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Lignocellulosic biomass, particularly softwoods such as pine, poses a 
significant challenge to enzymatic hydrolysis due to its high lignin content 
and complex structural rigidity. Although the application of steam 
explosion and alkaline pretreatment has gained widespread popularity 
for enhancing digestibility, the optimization of process parameters 
remains a formidable challenge due to the nonlinear interactions among 
variables. Machine learning is emerging as a promising solution to 
address these challenges, offering a viable alternative for predictive 
modeling and process control. In this study, an artificial neural network 
(ANN) model was developed to predict the enzymatic hydrolysis rate of 
steam-exploded pine wood subjected to mild alkaline (NaOH) 
pretreatment. The artificial neural network (ANN) was trained on 
experimental data encompassing three primary process variables: steam 
explosion time (1 to 5 min), NaOH concentration (0.5 to 2.0%), and 
chemical pretreatment time (12 to 24 h). The artificial neural network 
(ANN) model demonstrated the highest level of accuracy among the 
models evaluated, including random forest, support vector machine, and 
extreme gradient boosting. It attained a coefficient of determination (R²) 
of 0.9805. In conditions that were not optimized (1% NaOH, 24-hour 
treatment, 5 min steam explosion, without bark), a maximum hydrolysis 
of 93.9% was obtained.  
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INTRODUCTION 
 

Wood cellulosic biomass feedstock is a low-cost, energy-dense, and globally 

abundant renewable resource (Kumar et al. 2020) Historically, it has been utilized as 

an energy source; however, the increasing dependence on fossil fuels in recent 

decades has led to a decline in its usage in this capacity. However, this transition has 

given rise to a renewed interest in its application for synthesizing high value 

biochemicals such as phenylpropanoids (Kawaguchi et al. 2016). This focus has 

opened new pathways for sustainable biochemical production. The primary 

components of wood biomass – cellulose, hemicellulose, and lignin – contain 

fermentable sugars (hexoses, pentoses, etc.) that can be converted into bioproducts 

through biochemical processes. 

Woody biomass consists of 38 to 50% cellulose, 23 to 32% hemicellulose, and 

15to 25% lignin, although these ratios vary according to source (Vu et al. 2020). 

Enzymatic hydrolysis using cellulases has proven effective for depolymerizing 

cellulose into glucose, a crucial intermediate for the synthesis of value-added 

chemicals such as gluconic acid, glucaric acid, and levulinic acid (Zhang et al. 2021). 
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The crystalline structure of cellulose, held together by β-1,4 glycosidic bonds and 

extensive hydrogen bonding, poses a significant barrier to enzymatic degradation 

(Ding and Himmel 2006).  

Nevertheless, the recalcitrance of lignocellulosic biomass remains a 

significant challenge. The structural rigidity of the material, attributable to the 

presence of hydrophobic, cross-linked lignin, has been demonstrated to impede 

enzyme accessibility and to reduce saccharification efficiency (Cai et al. 2023). This 

problem is especially evident in softwoods such as pine, which have a higher lignin 

content and more complex structures in comparison to hardwoods such as oak (Kumar 

et al. 2020). The utilization of pretreatment strategies is imperative in order to 

enhance the enzymatic digestibility of the lignocellulosic matrix through its 

fragmentation or modification. 

Among pretreatment techniques, steam explosion is a widely employed 

method due to its ability to disrupt the lignocellulosic structure via high-pressure, 

high-temperature steam, followed by sudden decompression (Yu et al. 2012). This 

physicochemical process has been shown to increase biomass porosity and facilitate 

autohydrolysis of hemicellulose and partial delignification (Zabed et al. 2019). 

However, it has been demonstrated that this process can also result in the formation of 

fermentation inhibitors, such as furfural and 5-hydroxymethylfurfural, especially 

under more severe conditions. To mitigate the effects of these processes, the 

combination of steam explosion with chemical pretreatments is frequently employed 

(Nges et al. 2016). 

Alkaline pretreatment, particularly using sodium hydroxide (NaOH), is a 

commonly used method to solubilize lignin and hemicellulose, reduce cellulose 

crystallinity, and enhance enzyme accessibility. Among alkaline reagents, NaOH is 

more widely used for pretreatment than potassium hydroxide (KOH) due to its lower 

cost and stronger alkalinity, which enables effective lignin removal even at relatively 

low reaction temperatures (Kim et al. 2016). It is cost-effective, operates under mild 

conditions, and can be integrated with steam explosion to synergistically improve 

biomass digestibility (Antonopoulou et al. 2016). Therefore, pretreatment using 

sodium hydroxide can be regarded as a feasible and effective method for 

lignocellulosic biomass processing. 

Notwithstanding the advantages, determining the optimal combination of 

pretreatment parameters such as bark presence, steam duration, alkali concentration, 

and treatment time remains difficult due to the complexity and nonlinearity of their 

interactions. In this context, artificial intelligence, particularly artificial neural 

networks (ANNs), has emerged as a potent approach to model and optimize such 

multifactorial processes (Almeida 2002). ANNs have the capacity to learn complex, 

nonlinear relationships between input variables and response outputs without 

requiring explicit mathematical formulations. This renders them especially suitable 

for predicting outcomes in biological systems with inherent variability. Recent 

applications of artificial neural networks (ANN) in the field of biomass conversion 

have demonstrated a high degree of accuracy in modelling processes such as 

enzymatic saccharification, bioethanol yields, and the influence of pretreatment 

conditions (Vinitha et al. 2024; Azad et al. 2025). For instance, Vinitha et al. (2024) 

applied optimized decision-making algorithms to enhance the efficiency of enzymatic 

saccharification, while Azad et al. (2025) integrated orthogonal experimental designs 

with machine learning algorithms to achieve cellulose recovery efficiencies exceeding 

88%, accompanied by minimal prediction error. 

