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Hybrid epoxy composites reinforced with Luffa acutangula fiber (LAF) and 
Sal wood sawdust (SWD) were examined for their tribological and acoustic 
properties. A consistent 20 wt% LAF was employed throughout all 
composites, with the SWD content adjusted to 0%, 5%, 15%, and 25%.  
The engineered composites underwent assessment for wear loss, 
coefficient of friction (CoF), sound absorption coefficient, and noise 
reduction coefficient. The results demonstrated a notable reduction in wear 
loss with the addition of SWD up to 15 wt%, with the 20FL/15SWD sample 
exhibiting the lowest wear at 0.32%. In a similar manner, the CoF 
decreased to 0.26 for the identical composition, indicating an ideal 
equilibrium between filler dispersion and fiber-matrix interaction. The 
enhancement of sound absorption and noise reduction coefficients was 
observed with increased SWD content, reaching peaks of 0.23 and 0.13, 
respectively for the 20FL/15SWD composite. The enhancements 
observed can be linked to the superior void-filling capacity and interfacial 
bonding facilitated by the SWD particles. Nonetheless, a high 
concentration of SWD (25 wt%) led to a minor decrease in performance 
attributed to particle agglomeration. The findings indicate that the 
20FL/15SWD composite demonstrates enhanced tribo-acoustic 
performance, positioning it as a strong contender for applications requiring 
noise insulation and wear resistance. 
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INTRODUCTION 
 

The rising global demand for sustainable materials has prompted a significant 

transition towards natural fiber-reinforced polymer composites, commonly known as bio-

composites (Wadgave et al. 2024).  These materials are attracting significant interest in 

both scholarly studies and commercial uses because of their environmental benefits, 

accessibility, lightweight nature, and affordability. Unlike synthetic fiber-reinforced 
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composites that typically require significant energy consumption, generate toxic by-

products, and lack biodegradability, natural fiber composites offer a promising alternative 

that supports global sustainability objectives (Rao et al. 2023).  These materials originate 

from renewable sources, exhibit reduced carbon footprints, and frequently provide 

comparable, and at times enhanced, mechanical performance for non-critical applications 

(Bhuvaneswari et al. 2022). 

Natural fibers including jute, sisal, flax, kenaf, banana, hemp, and coir have 

undergone significant investigation in composite formulations.  Nonetheless, the localized 

presence and distinct morphological and chemical properties of certain fibers render them 

particularly appropriate for specific applications (Schio et al. 2022). A notable natural 

reinforcement is Luffa acutangula fiber (LAF), derived from the ridge gourd plant.  LAF 

is a lignocellulosic fiber that has garnered interest because of its moderate mechanical 

strength, lightweight nature, and distinctive structural characteristics. The surface texture 

is coarse yet rough, which improves interfacial adhesion with polymer matrices. 

Furthermore, it is widely found in tropical and subtropical areas and necessitates little 

processing, positioning it as a compelling option for the advancement of sustainable 

materials (Fragassa et al. 2024). 

The incorporation of particulate fillers can greatly improve the functional 

performance of composites, complementing the inherent strength and structure provided 

by natural fibers.  In this context, Sal wood sawdust (SWD), a by-product of the timber and 

furniture industries, presents a valuable resource (Manickaraj et al. 2024a). Sal wood 

(Shorea robusta), which is indigenous to the Indian subcontinent, is a hardwood recognized 

for its exceptional durability and strength.  The sawdust, frequently overlooked or utilized 

as a low-value fuel, possesses a significant amount of cellulose and lignin, demonstrating 

remarkable compatibility with thermosetting resins such as epoxy (Ramachandran et al. 

2022).  SWD serves as a micro-filler that enhances load distribution and crack resistance, 

while also addressing voids within the matrix, thereby reducing porosity and improving 

the overall homogeneity of the material (Suriani et al. 2021). 

The collaboration between LAF and SWD within a polymer matrix, especially 

epoxy resin, offers an innovative and highly promising path for the creation of hybrid 

composites with customized multifunctional characteristics (Sekar et al. 2025).  Epoxy 

resin, a commonly utilized thermosetting polymer, is recognized for its remarkable 

mechanical strength, dimensional stability, chemical resistance, and robust bonding 

properties.  Nonetheless, the material’s natural brittleness and limited impact strength can 

be improved through the incorporation of natural fibers and fillers, which enhances its 

potential for various applications (Vignesh et al. 2021; Palaniappan 2025a). 

