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Current algorithms for surface defect detection in particleboard often 
encounter limitations such as high computational complexity and 
excessive parameter scale. To address these challenges, this study 
proposes the LE-YOLO model, which incorporates a normalized 
Wasserstein distance into the loss function to enhance the detection 
capability for minute surface defects. A dynamic mixed convolutional 
network module is introduced to construct a lightweight backbone 
architecture. Moreover, the Shared Dilated Feature Pyramid (SDFP) 
module is employed in the neck network, effectively reducing 
computational overhead while preserving detection accuracy. A 
lightweight detection head was further designed, integrating shared 
convolutional operations with a distribution-aware loss function, thereby 
substantially improving detection performance in complex textured 
environments. Experimental evaluations conducted on the Chipboardv1.0 
particleboard surface defect dataset demonstrated that compared to the 
baseline YOLOv11n model, LE-YOLO achieved a 5% improvement in 
recall, a 1% increase in F1 score, a 4% enhancement in mAP@50, a 6% 
gain in mAP@50–95, a 12.69% acceleration in inference speed, and an 
18.6% reduction in parameter count. Compared with other models, the 
proposed approach not only improved detection precision but also 
effectively reduced model complexity, achieving a lightweight and efficient 
detection framework. 

 

DOI: 10.15376/biores.20.3.7179-7193 

 

Keywords: Object detection; Lightweight architecture; YOLO; Particleboard surface defects;  

Deep learning; Feature fusion 

 

Contact information: College of Materials Science and Art Design, Inner Mongolia Agricultural 

University, Hohhot 010018, Inner Mongolia Autonomous Region, China; 

* Corresponding author: duohuaqiong@163.com 

 

 
INTRODUCTION 
 

Traditional wood surface defect detection methods have predominantly relied on 

handcrafted feature extraction algorithms. For example, Ji et al. (2019) introduced a 

wavelet moment-based feature extraction algorithm that combines the advantages of 

wavelet energy and Hu invariant moments to classify and identify wood defect images. 

Compared to conventional Hu moments, their method significantly improved recognition 

accuracy. However, this approach suffers from high computational complexity, resulting 

in inefficiency when processing high-resolution or large-scale data and requiring 

substantial hardware resources. Additionally, parameter tuning is challenging, and the 

algorithm is vulnerable to noise interference, which compromises real-time application 

performance. 
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Pan et al. (2022) employed near-infrared spectroscopy combined with Extreme 

Learning Machine (ELM) feature extraction and a Whale Optimization Algorithm-based 

Support Vector Machine (WOA-SVM) to preprocess spectral data and identify wood 

regions. Experimental results demonstrated that the ELM-optimized approach effectively 

enhanced region recognition. In another study, Li et al. (2025) introduced a supervised 

learning-based image super-resolution method using Discrete Wavelet Transform (DWT) 

within a U-Net architecture, incorporating DWT sampling and channel attention residual 

modules. Ablation studies and comparative experiments validated the effectiveness of each 

component, showing superior performance in PSNR and SSIM metrics. While these 

traditional methods can improve detection accuracy and reduce noise interference to some 

extent, issues, such as high computational cost, complex parameter optimization, and 

limited real-time applicability, remain unresolved. 

In contrast, deep learning methods offer the advantage of automatic feature 

extraction and end-to-end learning, enabling greater adaptability to complex data. 