In line with these developments, the present study focused on pine biomass 

subjected to steam explosion and NaOH pretreatment. The efficiency of the enzymatic 

hydrolysis of such biomass is affected by multiple covariates, including the presence 
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of bark, the duration of steam explosion, the concentration of NaOH, and treatment 

time. The variables under consideration are pivotal in determining the chemical 

composition and physical structure of the resulting substrate. Consequently, it is 

challenging to predict hydrolysis performance using conventional methods alone.  

In order to address this issue, a novel approach is proposed, which involves 

the use of an artificial neural network (ANN)-based modelling strategy to simulate 

and predict the efficiency of the enzymatic hydrolysis of pretreated pine biomass. The 

objective of training the model on experimental data is twofold: first, to analyze 

which process variables affect the enzymatic hydrolysis rate, and second, to evaluate 

the predictive performance of the ANN compared to other models such as random 

forest (RF), support vector regression (SVR), and extreme gradient boosting (XGB). 

Although machine learning algorithms have been increasingly applied in the fields of 

wood chemistry and bioprocessing, to the best of our knowledge, their application to 

modeling enzymatic hydrolysis based on the pretreatment of steam exploded pine 

wood biomass remains limited. 

The objective of this study was to investigate a predictive model for enzymatic 

hydrolysis yield using pre-treatment process parameters of lignocellulosic biomass 

(pine wood biomass) such as steam explosion and alkaline pretreatment. An artificial 

neural network (ANN) was modeled using Python to predict the enzymatic hydrolysis 

rate based on these pretreatment variables. To enhance the prediction performance of 

the ANN, hyperparameter tuning was conducted. The optimized ANN model was then 

compared with other machine learning models in terms of prediction accuracy. 

Predictive performance was evaluated using mean square error (MSE) and the 

coefficient of determination (R²). Therefore, the results of this study are expected to 

provide valuable insight into the synergistic effect of steam explosion and alkaline 

pretreatment on the enzyme hydrolysis of pine wood, and contributes to the 

development of efficient conversion processes for producing high-value sugars from 

lignocellulosic biomass. 

 

 

EXPERIMENTAL 
 

Materials 
The pine wood chips used in the study were sourced from Punglim 

Corporation (Daejeon, Korea). The pine wood chips were divided into bark and non-

bark samples, and all samples were used in the experiments. The wood chips were 

chipped to a size of approximately 3 cm (W) × 3 cm (L) × 0.5 cm (H) and used for 

steam explosion treatment. 

 

Pretreatment Process for Enzymatic Hydrolysis 
Pine woodchip steam explosion 

The steam explosion conditions used in this study followed the parameters 

described by Ha et al. (2024). The steam-explosion pretreatment process was 

conducted at the customized batch pilot unit (Yurim High Tech, Taegu, 

Gyeongsangbuk-do, Korea) based on the Masonite technology. The reactor was steam 

exploded with saturated steam at 25 kg/cm2 for 1 to 5 min. The steam exploded pine 

wood chips were collected in circular bins, cooled, sealed in PE bags and refrigerated 

at 4 °C until chemical pretreatment. According to the report by Rodríguez et al. 

(2017), it has been demonstrated that relatively mild steam explosion conditions 

(pressure of 15 to 25 bar, temperature of 200 to 220 °C, and residence time of 1 to 5 

minutes) can still enable high enzymatic hydrolysis yields. 
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Chemical pretreatment of steam explosion samples 

The alkaline pretreatment was conducted using a modified version of the 

method described by Gunam et al. (2020). The steam exploded samples were 

pretreated with different concentrations of NaOH to increase the enzymatic hydrolysis 

rate. Different concentrations of NaOH (0.5-2%) were used for pretreatment. Sample 

and solvent were mixed in a 1:20 ratio in a 300 mL triangular flask. Pretreatment was 

carried out for 12 to 24 h at room temperature at rest. After pretreatment, the residue 

was filtered through Whatman filter paper No. 2 and washed with distilled water until 

the pH was neutral. The neutralized sample was used for enzymatic hydrolysis. 

 

Evaluate the microstructure of chemical pretreatment samples 

Scanning electron microscopy (SEM) (ZEISS Gemini 300, Germany) was 

used to evaluate the surface microstructure of steam explosion treated pine chips after 

chemical pretreatment. Samples were mounted on a stub using a conductive 

thermoplastic adhesive, coated with Pt on a Polaron E 5000 sputter coating unit and 

evaluated using scanning electron microscopy. The analysis was performed at an 

accelerating voltage of 5 Kv. 

 

Enzymatic hydrolysis 

The enzymatic hydrolysis was performed using a modified version of the 

method described by Bhalla et al. (2018). Chemically pretreated steam explosion 

samples were placed in 1 g in a 30 mL test tube for enzymatic hydrolysis and 

autoclaved at 121 °C for 30 min. After autoclaving, the sample was allowed to air dry 

on a clean bench. Buffer was prepared with Na-citrate buffer, 2% sodium azide, and 

Tween 80 (polysorbate 80). Ten mL of the buffer was added to a test tube and 

hydrolyzed by adding Cellic CTec3 (Novozymes, Denmark) 440FPU/glucan. After 

hydrolyzing at 50 °C, 210 rpm, for 72 hours, the hydrolysate was filtered through a 

2G3 glass filter. After hydrolysis, the residue was dried at 105 ± 3 °C until constant 

weight and then weighed to calculate the rate of enzymatic hydrolysis.  