The mechanical performance of natural fiber composites has been thoroughly 

examined, covering aspects such as tensile, flexural, impact, and hardness properties 

(Karuppusamy et al. 2025). However, there has been a noticeable lack of focus on their 

tribological and acoustic behavior, especially in hybrid systems such as LAF-SWD epoxy 

composites.  The characteristics of tribology, including wear resistance and the coefficient 

of friction (CoF), play a vital role in scenarios that involve continuous sliding contact or 

dynamic loading (da Costa et al. 2020).  Materials utilized in automotive interiors, sliding 

panels, and rotating machine components need to demonstrate exceptional wear resistance 

and consistent frictional characteristics to guarantee enduring performance and 

dependability (Manickaraj et al. 2025).  Conventional synthetic fillers such as carbon 

black, glass microspheres, and aramid powders exhibit commendable wear characteristics; 

however, they pose challenges to sustainability and recyclability.  Utilizing biodegradable 
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fillers such as SWD presents a more environmentally friendly alternative while maintaining 

performance standards (Ighalo et al. 2021). 

In a similar vein, the acoustic characteristics of composites are gaining significance 

in sectors that require effective sound insulation and vibration damping.  Sound absorption 

and noise reduction are essential design considerations in various products, including 

automotive components, building panels, packaging materials, and consumer electronics 

(Chithra et al. 2024).  The porous structure and inherent damping capacity of natural fibers 

contribute to their favorable acoustic properties.  The incorporation of micro-sized fillers 

like SWD can affect the characteristics of sound transmission and reflection, possibly 

improving the composite’s capacity to absorb and dissipate sound energy (Manickaraj et 

al. 2024b).  Nonetheless, these effects are significantly influenced by the content of fillers, 

the quality of dispersion, the interaction between fibers and the matrix, and the overall 

structural integrity (Gurusamy et al. 2025; Palaniappan 2025b). 

In light of this context, the current investigation seeks to create and assess hybrid 

epoxy composites that incorporate a fixed proportion of Luffa acutangula fiber (LAF) 

alongside differing amounts of Sal wood sawdust (SWD) filler (Gokul et al. 2024).  The 

main aim is to examine the impact of these compositions on tribological and acoustic 

properties, which have not been thoroughly studied for this particular fiber-filler system 

(Velmurugan et al. 2022).   

The methodology consists of fabricating composite laminates through the hand lay-

up technique, followed by a thorough evaluation of essential performance indicators to 

determine the material’s functional capabilities (Gurusamy et al. 2024).  Wear loss is 

quantified using standardized dry sliding wear tests to assess material degradation resulting 

from mechanical abrasion.  The coefficient of friction (CoF) is assessed to ascertain the 

frictional stability of the composite when subjected to repeated loading conditions (Sasan 

Narkesabad et al. 2023).  The assessment of acoustic performance is conducted through 

impedance tube techniques, which measure the sound absorption coefficient (SAC) over a 

spectrum of frequencies. This measurement reflects the material’s capacity to absorb 

incident sound waves.  The noise reduction coefficient (NRC) is calculated as a scalar 

average of sound absorption coefficient (SAC) values across critical octave bands. This 

coefficient is utilized to assess the material’s overall effectiveness in reducing sound 

transmission (Aruchamy et al. 2025). 

The incorporation of Luffa acutangula fiber (LAF) and Sal wood sawdust (SWD) 

in composite materials offers significant environmental benefits. LAF is a renewable and 

biodegradable resource derived from the sponge gourd plant, which requires minimal 

inputs for cultivation and leaves a low carbon footprint (Aruchamy et al. 2025). Its natural 

decomposition at the end of life reduces environmental pollution and waste accumulation. 