Compared to traditional algorithms, deep learning-based approaches successfully 

overcome the aforementioned limitations. Contemporary object detection networks are 

generally categorized into two types: two-stage and one-stage detectors. In the two-stage 

detection domain, notable contributions include Girshick et al. (2014), who combined the 

region proposal algorithm Selective Search (Uijlings et al. 2013) with convolutional neural 

networks (CNNs) to develop the R-CNN model, achieving significant improvements in 

detection accuracy. Subsequently, Girshick et al. (2015) introduced the Fast R-CNN model 

based on the Spatial Pyramid Pooling Network (SPPnet), which further accelerated 

detection speed while maintaining high accuracy. More recently, Zou et al. (2025) 

enhanced the Faster R-CNN framework by integrating an improved ResNet-50 backbone, 

a focal loss function, and soft Non-Maximum Suppression (soft-NMS). Their model 

achieved a 6.76% improvement in mean Average Precision (mAP), reaching 67.80%, while 

also reducing detection time by 3.6%, thereby improving detection performance in wood 

surface defect scenarios. Typical one-stage detectors include SSD (Single Shot MultiBox 

Detector) and the YOLO (You Only Look Once) series. Ding et al. (2020) incorporated 

DenseNet into the SSD framework to improve deep feature extraction and multi-layer 

feature map fusion in wood imagery, yielding superior performance over the traditional 

SSD and meeting real-time demands of industrial wood processing. The evolution of 

YOLO from YOLOv1 to YOLOv3 has driven the development of end-to-end optimized 

detectors that perform inference in a single pass. Meng and Yuan (2023) proposed SGN-

YOLO, an improved YOLOv5-based model incorporating a Semi-Global Network (SGN), 

an enhanced E-ELAN module, and an EIOU loss function. On a public wood defect dataset, 

the model achieved an mAP of 86.4%, representing a 3.1% improvement over the baseline, 

with ablation experiments validating the contribution of each enhancement. Nevertheless, 

challenges remain in detecting small defects and ensuring robust dataset generalization. 

Wang et al. (2024) further improved the YOLOv7 architecture by replacing 

standard convolution in the ELAN module with Partial Convolution (PConv), forming the 

P-ELAN module. This modification reduced computational redundancy and memory usage 

while enhancing detection accuracy. 

Despite the progress of deep learning in object detection, real-world applications in 

wood processing environments still face challenges due to lighting variations, dust 

interference, and the complexity of textures. Issues persist, such as missed detections and 

large model sizes. Consequently, there remains considerable room for improving the 

accuracy and efficiency of particleboard surface defect detection. 
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To address these challenges, this study proposes a lightweight and enhanced 

detection model based on YOLOv11 (Khanam and Hussain 2024), named LE-YOLO. 

Rather than merely aggregating existing architectural components, the model incorporates 

several targeted innovations. The primary contributions of this work are as follows: 

1. Design of the Adaptive Multi-Kernel Depthwise Conv2d (AMDC) module. 

Integrated into the backbone network as a replacement for the C3K2 module in 

YOLOv11, AMDC leverages multiple shapes of 2D depthwise separable 

convolution kernels to adaptively extract features. This design reduces the 

parameter count while preserving model expressiveness. 

2. Development of the Shared Dilated Feature Pyramid (SDFP) module. By 

concatenating feature maps derived from varying dilation rates with the original 

convolutional output along the channel dimension, the SDFP module facilitates 

multi-scale object recognition and improves detection performance across defect 

sizes. 

3. Proposal of the Lightweight Detection Head (LWDetHead). This detection head 

utilizes shared convolutions and multi-scale feature fusion to enhance fine-grained 

representation. Additionally, it incorporates a distributed focal loss mechanism, 

enabling effective detection with minimal parameter overhead and computational 

cost. 

4. Incorporation of the Normalized Wasserstein Distance (NWD) in the loss 

function. As introduced by Wang et al. (2022), NWD effectively measures 

distributional similarity with reduced sensitivity to object scale, making it 

particularly suitable for small object detection tasks, such as tiny surface defects. 