 

Machine Learning and Optimization Approach 
ANN modeling 

The ANN was implemented using the TesnsorFlow package (Abadi et al. 

2016), Keras package and Scikit-learn package of programs for learning from 

experimental data (Python 3. 10.6). Enzymatic degradation rates under different 

treatment conditions (steam explosion time, chemical pretreatment time, chemical 

concentration) were predicted using a multilayer back-propagation neural network. 

The network architecture has three input variables: steam explosion time (1, 3, 5 min), 

chemical pretreatment time (12h, 24h) and chemical concentration (0.5, 1, 2%). There 

was one output variable: enzymatic hydrolysis rate. All conditions were measured in 

triplicate, yielding a total of 108 data points. The data collected were subsequently 

divided into two equal segments: 80% was allocated for training, while the remaining 

20% was designated for testing purposes. The model was trained using the K-fold 

validation method. 

 

ANN hyperparameter optimization 

A Keras tuner was used to optimize the hyperparameters of an artificial neural 

network (Saleh et al. 2022). This was done using Keras tuner randomsearchcv, 

randomizing the number of hidden layers, number of neurons, and dropout rate to find 

the values with the best model performance. The search ranges for each 

hyperparameter are summarized in Table 1. 
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Table 1. Scope of Hyperparameter Exploration in ANN Models 

Hyperparameters Range 

Number of Hidden Layers 1 to 3 

Units per Layer 8 to 64 

Dropout Rate 0.0 to 0.3 

Optimizer Adam, Rmsprop, SGD 

Learning rate 0.01, 0.001, 0.0001 

Batchnorm True, False 

 

Adjustments were made of the number of hidden layers (1 to 3), number of 

neurons per layer (8 to 64), and dropout rate (0 to 0.3). The optimizer of choice was 

Adam, Rmsprop, and SGD, with learning rates of 0.01, 0.001, and 0.0001, and batch 

normalization set to True and False. The objective function was Mean Squared Error 

(MSE), and the hyperparameter values that minimize the MSE value were optimized 

by random search. To assess the efficacy of the model, a k-fold cross-validation was 

employed, with k set at 5. 

Each combination was subjected to a training regime comprising 500 epochs. 

During this training, the loss value (MSE) of the validation dataset was meticulously 

monitored. Early termination of the training process was implemented if the value 

remained static for a period of 10 epochs. 

 

Evaluating ANN models 

To assess the comparative efficacy of ANN models, three machine learning 

algorithms were selected for analysis. Random forest (RF), support vector regression 

(SVR), and extreme gradient boosting (XGB) are algorithms frequently employed in 

regression and classification problems.  

In order to determine the possibility of underfitting and overfitting of the ANN 

model, the data were split differently into train 75%, test 25% and train 85%, test 15%, 

and evaluated the ANN model for each data split. 

The error can be calculated by comparing the difference between the predicted 

value and the target value. To minimize the error in the backpropagation algorithm, 

the weights and bias values of the previous layer and the backpropagated error were 

readjusted. This iterative process enhances the sequential model's performance, 

ensuring precise predictions for novel instances. The error evaluation criteria 

considered are mean square error (MSE) and coefficient of determination (R2), 

defined as follows (Chicco et al. 2021), 
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Fig. 1. Analytical workflow for modeling the prediction of enzymatic hydrolysis rate 

 

     

 (1) 

        

 (2) 
 

where n, y predicted, y actual, and y mean are the number of instances, the values 

generated by the ANN model, the target value, and the average value of the target 

output, respectively. 

The modeling for predicting enzymatic hydrolysis yield was carried out 

through data acquisition, model optimization, and comparison with other machine 

learning algorithms. The overall workflow and methodology adopted in this study are 

illustrated in Fig. 1. This workflow may serve as a guideline for reproducing the 

results or applying similar approaches in related studies. 

 

 

RESULTS AND DISCUSSION 
 
Steam Explosion and Alkaline Pretreatment of Pine Wood Chips 

As illustrated in Fig. 2, the original sample and the pine wood chip containing 

bark are represented visually. As the intensity of the steam blasting treatment 
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increased, a shift in color towards darker shades was observed, which was consistent 

across both the pine biomass with bark and the biomass without bark. 

NaOH was chosen for the chemical pretreatment. The morphological 

alterations in pine biomass that had undergone pretreatment with NaOH were 

observed by means of SEM, with the resultant images presented in Fig. 3. The SEM 

images obtained demonstrated an augmentation in surface area and a disruption of cell 

walls as a consequence of chemical pretreatment.  
 

  

Raw biomass – with bark Raw biomass – without bark 

 
 

225 ℃, 1 min – with bark 225 ℃, 1 min – without bark 

 

 

225 ℃, 3 min – with bark 225 ℃, 3 min – without bark 

 

 

225 ℃, 5 min – with bark 225 ℃, 5 min – without bark 

 

Fig. 2. Images of pine wood chip before and after steam explosion pretreatment 
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It was visually evident that the higher the solvent concentration, the more cell 

wall disruption occurred. However, it was found that sufficient cell wall disruption 

occurred even at a 2% NaOH concentration and room temperature, which is relatively 

lower than the typical NaOH treatment concentration. This indicates that treating 

biomass with low concentrations of chemical and mild temperatures can be effective 

in increasing biomass digestibility (Lou et al. 2016). 

