PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

LE-YOLO: A Lightweight and Enhanced Algorithm for
Detecting Surface Defects on Particleboard
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Current algorithms for surface defect detection in particleboard often
encounter limitations such as high computational complexity and
excessive parameter scale. To address these challenges, this study
proposes the LE-YOLO model, which incorporates a normalized
Wasserstein distance into the loss function to enhance the detection
capability for minute surface defects. A dynamic mixed convolutional
network module is introduced to construct a lightweight backbone
architecture. Moreover, the Shared Dilated Feature Pyramid (SDFP)
module is employed in the neck network, effectively reducing
computational overhead while preserving detection accuracy. A
lightweight detection head was further designed, integrating shared
convolutional operations with a distribution-aware loss function, thereby
substantially improving detection performance in complex textured
environments. Experimental evaluations conducted on the Chipboardv1.0
particleboard surface defect dataset demonstrated that compared to the
baseline YOLOv11n model, LE-YOLO achieved a 5% improvement in
recall, a 1% increase in F1 score, a 4% enhancement in mAP@50, a 6%
gain in mAP@50-95, a 12.69% acceleration in inference speed, and an
18.6% reduction in parameter count. Compared with other models, the
proposed approach not only improved detection precision but also
effectively reduced model complexity, achieving a lightweight and efficient
detection framework.
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INTRODUCTION

Traditional wood surface defect detection methods have predominantly relied on
handcrafted feature extraction algorithms. For example, Ji et al. (2019) introduced a
wavelet moment-based feature extraction algorithm that combines the advantages of
wavelet energy and Hu invariant moments to classify and identify wood defect images.
Compared to conventional Hu moments, their method significantly improved recognition
accuracy. However, this approach suffers from high computational complexity, resulting
in inefficiency when processing high-resolution or large-scale data and requiring
substantial hardware resources. Additionally, parameter tuning is challenging, and the
algorithm is vulnerable to noise interference, which compromises real-time application
performance.
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Pan et al. (2022) employed near-infrared spectroscopy combined with Extreme
Learning Machine (ELM) feature extraction and a Whale Optimization Algorithm-based
Support Vector Machine (WOA-SVM) to preprocess spectral data and identify wood
regions. Experimental results demonstrated that the ELM-optimized approach effectively
enhanced region recognition. In another study, Li et al. (2025) introduced a supervised
learning-based image super-resolution method using Discrete Wavelet Transform (DWT)
within a U-Net architecture, incorporating DWT sampling and channel attention residual
modules. Ablation studies and comparative experiments validated the effectiveness of each
component, showing superior performance in PSNR and SSIM metrics. While these
traditional methods can improve detection accuracy and reduce noise interference to some
extent, issues, such as high computational cost, complex parameter optimization, and
limited real-time applicability, remain unresolved.

In contrast, deep learning methods offer the advantage of automatic feature
extraction and end-to-end learning, enabling greater adaptability to complex data.
Compared to traditional algorithms, deep learning-based approaches successfully
overcome the aforementioned limitations. Contemporary object detection networks are
generally categorized into two types: two-stage and one-stage detectors. In the two-stage
detection domain, notable contributions include Girshick et al. (2014), who combined the
region proposal algorithm Selective Search (Uijlings ef al. 2013) with convolutional neural
networks (CNNs) to develop the R-CNN model, achieving significant improvements in
detection accuracy. Subsequently, Girshick ef al. (2015) introduced the Fast R-CNN model
based on the Spatial Pyramid Pooling Network (SPPnet), which further accelerated
detection speed while maintaining high accuracy. More recently, Zou et al. (2025)
enhanced the Faster R-CNN framework by integrating an improved ResNet-50 backbone,
a focal loss function, and soft Non-Maximum Suppression (soft-NMS). Their model
achieved a 6.76% improvement in mean Average Precision (mAP), reaching 67.80%, while
also reducing detection time by 3.6%, thereby improving detection performance in wood
surface defect scenarios. Typical one-stage detectors include SSD (Single Shot MultiBox
Detector) and the YOLO (You Only Look Once) series. Ding ef al. (2020) incorporated
DenseNet into the SSD framework to improve deep feature extraction and multi-layer
feature map fusion in wood imagery, yielding superior performance over the traditional
SSD and meeting real-time demands of industrial wood processing. The evolution of
YOLO from YOLOvI to YOLOV3 has driven the development of end-to-end optimized
detectors that perform inference in a single pass. Meng and Yuan (2023) proposed SGN-
YOLO, an improved YOLOVS5-based model incorporating a Semi-Global Network (SGN),
an enhanced E-ELAN module, and an EIOU loss function. On a public wood defect dataset,
the model achieved an mAP of 86.4%, representing a 3.1% improvement over the baseline,
with ablation experiments validating the contribution of each enhancement. Nevertheless,
challenges remain in detecting small defects and ensuring robust dataset generalization.

