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Four Vision Transformer (ViT)-based models were optimized to classify
microscopic wood images. The models were DeiT, Google ViT, BeiT, and
Microsoft Swin Transformer. Training was performed on a set enriched
with data augmentation techniques. The generalization ability of the model
was strengthened by increasing the number of images for each class with
data augmentation. The dataset used in the study consisted of 112
different species belonging to 30 families, 37 of which were coniferous and
75 were angiosperms. The samples had been softened, cut into thin
sections, colored with the triple staining method, and imaged with fixed
magnification. The Google ViT model was the most successful, with
99.40% accuracy. The DeiT model, which stood out with its data efficiency,
ranked second with 98.51% accuracy, while the BEIiT and Microsoft Swin
Transformer models reached 96.43% and 98.21% accuracy, respectively.
The Microsoft Swin Transformer model required the least training time.
Data augmentation techniques improved the performance of all models by
3% to 5%, thus increasing the resistance of the models to overfitting and
providing more robust predictions. It was found that ViT-based models
gave superior performance in microscopic wood image classification tasks
and that data augmentation significantly improved model performance.
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INTRODUCTION

Identification and classification of tree species is a critical and important step in
understanding their biodiversity, role in the ecosystem, economic value, and cultural
importance. It is of great importance to correctly identify the species to use wood correctly
and efficiently (Wheeler and Baas 1998). Microscopic wood anatomy is a widely used
basic method for the classification of coniferous and broad-leaved trees and has become
more objective and scalable with modern image processing techniques (Filho ef al. 2014).
Species are usually easy to identify when organs, such as flowers, leaves, or seeds, are
present. However, once the tree is processed, its identification can become quite
challenging. In this case, identification is based solely on the macroscopic and microscopic
properties of the wood (Khalid et al. 2008). Traditionally, professional woodworkers have
classified wood based on macroscopic and microscopic features to identify wood species.
However, these methods depend on the knowledge and experience of experts and can be
time-consuming, impractical, costly, and inadequate for classification processes requiring
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high accuracy (Mohan et al. 2014; Rajagopal et al. 2019). This poses a major problem,
especially for industries where large quantities of wood species need to be identified in a
short period of time (Kirbas and Cifci 2022). In this context, machine learning-based, deep
learning-based computer vision approaches can offer an important solution in the
development of faster and more accurate wood species identification methods.

Computer-aided machine vision-based systems based on visual and textural
features are gaining increasing interest for automatic wood species identification (Herrera-
Poyatos et al. 2024). Most machine vision-based identification systems have been
developed for use in laboratory environments (Tou et al. 2007; Khalid et al. 2008;
Hermanson et al. 2013). In Hermanson et al. (2013), XyloTron, a wood species
identification system with field application, was developed by the Forest Products
Laboratory of the United States Department of Agriculture (USDA). In recent years,
researchers have adapted deep learning approaches for feature extraction and classification
of tree images at different scales. Hafemann et al. (2014) constructed convolutional neural
network (CNN) models for classifying and identifying macroscopic (41 classes) and
microscopic (112 species) images of wood.

Tang et al. (2017) proposed automatic wood species identification methods with
macroscopic images of 60 tropical timber species. Kwon et al. (2017) developed an
automatic identification system to identify five different Korean softwood species. In these
studies, macroscopic images taken from the cross-section of the wood and recorded with a
digital camera or a smartphone camera were used. Ravindran et al. (2018) used transfer
learning method with CNN models to identify 10 neotropical species belonging to the
Meliaceae family. Machine learning and deep learning methods have been often used for
the classification of wood species. However, according to the current literature, there has
been no study on wood categorization with vision transformers (ViT), which is the subject
of this research.

Transformers are the name given to models that use a self-attention mechanism that
independently evaluates the importance of each component of the input data (Mauricio et
al. 2023). Transformers are models developed for the analysis of sequential data and have
achieved great success, especially due to their self-attention mechanism (Vaswani et al.
2017). These models optimize information transfer by considering the relationship between
each component of the input data. Transformers, which have made breakthroughs in fields,
such as natural language processing (NLP) and computer vision, are also widely used in
tasks, such as image classification and object detection, as an alternative to convolutional
neural networks (CNN) (Dosovitskiy et al. 2016). Multi-layer deep learning architectures,
such as CNN, have high GPU utilization (Kili¢ ef al. 2025). A similar situation also exists
in ViT approaches.