 
Enzymatic Hydrolysis of Biomass and the Influence of Process 
Variables 

Before using an artificial neural network to train data, the scientific basis for 

the input variables must be clarified. The presence of bark is important because it can 

worsen the efficiency of enzymatic hydrolysis (Kim et al. 2005). During the steam 

blasting process, woody cellulosic biomass undergoes self-hydrolysis due to heat and 

steam, and fiber rupture due to overpressure, which facilitates enzyme penetration 

(Jacquet et al. 2010). Moreover, the degree of self-hydrolysis and fiber rupture varies 

depending on the time that the steam reacts with the wood cellulosic biomass, which 

is an important variable (Jacquet et al. 2012). Furthermore, the alkali concentration 

and chemical pretreatment time used in the chemical pretreatment may result in 

different enzymatic hydrolysis efficiencies due to different removal of enzymatic 

hydrolysis inhibitors (Persson et al. 2002). 

In Table S1 and Fig. 4, the code “1” denotes including bark and “0” denotes 

not including bark. Samples without bark(0) had a higher median value than samples 

with bark(1), while samples with bark contained several outliers and showed a large 

variance. Chemical pretreatment time showed high hydrolysis rates for the 24h 

treatment and relatively few outliers. Chemical concentrations showed the highest 

enzymatic hydrolysis rates at 1%, and overall low hydrolysis rates (54.9 to 89.7%) at 

0.5%. 
 

  

Untreated (with bark) Untreated (without bark) 

 

 

Steam explosion 0.5% NaOH treatment 
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1.0% NaOH treatment 2.0% NaOH treatment 
 

Fig. 3. Scanning electron microscopy (SEM) images of pine wood biomass obtained from 
untreated, steam explosion treatment and NaOH treatment 

 

Steam explosion time had the highest median and least dispersion in the 5 

min treated samples. The presence or absence of bark in the steam exploded samples 

did not appear to have a significant effect on enzymatic hydrolysis rates, which is 

consistent with previous reports (Kim et al. 2005). It can be seen from Fig. 1 that the 

longer the steam explosion time, the more structure destruction occurred due to the 

longer reaction time between the steam and biomass. It has been shown that broken-

down biomass allows easier penetration of the enzyme and increases the hydrolysis 

rate (Jacquet et al. 2012). Therefore, a complex learning network should be built to 

predict the enzymatic hydrolysis rate by examining the correlation between the input 

variables. Figure 4 shows the correlation between the input and output variables. 

 

 
 

 

 

  
 

Fig. 4. The following box plots illustrate the effect of varying parameters on the efficiency of 
enzymatic hydrolysis. The parameters under investigation are as follows: bark (A), chemical 
pretreatment time (B), chemical concentration (C), and steam explosion time (D) 

(A) (B) 

(C) (D) 
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Figure 5 presents a correlation matrix analysis that includes the relationships 

among bark presence, steam explosion time, chemical concentration, chemical 

treatment time, and enzymatic hydrolysis yield. The matrix values indicate both the 

direction and strength of the relationships between variables. According to the 

correlation analysis, chemical concentration exhibited a strong positive correlation 

(0.61) with enzymatic hydrolysis yield, suggesting that increases or decreases in 

chemical concentration directly affect saccharification performance. 

In contrast, steam explosion time and chemical treatment time showed very 

weak correlations with enzymatic hydrolysis yield. Additionally, the presence of bark 

demonstrated a weak negative correlation (–0.14) with enzymatic hydrolysis yield. 

Mild alkaline pretreatment followed by enzymatic hydrolysis has been reported to 

significantly enhance sugar yield in popular. Similarly, in non-woody lignocellulosic 

materials such as corn stover and rice straw, mild NaOH pretreatment has been shown 

to facilitate enzymatic hydrolysis (Ioelovich and Morag 2012). 

 

ANN Modeling for Enzymatic Hydrolysis Rate Prediction 
In this study, an artificial neural network (ANN) model was employed to 

predict the enzymatic hydrolysis rates from data exhibiting a nonlinear relationship. 

To prevent model overfitting and enhance its generalization performance, the dataset 

was randomly partitioned into training and testing subsets, with 80% allocated for 

training and the remaining 20% for testing.  

 

 
Fig. 5. Pearson correlation coefficient to analyses the relationship between process variables 
and enzymatic hydrolysis rates 
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Hyperparameter optimization of the ANN model was conducted using the 

random search method. This approach has been reported to yield optimal models 

more efficiently compared to grid search methods, either achieving similar 

performance or requiring less computational time (Bergstra and Bengio 2012). 

Multiple ANN training iterations were performed to identify hyperparameters that 

minimized the loss function, mean squared error (MSE). As illustrated in Fig. 6, the 

MSE value converged to a minimum and remained constant after approximately 175 

training runs, indicating stabilization of the ANN model parameters. 

The optimized ANN model architecture consisted of an input layer that 

integrated four process variables: presence of bark, chemical pretreatment time, 

chemical concentration, and steam explosion time. This input layer was connected to 

a hidden layer with 64 neurons and a single output layer that produced the predicted 

enzymatic hydrolysis yield. Each neuron computed the weighted sum of the inputs, 

added a bias term, and passed the result to the next layer.  

The Rectified Linear Unit (ReLU) function was employed as the activation 

function for the hidden layer. Dropout was set to 0, and batch normalization was 

disabled (Batchnorm = False). The Adam optimizer was used to iteratively adjust the 

network weights based on the computed loss function. The architecture of the 

optimized model is illustrated in Fig. 7. 