Wang et al. (2024) further improved the YOLOV7 architecture by replacing
standard convolution in the ELAN module with Partial Convolution (PConv), forming the
P-ELAN module. This modification reduced computational redundancy and memory usage
while enhancing detection accuracy.

Despite the progress of deep learning in object detection, real-world applications in
wood processing environments still face challenges due to lighting variations, dust
interference, and the complexity of textures. Issues persist, such as missed detections and
large model sizes. Consequently, there remains considerable room for improving the
accuracy and efficiency of particleboard surface defect detection.
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To address these challenges, this study proposes a lightweight and enhanced
detection model based on YOLOvI1 (Khanam and Hussain 2024), named LE-YOLO.
Rather than merely aggregating existing architectural components, the model incorporates
several targeted innovations. The primary contributions of this work are as follows:

1. Design of the Adaptive Multi-Kernel Depthwise Conv2d (AMDC) module.
Integrated into the backbone network as a replacement for the C3K2 module in
YOLOv11, AMDC leverages multiple shapes of 2D depthwise separable
convolution kernels to adaptively extract features. This design reduces the
parameter count while preserving model expressiveness.

2. Development of the Shared Dilated Feature Pyramid (SDFP) module. By
concatenating feature maps derived from varying dilation rates with the original
convolutional output along the channel dimension, the SDFP module facilitates
multi-scale object recognition and improves detection performance across defect
sizes.

3. Proposal of the Lightweight Detection Head (LWDetHead). This detection head
utilizes shared convolutions and multi-scale feature fusion to enhance fine-grained
representation. Additionally, it incorporates a distributed focal loss mechanism,
enabling effective detection with minimal parameter overhead and computational
cost.

4. Incorporation of the Normalized Wasserstein Distance (NWD) in the loss
function. As introduced by Wang et al. (2022), NWD effectively measures
distributional similarity with reduced sensitivity to object scale, making it
particularly suitable for small object detection tasks, such as tiny surface defects.

EXPERIMENTAL

Wood Defects Dataset

The Chipboardvl.0 dataset, collected from Shandong Luli Wood Industry Co.,
Ltd.’s automated production line, contains three common particleboard surface defects:
large shavings, sand leakage, and black spots, with a balanced class distribution of 33%
black spots, 33% large shavings, and 34% sand leakage. To enhance model robustness and
generalization, data augmentation techniques such as horizontal scaling and Gaussian noise
were applied, improving adaptability to complex textures and varying lighting. All images
were standardized to 640x640 pixels and captured under different lighting conditions,
including normal, reflective, and low-light environments. A stratified sampling strategy
was used to ensure class balance, with 3,000 images selected—2,400 for training, 300 for
validation, and 300 for testing (8:1:1 split). Figure 1 shows representative examples of each
defect type.

2

black spot Iarg shavigs ~ sand Ieakge

Fig. 1. Representative examples of the three surface defect types in particleboard
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LE-YOLO

YOLOv11, developed by Ultralytics and released in late 2024, represents a next-
generation object detection algorithm that builds on the strengths of its predecessors. It
introduces notable advancements in both network architecture and training methodologies,
thereby greatly enhancing feature extraction capabilities. These improvements enable more
accurate detection of complex features, even under challenging environmental and textural
conditions. To overcome the limitations of existing particleboard surface defect detection
algorithms—specifically, high computational complexity and large model size—this study
proposes a lightweight and enhanced detection model based on the YOLOv11 framework,
referred to as LE-YOLO. The overall architecture of the proposed model is illustrated in
Fig. 2. This section outlines the core components of LE-YOLO, including the Adaptive
Multi-Kernel Depthwise Conv2d (AMDC) module, the multi-scale feature fusion module
(Shared Dilated Feature Pyramid, SDFP), the LWDetHead, and the Integration of the NWD
in the loss function.