In recent years, the success of deep learning models in image classification has
enabled the development of new approaches for the identification and classification of
wood species. Transformer-based models have demonstrated high performance with their
attention mechanisms on visual data and broken new ground in the field of image
processing. In this study, automatic classification of wood species is considered using the
Vision Transformer (ViT) model. ViT offers more effective classification performance
compared to traditional CNN due to its attention mechanisms that analyze images in parts
and capture the global context. The study aims to demonstrate the adaptation of the ViT
model to the task of wood species classification and the advantages it provides in this
context.
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EXPERIMENTAL

Data Set

In this study, a database containing 112 different forest species, catalogued by the
Laboratory of Wood Anatomy of the Federal University of Parana, was used. Obtaining
the images had included the steps of softening the wood by boiling, cutting thin slices with
a microtome, coloring with the triple staining technique, dehydration with an alcohol series,
and recording the images with an Olympus Cx40 microscope at 100x magnification. A
total of 2,240 microscopic images were obtained in uncompressed PNG format and at a
resolution of 1024 x 768 pixels. The database contains species belonging to a total of 85
genera and 30 families, 37 of which are coniferous (23 genera, 8 families) and 75 leafy (62
genera, 22 families) (Filho et al. 2014). Table 1 shows softwood species (gymnosperms),

Table 2 shows hardwood species (angiosperms).

Examples of microscopic wood images used in the research are given in Fig. 1.

Fig. 1. Some examples of microscopic wood images used in the study: (a) Cedrela fissilis, (b) Ficus
gomelleira, (c) Tetraclinis articulata, and (d) Cedrus libani

Table 1. Softwood Species (Gymnosperms)

ID Family Genus Species ID Family Genus Species
1 Ginkgoaceae Ginkgo biloba 20 Pinaceae Cedrus atlantica
2 Araucariaceae Agathis beccarii 21 Pinaceae Cedrus libani
3 Araucariaceae Araucaria angustifolia | 22 Pinaceae Cedrus sp
4 Cephalotaxaceae Cephalotaxus drupacea 23 Pinaceae Keteleeria fortunei
5 Cephalotaxaceae Cephalotaxus harringtonia | 24 Pinaceae Picea abies
6 Cephalotaxaceae Torreya nucifera 25 Pinaceae Pinus arizonica
7 Cupressaceae Calocedrus decurrens 26 Pinaceae Pinus caribaea
8 Cupressaceae Chamaecyparis | formosensis | 27 Pinaceae Pinus elliottii
9 Cupressaceae Chamaecypatris pisifera 28 Pinaceae Pinus greggii
10 Cupressaceae Cupressus arizonica 29 Pinaceae Pinus maximinoi
11 Cupressaceae Cupressus lindleyi 30 Pinaceae Pinus taeda
12 Cupressaceae Fitzroya cupressoides | 31 Pinaceae Pseudotsuga macrolepsis
13 Pinaceae Larix laricina 32 Pinaceae Tsuga canadensis
14 Pinaceae Larix leptolepis 33 Pinaceae Tsuga sp
15 Pinaceae Larix sp 34 | Podocarpaceae Podocarpus lambertii
16 Cupressaceae Tetraclinis articulata 35 Taxaceae Taxus baccata
17 Cupressaceae Widdringtonia | cupressoides | 36 Taxodiaceae Sequoia sempervirens
18 Pinaceae Abies religiosa 37 Taxodiaceae Taxodium distichum
19 Pinaceae Abies vejarii
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Table 2. Hardwood Species (Angiosperms)

ID Family Genus Species ID Family Genus Species
38 Ephedraceae Ephedra californica 76 Lauraceae Nectandra sp

39 Lecythidaceae Cariniana estrellensis 77 Lauraceae Ocotea porosa
40 Lecythidaceae Couratari sp 78 Lauraceae Persea racemosa
41 Lecythidaceae Eschweilera matamata 79 Annonaceae Porcelia macrocarpa
42 Lecythidaceae Eschweilera chartacea 80 Magnoliaceae Magnolia grandifliora
43 Sapotaceae Chrysophyllum sp 81 Magnoliaceae Talauma ovata