 

 
 

Fig. 6. Mean square error (MSE) of the proposed ANN model for predicting the enzyme 
hydrolysis rate of 500 epochs 
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Fig. 7. Neural network topology of the optimized ANN model 
 

To evaluate the potential for underfitting and overfitting in the optimized 

model, the model was trained and assessed using different data split ratios. (Table 2) 
 

Table 2. Performance of Different data Split Ratio for Prediction of Enzyme 
Hydrolysis Rate 

Data Split Ratio (Train: Test) Enzyme Hydrolysis Rate 

Train R2 Train MSE Test R2 Test MSE 

75:25 0.9331 4.4124 0.9781 2.5552 

80:20 0.9373 4.4100 0.9805 2.4258 

85:15 0.9381 4.4053 0.9815 2.3417 

 

As shown in Table 2, when the data split ratio was adjusted to 85:15 using the 

same dataset, the resulting Train R² and Test R² were 0.9381 and 0.9815, respectively, 

and the Train MSE and Test MSE were 4.4053 and 2.3417. Compared to the results 

obtained with an 80:20 split, the variation in error metrics remained within 3%, 

indicating that overfitting was not observed even when the proportion of training data 

increased. Likewise, under a 75:25 split ratio, the Train R² and Test R² values were 

0.9331 and 0.9781, respectively, and the Train and Test MSE values were 4.7824 and 

2.5552. The performance deviation remained within 5% relative to the 80:20 baseline, 

suggesting that underfitting did not occur when the training data size was reduced. 

These results validate that the developed artificial neural network (ANN) 

model effectively learned the data without experiencing underfitting or overfitting, 

and it can robustly predict enzymatic hydrolysis yield based on process parameters. 

The train-test split ratio is known to be a critical factor that influences model accuracy 

(Huang et al. 2023). Many researchers typically follow the Pareto principle and adopt 

an 80:20 data split for model development (Chen et al. 1994). The present study also 

supports the suitability of this principle, as evidenced by the results in Table 2. 

 

Model Comparison Analysis 
Both graphical and statistical approaches were employed to compare the 

predictive capabilities of the ANN, RF, SVR, and XGB models with respect to the 

enzymatic hydrolysis rate of steam-exploded pine wood chips. The accuracy of each 

model was evaluated using two statistical metrics: the coefficient of determination 
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(R²) and the mean squared error (MSE). As presented in Table 3, the training dataset 

yielded high R² values of 0.9373, 0.9226, 0.9250, and 0.8260 for ANN, RF, SVR, and 

XGB models, respectively. Correspondingly, low MSE values of 4.4100, 5.4486, 

5.2497, and 12.2497 were obtained for ANN, RF, SVR, and XGB models, 

respectively. On the testing dataset, the ANN model exhibited the highest R² value 

(0.9805) and the lowest MSE (2.4258), followed by SVR (R² = 0.9463, MSE = 

3.1451), RF (R² = 0.9208, MSE = 8.4556), and XGB (R² = 0.8674, MSE = 14.1451). 

 
Table 3. Performance of Different Modeling Methods for Prediction of Enzyme 
Hydrolysis Rate 

Modeling Approaches and Statistical 
Parameters 

Enzyme Hydrolysis Rate 

Train R2 Train MSE Test R2 Test MSE 

ANN 0.9373 4.4100 0.9805 2.4258 

RF 0.9226 5.4486 0.9208 8.4556 

SVR 0.9250 5.2497 0.9463 3.1451 

XGB 0.8260 12.2497 0.8674 14.1451 

 

Among the evaluated models, ANN, RF, and SVR exhibited excellent 

predictive performance, with ANN clearly demonstrating superior accuracy in 

predicting the enzymatic hydrolysis rate. The lower MSE values for the ANN model, 

especially on external validation samples, confirmed its robustness and strong 

predictive capacity. These results validate that the enzymatic hydrolysis rate of pine 

biomass can be reliably and accurately estimated using ANN modeling based on the 

selected process variables. The coefficient of determination (R²) measures the 

accuracy of predictions relative to observed target values and is frequently utilized to 

assess model performance. 

Figure 8 compares the R² values obtained from each model. All models 

demonstrated strong predictive performance, yielding R² values above 0.93 for both 

training and testing datasets. Notably, the ANN model exhibited superior predictive 

capability for estimating enzymatic hydrolysis rates compared to the RF, SVR, and 

XGB models, achieving the highest R² value of 0.97 on the test dataset. These 

findings align with previous studies that have highlighted the strong predictive 

capacity of ANN models in biomass conversion processes (Persson et al. 2002; Vibha 

et al. 2024; Jayakumar et al. 2025).  

Vinitha et al. (2023) applied a machine learning approach using decision tree 

algorithms to optimize the enzymatic hydrolysis of biomass. Their study employed 

process variables as training data and reported a high coefficient of determination (R² 

= 0.9762), indicating strong predictive performance. Similarly, Khangwal et al. 

(2021) introduced a multilayer feed-forward artificial neural network model to predict 

sugar production from hemicellulose extracted from corn cobs. Using process 

variables as model inputs, they achieved an R² of 0.9651, which is comparable to the 

performance of our ANN model. De Farias Silva et al. (2022) investigated the use of 

both artificial neural networks and support vector machines to predict fermentation 

yield from Sargassum macroalgae. Their results showed that the ANN model with 15 

neurons achieved an R² of 0.877, while the SVM model using a polynomial kernel 

function reached an R² of 0.821. These findings suggest that ANN models offer 

superior performance over SVM in yield prediction tasks, which is consistent with our 

study. To the best of our knowledge, there has been no prior research applying 

machine learning algorithms to predict the enzymatic hydrolysis yield of steam-



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 
 

 

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419.   8413 

exploded pine pretreated under mild NaOH conditions. This highlights the novelty 

and contribution of our work to the field of lignocellulosic biomass valorization. 

 
Fig. 8. Comparison between the actual and predicted enzymatic hydrolysis rates for artificial 
neural networks (ANN), random forests (RF), support vector regression (SVR), and XGB 
models (D) 

 
 
CONCLUSIONS 
 
1. This study demonstrated that an artificial neural network (ANN) model can 

successfully predict the enzymatic hydrolysis rate of steam-exploded pine wood 

chips subjected to mild alkaline pretreatment. The ANN model outperformed 

conventional models such as random forest (RF), support vector regression (SVR), 

and XGB, achieving an R² of 0.9805 and a mean squared error (MSE) of 2.43 on 

the test dataset. 