80x80x256

80x80x1024

320x320x64

80x80x512

40x40x512

Fig. 2. LE-YOLO structure diagram The k and s in Conv blocks represent the kernel size and
stride size. The nin AMDC and SDFP represents the number of Bottlenecks. 640x640x3 refers
to the size of the input image, and subsequent numbers located below each block represent the
dimension of feature maps.

Adaptive Multi-Kernel Depthwise Conv2d

The original feature extraction module C3K2 in YOLOv11 employs a multi-branch
and multi-layer stacking strategy based on the C3k structure. While this design improves
feature representation, it also introduces a large number of parameters and increases
computational complexity, resulting in reduced inference speed. In addition, the reliance
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on fixed-size convolution kernels limits the ability to capture features across diverse spatial
scales, affecting the model’s adaptability and robustness in complex scenarios.

To address the aforementioned limitations, this study proposes the Adaptive Multi-
Kernel Depthwise Conv2d (AMDC) module (refer to Fig. 3 for the AMDC structure
diagram). The AMDC module integrates dynamic kernel selection, cross-layer information
fusion, and a computationally efficient structure, effectively enhancing multi-scale feature
extraction and improving the inference efficiency of the model. The AMDC module
processes the input through three parallel convolutional paths, each with a distinct kernel
configuration to extract complementary features. The outputs of these paths are
transformed via a shared weight matrix (W). Meanwhile, the original input feature map
undergoes adaptive average pooling to generate a low-dimensional context vector. This
vector is then passed through a 1 x 1 convolution and a SoftMax activation to produce a
set of probability weights, which are subsequently applied to the corresponding outputs
from the three convolutional branches. The weighted features are finally aggregated
through summation, resulting in an output feature map with dimensions of C x H x W.
Compared to the original module in YOLOvV11, the AMDC offers enhanced flexibility and
adaptability, while substantially improving computational efficiency. These improvements
make it more suitable for real-time surface defect detection tasks under industrial
conditions.

SN

AdaptiveA vgPool

1x1

Fig. 3. AMDC structure diagram

SoftMax

Shared dilated feature pyramid

The Spatial Pyramid Pooling-Fast (SPPF) module uses fixed-size max pooling
kernels to extract and fuse multi-scale contextual information. Although effective in
aggregating features from various receptive fields, its dependence on fixed pooling sizes
limits its adaptability to objects with significant scale variation. This constraint can reduce
detection accuracy, particularly in complex scenes where object sizes vary widely.

To overcome this limitation, this study proposes the Shared Dilated Feature
Pyramid (SDPF) module, designed to enhance multi-scale feature representation while
maintaining computational efficiency. Specifically, the input feature map first passes
through a 1x1 convolution to reduce the number of channels by half, thereby lowering
computational cost. Next, three parallel max pooling operations with different kernel sizes
are applied to produce feature maps at multiple scales. These outputs are concatenated with
the original feature map along the channel dimension, followed by another 1x1 convolution
to restore the desired output channel dimensions. Despite the advantages of max pooling
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in enlarging the receptive field, it inherently introduces downsampling, which can result in
the loss of fine-grained spatial information. Moreover, the repeated pooling operations
impose additional computational burden, particularly in resource-constrained deployment
environments. The use of fixed-size pooling kernels further limits the ability to adaptively
capture features across scales. In contrast, the proposed SDPF module utilizes shared
convolutional layers to minimize memory usage and computational overhead. Through
incorporating dilated convolutions with varying dilation rates—smaller rates for capturing
local structural details and larger rates for encoding broader contextual semantics—the
module achieves more flexible and effective multi-scale feature extraction. Unlike max
pooling, this convolution-based approach preserves spatial resolution and allows the
network to retain fine-grained features, thereby enhancing detection performance across
objects of different sizes. Figure 4 illustrates the architectural differences between the SPPF
and SDPF modules, highlighting the underlying design principles and improvements
introduced in SDPF.
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Fig. 4. (a) SPPF and (b) SDFP structure comparison diagram

