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Artificial Neural Network Approach for Predicting
Enzymatic Hydrolysis of Steam Exploded Pine Wood
Chip in Mild Alkaline Pretreatment
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Lignocellulosic biomass, particularly softwoods such as pine, poses a
significant challenge to enzymatic hydrolysis due to its high lignin content
and complex structural rigidity. Although the application of steam
explosion and alkaline pretreatment has gained widespread popularity
for enhancing digestibility, the optimization of process parameters
remains a formidable challenge due to the nonlinear interactions among
variables. Machine learning is emerging as a promising solution to
address these challenges, offering a viable alternative for predictive
modeling and process control. In this study, an artificial neural network
(ANN) model was developed to predict the enzymatic hydrolysis rate of
steam-exploded pine wood subjected to mild alkaline (NaOH)
pretreatment. The artificial neural network (ANN) was trained on
experimental data encompassing three primary process variables: steam
explosion time (1 to 5 min), NaOH concentration (0.5 to 2.0%), and
chemical pretreatment time (12 to 24 h). The artificial neural network
(ANN) model demonstrated the highest level of accuracy among the
models evaluated, including random forest, support vector machine, and
extreme gradient boosting. It attained a coefficient of determination (R?)
of 0.9805. In conditions that were not optimized (1% NaOH, 24-hour
treatment, 5 min steam explosion, without bark), a maximum hydrolysis
of 93.9% was obtained.
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INTRODUCTION

Wood cellulosic biomass feedstock is a low-cost, energy-dense, and globally
abundant renewable resource (Kumar et al. 2020) Historically, it has been utilized as
an energy source; however, the increasing dependence on fossil fuels in recent
decades has led to a decline in its usage in this capacity. However, this transition has
given rise to a renewed interest in its application for synthesizing high value
biochemicals such as phenylpropanoids (Kawaguchi et al. 2016). This focus has
opened new pathways for sustainable biochemical production. The primary
components of wood biomass — cellulose, hemicellulose, and lignin — contain
fermentable sugars (hexoses, pentoses, efc.) that can be converted into bioproducts
through biochemical processes.

Woody biomass consists of 38 to 50% cellulose, 23 to 32% hemicellulose, and
15to 25% lignin, although these ratios vary according to source (Vu et al. 2020).
Enzymatic hydrolysis using cellulases has proven effective for depolymerizing
cellulose into glucose, a crucial intermediate for the synthesis of value-added
chemicals such as gluconic acid, glucaric acid, and levulinic acid (Zhang et al. 2021).
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The crystalline structure of cellulose, held together by B-1,4 glycosidic bonds and
extensive hydrogen bonding, poses a significant barrier to enzymatic degradation
(Ding and Himmel 2006).

Nevertheless, the recalcitrance of lignocellulosic biomass remains a
significant challenge. The structural rigidity of the material, attributable to the
presence of hydrophobic, cross-linked lignin, has been demonstrated to impede
enzyme accessibility and to reduce saccharification efficiency (Cai ef al. 2023). This
problem is especially evident in softwoods such as pine, which have a higher lignin
content and more complex structures in comparison to hardwoods such as oak (Kumar
et al. 2020). The utilization of pretreatment strategies is imperative in order to
enhance the enzymatic digestibility of the lignocellulosic matrix through its
fragmentation or modification.

Among pretreatment techniques, steam explosion is a widely employed
method due to its ability to disrupt the lignocellulosic structure via high-pressure,
high-temperature steam, followed by sudden decompression (Yu ef al. 2012). This
physicochemical process has been shown to increase biomass porosity and facilitate
autohydrolysis of hemicellulose and partial delignification (Zabed et al. 2019).
However, it has been demonstrated that this process can also result in the formation of
fermentation inhibitors, such as furfural and 5-hydroxymethylfurfural, especially
under more severe conditions. To mitigate the effects of these processes, the
combination of steam explosion with chemical pretreatments is frequently employed
(Nges et al. 2016).