 

 

EXPERIMENTAL 
 

Wood Defects Dataset 
The Chipboardv1.0 dataset, collected from Shandong Luli Wood Industry Co., 

Ltd.’s automated production line, contains three common particleboard surface defects: 

large shavings, sand leakage, and black spots, with a balanced class distribution of 33% 

black spots, 33% large shavings, and 34% sand leakage. To enhance model robustness and 

generalization, data augmentation techniques such as horizontal scaling and Gaussian noise 

were applied, improving adaptability to complex textures and varying lighting. All images 

were standardized to 640×640 pixels and captured under different lighting conditions, 

including normal, reflective, and low-light environments. A stratified sampling strategy 

was used to ensure class balance, with 3,000 images selected—2,400 for training, 300 for 

validation, and 300 for testing (8:1:1 split). Figure 1 shows representative examples of each 

defect type. 

 

   
black spots large shavings sand leakage 

 

Fig. 1. Representative examples of the three surface defect types in particleboard 
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LE-YOLO 
YOLOv11, developed by Ultralytics and released in late 2024, represents a next-

generation object detection algorithm that builds on the strengths of its predecessors. It 

introduces notable advancements in both network architecture and training methodologies, 

thereby greatly enhancing feature extraction capabilities. These improvements enable more 

accurate detection of complex features, even under challenging environmental and textural 

conditions. To overcome the limitations of existing particleboard surface defect detection 

algorithms—specifically, high computational complexity and large model size—this study 

proposes a lightweight and enhanced detection model based on the YOLOv11 framework, 

referred to as LE-YOLO. The overall architecture of the proposed model is illustrated in 

Fig. 2. This section outlines the core components of LE-YOLO, including the Adaptive 

Multi-Kernel Depthwise Conv2d (AMDC) module, the multi-scale feature fusion module 

(Shared Dilated Feature Pyramid, SDFP), the LWDetHead, and the Integration of the NWD 

in the loss function. 
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Fig. 2. LE-YOLO structure diagram The k and s in Conv blocks represent the kernel size and 
stride size. The n in AMDC and SDFP represents the number of Bottlenecks. 640×640×3 refers 
to the size of the input image, and subsequent numbers located below each block represent the 
dimension of feature maps. 

 

Adaptive Multi-Kernel Depthwise Conv2d 

 The original feature extraction module C3K2 in YOLOv11 employs a multi-branch 

and multi-layer stacking strategy based on the C3k structure. While this design improves 

feature representation, it also introduces a large number of parameters and increases 

computational complexity, resulting in reduced inference speed. In addition, the reliance 
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on fixed-size convolution kernels limits the ability to capture features across diverse spatial 

scales, affecting the model’s adaptability and robustness in complex scenarios. 

To address the aforementioned limitations, this study proposes the Adaptive Multi-

Kernel Depthwise Conv2d (AMDC) module (refer to Fig. 3 for the AMDC structure 

diagram). The AMDC module integrates dynamic kernel selection, cross-layer information 

fusion, and a computationally efficient structure, effectively enhancing multi-scale feature 

extraction and improving the inference efficiency of the model. The AMDC module 

processes the input through three parallel convolutional paths, each with a distinct kernel 

configuration to extract complementary features. The outputs of these paths are 

transformed via a shared weight matrix (W). Meanwhile, the original input feature map 

undergoes adaptive average pooling to generate a low-dimensional context vector. This 

vector is then passed through a 1 × 1 convolution and a SoftMax activation to produce a 

set of probability weights, which are subsequently applied to the corresponding outputs 

from the three convolutional branches. The weighted features are finally aggregated 

through summation, resulting in an output feature map with dimensions of C × H × W. 

Compared to the original module in YOLOv11, the AMDC offers enhanced flexibility and 

adaptability, while substantially improving computational efficiency. These improvements 

make it more suitable for real-time surface defect detection tasks under industrial 

conditions. 
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Fig. 3. AMDC structure diagram 

 

Shared dilated feature pyramid 

The Spatial Pyramid Pooling-Fast (SPPF) module uses fixed-size max pooling 

kernels to extract and fuse multi-scale contextual information. Although effective in 

aggregating features from various receptive fields, its dependence on fixed pooling sizes 

limits its adaptability to objects with significant scale variation. This constraint can reduce 

detection accuracy, particularly in complex scenes where object sizes vary widely. 