Lightweight detection head

YOLOv11's detection head utilizes a dual-label assignment strategy, combining
one-to-many assignments during training and one-to-one assignment during inference.
This approach improves detection performance but introduces added computational
complexity, particularly during the training and inference stages. The increased
computational load may hinder real-time deployment in resource-constrained
environments. To address this, a novel Lightweight Detection Head (LWDetHead) is
proposed, designed to balance performance and efficiency for wood surface defect
detection. As shown in Fig. 5, the LWDetHead architecture integrates multiple
convolutional modules and scale layers to optimize both feature characterization and
computational efficiency. A key innovation of LWDetHead is the Detail-Enhanced
Convolution (DEConv), which improves feature representation by incorporating prior
knowledge into standard convolution operations. During inference, DEConv is
reparameterized into a standard convolution, avoiding additional parameters or
computational overhead and ensuring compatibility with lightweight deployment
scenarios. To further enhance localization and classification, the architecture includes a
normalized convolutional layer (Conv_GN) with group normalization. This stabilizes
training and reduces the number of learnable parameters. LWDetHead also addresses scale
variation by employing shared convolutional layers (Conv_Reg) alongside scale layers.
These components adaptively adjust feature map scales to enhance robustness against
object size differences. The Conv_Reg layer improves regression tasks, while the dedicated
Conv_Cls layer focuses on classification, ensuring consistent object identification across
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feature levels. Through combining shared convolutions, scale-aware processing, and task-
specific modules, LWDetHead reduces parameter count and computational complexity
with minimal impact on detection performance, making it suitable for real-time
deployment in resource-constrained environments.

Fig. 5. LWDetHead structure diagram

NWD Loss

In the detection of wood surface defects, particularly for particleboard, the
identification of minor defect categories often presents significant challenges due to their
low pixel occupancy and high intra-class variability. These small defects typically occupy
only a tiny fraction of the image, making them more susceptible to background noise and
difficult to distinguish from one another. The CIOU (Complete-IoU) loss function used in
YOLO-based algorithms has notable limitations when dealing with such small targets.
Specifically, the aspect ratio of small objects is highly susceptible to image noise
interference, which may cause the CIOU loss function to wrongly penalize otherwise
reasonable predictions. Additionally, CIOU’s reliance on a rectangular assumption, its
sensitivity to scale variations, and its dependence on specific parameters can substantially
constrain its performance in complex scenarios. To address these issues, especially the
challenges associated with low-pixel-ratio defects and high intra-class divergence, this
study incorporates the Normalized Wasserstein Distance (NWD) into the loss function,
aiming to enhance overall model performance by reinforcing feature distribution
alignment. This alignment helps to reduce regression deviation caused by inconsistent
defect patterns, thereby improving the localization accuracy of small targets. To balance
the contributions of the CloU loss and NWD loss, a scale factor p is introduced. The
revised loss function is shown in Eq. 1, where loss_iou denotes the loU-based loss, and
nwd_loss represents the NWD-based loss:

loss_iou = p X loss_iou + (1 — w) X nwd loss (D
The formula for NWD is provided in Eq. 2,
W(P,Q)
Lywp = (2)

Normalization Factor

where W(P, Q) denotes the original Wasserstein distance between the predicted and
ground truth boxes (as illustrated in Fig. 6), and the denominator is a normalization term
to ensure scale invariance.

He et al. (2025). “LE-YOLO & wood surface defects,” BioResources 20(3), 7179-7193. 7185



bioresources.cnr.ncsu.edu

PEER-REVIEWED ARTICLE

1o True distribution vs. predicted distribution and transport routes

e True distribution
e Predict the distribution

0.8 * ° S

Y Coordinate (Normalized)
o
o
o

S
b

0.2 *

Original Wasserstein Distance

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X Coordinate (Normalized)

Fig. 6. Schematic diagram of Wasserstein distance

To determine the optimal value of p, experiments were conducted by varying the
scale factor in increments of 0.1 over the range [0, 0.9], resulting in ten different
configurations. The detection results of the LE-YOLO model under each configuration are
summarized in Table 1, with the best performance highlighted in bold. The results show
that when p = 0.5, the model achieves the highest detection accuracy, with an mAP@50 of
90% and an mAP@50:95 of 55%.