Alkaline pretreatment, particularly using sodium hydroxide (NaOH), is a
commonly used method to solubilize lignin and hemicellulose, reduce cellulose
crystallinity, and enhance enzyme accessibility. Among alkaline reagents, NaOH is
more widely used for pretreatment than potassium hydroxide (KOH) due to its lower
cost and stronger alkalinity, which enables effective lignin removal even at relatively
low reaction temperatures (Kim ez al. 2016). It is cost-effective, operates under mild
conditions, and can be integrated with steam explosion to synergistically improve
biomass digestibility (Antonopoulou et al. 2016). Therefore, pretreatment using
sodium hydroxide can be regarded as a feasible and effective method for
lignocellulosic biomass processing.

Notwithstanding the advantages, determining the optimal combination of
pretreatment parameters such as bark presence, steam duration, alkali concentration,
and treatment time remains difficult due to the complexity and nonlinearity of their
interactions. In this context, artificial intelligence, particularly artificial neural
networks (ANNs), has emerged as a potent approach to model and optimize such
multifactorial processes (Almeida 2002). ANNs have the capacity to learn complex,
nonlinear relationships between input variables and response outputs without
requiring explicit mathematical formulations. This renders them especially suitable
for predicting outcomes in biological systems with inherent variability. Recent
applications of artificial neural networks (ANN) in the field of biomass conversion
have demonstrated a high degree of accuracy in modelling processes such as
enzymatic saccharification, bioethanol yields, and the influence of pretreatment
conditions (Vinitha et al. 2024; Azad et al. 2025). For instance, Vinitha et al. (2024)
applied optimized decision-making algorithms to enhance the efficiency of enzymatic
saccharification, while Azad et al. (2025) integrated orthogonal experimental designs
with machine learning algorithms to achieve cellulose recovery efficiencies exceeding
88%, accompanied by minimal prediction error.

In line with these developments, the present study focused on pine biomass
subjected to steam explosion and NaOH pretreatment. The efficiency of the enzymatic
hydrolysis of such biomass is affected by multiple covariates, including the presence
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of bark, the duration of steam explosion, the concentration of NaOH, and treatment
time. The variables under consideration are pivotal in determining the chemical
composition and physical structure of the resulting substrate. Consequently, it is
challenging to predict hydrolysis performance using conventional methods alone.

In order to address this issue, a novel approach is proposed, which involves
the use of an artificial neural network (ANN)-based modelling strategy to simulate
and predict the efficiency of the enzymatic hydrolysis of pretreated pine biomass. The
objective of training the model on experimental data is twofold: first, to analyze
which process variables affect the enzymatic hydrolysis rate, and second, to evaluate
the predictive performance of the ANN compared to other models such as random
forest (RF), support vector regression (SVR), and extreme gradient boosting (XGB).
Although machine learning algorithms have been increasingly applied in the fields of
wood chemistry and bioprocessing, to the best of our knowledge, their application to
modeling enzymatic hydrolysis based on the pretreatment of steam exploded pine
wood biomass remains limited.

The objective of this study was to investigate a predictive model for enzymatic
hydrolysis yield using pre-treatment process parameters of lignocellulosic biomass
(pine wood biomass) such as steam explosion and alkaline pretreatment. An artificial
neural network (ANN) was modeled using Python to predict the enzymatic hydrolysis
rate based on these pretreatment variables. To enhance the prediction performance of
the ANN, hyperparameter tuning was conducted. The optimized ANN model was then
compared with other machine learning models in terms of prediction accuracy.
Predictive performance was evaluated using mean square error (MSE) and the
coefficient of determination (R?). Therefore, the results of this study are expected to
provide valuable insight into the synergistic effect of steam explosion and alkaline
pretreatment on the enzyme hydrolysis of pine wood, and contributes to the
development of efficient conversion processes for producing high-value sugars from
lignocellulosic biomass.

EXPERIMENTAL

Materials

The pine wood chips used in the study were sourced from Punglim
Corporation (Daejeon, Korea). The pine wood chips were divided into bark and non-
bark samples, and all samples were used in the experiments. The wood chips were
chipped to a size of approximately 3 cm (W) % 3 cm (L) x 0.5 cm (H) and used for
steam explosion treatment.