SWD, a byproduct of the wood processing industry, represents an opportunity to valorize 

industrial waste that might otherwise contribute to landfill build-up or be incinerated, 

releasing greenhouse gases (Thangavel et al. 2024). Utilizing SWD in composites 

promotes a circular economy by transforming waste into valuable resources while reducing 

the reliance on synthetic fillers derived from non-renewable petrochemicals. Together, 

LAF and SWD reduce environmental impact by minimizing carbon emissions, decreasing 

dependency on fossil-based materials, and offering biodegradable and recyclable options 

for advanced composite applications (Manickaraj et al. 2025; Palaniappan 2024). 

This study sought to systematically analyze these parameters to reveal trends and 

establish correlations between SWD filler content and the multifunctional performance of 

the composites. The hypothesis suggests that moderate filler levels will improve wear 
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resistance and sound absorption, attributed to enhanced particle dispersion and better 

interaction between the matrix and particles (Supriya et al. 2024). On the other hand, an 

overabundance of filler content can result in clumping and ineffective stress transfer, 

ultimately diminishing overall performance. The results of this study are anticipated to 

enhance the understanding of bio-composite development, providing valuable insights for 

material designers and engineers focused on creating lightweight, sustainable, and high-

performance composite materials (Shetty et al. 2024). Possible uses encompass automotive 

interior parts, construction panels, furniture components, and packaging systems that 

necessitate mechanical strength, durability, and sound-dampening properties all at once 

(Thirupathi et al. 2024). Furthermore, by enhancing the value of agricultural and industrial 

waste such as LAF and SWD, this study advances the principles of a circular economy and 

contributes to the overarching goal of sustainable material innovation (Zamora-Mendoza 

et al. 2023). 

This work enables the realization of a new class of multifunctional bio-composites, 

providing environmental compatibility while maintaining functional performance (Al-

Mamun et al. 2023). In summary, this study delves into an innovative fiber-filler-polymer 

system while also tackling essential property areas that hold practical importance across 

various industrial applications. 

 

 

EXPERIMENTAL 
 
Materials and Methods 
Materials matrix 

The polymer matrix utilized in this study was a thermosetting epoxy resin system, 

specifically comprising LY556 epoxy resin in conjunction with HY951 hardener.  These 

materials are frequently utilized in composite manufacturing because of their superior 

mechanical strength, chemical resistance, and adhesion characteristics (da Cunha et al. 

2021). The resin and hardener were combined in a stoichiometric ratio of 10:1 by weight, 

in accordance with the manufacturer’s specifications. The specified ratio facilitates optimal 

crosslinking throughout the curing process, which is critical for attaining the desired 

structural and functional characteristics in the composite (Prabhudass et al. 2022). 

 

 
 

Fig. 1a. Luffa acutangula; 1b. LAF; 1c. LAF fiber mat 
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Reinforcement – Luffa acutangula Fiber  
The primary reinforcement utilized in this application is derived from fibers of 

Luffa acutangula. The fibers derived from the dried ridge gourd plant exhibit a moderately 

high strength-to-weight ratio and possess natural porosity, which can improve matrix 

bonding (Jawaid et al. 2022). The LAF fiber was purchased from Amman Impex, Pollachi. 

Figure 1 shows the LAF, its fiber and fiber mat. 

 

Filler – Sal Wood Sawdust  
Sal wood sawdust (SWD), a by-product generated from timber processing, served 

as a particulate filler utilized in different proportions.  The raw sawdust underwent a drying 

process to remove moisture content that could potentially affect the curing and mechanical 

properties of the composite (Birniwa et al. 2021). The SWD powder was purchased from 

Amman timber, Pollachi area, Coimbatore. The small particle size facilitates superior 

dispersion within the matrix and enhances the interaction of the filler with the epoxy resin, 

leading to improvements in mechanical, tribological, and acoustic properties (Balaji et al. 

2021). Figure 2 shows the Sal wood and its dust powder. 

 

Fig. 2a. Sal wood; 2b. Sal wood dust powder 

 

Chemical Treatment 
The fibers were subjected to an alkali treatment using a 5% sodium hydroxide 

(NaOH) solution before use. The chemical treatment effectively eliminates impurities 

including lignin, hemicellulose, waxes, and oils from the fiber surface (Maguteeswaran et 

al. 2024). This process enhances surface roughness and promotes better fiber-matrix 

adhesion. The fibers were immersed in the NaOH solution for a duration of several hours. 