To overcome this limitation, this study proposes the Shared Dilated Feature 

Pyramid (SDPF) module, designed to enhance multi-scale feature representation while 

maintaining computational efficiency. Specifically, the input feature map first passes 

through a 1×1 convolution to reduce the number of channels by half, thereby lowering 

computational cost. Next, three parallel max pooling operations with different kernel sizes 

are applied to produce feature maps at multiple scales. These outputs are concatenated with 

the original feature map along the channel dimension, followed by another 1×1 convolution 

to restore the desired output channel dimensions. Despite the advantages of max pooling 
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in enlarging the receptive field, it inherently introduces downsampling, which can result in 

the loss of fine-grained spatial information. Moreover, the repeated pooling operations 

impose additional computational burden, particularly in resource-constrained deployment 

environments. The use of fixed-size pooling kernels further limits the ability to adaptively 

capture features across scales. In contrast, the proposed SDPF module utilizes shared 

convolutional layers to minimize memory usage and computational overhead. Through 

incorporating dilated convolutions with varying dilation rates—smaller rates for capturing 

local structural details and larger rates for encoding broader contextual semantics—the 

module achieves more flexible and effective multi-scale feature extraction. Unlike max 

pooling, this convolution-based approach preserves spatial resolution and allows the 

network to retain fine-grained features, thereby enhancing detection performance across 

objects of different sizes. Figure 4 illustrates the architectural differences between the SPPF 

and SDPF modules, highlighting the underlying design principles and improvements 

introduced in SDPF. 
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Fig. 4. (a) SPPF and (b) SDFP structure comparison diagram 

 
Lightweight detection head 

YOLOv11's detection head utilizes a dual-label assignment strategy, combining 

one-to-many assignments during training and one-to-one assignment during inference. 

This approach improves detection performance but introduces added computational 

complexity, particularly during the training and inference stages. The increased 

computational load may hinder real-time deployment in resource-constrained 

environments. To address this, a novel Lightweight Detection Head (LWDetHead) is 

proposed, designed to balance performance and efficiency for wood surface defect 

detection. As shown in Fig. 5, the LWDetHead architecture integrates multiple 

convolutional modules and scale layers to optimize both feature characterization and 

computational efficiency. A key innovation of LWDetHead is the Detail-Enhanced 

Convolution (DEConv), which improves feature representation by incorporating prior 

knowledge into standard convolution operations. During inference, DEConv is 

reparameterized into a standard convolution, avoiding additional parameters or 

computational overhead and ensuring compatibility with lightweight deployment 

scenarios. To further enhance localization and classification, the architecture includes a 

normalized convolutional layer (Conv_GN) with group normalization. This stabilizes 

training and reduces the number of learnable parameters. LWDetHead also addresses scale 

variation by employing shared convolutional layers (Conv_Reg) alongside scale layers. 

These components adaptively adjust feature map scales to enhance robustness against 

object size differences. The Conv_Reg layer improves regression tasks, while the dedicated 

Conv_Cls layer focuses on classification, ensuring consistent object identification across 
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feature levels. Through combining shared convolutions, scale-aware processing, and task-

specific modules, LWDetHead reduces parameter count and computational complexity 

with minimal impact on detection performance, making it suitable for real-time 

deployment in resource-constrained environments. 
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Fig. 5. LWDetHead structure diagram 

 

NWD Loss 

In the detection of wood surface defects, particularly for particleboard, the 

identification of minor defect categories often presents significant challenges due to their 

low pixel occupancy and high intra-class variability. These small defects typically occupy 

only a tiny fraction of the image, making them more susceptible to background noise and 

difficult to distinguish from one another. The CIOU (Complete-IoU) loss function used in 

YOLO-based algorithms has notable limitations when dealing with such small targets. 