Pretreatment Process for Enzymatic Hydrolysis
Pine woodchip steam explosion

The steam explosion conditions used in this study followed the parameters
described by Ha er al. (2024). The steam-explosion pretreatment process was
conducted at the customized batch pilot unit (Yurim High Tech, Taegu,
Gyeongsangbuk-do, Korea) based on the Masonite technology. The reactor was steam
exploded with saturated steam at 25 kg/cm? for 1 to 5 min. The steam exploded pine
wood chips were collected in circular bins, cooled, sealed in PE bags and refrigerated
at 4 °C until chemical pretreatment. According to the report by Rodriguez et al.
(2017), it has been demonstrated that relatively mild steam explosion conditions
(pressure of 15 to 25 bar, temperature of 200 to 220 °C, and residence time of 1 to 5
minutes) can still enable high enzymatic hydrolysis yields.
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Chemical pretreatment of steam explosion samples

The alkaline pretreatment was conducted using a modified version of the
method described by Gunam et al. (2020). The steam exploded samples were
pretreated with different concentrations of NaOH to increase the enzymatic hydrolysis
rate. Different concentrations of NaOH (0.5-2%) were used for pretreatment. Sample
and solvent were mixed in a 1:20 ratio in a 300 mL triangular flask. Pretreatment was
carried out for 12 to 24 h at room temperature at rest. After pretreatment, the residue
was filtered through Whatman filter paper No. 2 and washed with distilled water until
the pH was neutral. The neutralized sample was used for enzymatic hydrolysis.

Evaluate the microstructure of chemical pretreatment samples

Scanning electron microscopy (SEM) (ZEISS Gemini 300, Germany) was
used to evaluate the surface microstructure of steam explosion treated pine chips after
chemical pretreatment. Samples were mounted on a stub using a conductive
thermoplastic adhesive, coated with Pt on a Polaron E 5000 sputter coating unit and
evaluated using scanning electron microscopy. The analysis was performed at an
accelerating voltage of 5 Kv.

Enzymatic hydrolysis

The enzymatic hydrolysis was performed using a modified version of the
method described by Bhalla et al. (2018). Chemically pretreated steam explosion
samples were placed in 1 g in a 30 mL test tube for enzymatic hydrolysis and
autoclaved at 121 °C for 30 min. After autoclaving, the sample was allowed to air dry
on a clean bench. Buffer was prepared with Na-citrate buffer, 2% sodium azide, and
Tween 80 (polysorbate 80). Ten mL of the buffer was added to a test tube and
hydrolyzed by adding Cellic CTec3 (Novozymes, Denmark) 440FPU/glucan. After
hydrolyzing at 50 °C, 210 rpm, for 72 hours, the hydrolysate was filtered through a
2G3 glass filter. After hydrolysis, the residue was dried at 105 = 3 °C until constant
weight and then weighed to calculate the rate of enzymatic hydrolysis.

Machine Learning and Optimization Approach
ANN modeling

The ANN was implemented using the TesnsorFlow package (Abadi et al.
2016), Keras package and Scikit-learn package of programs for learning from
experimental data (Python 3. 10.6). Enzymatic degradation rates under different
treatment conditions (steam explosion time, chemical pretreatment time, chemical
concentration) were predicted using a multilayer back-propagation neural network.
The network architecture has three input variables: steam explosion time (1, 3, 5 min),
chemical pretreatment time (12h, 24h) and chemical concentration (0.5, 1, 2%). There
was one output variable: enzymatic hydrolysis rate. All conditions were measured in
triplicate, yielding a total of 108 data points. The data collected were subsequently
divided into two equal segments: 80% was allocated for training, while the remaining
20% was designated for testing purposes. The model was trained using the K-fold
validation method.