Following this, they were meticulously rinsed with distilled water until a neutral pH was 

attained, and subsequently dried at ambient temperature (Dev et al. 2024).  
 

Fabrication Process 
The fabrication of the composite laminates was executed using the hand lay-up 

technique followed by compression molding, a widely adopted method in natural fiber 

composite manufacturing due to its simplicity, cost-effectiveness, and suitability for small 

to medium-scale production. Initially, the epoxy resin (LY556) and hardener (HY951) 

were measured in a 10:1 weight ratio and thoroughly mixed using a mechanical stirrer for 
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5 min to ensure uniform distribution and eliminate unreacted pockets (Kumar et al. 2022). 

The LAF were incorporated at a constant level of 20 wt%, while SWD filler was added at 

varying weight percentages of 0%, 5%, 15%, and 25%. The fibers and fillers were 

gradually introduced into the epoxy mixture under continuous stirring to achieve 

homogeneous dispersion and avoid agglomeration (Sahoo et al. 2022). The resulting 

mixture was poured into a stainless-steel mold pre-coated with polyvinyl alcohol (PVA) as 

a release agent. The filled mold was closed and subjected to a hydraulic press at 5 MPa to 

remove trapped air and ensure compactness. Initial curing was conducted at room 

temperature (~ 27 °C) for 24 h, followed by post-curing in a hot-air oven at 80 °C for 3 h 

to enhance cross-linking and improve the thermal and mechanical integrity of the 

composite. The cured laminates were then trimmed and cut into standard test specimens in 

accordance with ASTM guidelines (Krishnadas et al. 2024). Table 1 shows the different 

sample designations used in this study. 
 

Table 1. Composite Formulations 
 

No. LAF Layer (wt%) SWD Particles (wt%) Epoxy Resin (wt%) Sample Designation 

1 20 25 55 20FL/25SWD 

2 20 15 65 20FL/15SWD 

3 20 5 75 20FL/5SWD 

4 20 0 80 20FL/0SWD 

 

Testing and Characterization 
Wear test 

The wear behavior of the hybrid composites was assessed using a Pin-on-Disc 

tribometer in accordance with ASTM G99 standards (Velmurugan et al. 2022). This test 

simulates the real-time frictional contact that materials endure in service conditions. A 

cylindrical pin (specimen) was brought into contact with a rotating steel disc under a 

specified load and speed. The setup evaluates the resistance of the material to wear by 

measuring the volume or percentage loss of the composite due to mechanical abrasion 

(Beemkumar et al. 2025). The weight of the specimen was measured before and after 

testing using a high-precision balance, and the percentage wear loss was calculated. This 

analysis is crucial in determining the suitability of the composite for applications involving 

continuous mechanical interactions, such as in automotive or structural components 

(Hosseini et al. 2023). 

 

Coefficient of friction  

The coefficient of friction (CoF) was evaluated to understand the frictional response 

of the composites during contact-based movement. Testing was conducted using a 

tribometer following ASTM D1894, which quantifies the static (initial) and dynamic 

(steady-state) coefficients of friction between the composite surface and a standard 

reference material under controlled conditions (Sathish Gandhi et al. 2025). The static CoF 

represents the resistance to the start of motion, while the dynamic CoF measures the 

resistance once the motion has commenced. These values are critical for determining how 

the material will behave in real-life applications where sliding contact occurs, such as brake 

pads, bearings, or machine parts (Biswas and Satapathy 2010). 
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Sound absorption test  

The sound absorption capacity of the composite specimens was assessed using the 

impedance tube method as per ASTM E1050. This test involves placing a circular sample 

at one end of an impedance tube and subjecting it to plane sound waves generated by a 

loudspeaker at the other end (Krishnamoorthy et al. 2024). Microphones positioned at 

different points inside the tube measure the incident and reflected sound waves, enabling 

the calculation of the sound absorption coefficient (SAC) at various frequencies. SAC 

indicates the material’s ability to absorb sound energy instead of reflecting it. This 

parameter is especially important for acoustic applications such as interior automotive 

panels, building insulation, and soundproofing systems (Fouly et al. 2021). 