Specifically, the aspect ratio of small objects is highly susceptible to image noise 

interference, which may cause the CIOU loss function to wrongly penalize otherwise 

reasonable predictions. Additionally, CIOU’s reliance on a rectangular assumption, its 

sensitivity to scale variations, and its dependence on specific parameters can substantially 

constrain its performance in complex scenarios. To address these issues, especially the 

challenges associated with low-pixel-ratio defects and high intra-class divergence, this 

study incorporates the Normalized Wasserstein Distance (NWD) into the loss function, 

aiming to enhance overall model performance by reinforcing feature distribution 

alignment. This alignment helps to reduce regression deviation caused by inconsistent 

defect patterns, thereby improving the localization accuracy of small targets. To balance 

the contributions of the CIoU loss and NWD loss, a scale factor μ is introduced. The 

revised loss function is shown in Eq. 1, where loss_iou denotes the IoU-based loss, and 

nwd_loss represents the NWD-based loss: 

loss_iou = μ × loss_iou + (1 − μ) ×  nwd_loss (1) 

The formula for NWD is provided in Eq. 2, 

LNWD =
W(P, Q)

 Normalization Factor 
(2) 

where W(P, Q)  denotes the original Wasserstein distance between the predicted and 

ground truth boxes (as illustrated in Fig. 6), and the denominator is a normalization term 

to ensure scale invariance. 
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Fig. 6. Schematic diagram of Wasserstein distance 
 

To determine the optimal value of μ, experiments were conducted by varying the 

scale factor in increments of 0.1 over the range [0, 0.9], resulting in ten different 

configurations. The detection results of the LE-YOLO model under each configuration are 

summarized in Table 1, with the best performance highlighted in bold. The results show 

that when μ = 0.5, the model achieves the highest detection accuracy, with an mAP@50 of 

90% and an mAP@50:95 of 55%. 

 

Table 1. Performance Comparison Across Scaling Factors µ  

µ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

mAP@50 0.86 0.85 0.85 0.87 0.87 0.90 0.90 0.85 0.87 0.87 

mAP@50:95 0.50 0.48 0.49 0.50 0.51 0.55 0.54 0.51 0.53 0.49 

 
Experimental Details 

The experiments reported in this study were conducted on a Windows 10 system 

equipped with a 12th Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz CPU and 32 GB RAM. 

Graphics processing was handled by an NVIDIA 4060 Ti GPU with 16 GB of VRAM. The 

model was developed using Python 3.10.14, with CUDA 12.1 and PyTorch 2.2.2. No pre-

trained weights were utilized during the experiments. The experimental settings were as 

follows: the input image resolution was set to 640 × 640 pixels; training was conducted for 

over 300 epochs with a batch size of 32. The initial learning rate was set to 0.01. The 

stochastic gradient descent (SGD) momentum was set to 0.937, and the weight decay 

coefficient was set to 0.0005. These hyperparameters, including the learning rate and 

momentum, were not arbitrarily selected nor directly inherited from previous studies; 
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instead, they were meticulously tuned through a series of preliminary experiments to ensure 

optimal training stability and model performance. All experiments were conducted using a 

fixed random seed (42) and consistent data splits to reduce variability. The results showed 

minimal fluctuations across repeated training runs, indicating stable performance. 

 

Evaluation metrics 

To comprehensively assess model performance, accuracy metrics were employed 

—Precision, Recall, F1 Score, and mean Average Precision (mAP)—together with 

efficiency metrics including model size, parameter count, and GFLOPs. Precision and 

Recall are defined as shown in Eq. 3 and Eq. 4, respectively, 

Precision =
TP

TP + FP
(3) 

Recall =
TP

TP + FN
(4) 

where TP represents the number of true positives, FP refers to false positives, and FN 

denotes false negatives. The F1 Score, which representing the harmonic mean of precision 

and recall, is calculated as shown in Eq. 5: 

 F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
(5) 

Average Precision (AP) quantifies the area under the precision–recall curve for 

each class, while mean Average Precision (mAP) is the average across all N classes, as 

shown in Eq. 6: 