ANN hyperparameter optimization

A Keras tuner was used to optimize the hyperparameters of an artificial neural
network (Saleh et al. 2022). This was done using Keras tuner randomsearchcv,
randomizing the number of hidden layers, number of neurons, and dropout rate to find
the wvalues with the best model performance. The search ranges for each
hyperparameter are summarized in Table 1.
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Table 1. Scope of Hyperparameter Exploration in ANN Models

Hyperparameters Range

Number of Hidden Layers 1t03

Units per Layer 8 to 64
Dropout Rate 0.0t0 0.3

Optimizer Adam, Rmsprop, SGD
Learning rate 0.01, 0.001, 0.0001
Batchnorm True, False

Adjustments were made of the number of hidden layers (1 to 3), number of
neurons per layer (8 to 64), and dropout rate (0 to 0.3). The optimizer of choice was
Adam, Rmsprop, and SGD, with learning rates of 0.01, 0.001, and 0.0001, and batch
normalization set to True and False. The objective function was Mean Squared Error
(MSE), and the hyperparameter values that minimize the MSE value were optimized
by random search. To assess the efficacy of the model, a k-fold cross-validation was
employed, with k set at 5.

Each combination was subjected to a training regime comprising 500 epochs.
During this training, the loss value (MSE) of the validation dataset was meticulously
monitored. Early termination of the training process was implemented if the value
remained static for a period of 10 epochs.

Evaluating ANN models

To assess the comparative efficacy of ANN models, three machine learning
algorithms were selected for analysis. Random forest (RF), support vector regression
(SVR), and extreme gradient boosting (XGB) are algorithms frequently employed in
regression and classification problems.

In order to determine the possibility of underfitting and overfitting of the ANN
model, the data were split differently into train 75%, test 25% and train 85%, test 15%,
and evaluated the ANN model for each data split.

The error can be calculated by comparing the difference between the predicted
value and the target value. To minimize the error in the backpropagation algorithm,
the weights and bias values of the previous layer and the backpropagated error were
readjusted. This iterative process enhances the sequential model's performance,
ensuring precise predictions for novel instances. The error evaluation criteria
considered are mean square error (MSE) and coefficient of determination (R?),
defined as follows (Chicco ef al. 2021),
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Fig. 1. Analytical workflow for modeling the prediction of enzymatic hydrolysis rate

1
MSE = 0 ?:1(ypredicred - yactual)z
(1)

2
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2
E?:l (}’pr‘edicted - ymean)
(2)

where n, y predicted, y actual, and y mean are the number of instances, the values
generated by the ANN model, the target value, and the average value of the target
output, respectively.

The modeling for predicting enzymatic hydrolysis yield was carried out
through data acquisition, model optimization, and comparison with other machine
learning algorithms. The overall workflow and methodology adopted in this study are
illustrated in Fig. 1. This workflow may serve as a guideline for reproducing the
results or applying similar approaches in related studies.

RESULTS AND DISCUSSION

Steam Explosion and Alkaline Pretreatment of Pine Wood Chips
As illustrated in Fig. 2, the original sample and the pine wood chip containing
bark are represented visually. As the intensity of the steam blasting treatment
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increased, a shift in color towards darker shades was observed, which was consistent
across both the pine biomass with bark and the biomass without bark.

NaOH was chosen for the chemical pretreatment. The morphological
alterations in pine biomass that had undergone pretreatment with NaOH were
observed by means of SEM, with the resultant images presented in Fig. 3. The SEM
images obtained demonstrated an augmentation in surface area and a disruption of cell
walls as a consequence of chemical pretreatment.

Raw biomass — with bark Raw biomass — without bark

225 °C, 1 min — with bark 225 °C, 1 min — without bark

225 °C, 3 min — with bark 225 °C, 3 min — without bark

/

225 °C, 5 min — with bark 225 °C, 5 min — without bark

Fig. 2. Images of pine wood chip before and after steam explosion pretreatment
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It was visually evident that the higher the solvent concentration, the more cell
wall disruption occurred. However, it was found that sufficient cell wall disruption
occurred even at a 2% NaOH concentration and room temperature, which is relatively
lower than the typical NaOH treatment concentration. This indicates that treating
biomass with low concentrations of chemical and mild temperatures can be effective
in increasing biomass digestibility (Lou ef al. 2016).