 

Noise reduction coefficient  

The Noise Reduction Coefficient (NRC) provides a single-number rating that 

represents the average sound absorption performance of a material across mid-frequency 

bands (typically 250 to 2000 Hz). NRC was determined based on ASTM C423 standard 

methods, which involve either reverberation room measurements or calculations derived 

from impedance tube test data (Hegde et al. 2021). It is a scalar value ranging from 0 (no 

sound absorption) to 1 (perfect absorption), offering a simplified metric for comparing 

different materials. A higher NRC indicates better acoustic damping, making the composite 

more effective for use in environments where noise control is critical, such as offices, 

theaters, and transport interiors (Bobby and Samad 2017). 

 

Scanning Electron Microscopy 
Fractured surfaces of tensile-tested samples were examined using Scanning 

Electron Microscopy (SEM) with a JEOL scanning electron microscope (JEOL, Germany 

GmbH Gute Änger 30 85356 Freising German) set to an accelerating voltage of 15 kV.   

All specimens were subjected to gold coating before analysis to improve surface 

conductivity (Gangwar and Pathak 2021). The SEM analysis yielded significant insights 

into the microstructural properties of the composites, emphasizing elements such as fiber-

matrix interfacial bonding, the pull-out behavior of LAF, and the distribution and 

dispersion uniformity of SWD particles. The SEM micrographs displayed the presence of 

microvoids, cracks, and delamination zones, which underscored the variations in 

mechanical performance across the various composite formulations (Natarajan et al. 2023). 
 

 

RESULTS AND DISCUSSION 
 
Wear Loss 

The wear resistance of the fabricated hybrid epoxy composites was evaluated 

through a pin-on-disc test under standardized conditions (ASTM G99), and the results 

demonstrated a clear dependency on SWD filler content. The control sample, 20FL/0SWD, 

exhibited the highest wear loss of 0.0045 g (0.45%), indicating limited resistance to surface 

degradation under sliding conditions. This can be attributed to the relatively unfilled matrix 

structure, where load concentration on the fiber-matrix interface likely initiated micro-

cracks and debris generation due to poor load transfer and interfacial shear strength. Upon 

the addition of 5 wt% SWD, wear loss decreased to 0.0042 g (0.42%), signifying an 

improvement in wear performance. The filler particles acted as micro-reinforcements and 

stress distributors within the epoxy matrix, thereby reducing localized deformation. A 
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further reduction in wear loss was observed with 15 wt% SWD (0.0032 g, or 0.32%), which 

is indicative of an optimal filler content where the SWD particles are uniformly dispersed 

and filled microvoids, enhancing surface hardness and forming a more compact 

microstructure. The embedded SWD particles likely prevented excessive matrix removal 

by forming a tribo-protective layer during sliding, thus minimizing material loss (Bhargav 

and Babu 2021). However, when the filler content was increased to 25 wt% 

(20FL/25SWD), a slight increase in wear loss to 0.0038 g (0.38%) was noted. This 

marginal deterioration in wear resistance can be associated with the tendency of filler 

agglomeration at higher loadings, which introduces heterogeneities and weak zones in the 

composite. These agglomerates can act as abrasive third bodies or stress risers under 

mechanical sliding, leading to increased material detachment and surface damage 

(Sureshkumar and Uvaraja 2018). Overall, the results suggest that the incorporation of 

SWD up to 15 wt% was beneficial in enhancing the wear resistance of LAF-reinforced 

epoxy composites. The observed improvements are primarily attributed to better stress 

distribution, enhanced interfacial bonding, and reduced porosity—the key factors 

governing wear behavior in particulate-filled polymer systems. Figure 3 shows the wear 

loss. 