Table 1. Performance Comparison Across Scaling Factors p

3] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mAP@50 0.86 | 0.85 | 0.85 | 0.87 | 0.87 | 0.90 | 0.90 | 0.85 | 0.87 | 0.87
mAP@50:95 | 0.50 | 0.48 | 0.49 | 0.50 | 0.51 | 0.55 | 0.54 | 0.51 | 0.53 | 0.49

Experimental Details

The experiments reported in this study were conducted on a Windows 10 system
equipped with a 12" Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz CPU and 32 GB RAM.
Graphics processing was handled by an NVIDIA 4060 Ti GPU with 16 GB of VRAM. The
model was developed using Python 3.10.14, with CUDA 12.1 and PyTorch 2.2.2. No pre-
trained weights were utilized during the experiments. The experimental settings were as
follows: the input image resolution was set to 640 x 640 pixels; training was conducted for
over 300 epochs with a batch size of 32. The initial learning rate was set to 0.01. The
stochastic gradient descent (SGD) momentum was set to 0.937, and the weight decay
coefficient was set to 0.0005. These hyperparameters, including the learning rate and
momentum, were not arbitrarily selected nor directly inherited from previous studies;
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instead, they were meticulously tuned through a series of preliminary experiments to ensure
optimal training stability and model performance. All experiments were conducted using a
fixed random seed (42) and consistent data splits to reduce variability. The results showed
minimal fluctuations across repeated training runs, indicating stable performance.

Evaluation metrics

To comprehensively assess model performance, accuracy metrics were employed
—Precision, Recall, F1 Score, and mean Average Precision (mAP)—together with
efficiency metrics including model size, parameter count, and GFLOPs. Precision and
Recall are defined as shown in Eq. 3 and Eq. 4, respectively,

. TP
Precision = ——— (3)
TP
Recall = m (4)

where TP represents the number of true positives, FP refers to false positives, and FN
denotes false negatives. The F1 Score, which representing the harmonic mean of precision
and recall, is calculated as shown in Eq. 5:

Precision - Recall

Fl-Score = 2- Precision + Recall ()

Average Precision (AP) quantifies the area under the precision—recall curve for
each class, while mean Average Precision (mAP) is the average across all N classes, as
shown in Eq. 6:

N
1
Mean Average Precision (mAP) = Nz AP, (6)
i=1

Both mAP@50 (with an IoU threshold of 0.5) and mAP@50-95 (averaged over
thresholds ranging from 0.5 to 0.95 in 0.05 increments) are reported in this work to assess
detection robustness. To evaluate computational complexity, GFLOPs is calculated as

shown in Eq. 7:
GFLOP _HXW X Gy, X Cye Xk Xk o
T 10°
where H and W represent the feature map's height and width, C;,and C,; are the input and
output channel counts, and k is the kernel size. This evaluation framework offers a balanced
view of detection performance and model efficiency.

RESULTS AND DISCUSSION

Module Comparative Experiments

To validate the effectiveness of the proposed Adaptive Multi-Kernel Depthwise
Conv2d (AMDC) module, a series of comparative experiments were conducted using three
classical feature extraction modules and a baseline model. Specifically, the original C3K2
module was replaced with C3K2-Faster (Chen et al. 2023), C3K2-Mambaout (Yu and
Wang 2024), and C3K2-DBB (Ding ef al. 2021), respectively. The experimental results
are presented in Table 2. C3K2-Faster achieved reductions in model parameters and
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computational cost, but its detection performance declined substantially. C3K2-Mambaout
and C3K2-DBB improved detection accuracy yet it failed to reduce the model’s
complexity. In contrast, the proposed AMDC module not only improved detection
performance but also reduced parameter count and computational overhead, demonstrating
superior efficiency and robustness.

Table 2. Comparison of Feature Extraction Modules

Model P R F1 MmAP@50 | mAP@50:95 GFLOPs Parameters
(G) (M)
baseline 0.89 | 0.79 | 0.82 0.86 0.49 6.3 2.60
C3k2-Faster 0.89 | 0.76 | 0.8 0.84 0.47 5.8 2.30
C3k2-mambaout | 0.84 | 0.8 | 0.8 0.87 0.49 6.9 2.50
C3k2-DBB 0.78 | 0.82 | 0.8 0.87 0.50 6.3 2.58
AMDC 0.85 | 0.79 | 0.81 0.87 0.50 5.8 2.30

To further assess the impact of attention mechanisms on the performance of the
shared detection head, comparative experiments were conducted with several state-of-the-
art attention-based designs, including DyHead (Dai ef al. 2021), EfficientHead (Tan et al.
2020), and SEAM Head (Yu et al. 2022), which incorporates occlusion-aware attention. A
baseline model without attention mechanisms in the shared convolution was used for
comparison. The results are summarized in Table 3. DyHead introduced only limited
performance gains while substantially increasing model size and computational overhead.
Although EfficientHead and SEAM Head offered a better trade-off between accuracy and
efficiency, only the proposed LWDetHead achieved the highest detection performance
while substantially reducing parameters and maintaining a low computational cost.