Mean Average Precision (mAP) =
1

N
∑ APi

N

i=1

(6) 

Both mAP@50 (with an IoU threshold of 0.5) and mAP@50–95 (averaged over 

thresholds ranging from 0.5 to 0.95 in 0.05 increments) are reported in this work to assess 

detection robustness. To evaluate computational complexity, GFLOPs is calculated as 

shown in Eq. 7: 

GFLOPs =
H × W × Cin × Cout × k × k

109
 (7) 

where H and W represent the feature map's height and width, Cinand Cout are the input and 

output channel counts, and k is the kernel size. This evaluation framework offers a balanced 

view of detection performance and model efficiency. 

 

 

RESULTS AND DISCUSSION 
 
Module Comparative Experiments 

To validate the effectiveness of the proposed Adaptive Multi-Kernel Depthwise 

Conv2d (AMDC) module, a series of comparative experiments were conducted using three 

classical feature extraction modules and a baseline model. Specifically, the original C3K2 

module was replaced with C3K2-Faster (Chen et al. 2023), C3K2-Mambaout (Yu and 

Wang 2024), and C3K2-DBB (Ding et al. 2021), respectively. The experimental results 

are presented in Table 2. C3K2-Faster achieved reductions in model parameters and 
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computational cost, but its detection performance declined substantially. C3K2-Mambaout 

and C3K2-DBB improved detection accuracy yet it failed to reduce the model’s 

complexity. In contrast, the proposed AMDC module not only improved detection 

performance but also reduced parameter count and computational overhead, demonstrating 

superior efficiency and robustness. 

 

Table 2. Comparison of Feature Extraction Modules 

Model P R F1 mAP@50 mAP@50:95 GFLOPs 
(G) 

Parameters 
(M) 

baseline 0.89 0.79 0.82 0.86 0.49 6.3 2.60 

C3k2-Faster 0.89 0.76 0.8 0.84 0.47 5.8 2.30 

C3k2-mambaout 0.84 0.8 0.8 0.87 0.49 6.9 2.50 

C3k2-DBB 0.78 0.82 0.8 0.87 0.50 6.3 2.58 

AMDC 0.85 0.79 0.81 0.87 0.50 5.8 2.30 

 

To further assess the impact of attention mechanisms on the performance of the 

shared detection head, comparative experiments were conducted with several state-of-the-

art attention-based designs, including DyHead (Dai et al. 2021), EfficientHead (Tan et al. 

2020), and SEAM Head (Yu et al. 2022), which incorporates occlusion-aware attention. A 

baseline model without attention mechanisms in the shared convolution was used for 

comparison. The results are summarized in Table 3. DyHead introduced only limited 

performance gains while substantially increasing model size and computational overhead. 

Although EfficientHead and SEAM Head offered a better trade-off between accuracy and 

efficiency, only the proposed LWDetHead achieved the highest detection performance 

while substantially reducing parameters and maintaining a low computational cost. 

 

Table 3. Comparative Analysis of Detection Heads 

Model P R F1 mAP@50 mAP@50:95 GFLOPs 
(G) 

Parameters 
(M) 

baseline 0.89 0.79 0.82 0.86 0.49 6.3 2.60 

dyhead 0.80 0.80 0.79 0.85 0.47 7.4 3.10 

EfficientHead 0.88 0.83 0.83 0.86 0.51 5.1 2.32 

SEAMHead 0.85 0.82 0.82 0.88 0.52 5.8 2.50 

LWDetHead 0.85 0.82 0.83 0.88 0.52 6.0 2.26 

 

Ablation Studies 
To evaluate the impact of the proposed enhancement modules on the model’s 

performance for chipboard surface defect detection, a series of ablation experiments were 

conducted based on the YOLOv11n framework. The core evaluation metrics included the 