 

Fig. 3. Wear loss of hybrid epoxy composites 

 

Coefficient of Friction  
 The CoF values for the hybrid epoxy composites with LAF containing various 

levels of SWD filler contents were determined using the ASTM D1894 standard, 

employing a tribometer to measure both static and dynamic friction.  
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Fig. 4. CoF values of various hybrid epoxy composites 
 

The CoF values exhibited a distinct trend with respect to SWD content, indicating 

changes in the frictional behavior of the composites. The composite without SWD filler, 

20FL/0SWD, exhibited a CoF of 0.31, which can be attributed to the basic fiber-matrix 

interaction with limited surface modification or reinforcement. The fibers, though 

providing reinforcement, may not have sufficiently enhanced the frictional stability, 

leading to moderate friction values. With the addition of 5 wt% SWD, the CoF increased 

slightly to 0.352. This increase can be explained by the introduction of the SWD filler 

particles, which likely increased the roughness of the composite surface. The particles 

could create more surface contact points with the counter material during sliding, thus 

raising the frictional resistance. This suggests that while SWD particles were dispersed 

within the matrix, they did not yet optimize the composite’s smoothness or wear resistance 

at this concentration. At 15 wt% SWD, the CoF dropped to 0.26, the lowest of all 

formulations. The significant decrease in CoF is indicative of an optimal balance between 

reinforcement and filler content (Teli et al. 2023). The SWD particles, in this optimal 

range, likely contributed to the formation of a smoother sliding surface by filling voids and 

improving interfacial bonding between the fibers and matrix. This minimized frictional 

contact and allowed for more stable sliding behavior. The increased matrix densification 

due to the filler also helped reduce the micro-roughness, lowering friction during dynamic 

loading. However, at 25 wt% SWD, the CoF increased again to 0.321, a value slightly 

higher than the control sample. This increase can be attributed to excessive SWD content 

leading to particle agglomeration and non-uniform dispersion within the matrix. The 

agglomerates may have introduced localized roughness or frictional hot spots, which 

resulted in higher frictional resistance during sliding (Sahu et al. 2023). Overall, the CoF 

values indicate that 15 wt% SWD provided the best balance between filler content and 

frictional stability, optimizing both the interfacial interactions and surface smoothness, 
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while higher filler contents (25 wt%) compromised frictional behavior due to 

agglomeration. Figure 4 shows the CoF values. 

 

Sound Absorption Coefficient  
Sound Absorption Coefficient (SAC) values for the hybrid epoxy composites with 

LAF and varying SWD filler contents were measured using the impedance tube method, 

as per ASTM E1050. SAC is a key indicator of the material’s ability to absorb sound across 

different frequencies, and it is crucial for applications requiring noise control and acoustic 

insulation.  

 

Fig. 5. SAC values of various hybrid epoxy composites 
 

For the 20FL/0SWD composite, the SAC was 0.15, indicating a relatively low 

ability to absorb sound. This value is expected, as the unfilled composite primarily relied 

on the acoustic properties of LAF, which are limited in their ability to attenuate sound. The 

fiber structure, though providing mechanical reinforcement, does not contribute 

significantly to sound energy dissipation (Hoskins et al. 2011). As the SWD content 

increased to 5 wt% (20FL/5SWD), the SAC improved to 0.18. The inclusion of SWD fillers 

likely enhanced the composite’s porosity and internal structure, promoting greater energy 

dissipation and frictional losses within the material. The finer particle size of the SWD 

likely helped create a more porous microstructure, increasing the material’s capacity to trap 

and absorb sound waves. At 15 wt% SWD (20FL/15SWD), the SAC reached 0.23, which 

is the highest among the tested composites. This improvement can be attributed to an 

optimal filler content that increased the surface area and porosity of the material without 

compromising its structural integrity (Purohit et al. 2025). The SWD particles likely 

facilitated the creation of more voids and irregularities within the composite, which 

enhanced sound wave scattering and absorption. Additionally, the increased filler content 
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likely helped in distributing the acoustic energy more effectively, allowing for more 

efficient sound dissipation. However, at 25 wt% SWD (20FL/25SWD), the SAC slightly 

decreased to 0.21, indicating a decline in sound absorption performance. This could be due 

to the over-saturation of the matrix with SWD, leading to reduced porosity and increased 

material density. At higher filler concentrations, the composite may have become more 

compact, resulting in less effective sound wave trapping and absorption. The excess filler 

particles could have also disrupted the formation of a porous network, leading to reduced 

overall acoustic performance (Banjare et al. 2014). Overall, the SAC values indicate that 

15 wt% SWD provides the optimal combination of filler content and porosity, enhancing 

the composite’s ability to absorb sound, which is crucial for noise insulation applications. 