Table 3. Comparative Analysis of Detection Heads

Model P R F1 | mMAP@50 | mMAP@50:95 GFLOPs Parameters
(G) (M)
baseline 0.89 | 0.79 | 0.82 0.86 0.49 6.3 2.60
dyhead 0.80 | 0.80 | 0.79 0.85 0.47 7.4 3.10
EfficientHead | 0.88 | 0.83 | 0.83 0.86 0.51 5.1 2.32
SEAMHead | 0.85 | 0.82 | 0.82 0.88 0.52 5.8 2.50
LWDetHead | 0.85 | 0.82 | 0.83 0.88 0.52 6.0 2.26

Ablation Studies

To evaluate the impact of the proposed enhancement modules on the model’s
performance for chipboard surface defect detection, a series of ablation experiments were
conducted based on the YOLOv1 1n framework. The core evaluation metrics included the
F1 score, mAP@50, mAP@50:95, GFLOPs, and the number of parameters. The
experimental results are presented in Table 4. The assessment of the proposed LE-YOLO
model involved eight experimental configurations: Experiment 1: Baseline YOLOvI1n
model; Experiment 2: Incorporation of the SDFP module into the baseline; Experiment 3:
Replacement of the C3k2 module in the YOLOv11 backbone with the AMDC module;
Experiment 4: Redesign of the detection head using the proposed LWDetHead; Experiment
5: Integration of AMDC on top of the Experiment 2 configuration; Experiment 6:
Integration of LWDetHead on top of the Experiment 2 configuration; Experiment 7:
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Integration of LWDetHead on top of the Experiment 3 configuration; Experiment 8:
Comprehensive application of all proposed modules, representing the final LE-YOLO
architecture.

Table 4. Ablation Experiment

Method F1 mAP@50 mAP@50:95 | GFLOPs(G) | Parameters (M)
method(1) | 0.82 0.86 0.49 6.3 2.58
method(2) | 0.83 0.87 0.50 6.3 2.63
method(3) | 0.81 0.87 0.49 5.8 2.30
method(4) | 0.82 0.88 0.52 6.0 2.26
method(5) | 0.83 0.84 0.50 5.8 2.47
method(6) | 0.83 0.88 0.50 6.0 2.31
method(7) | 0.83 0.89 0.51 5.5 1.99
method(8) | 0.84 0.90 0.55 5.5 2.10

The results show that, except for the SDFP module, all additional enhancement
modules contributed to a reduction in model parameters. Although the inclusion of SDFP
resulted in a slight increase of approximately S0K parameters compared to the baseline, it
led to a 1% improvement in F1 score, mAP@50, and mAP@50:95. This highlights the
SDFP module’s effectiveness in enhancing detection accuracy through multi-scale feature
fusion under a lightweight design constraint. The integration of the AMDC module yielded
a 1% decrease in F1 score but improved mAP@50 1%, increased inference speed 7.9%,
and reduced the parameter count by 280K compared to the baseline. These results
demonstrate the robustness and computational efficiency of AMDC. Replacing the original
detection head with the proposed LWDetHead led to a 2% increase in mAP@50 and a 3%
increase in mAP@50:95, along with a 4% increase in inference speed and a reduction of
320K parameters, emphasizing the critical role of LWDetHead in achieving model
compression without sacrificing accuracy. Overall, the results validate that the proposed
LE-YOLO model not only enhances detection precision but also achieves significant model
compression and computational efficiency.

Visual Analytics

In addition to these quantitative results, the visual analysis of the ablation study in
Fig. 7 further demonstrates the improvements in detection performance and efficiency,
providing a clearer depiction of how each enhancement module contributes to the overall
capabilities of the model. Overall, the results validate that the proposed LE-YOLO model
not only enhances detection accuracy but also achieves substantial model compression and
optimization in computational efficiency.