2. Among the evaluated process parameters, the chemical concentration, particularly 

at 1% NaOH, exhibited the strongest linear correlation (r = 0.61) with the 

enzymatic hydrolysis rate. Conversely, chemical pretreatment time and steam 

explosion duration demonstrated significant yet nonlinear impacts on hydrolysis 

performance. Optimal enzymatic hydrolysis conditions were determined to be 1% 

NaOH concentration, a 24-hour pretreatment duration, 5 minutes of steam 

explosion treatment, and the absence of bark, achieving a maximum enzymatic 

hydrolysis rate of 93.9%. 
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3. This study confirms that artificial neural networks (ANNs) effectively model the 

complex nonlinear relationships inherent in biomass hydrolysis processes. Thus, 

ANN provides a robust, rapid, and precise predictive approach, facilitating the 

optimization of biomass bioconversion conditions. 

 

ACKNOWLEDGMENTS 
 

This study was carried out with the support of R&D Program for Forest 

Science Technology (Project No. "RS-2023-KF00245261382116530003") provided 

by Korea Forest Service (Korea Forestry Promotion Institute). 

 
Data Availability 

All datasets used and/or analyzed during the current study are available from 

the corresponding author on reasonable request. 

 

Conflicts of Interest 
The authors declare that they have no conflicts of interest. 

 

 

REFERENCES CITED 
 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, 

S., Irving, G., and Isard, M. (2016). “TensorFlow: A system for large-scale 

machine learning,” Proceedings of the 12th USENIX Symposium on Operating 

Systems Design and Implementation (OSDI 16), pp. 265-283. 

Almeida, J. S. (2002). "Predictive non-linear modeling of complex data by artificial 

neural networks," Curr. Opin. Biotechnol. 13(1), 72-76. DOI: 10.1016/S0958-

1669(02)00288-4 

Antonopoulou, G., Vayenas, D., and Lyberatos, G. (2016). "Ethanol and hydrogen 

production from sunflower straw: The effect of pretreatment on the whole slurry 

fermentation," Biochem. Eng. J. 116, 65-74. DOI: 10.1016/j.bej.2016.06.014 

Azad, S. A., Madadi, M., Rahman, A., Sun, C., and Sun, F. (2025). "Machine 

learning-driven optimization of pretreatment and enzymatic hydrolysis of 

sugarcane bagasse: Analytical insights for industrial scale-up" Fuel 390, article 

134682. DOI: 10.1016/j.fuel.2025.134682 

Bergstra, J., and Bengio, Y. (2012). "Random search for hyper-parameter 

optimization," J. Mach. Learn. Res. 13(1), 281-305. 

Bhalla, A., Bansal, N., Pattathil, S., Li, M., Shen, W., Particka, C. A., Karlen, S. D., 

Phongpreecha, T., Semaan, R. R., Gonzales-Vigil, E., Ralph, J., Mansfield, S. D., 

Ding, S., Hodge, D. B., and Hegg, E. L. (2018). "Engineered lignin in poplar 

biomass facilitates Cu-catalyzed alkaline-oxidative pretreatment," ACS 

Sustainable Chem. Eng. 6(3), 2932–2941. DOI: 10.1021/acssuschemeng.7b02067 

Cai, C., Zhang, C., Li, N., Liu, H., Xie, J., Lou, H., Pan, X., Zhu, J. Y., and Wang, F. 

(2023). "Changing the role of lignin in enzymatic hydrolysis for a sustainable and 

efficient sugar platform," Renew. Sustain. Energy Rev. 183, article 113445. DOI: 

10.1016/j.rser.2023.113445 

Chen, Y., Chong, P. P., and Tong, M. Y. (1994). "Mathematical and computer 

modelling of the Pareto principle," Math. Comput. Model. 19(9), 61–80. DOI: 

10.1016/0895-7177(94)90041-8 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 
 

 

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419.   8415 

 

Chicco, D., Warrens, M. J., and Jurman, G. (2021). "The coefficient of determination 

R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in 

regression analysis evaluation," PeerJ Comput. Sci. 7, article e623. DOI: 

10.7717/peerj-cs.623 

De Farias Silva, C. E., Costa, G. Y. S. C. M., Ferro, J. V., Carvalho, F. O., da Gama, B. 

M. V., Meili, L., Silva, M. C. S., Almeida, R. M. R. G., and Tonholo, J. (2022). 

"Application of machine learning to predict the yield of alginate lyase solid-state 

fermentation by Cunninghamella echinulata: Artificial neural networks and 

support vector machine," React. Kinet. Mech. Catal. 135(6), 3155-3171. DOI: 

10.1007/s11144-022-02293-9 

Ding, S., and Himmel, M. E. (2006). "The maize primary cell wall microfibril: A new 

model derived from direct visualization," J. Agric. Food Chem. 54(3), 597-606. 

DOI: 10.1021/jf051851z 

Gunam, I., Setiyo, Y., Antara, N. S., Wijaya, I., Arnata, I. W., and Putra, I. (2020). 

"Enhanced delignification of corn straw with alkaline pretreatment at mild 

temperature," Rasayan J. Chem. 13, 1022–1029. DOI: 

10.31788/RJC.2020.1325573 

Ha, S. Y., Jung, J. Y., Kim, H. C., Lim, W. S., and Yang, J. (2024). "Low-temperature 

and low-concentration sodium hydroxide pretreatment for enhanced enzyme 

hydrolysis rate from Quercus variabilis Blume," BioResources 19(2), 2592–2604. 