44 Sapotaceae Micropholis guyanensis 82 | Melastomataceae Tibouchina sellowiana
45 Sapotaceae Pouteria pachycarpa 83 Myristicaceae Virola oleifera
46 | Fabaceae-Cae. Copaifera trapezifolia 84 Myrtaceae Campomanesia | xanthocarpa
47 | Fabaceae-Cae. Eperua falcata 85 Myrtaceae Eucalyptus globulus
48 | Fabaceae-Cae. Hymenaea courbaril 86 Myrtaceae Eucalyptus grandis
49 | Fabaceae-Cae. Hymenaea sp 87 Myrtaceae Eucalyptus saligna
50 | Fabaceae-Cae. Schizolobium parahyba 88 Myrtaceae Myrcia racemulosa
51 Fabaceae-Fab. Pterocarpus violaceus 89 Vochysiaceae Erisma uncinatum
52 | Fabaceae-Mim. Acacia tucunamensis 90 Vochysiaceae Qualea sp

53 | Fabaceae-Mim. | Anadenanthera colubrina 9 Vochysiaceae Vochysia laurifolia
54 | Fabaceae-Mim. | Anadenanthera peregrina 92 Proteaceae Grevillea robusta
55 | Fabaceae-Fab. Dalbergia jacaranda 93 Proteaceae Grevillea sp

56 | Fabaceae-Fab. Dalbergia spruceana 94 Proteaceae Roupala sp

57 Fabaceae-Fab. Dalbergia variabilis 95 Moraceae Bagassa gquianensis
58 | Fabaceae-Mim. Dinizia excelsa 96 Moraceae Brosimum alicastrum
59 | Fabaceae-Mim. Enterolobium schomburgkii 97 Moraceae Ficus gomelleira
60 | Fabaceae-Mim. Inga sessilis 98 Rhamnaceae Hovenia dulcis

61 | Fabaceae-Mim. Leucaena leucocephala 99 Rhamnaceae Rhamnus frangula
62 Fabaceae-Fab. Lonchocarpus | subglaucescens | 100 Rosaceae Prunus sellowii
63 | Fabaceae-Mim. Mimosa bimucronata 101 Rosaceae Prunus serotina
64 | Fabaceae-Mim. Mimosa scabrella 102 Rubiaceae Faramea occidentalis
65 | Fabaceae-Fab. Ormosia excelsa 103 Meliaceae Cabralea canjerana
66 | Fabaceae-Mim. | Parapiptadenia rigida 104 Meliaceae Carapa guianensis
67 | Fabaceae-Mim. Parkia multijuga 105 Meliaceae Cedrela fissilis
68 | Fabaceae-Mim. Piptadenia excelsa 106 Meliaceae Khaya ivorensis
69 | Fabaceae-Mim. Pithecellobium jupunba 107 Meliaceae Melia azedarach
70 Rubiaceae Psychotria carthagenensis | 108 Meliaceae Swietenia macrophylla
71 Rubiaceae Psychotria longipes 109 Rutaceae Balfourodendron | riedelianum
72 Bignoniaceae Tabebuia roseoalba 110 Rutaceae Citrus aurantium
73 Bignoniaceae Tabebuia sp 111 Rutaceae Fagara rhoifolia
74 Oleaceae Ligustrum lucidum 112 | Simaroubaceae Simarouba amara
75 Lauraceae Nectandra rigida

Preprocessing

Resize

In the first step, all input images were rescaled to 224 x 224 pixels with transforms.
Resize((224, 224)). This is necessary to adapt to the input sizes of models, such as the ViT,
and to achieve consistency in training. It also optimizes GPU memory usage and ensures
stability in data loading.

In the second step, the image was transformed into a PyTorch tensor with
transforms. ToTensor(). In this process, the color channel layout was converted from the
PIL format (height x width x channel) layout to the PyTorch format (channel x height x
width) layout, and the pixel values are normalized from the range [0, 255] to the range [0,

1.

In the last step, each pixel value was normalized with transforms. Normalize(mean,
std). Here, mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225], representing the
mean and standard deviation of RGB channels for the ImageNet dataset. This process
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allows the model to learn faster and more stably and improves performance when
performing transfer learning with models trained on ImageNet.
Augmentation

This research, which was carried out to categorize microscopic wood images using
ViT, aimed at creating more diversity in the training set of the model and to increase its
generalization ability through data augmentation processes. The images were sized as 224
X 224. Then, a horizontally symmetric version of each image was created with a 50%
probability by random horizontal flipping, allowing the model to recognize objects at
different orientations. With random rotation, each image was randomly rotated between -
20 and +20°, allowing the model to gain the ability to recognize objects at different angles.
In addition, color variation was added, and the features of each image such as brightness,
contrast, saturation and hue were randomly changed. In this way, the model can classify
correctly in different lighting conditions and color changes. Finally, each image was
normalized, allowing the model to learn faster and more accurately.