Enzymatic Hydrolysis of Biomass and the Influence of Process
Variables

Before using an artificial neural network to train data, the scientific basis for
the input variables must be clarified. The presence of bark is important because it can
worsen the efficiency of enzymatic hydrolysis (Kim et al. 2005). During the steam
blasting process, woody cellulosic biomass undergoes self-hydrolysis due to heat and
steam, and fiber rupture due to overpressure, which facilitates enzyme penetration
(Jacquet et al. 2010). Moreover, the degree of self-hydrolysis and fiber rupture varies
depending on the time that the steam reacts with the wood cellulosic biomass, which
is an important variable (Jacquet et al. 2012). Furthermore, the alkali concentration
and chemical pretreatment time used in the chemical pretreatment may result in
different enzymatic hydrolysis efficiencies due to different removal of enzymatic
hydrolysis inhibitors (Persson et al. 2002).

In Table S1 and Fig. 4, the code “1” denotes including bark and “0” denotes
not including bark. Samples without bark(0) had a higher median value than samples
with bark(1), while samples with bark contained several outliers and showed a large
variance. Chemical pretreatment time showed high hydrolysis rates for the 24h
treatment and relatively few outliers. Chemical concentrations showed the highest
enzymatic hydrolysis rates at 1%, and overall low hydrolysis rates (54.9 to 89.7%) at
0.5%.
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Steam explosion 0.5% NaOH treatment
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Fig. 3. Scanning electron microscopy (SEM) images of pine wood biomass obtained from
untreated, steam explosion treatment and NaOH treatment

Steam explosion time had the highest median and least dispersion in the 5
min treated samples. The presence or absence of bark in the steam exploded samples
did not appear to have a significant effect on enzymatic hydrolysis rates, which is
consistent with previous reports (Kim et al. 2005). It can be seen from Fig. 1 that the
longer the steam explosion time, the more structure destruction occurred due to the
longer reaction time between the steam and biomass. It has been shown that broken-
down biomass allows easier penetration of the enzyme and increases the hydrolysis
rate (Jacquet et al. 2012). Therefore, a complex learning network should be built to
predict the enzymatic hydrolysis rate by examining the correlation between the input
variables. Figure 4 shows the correlation between the input and output variables.
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Fig. 4. The following box plots illustrate the effect of varying parameters on the efficiency of
enzymatic hydrolysis. The parameters under investigation are as follows: bark (A), chemical
pretreatment time (B), chemical concentration (C), and steam explosion time (D)
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Figure 5 presents a correlation matrix analysis that includes the relationships
among bark presence, steam explosion time, chemical concentration, chemical
treatment time, and enzymatic hydrolysis yield. The matrix values indicate both the
direction and strength of the relationships between variables. According to the
correlation analysis, chemical concentration exhibited a strong positive correlation
(0.61) with enzymatic hydrolysis yield, suggesting that increases or decreases in
chemical concentration directly affect saccharification performance.

In contrast, steam explosion time and chemical treatment time showed very
weak correlations with enzymatic hydrolysis yield. Additionally, the presence of bark
demonstrated a weak negative correlation (—0.14) with enzymatic hydrolysis yield.
Mild alkaline pretreatment followed by enzymatic hydrolysis has been reported to
significantly enhance sugar yield in popular. Similarly, in non-woody lignocellulosic
materials such as corn stover and rice straw, mild NaOH pretreatment has been shown
to facilitate enzymatic hydrolysis (Ioelovich and Morag 2012).

ANN Modeling for Enzymatic Hydrolysis Rate Prediction

In this study, an artificial neural network (ANN) model was employed to
predict the enzymatic hydrolysis rates from data exhibiting a nonlinear relationship.
To prevent model overfitting and enhance its generalization performance, the dataset
was randomly partitioned into training and testing subsets, with 80% allocated for
training and the remaining 20% for testing.

Correlation Heatmap

Steam explosion time, min

- 0.6

Chemical concentration, %
- 0.4

-0.2

Chemical treatment time, h

Enzyme hydrolysis rate, %

Fig. 5. Pearson correlation coefficient to analyses the relationship between process variables
and enzymatic hydrolysis rates
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Hyperparameter optimization of the ANN model was conducted using the
random search method. This approach has been reported to yield optimal models
more efficiently compared to grid search methods, either achieving similar
performance or requiring less computational time (Bergstra and Bengio 2012).
Multiple ANN training iterations were performed to identify hyperparameters that
minimized the loss function, mean squared error (MSE). As illustrated in Fig. 6, the
MSE value converged to a minimum and remained constant after approximately 175
training runs, indicating stabilization of the ANN model parameters.