F1 score, mAP@50, mAP@50:95, GFLOPs, and the number of parameters. The 

experimental results are presented in Table 4. The assessment of the proposed LE-YOLO 

model involved eight experimental configurations: Experiment 1: Baseline YOLOv11n 

model; Experiment 2: Incorporation of the SDFP module into the baseline; Experiment 3: 

Replacement of the C3k2 module in the YOLOv11 backbone with the AMDC module; 

Experiment 4: Redesign of the detection head using the proposed LWDetHead; Experiment 

5: Integration of AMDC on top of the Experiment 2 configuration; Experiment 6: 

Integration of LWDetHead on top of the Experiment 2 configuration; Experiment 7: 
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Integration of LWDetHead on top of the Experiment 3 configuration; Experiment 8: 

Comprehensive application of all proposed modules, representing the final LE-YOLO 

architecture.  

 

Table 4. Ablation Experiment 

Method F1 mAP@50 mAP@50:95 GFLOPs(G) Parameters (M) 

method(1) 0.82 0.86 0.49 6.3 2.58 

method(2) 0.83 0.87 0.50 6.3 2.63 

method(3) 0.81 0.87 0.49 5.8 2.30 

method(4) 0.82 0.88 0.52 6.0 2.26 

method(5) 0.83 0.84 0.50 5.8 2.47 

method(6) 0.83 0.88 0.50 6.0 2.31 

method(7) 0.83 0.89 0.51 5.5 1.99 

method(8) 0.84 0.90 0.55 5.5 2.10 

 
The results show that, except for the SDFP module, all additional enhancement 

modules contributed to a reduction in model parameters. Although the inclusion of SDFP 

resulted in a slight increase of approximately 50K parameters compared to the baseline, it 

led to a 1% improvement in F1 score, mAP@50, and mAP@50:95. This highlights the 

SDFP module’s effectiveness in enhancing detection accuracy through multi-scale feature 

fusion under a lightweight design constraint. The integration of the AMDC module yielded 

a 1% decrease in F1 score but improved mAP@50 1%, increased inference speed 7.9%, 

and reduced the parameter count by 280K compared to the baseline. These results 

demonstrate the robustness and computational efficiency of AMDC. Replacing the original 

detection head with the proposed LWDetHead led to a 2% increase in mAP@50 and a 3% 

increase in mAP@50:95, along with a 4% increase in inference speed and a reduction of 

320K parameters, emphasizing the critical role of LWDetHead in achieving model 

compression without sacrificing accuracy. Overall, the results validate that the proposed 

LE-YOLO model not only enhances detection precision but also achieves significant model 

compression and computational efficiency. 

 

Visual Analytics  
In addition to these quantitative results, the visual analysis of the ablation study in 

Fig. 7 further demonstrates the improvements in detection performance and efficiency, 

providing a clearer depiction of how each enhancement module contributes to the overall 

capabilities of the model. Overall, the results validate that the proposed LE-YOLO model 

not only enhances detection accuracy but also achieves substantial model compression and 

optimization in computational efficiency. 

To both intuitively and quantitatively assess the performance differences among 

the proposed LE-YOLO model, the baseline YOLOv11n, and the latest model in the series, 

YOLOv12n (Tian et al. 2025), a heatmap-based visual analysis was conducted for 

chipboard surface defect detection under three lighting conditions: normal illumination, 

strong lighting, and low-light environments. As shown in Fig. 8, the heatmaps visualize 

pixel-level response intensities, effectively visualizing the regions of focus for defect 

feature extraction. 
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Fig. 7. The visual analysis of the ablation study 
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Fig. 8. Heatmap comparison 
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Experimental results show that both YOLOv11n and YOLOv12n produce scattered 

heatmap responses, which are notably influenced by background textures, leading to 

redundant and inaccurate feature representations. In contrast, the LE-YOLO model, with 

its enhanced feature perception mechanism, effectively focuses on defect regions, 

achieving comprehensive detection of fine-grained and complex surface flaws. It 

demonstrates superior performance in both coverage and focus. This comparative analysis 

not only highlights the substantial performance improvements of LE-YOLO but also 

emphasizes its increased robustness and resilience to interference, achieved through 

improved background suppression and refined feature filtering capabilities. 