DOI: 10.15376/biores.19.2.2592-2604 

Huang, F., Teng, Z., Guo, Z., Catani, F., and Huang, J. (2023). "Uncertainties of 

landslide susceptibility prediction: Influences of different spatial resolutions, 

machine learning models and proportions of training and testing dataset," Rock 

Mech. Bull. 2(1), article 100028. DOI: 10.1016/j.rockmb.2023.100028 

Ioelovich, M., and Morag, E. (2012). "Study of enzymatic hydrolysis of mild 

pretreated lignocellulosic biomasses," BioResources 7(1), 1040-1052. DOI: 

10.15376/biores.7.1.1040-1052 

Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., and 

Paquot, M. (2012). "Influence of steam explosion on physicochemical properties 

and hydrolysis rate of pure cellulose fibers," Bioresource Technol. 121, 221-227. 

DOI: 10.1016/j.biortech.2012.06.073 

Jacquet, N., Vanderghem, C., Blecker, C., and Paquot, M. (2010). "La steam 

explosion: Application en tant que prétraitement de la matière lignocellulosique," 

BASE 14(2), 118-128. 

Jayakumar, M., Thiyagar, T., Abo, L. D., Arumugasamy, S. K., and Jabesa, A. (2025). 

"Paddy straw as a biomass feedstock for the manufacturing of bioethanol using 

acid hydrolysis and parametric optimization through response surface 

methodology and an artificial neural network," Biomass Convers. Biorefin. 15(3), 

3803-3825. DOI: 10.1007/s13399-024-05371-1 

Kawaguchi, H., Hasunuma, T., Ogino, C., and Kondo, A. (2016). "Bioprocessing of 

bio-based chemicals produced from lignocellulosic feedstocks," Curr. Opin. 

Biotechnol. 42, 30-39. DOI: 10.1016/j.copbio.2016.02.031 

Khangwal, I., Chhabra, D., and Shukla, P. (2021). "Multi-objective optimization 

through machine learning modeling for production of xylooligosaccharides from 

alkali-pretreated corn-cob xylan via enzymatic hydrolysis," Indian J. Microbiol. 

61(4), 458-466. DOI: 10.1007/s12088-021-00970-2 

Kim, K. H., Tucker, M., and Nguyen, Q. (2005). "Conversion of bark-rich biomass 

mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis," 

Bioresource Technol. 96(11), 1249-1255. DOI: 10.1016/j.biortech.2004.10.017 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 
 

 

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419.   8416 

Kim, J. S., Lee, Y. Y., and Kim, T. H. (2016). "A review on alkaline pretreatment 

technology for bioconversion of lignocellulosic biomass," Bioresour. Technol. 

199, 42–48. DOI: 10.1016/j.biortech.2015.08.08 

Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., and Verma, P. (2020). "Current 

perspective on pretreatment technologies using lignocellulosic biomass: An 

emerging biorefinery concept," Fuel Process. Technol. 199, article 106244. DOI: 

10.1016/j.fuproc.2019.106244 

Lou, H., Hu, Q., Qiu, X., Li, X., and Lin, X. (2016). "Pretreatment of miscanthus by 

NaOH/urea solution at room temperature for enhancing enzymatic hydrolysis," 

Bioenergy Res. 9(1), 335-343. DOI: 10.1007/s12155-015-9695-x 

Nges, I. A., Li, C., Wang, B., Xiao, L., Yi, Z., and Liu, J. (2016). "Physio-chemical 

pretreatments for improved methane potential of Miscanthus lutarioriparius," 

Fuel 166, 29-35. DOI: 10.1016/j.fuel.2015.10.108 

Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N., and Jönsson, L. J. 

(2002). "Effect of different forms of alkali treatment on specific fermentation 

inhibitors and fermentability of lignocellulose hydrolysates," J. Agric. Food Chem. 

50(19), 5318-5325. DOI: 10.1021/jf025565o 

Rodríguez, F., Sanchez, A., and Parra, C. (2017). "Role of steam explosion on 

enzymatic digestibility, xylan extraction, and lignin release of lignocellulosic 

biomass," ACS Sustainable Chem. Eng. 5(6), 5234–5240. DOI: 

10.1021/acssuschemeng.7b00580 

Saleh, H., Hussien, A. M., Hassan, M. R., and Ali, A. A. (2022). “Predicting stroke 

disease based on recurrent neural network and optimization techniques,” 2022 

International Conference on Engineering & MIS (ICEMIS), 1-5. DOI: 

10.1109/ICEMIS56295.2022.9914334 

Vibha, R., Sandesh, K., Ujwal, P., and Shet, V. B. (2024). "RSM- and ANN-based 

modeling for a novel hydrolysis process of lignocellulose residues to produce 

cost-effective fermentable sugars," Biomass Convers. Biorefin. 14(19), 24181-

24196. DOI: 10.1007/s13399-023-04484-3 

Vinitha, N., Vasudevan, J., and Gopinath, K. P. (2023). "Bioethanol production 

optimization through machine learning algorithm approach: Biomass 

characteristics, saccharification, and fermentation conditions for enzymatic 

hydrolysis," Biomass Convers. Biorefin. 13(8), 7287-7299. DOI: 10.1007/s13399-

022-03163-z 

Vinitha, N., Vasudevan, J., Gopinath, K. P., Arun, J., Madhu, S., and Naveen, S. 

(2024). "Enhancing the dilute acid hydrolysis process using a machine learning 

approach: Investigation of different biomass feedstocks influences glucose and 

ethanol yields," Biomass Convers. Biorefin. 15, 9159-9171. DOI: 10.1007/s13399-

024-05714-y 

Vu, H. P., Nguyen, L. N., Vu, M. T., Johir, M. A. H., McLaughlan, R., and Nghiem, L. 