Data augmentation techniques were applied to prevent over-learning on the
training data and to increase the generalization ability of the model. In this context,
horizontal flip (RandomHorizontalFlip) with a 50% probability, random rotation between
-20° and +20° (RandomRotation) and ColorJitter (change in brightness, contrast, saturation
and hue values within the range of 0.2) were applied to each image during training. These
transformations were applied to each training example in a random order and together in
each epoch, thus increasing the model’s ability to learn against different variations.

These augmentation operations produced various alternatives for each image. For
example, horizontal flipping offers 2 alternatives for each image (original and flipped),
while rotation and color swapping can create many more alternatives for each image. In
this way, the training set, which initially started with 14 images, grew significantly, thanks
to the augmentation, thereby increasing the generalization capacity of the model and
reducing the risk of overfitting. According to the parameters used, 3 augmented images
were created for each original image, resulting in a total of 42 augmented images. Training
was performed with 56 images in each class, including the original images.

ViT-based Image Classification Methods

In 2017, the Google team proposed the Transformer structure based solely on the
Attention mechanism, abandoning the traditional CNN and RNN structures to solve
machine translation tasks. This innovative approach has become widely used in deep
learning. In 2020, the Google team proposed the ViT model by adapting the Transformer
structure to image classification tasks. The ViT reached a milestone in the application of
transformers in computer vision (CV) by offering strong scalability with its “simple” and
efficient design, and inspired subsequent research (Huo et al. 2023).

In this study, four different ViT-based models were used. Details, features, and
explanations of mathematical structures of each model are given below.

DeiT (Data-efficient image transformer) Base Patch16 224

The DeiT model is a model proposed by Touvron et al. (2021) and based on ViT.
DeiT is specifically focused on improving data efficiency and aims to achieve successful
performance with smaller data sets. The model is trained with the help of a “teacher model”
using distillation techniques.

Mathematically, the DeiT model is based on the standard ViT structure. The input
image is in the form of x € R*W*C where, H, W, C represent the image height, width, and
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number of channels, respectively. This image is divided into patches of a fixed size, 16 x
16 pixel patches. Each patch is vectorized as follows,

x, € RN*(P?:C) (1)

where P is the patch size and N = I:—ZV is the total number of patches. The following
operations are performed on the patches,

2o = [%p1 E; Xpa E; oo s XpnE| + Epos (2)

where E is a learnable matrix encoding patch features, and  E,,s the positional feature

matrix. Then, the processing is done with the multi-head attention mechanism and feed-
forward network.

Google ViT Base Patchl6 224

The original Vision Transformer model proposed by Google (Dosovitskiy et al.
2021) is a model that adapts the pure transformer structure to image classification tasks.
The original Vision Transformer model proposed by Google divides the input image into
patches and feeds these patches to an Encoder.

Patch transformation:

x, = Patchify(x), x,€ ]R(NX(PZ’C)) €))
Here, P denotes the patch size and N = I;—VZV denotes the total number of patches.

Attention Mechanism:
.
Attention(Q, K, V) = Softmax (%) %4 @)

Here, Q, K,V represent query, key, and value matrices, respectively dj, represents
dimensionality reduction.
Finally, the classification process is performed using the [CLS] token.

BEIT (Bidirectional encoder representations from images) Base Patchl6

The BEiT model (Bao et al. 2021) was developed with a pretraining method based
on masked image modeling. This method is an image-adapted version of masked language
modeling in language models.

Masked Patch Modeling:

y = arg m)?XP (y I xmasked) (5)

Here, x,,5eq denotes the masked patch input. BEiT learns image features by
estimating these masked patches.

Microsoft/swin-tiny-patch4-window7-224

Swin Transformer (Liu et al. 2021) performs the attention process within local
windows with the shifted window mechanism. It gathers broader context information by
scrolling between windows.

Attention Calculation:
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T
Attention(Q,K,V) = Softmax (%) Vw, (6)

Here, Q, K, V represent Query, Key, and Value matrices, respectively, Wy, Wy, Wy,
are the learnable weight matrices, dj, is the size of the key vectors, and Softmax is the
process that normalizes the distribution of attention.

Experimental Setup

In this experiment, different ViT models and data augmentation techniques were
used to solve the problem of categorizing wood images into 112 microscopic classes. In
these experiments performed on the NVIDIA Tesla T4 GPU on the Kaggle platform, three
different model architectures, DeiT, Google ViT, and BEiT, and Microsoft Swin
Transformer models, were optimized and used. All four models were loaded with pre-
trained versions of Hugging Face and adapted to visual classification tasks such as
microscopic wood categorization.