At higher filler contents, the reduced porosity and increased density may limit sound 

absorption efficiency. Figure 5 shows the sound absorption coefficient. 
 

Noise Reduction Coefficient  
The Noise Reduction Coefficient (NRC) values for the hybrid epoxy composites 

with LAF and various SWD contents were calculated based on the average sound 

absorption performance in key mid-frequency bands (250 to 2000 Hz), as per ASTM C423. 

NRC is a widely used metric to assess the overall noise damping effectiveness of materials, 

especially for applications involving noise control and soundproofing. For the 20FL/0SWD 

composite, the NRC was 0.07, indicating a relatively low noise reduction capability. This 

low value suggests that the unfilled composite, despite the reinforcement from LAF, did 

not significantly dampen sound in the critical frequency range. The limited sound 

absorption properties of the matrix, coupled with the lack of filler, contributed to the low 

NRC value. With the addition of 5 wt% SWD (20FL/5SWD), the NRC increased to 0.1, 

showing a noticeable improvement in noise reduction. The inclusion of SWD particles 

enhances the material’s internal structure, increasing porosity and surface area, which in 

turn aids in scattering and damping sound waves. The increase in NRC indicates that the 

SWD filler had begun to positively affect the acoustic properties of the composite, albeit 

to a moderate extent at this concentration. At 15 wt% SWD (20FL/15SWD), the NRC 

further improved to 0.13, representing the highest noise reduction capability among the 

samples tested (Shettar et al. 2020). This increase in NRC can be attributed to the optimal 

filler content, which likely optimized the composite’s ability to absorb and dampen sound 

waves. The SWD filler, at this concentration, effectively enhanced the material’s acoustic 

performance by improving both sound wave dissipation and internal energy absorption. 

This makes the composite more suitable for noise reduction applications, such as 

automotive interiors or soundproofing materials. However, at 25 wt% SWD 

(20FL/25SWD), the NRC slightly decreased to 0.11, indicating a slight reduction in noise 

reduction efficiency. This decrease could be due to the overloading of the matrix with SWD 

filler, which might have led to a denser structure with less porosity and fewer voids to trap 

and dissipate sound (Sardar et al. 2020). The filler at higher concentrations may have 

disrupted the optimal balance of the composite’s porosity and matrix structure, resulting in 

a marginal decline in sound damping performance. Overall, the results suggest that the 

optimal 15 wt% SWD provided the best balance between noise reduction and material 

properties, improving the NRC and making the composite more effective for acoustic 

applications (kanchan Balasaheb and Abhang 2020). Higher SWD contents (25 wt%) 

appear to reduce the overall noise reduction efficiency due to changes in the material's 

microstructure. Figure 6 shows the NRC values of the composites. 
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Fig. 6. NRC values of various hybrid epoxy composites 
 

Scanning Electron Microscopic Analysis 
The SEM analysis of the wear surfaces and frictional behavior of hybrid epoxy 

composites reinforced LAF and varying concentrations of SWD filler provided valuable 

insights into the wear mechanisms and frictional characteristics of the composites (Rao 

2018). The introduction of SWD as a filler significantly impacted the wear resistance and 

frictional performance of the composites. At 15 wt% SWD, the composites demonstrated 

the most balanced and effective performance, characterized by a uniform surface 

morphology and optimal filler distribution. This concentration of SWD allowed for the 

effective filling of microvoids in the matrix, leading to a smooth and compacted wear 

surface with minimal fiber pull-out and matrix degradation, resulting in optimal wear 

resistance and frictional stability (Chen et al. 2007). The outcome suggests that 15 wt% 

SWD provided an ideal balance between reinforcement and filler content, effectively 

enhancing the mechanical and tribological properties of the composite.  
However, at higher concentrations of SWD, specifically at 25 wt%, the composites 

exhibited agglomeration of SWD particles, which led to increased surface roughness and 

the formation of localized friction hotspots. These structural imperfections negatively 

impacted both wear resistance and frictional stability, highlighting the importance of 

carefully controlling the filler content to avoid negative effects such as agglomeration, 

which can undermine the composite’s overall performance (Gbadeyan et al. 2018).  