D. (2020). "A comprehensive review on the framework to valorise lignocellulosic 

biomass as biorefinery feedstocks," Sci. Total Environ. 743, article 140630. DOI: 

10.1016/j.scitotenv.2020.140630 

Yu, Z., Zhang, B., Yu, F., Xu, G., and Song, A. (2012). "A real explosion: The 

requirement of steam explosion pretreatment," Bioresource Technol. 121, 335-341. 

DOI: 10.1016/j.biortech.2012.06.055 

Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., and Sahu, J. N. 

(2019). "Recent advances in biological pretreatment of microalgae and 

lignocellulosic biomass for biofuel production," Renew. Sustain. Energy Rev. 105, 

105-128. DOI: 10.1016/j.rser.2019.01.048 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 
 

 

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419.   8417 

Zhang, Q., Wan, Z., Yu, I. K. M., and Tsang, D. C. W. (2021). "Sustainable production 

of high-value gluconic acid and glucaric acid through oxidation of biomass-

derived glucose: A critical review," J. Clean. Prod. 312, 127745. DOI: 

10.1016/j.jclepro.2021.127745 

 

Article submitted: May 28, 2025; Peer review completed: July 1, 2023; Revised 

version received: July 21, 2025; Accepted: July 25, 2025; Published: August 1, 2025. 

DOI: 10.15376/biores.20.4.8400-8419 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 
 

 

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419.   8418 

APPENDIX 

 

Table S1. Enzyme Hydrolysis Rate of Pine Wood Biomass as Various NaOH 
Treatment Conditions 

Bark Steam explosion 
time (min) 

Chemical 
concentration (%) 

Chemical 
treatment time (h) 

Enzyme hydrolysis rate 
(%) 

1 1 0.5 12 57.3 

1 1 0.5 24 61.5 

1 1 1.0 12 87.6 

1 1 1.0 24 88.8 

1 1 2.0 12 83.7 

1 1 2.0 24 82.6 

0 1 0.5 12 67.2 

0 1 0.5 24 72.2 

0 1 1.0 12 84.8 

0 1 1.0 24 88.0 

0 1 2.0 12 79.1 

0 1 2.0 24 84.7 

1 1 0.5 12 59.7 

1 1 0.5 12 54.9 

1 1 0.5 24 62.5 

1 1 0.5 24 60.5 

1 1 1 12 87.8 

1 1 1 12 87.4 

1 1 1 24 89.7 

1 1 1 24 87.9 

1 1 2 12 86.3 

1 1 2 12 81.1 

1 1 2 24 83.6 

1 1 2 24 81.6 

0 1 0.5 12 69.5 

0 1 0.5 12 64.9 

0 1 0.5 24 72.9 

0 1 0.5 24 71.5 

0 1 1 12 85.5 

0 1 1 12 84.1 

0 1 1 24 93.9 

0 1 1 24 82.1 

0 1 2 12 88.9 

0 1 2 12 69.3 

0 1 2 24 85.1 

0 1 2 24 84.3 

1 3 0.5 12 62.3 

1 3 0.5 24 62.6 

1 3 1 12 79.3 

1 3 1 24 81.1 

1 3 2 12 82.8 

1 3 2 24 83.2 

0 3 0.5 12 68.6 

0 3 0.5 24 69.5 

0 3 1 12 72.8 

0 3 1 24 82.5 

0 3 2 12 83.8 

0 3 2 24 84.6 

1 3 0.5 12 63.2 

1 3 0.5 12 61.4 

1 3 0.5 24 65.1 

1 3 0.5 24 60.1 

1 3 1 12 79.5 

1 3 1 12 79.1 

1 3 1 24 82.0 

1 3 1 24 80.2 

1 3 2 12 83.7 
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1 3 2 12 81.9 

1 3 2 24 84.2 

1 3 2 24 82.2 

0 3 0.5 12 69.0 

0 3 0.5 12 68.2 

0 3 0.5 24 72.6 

0 3 0.5 24 66.4 

0 3 1 12 73.1 

0 3 1 12 72.5 

0 3 1 24 82.9 

0 3 1 24 82.1 

0 3 2 12 84.0 

0 3 2 12 83.6 

0 3 2 24 84.8 

0 3 2 24 84.4 

1 5 0.5 12 74.6 

1 5 0.5 24 75.2 

1 5 1 12 75.6 

1 5 1 24 88.1 

1 5 2 12 88.7 

1 5 2 24 85.3 

0 5 0.5 12 80.0 

0 5 0.5 24 80.2 

0 5 1 12 85.4 

0 5 1 24 88.8 

0 5 2 12 86.3 

0 5 2 24 86.4 

1 5 0.5 12 79.3 

1 5 0.5 12 69.9 

1 5 0.5 24 75.8 

1 5 0.5 24 74.6 

1 5 1 12 76.1 

1 5 1 12 75.1 

1 5 1 24 88.5 

1 5 1 24 87.7 

1 5 2 12 89.1 

1 5 2 12 88.3 

1 5 2 24 85.7 

1 5 2 24 84.9 

0 5 0.5 12 80.1 

0 5 0.5 12 79.9 

0 5 0.5 24 80.7 

0 5 0.5 24 79.7 

0 5 1 12 85.7 

0 5 1 12 85.1 

0 5 1 24 89.4 

0 5 1 24 88.2 

0 5 2 12 86.7 

0 5 2 12 85.9 

0 5 2 24 88.2 

0 5 2 24 84.6 

 

 

 