DeiT is an architecture specifically designed to provide data efficiency. This model
has the ability to perform better with less data. Google ViT has a unique architecture that
performs well on larger dataset sizes and is particularly successful on large datasets. BEiT,
on the other hand, is a model for learning contextual representations from visual data and
attracts attention with its transformer-based structures. Microsoft Swin Transformer uses a
window-based approach to rendering visual data. Swin Transformer is a hybrid model
designed to effectively learn local features and produce more efficient results. Dataset and
data separation, a dataset consisting of microscopic images with 112 classes was used. The
dataset is appropriately divided for training (70%), validation (15%), and testing (15%); 14
images for each class were divided into a training set, 3 images validation set and 3 images
testing set. When data augmentation is performed, the training set consists of 56 images.

Data augmentation: Various augmentations were applied to the training data to
increase the generalization ability of the model and prevent over-learning. In this way, the
size and diversity of the training set was increased, and the model was able to make more
accurate predictions under different conditions. In the validation and test sets, the actual
performance of the model was evaluated using only normal transformations.

The AdamW optimization algorithm was used in training the models. The learning
rate was initially set to 0.0001 and the weight decay value was 0.01. CrossEntropyLoss
was preferred as the loss function. The ReduceLROnPlateau strategy was applied to
automatically reduce the learning rate when the validation loss did not improve during
training. This mechanism reduces the learning rate by a factor of 0.1 when the validation
loss did not decrease for a certain period of time, allowing the model to learn more stably.
In order to prevent overfitting of the model, the early stopping mechanism was triggered
three times during the training period. In this way, the training process was stopped when
the validation loss did not show improvement for a certain period of time, thus preventing
unnecessary long training times and overlearning. A maximum of 10 epochs and batch size
= 8 were used in the training process. All experiments were conducted with the same
parameters, with the goal of ensuring equality.

The hardware and software environment accelerated the training process of the
model using the NVIDIA Tesla T4 GPU in the Kaggle environment. PyTorch framework
and Hugging Face Transformers libraries were used in the training process. Training,
validation and testing processes have been successfully completed with Python and related
libraries.
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This experimental setup aims to compare different transformer-based models and
investigate the impact of data augmentation techniques on model performance.

Evaluation metrics

In this research paper, commonly used metrics, namely Fl-score, accuracy,
precision, and recall, were used to evaluate the performance of machine learning
classification algorithms. The formulas used to calculate these metrics are presented in Egs.
(7 to 10), respectively.

2:Precision-Recall

F1 — Score = — (7)
Precision+Recall
TP+TN
Accuracy = TP+FN+FP+TN (8)
Precision = )
TP+FP
Recall = —=~ (10)
TP+FN

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative values, respectively.

RESULTS AND DISCUSSION

There have been no studies conducted with ViT in the existing literature regarding
wood categorization. There are different machine learning and deep learning approaches
to categorize wood images. ViT technologies are new computer vision technologies that
have been a research area in the last few years under the topic of deep learning.

The performances of ViT models were tested with different parameters. Table 3
presents the success of these models in categorizing images, while Table 4 shows the
categorization performance of the same models on augmented images.

Table 3. Performance of ViT Models in Categorizing Images

ViT Model Duration Precision Recall F1-Score | Accuracy
DeiT 12.32 min 0.9538 0.9315 0.9208 0.9315
Google ViT 12.30 min 0.9610 0.9464 0.9401 0.9464
BEIT 13.55 min 0.9536 0.9345 0.9206 0.9345
Microsoft Swin Transformer 4.53 min 0.9603 0.9435 0.9330 0.9435

Table 3 shows that the DeiT model was quite successful, with an accuracy of
93.15% in approximately 12.32 min. The model, which exhibited high performance with a
Precision value of 95.38% and a Recall value of 93.15%, also reached a value of 92.08%
in terms of F1-Score. Although Google ViT was just behind this model, it attracted
attention with its 94.64% accuracy and 96.10% precision values. Although BEiT lagged
behind other models, it delivered impressive results with 93.45% accuracy and 95.36%
precision. Microsoft Swin Transformer was the model that showed the best performance,
especially in terms of speed, with 94.35% accuracy and 96.03% precision, achieving high
accuracy in just 4.53 min.
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Table 4. Performance of ViT Models in Categorizing Augmented Images

