   is the Fourier transform term of 

,s ( )nq t ; and ( )n   is Fourier transform 

term of n . 

By aid of frequency-domain method, ( )   can be obtained based on discrete 

frequencies. Then, the frequency-domain solution of Eq. 27 can be obtained. Based on 

inverse Fourier transform method, 
,s ( )nq t  is obtained.  

Both
,t ( )nq t  and 

,s ( )nq t  are substituted into Eqs. 14 and 20, respectively. Then, ( )tx  

is obtained and the modal superposition method of wood structures with frequency-

dependent damping parameter is realized. 

 
 
NUMERICAL EXAMPLES 
 

The loss factor of wood material is frequency related. In Jiang et al. (2010), the loss 

factors of wood material at different vibration frequencies can be obtained at 25 °C. The 

frequency range is 0.1 to 100 Hz. By aid of the least square method, the relationship of loss 

factor and vibration frequency can be obtained, which is shown in Eq. 28. The comparison 

is shown in Fig. 1, 

 
12 6 10 5 7 4

6 3 2

( ) 10 1

8

0 10

     3 . 2 

5

 

.

 

3.346 9 38 1.031

5 317 0.0001 51 0.00150 0.017010

    

  

− − −

−

=  

++ −

−

−

+ 


  (28) 

where the coefficient of determination R2 is 0.8986. 
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Fig. 1. The dimensions of frame structures and the corresponding load conditions 
 

 

Fig. 2. Schematic diagram of numerical model for the wood structure 
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The numerical model of wood structure was constructed, which is shown in Fig. 2. 

The relationship of loss factor and vibration frequency for Eq. 28 was adopted. The natural 

frequencies of numerical model were 0.5687 Hz, 1.3102 Hz, and 1.9129 Hz. 

First, the sine wave was selected as the external excitation. The vibration amplitude 

was 100 mm/s2 and the vibration frequency was 30 rad/s. The proposed method (frequency-

related time domain, FRTD) and the frequency-domain method (FD) (Clough and Penzien 

1993) were adopted, respectively. The corresponding time-domain responses are shown in 

Fig. 3. The results show that after the time reached 120 s, the calculation results of the two 

methods were approximately equal. The correctness of the proposed method was indirectly 

proven. Moreover, the traditional frequency-domain method cannot consider the influence 

of the transient vibration response. Compared with the frequency-domain method, the 

proposed method can be used to calculate the transient vibration responses. 
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(b) Top displacement time-history 

 

Fig. 3. Time-domain dynamic responses under harmonic wave 

 

The El Centro earthquake wave was selected as the external excitation, and the 

acceleration time-history is shown in Fig. 4a. The two time-domain methods can be used 

to calculate the displacement time-history of the numerical model, and the top displacement 

time-history is shown in Fig. 4b.  
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Fig. 4. Time-domain dynamic responses under El Centro wave 
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One is the equivalent time-domain method (ETD) based on constant loss factor. 

ETD is the traditional modal superposition method (Clough and Penzien 1993). The 

constant loss factor is the average value of three modal loss factors, which is 0.015. The 

other is the proposed method (frequency-related time domain, FRTD). Figure 4b shows 

that there were local differences in the calculation results between the two methods. 

Moreover, the peak displacement of ETD was 17.4975 mm, and the peak displacement of 

FRTD was 18.9338 mm. The relative difference was 8.21%, which is greater than 5%. The 

reason is that ETD cannot consider the influence of frequency related loss factor. The 

proposed method based on frequency related loss factor should be preferred to calculate 

dynamic responses of wood structures. 

 
 
CONCLUSIONS 
 

1. Based on the principle of equal dissipated energy, the relationship between loss factor 

and damping coefficient was determined. Then, the damping matrix of wood structures 

with frequency related damping parameter was established. A combination of time-

domain and frequency-domain methods was proposed to solve the dynamic response 

of wood structures. 

2. Compared with the frequency-domain method, the proposed method can additionally 

consider the transient vibration responses of wood structures. Compared with the 

equivalent time-domain method based on constant loss factor, the proposed method can 

additionally consider the influence of frequency related loss factor. The proposed 

method based on frequency related loss factor should be preferred to calculate dynamic 

responses of wood structures. 
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