 
Performance Comparison with Mainstream Algorithms 

To further verify the effectiveness of the proposed method, the authors compared 

LE-YOLO with eight state-of-the-art object detection algorithms: YOLOv5n, YOLOv7-

tiny, YOLOv8n, YOLOv9n, YOLOv10n, YOLOv11n, YOLOv12n, and RT-DETR. All 

experiments were conducted on the unified Chipboardv1.0 dataset to ensure fair and 

consistent evaluation. The results, presented in Table 5, demonstrate that the proposed 

method achieves outstanding detection accuracy. Notably, LE-YOLO’s performance also 

surpasses RT-DETR, except for precision, LE-YOLO outperforms all comparison models 

in recall, F1-score, mAP@50, and mAP@50:95. Notably, it substantially surpasses 

YOLOv12n, the latest model in the YOLO series, further confirming the superiority of LE-

YOLO in detection precision. In terms of model lightweighting, the proposed method 

exhibits lower computational complexity and fewer parameters than all comparison 

algorithms except YOLOv5n. Compared with YOLOv5n, LE-YOLO improves recall 4%, 

F1-score by 1%, mAP@50 by 4%, and mAP@50:95 by 8%. Although the precision 

decreases 2%, this is accompanied by only a slight increase in resource consumption. These 

findings demonstrate that the proposed algorithm achieves high-precision detection while 

effectively balancing performance with lightweight design, exhibiting substantial 

comprehensive advantages. 

 

Table 5. Performance Comparison with Mainstream Algorithms 

Model P R F1 mAP@50 mAP@50:95 GFLOPs (G) Parameters (M) 

YOLOv5n 0.88 0.81 0.84 0.86 0.47 4.1 1.76 

YOLOv7-
tiny 

0.89 0.81 0.84 0.89 0.49 13.0 6.01 

 YOLOv8n 0.84 0.79 0.82 0.86 0.51 8.1 3.00 

YOLO10n 0.83 0.81 0.82 0.87 0.50 8.2 2.70 

YOLOv12n 0.78 0.79 0.78 0.84 0.48 5.8 2.51 

YOLOv11n 0.89 0.80 0.84 0.86 0.49 6.3 2.58 

RT-DETR 0.89 0.73 0.79 0.80 0.44 56.9 19.9 

LE-YOLO 0.86 0.85 0.85 0.90 0.55 5.5 2.10 

 
 
CONCLUSIONS 
 

1. This study proposed LE-YOLO, a lightweight and enhanced object detection model 

based on YOLOv11, designed specifically for detecting surface defects on 

particleboard. Through integrating the Adaptive Multi-Kernel Depthwise Conv2d 
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(AMDC), Shared Dilated Feature Pyramid (SDFP), and a Lightweight Detection Head 

(LWDetHead), and introducing the Normalized Wasserstein Distance (NWD) into the 

loss function, the model effectively improves detection accuracy while reducing 

computational cost. 

2. Based on an extensive evaluation on the Chipboardv1.0 dataset, the LE-YOLO 

outperformed the baseline YOLOv11n model in detecting particleboard surface 

defects, especially small and intricate flaws. Specifically, LE-YOLO achieved a 4% 

increase in mAP@50, a 6% improvement in mAP@50:95, and demonstrated 

enhanced robustness in challenging lighting conditions, such as low-light and high-

reflection environments. These results highlight the model’s ability to handle complex 

real-world industrial scenarios. Moreover, LE-YOLO showed superior detection 

accuracy with a 2% increase in recall and a 1% boost in F1-score, confirming its 

overall effectiveness in detecting defects. The model also exhibited a 7.9% increase in 

inference speed, while maintaining a low number of parameters, ensuring its 

suitability for real-time deployment with limited computational resources. 
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