These findings underscore the critical role of optimizing filler content to achieve 

superior wear resistance and frictional stability in hybrid composites. The incorporation of 

an optimal amount of filler, in this case, 15 wt% SWD, enhanced the wear and frictional 

behavior by promoting uniform particle dispersion and reducing surface roughness. This 

research provides a deeper understanding of the tribological performance of natural fiber-

reinforced composites and sets the foundation for further investigations into the 
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development of sustainable, high-performance materials for various industrial applications, 

including automotive, structural, and sound insulation materials (Singh and Rajamurugan 

2023). Furthermore, these insights can guide the development of other natural fiber 

composites, where the precise optimization of filler content is essential for achieving 

desired performance characteristics in real-world applications. Figure 7 shows the SEM 

analysis of frictional samples.  

 

 
 

Fig. 7a. 20FL/25SWD; 7b. 20FL/15SWD 
 
 

CONCLUSIONS 
 

This study on the hybrid epoxy composites reinforced with Luffa aegyptiaca fiber 

(LAF) and varying concentrations of Sal wood sawdust (SWD) filler has revealed valuable 

insights into their tribological and acoustic performance. Based on the results of wear loss, 

coefficient of friction (CoF), sound absorption coefficient (SAC), and noise reduction 

coefficient (NRC), the performance of these composites can be assessed in relation to their 

filler content. 
 

1. The wear loss data indicated that the addition of SWD significantly affected the wear 

resistance of the composites. At 15 wt% SWD, the composite exhibited the lowest 

wear loss (0.32%), which reflects an optimized balance between filler and fiber 

content, improving the material’s durability. The wear loss increased slightly at 5 wt% 

and 25 wt% SWD, with values of 0.42% and 0.38%, respectively, indicating that 

excess or insufficient filler content may not yield the best wear characteristics. 

2. The CoF followed a similar trend. The 15 wt% SWD composites had the lowest CoF 

(0.26), showing the most efficient frictional behavior, while the control sample (0% 

SWD) exhibited a CoF of 0.31. The 5 wt% SWD composites showed a moderate CoF 

(0.352), and 25 wt% SWD exhibited an increased CoF of 0.321, suggesting that 

excessive filler can lead to higher frictional resistance, potentially affecting the 

composite's performance in dynamic applications. 

3. In terms of acoustic properties, the SAC and NRC data demonstrated that the 15 wt% 

SWD composite also performed optimally, exhibiting the highest SAC (0.23) and 

NRC (0.13) values, indicating excellent sound damping properties. This suggests that 

the composite effectively absorbs sound waves, making it a promising candidate for 

noise insulation applications. The control sample (0% SWD) had a SAC of 0.15 and a 

NRC of 0.07, reflecting poorer acoustic performance. At 25 wt% SWD, the sound 
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absorption and noise reduction capabilities decreased, with values of 0.21 and 0.11, 

respectively, indicating that excessive filler content may hinder the material’s ability 

to absorb sound.  

4. The SEM analysis of the wear surfaces revealed further insights into the behavior of 

the composites. The SEM images of the 20FL/15SWD sample showed a smooth 

surface with minimal fiber pull-out and reduced matrix degradation, indicating 

effective filler distribution and improved wear resistance. In contrast, the 

20FL/25SWD composite exhibited agglomeration of SWD particles, increased surface 

roughness, and localized friction hotspots, which correlated with the higher wear loss 

and CoF values observed. The SEM images also highlighted the presence of uniform 

filler dispersion in the 15 wt% SWD composites, which facilitated optimal wear and 

frictional behavior, while the 25 wt% SWD composites displayed disrupted surface 

structures due to excessive filler content. 

In conclusion, the 15 wt% SWD hybrid composites demonstrated the best overall 

performance, balancing wear resistance, frictional stability, and acoustic properties. The 

findings emphasize the importance of optimizing SWD content to avoid negative effects 

such as agglomeration and excessive surface roughness. These results indicate that 15 wt% 

SWD provides the most effective reinforcement for hybrid composites, making them 

suitable for applications where both mechanical and acoustic properties are critical, such 

as in automotive interiors and noise insulation materials.  
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