To both intuitively and quantitatively assess the performance differences among
the proposed LE-YOLO model, the baseline YOLOvV1 1n, and the latest model in the series,
YOLOvI2n (Tian et al. 2025), a heatmap-based visual analysis was conducted for
chipboard surface defect detection under three lighting conditions: normal illumination,
strong lighting, and low-light environments. As shown in Fig. 8, the heatmaps visualize
pixel-level response intensities, effectively visualizing the regions of focus for defect
feature extraction.
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Fig. 7. The visual analysis of the ablation study
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Fig. 8. Heatmap comparison
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Experimental results show that both YOLOv11n and YOLOv12n produce scattered
heatmap responses, which are notably influenced by background textures, leading to
redundant and inaccurate feature representations. In contrast, the LE-YOLO model, with
its enhanced feature perception mechanism, effectively focuses on defect regions,
achieving comprehensive detection of fine-grained and complex surface flaws. It
demonstrates superior performance in both coverage and focus. This comparative analysis
not only highlights the substantial performance improvements of LE-YOLO but also
emphasizes its increased robustness and resilience to interference, achieved through
improved background suppression and refined feature filtering capabilities.

Performance Comparison with Mainstream Algorithms

To further verify the effectiveness of the proposed method, the authors compared
LE-YOLO with eight state-of-the-art object detection algorithms: YOLOv5n, YOLOvV7-
tiny, YOLOv8n, YOLOvV9n, YOLOv10n, YOLOvI1n, YOLOvI2n, and RT-DETR. All
experiments were conducted on the unified Chipboardvl.0 dataset to ensure fair and
consistent evaluation. The results, presented in Table 5, demonstrate that the proposed
method achieves outstanding detection accuracy. Notably, LE-YOLO’s performance also
surpasses RT-DETR, except for precision, LE-YOLO outperforms all comparison models
in recall, Fl-score, mAP@50, and mAP@50:95. Notably, it substantially surpasses
YOLOV12n, the latest model in the YOLO series, further confirming the superiority of LE-
YOLO in detection precision. In terms of model lightweighting, the proposed method
exhibits lower computational complexity and fewer parameters than all comparison
algorithms except YOLOv5n. Compared with YOLOv5n, LE-YOLO improves recall 4%,
Fl-score by 1%, mAP@50 by 4%, and mAP@50:95 by 8%. Although the precision
decreases 2%, this is accompanied by only a slight increase in resource consumption. These
findings demonstrate that the proposed algorithm achieves high-precision detection while
effectively balancing performance with lightweight design, exhibiting substantial
comprehensive advantages.

Table 5. Performance Comparison with Mainstream Algorithms

Model P R F1 | mAP@50 | mAP@50:95 | GFLOPs (G) | Parameters (M)
YOLOv5n | 0.88 | 0.81 | 0.84 0.86 0.47 4.1 1.76
YOLOv7- | 0.89 | 0.81 | 0.84 0.89 0.49 13.0 6.01

tin
YOLOyVSI"I 0.84 | 0.79 | 0.82 0.86 0.51 8.1 3.00
YOLO10n | 0.83 | 0.81 | 0.82 0.87 0.50 8.2 2.70
YOLOv12n | 0.78 | 0.79 | 0.78 0.84 0.48 5.8 2.51
YOLOv11n | 0.89 | 0.80 | 0.84 0.86 0.49 6.3 2.58
RT-DETR | 0.89 | 0.73 | 0.79 0.80 0.44 56.9 19.9
LE-YOLO | 0.86 | 0.85 | 0.85 0.90 0.55 5.5 2.10
CONCLUSIONS

1. This study proposed LE-YOLO, a lightweight and enhanced object detection model
based on YOLOvVII, designed specifically for detecting surface defects on
particleboard. Through integrating the Adaptive Multi-Kernel Depthwise Conv2d
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(AMDC), Shared Dilated Feature Pyramid (SDFP), and a Lightweight Detection Head
(LWDetHead), and introducing the Normalized Wasserstein Distance (NWD) into the
loss function, the model effectively improves detection accuracy while reducing
computational cost.

2. Based on an extensive evaluation on the Chipboardvl.0 dataset, the LE-YOLO
outperformed the baseline YOLOv1Iln model in detecting particleboard surface
defects, especially small and intricate flaws. Specifically, LE-YOLO achieved a 4%
increase in mAP@50, a 6% improvement in mAP@50:95, and demonstrated
enhanced robustness in challenging lighting conditions, such as low-light and high-
reflection environments. These results highlight the model’s ability to handle complex
real-world industrial scenarios. Moreover, LE-YOLO showed superior detection
accuracy with a 2% increase in recall and a 1% boost in Fl-score, confirming its
overall effectiveness in detecting defects. The model also exhibited a 7.9% increase in
inference speed, while maintaining a low number of parameters, ensuring its
suitability for real-time deployment with limited computational resources.
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