The optimized ANN model architecture consisted of an input layer that
integrated four process variables: presence of bark, chemical pretreatment time,
chemical concentration, and steam explosion time. This input layer was connected to
a hidden layer with 64 neurons and a single output layer that produced the predicted
enzymatic hydrolysis yield. Each neuron computed the weighted sum of the inputs,
added a bias term, and passed the result to the next layer.

The Rectified Linear Unit (ReLU) function was employed as the activation
function for the hidden layer. Dropout was set to 0, and batch normalization was
disabled (Batchnorm = False). The Adam optimizer was used to iteratively adjust the
network weights based on the computed loss function. The architecture of the
optimized model is illustrated in Fig. 7.
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Fig. 6. Mean square error (MSE) of the proposed ANN model for predicting the enzyme
hydrolysis rate of 500 epochs

Kim et al. (2025). “Steam & NaOH pretreatments,” BioResources 20(4), 8400-8419. 8410



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Input Layer Hidden Layer1 Output Layer
Bark i
Neurons Enzymatic
64 hydrolysis rate
Stem Explosion I |
pime Dropout Optimizer
0.0 adam
Akali .I :
Concentration Activation
relu
|
Pretreatment Batchnorm
Time False

Fig. 7. Neural network topology of the optimized ANN model

To evaluate the potential for underfitting and overfitting in the optimized
model, the model was trained and assessed using different data split ratios. (Table 2)

Table 2. Performance of Different data Split Ratio for Prediction of Enzyme
Hydrolysis Rate

Data Split Ratio (Train: Test) Enzyme Hydrolysis Rate
Train R? |Train MSE| TestR? | Test MSE
75:25 0.9331 4.4124 0.9781 2.5552
80:20 0.9373 4.4100 0.9805 2.4258
85:15 0.9381 4.4053 0.9815 2.3417

As shown in Table 2, when the data split ratio was adjusted to 85:15 using the
same dataset, the resulting Train R? and Test R* were 0.9381 and 0.9815, respectively,
and the Train MSE and Test MSE were 4.4053 and 2.3417. Compared to the results
obtained with an 80:20 split, the variation in error metrics remained within 3%,
indicating that overfitting was not observed even when the proportion of training data
increased. Likewise, under a 75:25 split ratio, the Train R? and Test R? values were
0.9331 and 0.9781, respectively, and the Train and Test MSE values were 4.7824 and
2.5552. The performance deviation remained within 5% relative to the 80:20 baseline,
suggesting that underfitting did not occur when the training data size was reduced.

These results validate that the developed artificial neural network (ANN)
model effectively learned the data without experiencing underfitting or overfitting,
and it can robustly predict enzymatic hydrolysis yield based on process parameters.
The train-test split ratio is known to be a critical factor that influences model accuracy
(Huang et al. 2023). Many researchers typically follow the Pareto principle and adopt
an 80:20 data split for model development (Chen et al. 1994). The present study also
supports the suitability of this principle, as evidenced by the results in Table 2.

Model Comparison Analysis

Both graphical and statistical approaches were employed to compare the
predictive capabilities of the ANN, RF, SVR, and XGB models with respect to the
enzymatic hydrolysis rate of steam-exploded pine wood chips. The accuracy of each
model was evaluated using two statistical metrics: the coefficient of determination
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(R?) and the mean squared error (MSE). As presented in Table 3, the training dataset
yielded high R? values of 0.9373, 0.9226, 0.9250, and 0.8260 for ANN, RF, SVR, and
XGB models, respectively. Correspondingly, low MSE values of 4.4100, 5.4486,
5.2497, and 12.2497 were obtained for ANN, RF, SVR, and XGB models,
respectively. On the testing dataset, the ANN model exhibited the highest R? value
(0.9805) and the lowest MSE (2.4258), followed by SVR (R?* = 0.9463, MSE =
3.1451), RF (R?=0.9208, MSE = 8.4556), and XGB (R? = 0.8674, MSE = 14.1451).

Table 3. Performance of Different Modeling Methods for Prediction of Enzyme
Hydrolysis Rate

Modeling Approaches and Statistical Enzyme Hydrolysis Rate
Parameters i i
Train R? |Train MSE| TestR? | Test MSE
ANN 0.9373 4.4100 0.9805 2.4258
RF 0.9226 5.4486 0.9208 8.4556
SVR 0.9250 5.2497 0.9463 3.1451
XGB 0.8260 12.2497 0.8674 14.1451

Among the evaluated models, ANN, RF, and SVR exhibited excellent
predictive performance, with ANN clearly demonstrating superior accuracy in
predicting the enzymatic hydrolysis rate. The lower MSE values for the ANN model,
especially on external validation samples, confirmed its robustness and strong
predictive capacity. These results validate that the enzymatic hydrolysis rate of pine
biomass can be reliably and accurately estimated using ANN modeling based on the
selected process variables. The coefficient of determination (R?*) measures the
accuracy of predictions relative to observed target values and is frequently utilized to
assess model performance.

Figure 8 compares the R* values obtained from each model. All models
demonstrated strong predictive performance, yielding R? values above 0.93 for both
training and testing datasets. Notably, the ANN model exhibited superior predictive
capability for estimating enzymatic hydrolysis rates compared to the RF, SVR, and
XGB models, achieving the highest R* value of 0.97 on the test dataset. These
findings align with previous studies that have highlighted the strong predictive
capacity of ANN models in biomass conversion processes (Persson et al. 2002; Vibha
et al. 2024; Jayakumar et al. 2025).

Vinitha et al. (2023) applied a machine learning approach using decision tree
algorithms to optimize the enzymatic hydrolysis of biomass. Their study employed
process variables as training data and reported a high coefficient of determination (R?
= 0.9762), indicating strong predictive performance. Similarly, Khangwal et al.
(2021) introduced a multilayer feed-forward artificial neural network model to predict
sugar production from hemicellulose extracted from corn cobs. Using process
variables as model inputs, they achieved an R? of 0.9651, which is comparable to the
performance of our ANN model. De Farias Silva et al. (2022) investigated the use of
both artificial neural networks and support vector machines to predict fermentation
yield from Sargassum macroalgae. Their results showed that the ANN model with 15
neurons achieved an R? of 0.877, while the SVM model using a polynomial kernel
function reached an R? of 0.821. These findings suggest that ANN models offer
superior performance over SVM in yield prediction tasks, which is consistent with our
study. To the best of our knowledge, there has been no prior research applying
machine learning algorithms to predict the enzymatic hydrolysis yield of steam-
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exploded pine pretreated under mild NaOH conditions. This highlights the novelty
and contribution of our work to the field of lignocellulosic biomass valorization.
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Fig. 8. Comparison between the actual and predicted enzymatic hydrolysis rates for artificial
neural networks (ANN), random forests (RF), support vector regression (SVR), and XGB
models (D)

CONCLUSIONS

This study demonstrated that an artificial neural network (ANN) model can
successfully predict the enzymatic hydrolysis rate of steam-exploded pine wood
chips subjected to mild alkaline pretreatment. The ANN model outperformed
conventional models such as random forest (RF), support vector regression (SVR),
and XGB, achieving an R? of 0.9805 and a mean squared error (MSE) of 2.43 on

the test dataset.

Among the evaluated process parameters, the chemical concentration, particularly

at 1% NaOH, exhibited the strongest linear correlation (r =

0.61) with the

enzymatic hydrolysis rate. Conversely, chemical pretreatment time and steam
explosion duration demonstrated significant yet nonlinear impacts on hydrolysis
performance. Optimal enzymatic hydrolysis conditions were determined to be 1%
NaOH concentration, a 24-hour pretreatment duration, 5 minutes of steam
explosion treatment, and the absence of bark, achieving a maximum enzymatic

hydrolysis rate of 93.9%.
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3. This study confirms that artificial neural networks (ANNs) effectively model the
complex nonlinear relationships inherent in biomass hydrolysis processes. Thus,
ANN provides a robust, rapid, and precise predictive approach, facilitating the
optimization of biomass bioconversion conditions.
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APPENDIX

Table S1. Enzyme Hydrolysis Rate of Pine Wood Biomass as Various NaOH
Treatment Conditions

Bark | Steam explosion Chemical Chemical Enzyme hydrolysis rate

time (min) concentration (%) treatment time (h) (%)
1 1 0.5 12 57.3
1 1 0.5 24 61.5
1 1 1.0 12 87.6
1 1 1.0 24 88.8
1 1 2.0 12 83.7
1 1 2.0 24 82.6
0 1 0.5 12 67.2
0 1 0.5 24 72.2
0 1 1.0 12 84.8
0 1 1.0 24 88.0
0 1 2.0 12 79.1
0 1 2.0 24 84.7
1 1 0.5 12 59.7
1 1 0.5 12 54.9
1 1 0.5 24 62.5
1 1 0.5 24 60.5
1 1 1 12 87.8
1 1 1 12 87.4
1 1 1 24 89.7
1 1 1 24 87.9
1 1 2 12 86.3
1 1 2 12 81.1
1 1 2 24 83.6
1 1 2 24 81.6
0 1 0.5 12 69.5
0 1 0.5 12 64.9
0 1 0.5 24 72.9
0 1 0.5 24 71.5
0 1 1 12 85.5
0 1 1 12 84.1
0 1 1 24 93.9
0 1 1 24 82.1
0 1 2 12 88.9
0 1 2 12 69.3
0 1 2 24 85.1
0 1 2 24 84.3
1 3 0.5 12 62.3
1 3 0.5 24 62.6
1 3 1 12 79.3
1 3 1 24 81.1
1 3 2 12 82.8
1 3 2 24 83.2
0 3 0.5 12 68.6
0 3 0.5 24 69.5
0 3 1 12 72.8
0 3 1 24 82.5
0 3 2 12 83.8
0 3 2 24 84.6
1 3 0.5 12 63.2
1 3 0.5 12 61.4
1 3 0.5 24 65.1
1 3 0.5 24 60.1
1 3 1 12 79.5
1 3 1 12 79.1
1 3 1 24 82.0
1 3 1 24 80.2
1 3 2 12 83.7
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1 3 2 12 81.9
1 3 2 24 84.2
1 3 2 24 82.2
0 3 0.5 12 69.0
0 3 0.5 12 68.2
0 3 0.5 24 72.6
0 3 0.5 24 66.4
0 3 1 12 73.1
0 3 1 12 72.5
0 3 1 24 82.9
0 3 1 24 82.1
0 3 2 12 84.0
0 3 2 12 83.6
0 3 2 24 84.8
0 3 2 24 84.4
1 5 0.5 12 74.6
1 5 0.5 24 75.2
1 5 1 12 75.6
1 5 1 24 88.1
1 5 2 12 88.7
1 5 2 24 85.3
0 5 0.5 12 80.0
0 5 0.5 24 80.2
0 5 1 12 85.4
0 5 1 24 88.8
0 5 2 12 86.3
0 5 2 24 86.4
1 5 0.5 12 79.3
1 5 0.5 12 69.9
1 5 0.5 24 75.8
1 5 0.5 24 74.6
1 5 1 12 76.1
1 5 1 12 75.1
1 5 1 24 88.5
1 5 1 24 87.7
1 5 2 12 89.1
1 5 2 12 88.3
1 5 2 24 85.7
1 5 2 24 84.9
0 5 0.5 12 80.1
0 5 0.5 12 79.9
0 5 0.5 24 80.7
0 5 0.5 24 79.7
0 5 1 12 85.7
0 5 1 12 85.1
0 5 1 24 89.4
0 5 1 24 88.2
0 5 2 12 86.7
0 5 2 12 85.9
0 5 2 24 88.2
0 5 2 24 84.6
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