ViT Model Duration Precision Recall F1-Score | Accuracy
DeiT 19.44 min 0.9911 0.9851 0.9820 0.9851
Google ViT 19.24 min 0.9955 0.9940 0.9939 0.9940
BEIT 21.04 min 0.9779 0.9643 0.9607 0.9643
Microsoft Swin Transformer 10.06 min 0.9913 0.9821 0.9790 0.9821

Table 4 demonstrates the performance of similar models in tests performed on
augmented images. Google ViT showed the highest success with 99.55% precision,
99.40% recall, and 99.39% F1-Score, and was the most successful result in this category
with 99.40% accuracy. Although other models were also successful, DeiT maintained its
high performance with an F1-Score of 98.51% and ranked second with an accuracy of
98.51%. BEiT and Microsoft Swin Transformer ranked third and fourth with an accuracy
01 96.43% and 98.21%, respectively. It is observed that the accuracy and F1-Score values
of all models increased significantly, especially in the augmented images, which shows
how data augmentation improves the model performance.

Studies on wood categorization in the existing literature are presented in Table 5.

Table 5. Studies on Wood Categorization

Study Method Number of Wood Accuracy Rate
Types
Hafemann et al. CNN 41 (macroscopic), 112 Macroscopic:
(2014) (microscopic) 95.77%,
Microscopic: 97.32%
Tang et al. (2017) CNN (Macroscopic 60 tropical timber 96.00%
Images) species
Kwon et al. (2017) Automatic 5 (softwood types) 99.30%
Identification System
Ravindran et al. CNN and Transfer 10 (family Meliaceae) 97.50%
(2018) Learning
He et al. (2021) CNN 41 macroscopic 98.81%
Wood Type VIiT tabanli modeller 112 classes of
Categorization with microscopic images 99.40%
ViT (This research)

In the study by Hafemann et al. (2014), 95.77% accuracy was achieved with
macroscopic images and 97.32% accuracy was achieved with microscopic images. These
are higher accuracy rates than achieved using traditional CNN. ViT-based models,
especially models, such as Google ViT, have outperformed these accuracy rates with
99.40% test accuracy rates. This suggests that ViT-based models may perform better on
more complex and larger datasets.

Tang et al. (2017) classified 60 tropical timber species with 96% accuracy using
macroscopic images. In this research, the ViT models used reached much higher accuracy
rates and 99.40% accuracy was reached with Google ViT. This difference is evidence that
ViT can perform better, especially in visual recognition tasks.

He et al. (2021) proposed an ensemble structure combining three deep CNN models
using magnified macroscopic wood images and achieved wood species identification with
up to 98.81% accuracy on two different datasets. CNN architectures perform quite well in
these subjects. However, studies using ViT approach among deep learning approaches are
gaining importance nowadays. Ensemble learning is difficult and time consuming. In this
proposed research, it is seen that only optimization yields highly successful results.
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Kwon et al. (2017) achieved 99.30% accuracy in identifying five different Korean
softwood species. In this study, the 99.40% accuracy obtained with ViT models shows that
ViT-based models offer superior success.

In Ravindran et al. (2018), 97.50% accuracy was achieved using CNN and transfer
learning methods. ViT models have achieved high success rates, especially with Google
ViT and DeiT, such as 99.40% accuracy and 98.51% accuracy, which once again confirms
the success of ViT-based models in transfer learning and large datasets.

The high accuracy, speed, and generalization capabilities provided by ViT-based
models, especially in visual recognition tasks, are quite promising for their applications in
the field of categorizing wood species. It is revealed that ViT-based models achieve much
higher accuracies in wood type classification compared to traditional methods and offer
advantages in terms of speed. This is a significant improvement over previous studies in
the literature and suggests that ViT-based models will become more common in future
applications.

CONCLUSIONS

1. The accuracy performances of ViT-based models achieved in this work were quite
high. While Google ViT exhibited the best performance with 99.40% accuracy, DeiT
(98.51%) and Microsoft Swin Transformer (98.21%) also attracted attention with their
high accuracy rates. These results indicate that ViT models offer overall strong
performance in visual recognition tasks such as wood type classification.

2. Intests with augmented images, a significant increase in accuracy of ViT-based models
of 3 to 5% was observed. This shows that data augmentation techniques improve the
generalization ability of the model and provide better results.

3. ViT-based models can flexibly achieve high accuracy on different image types and
classification tasks, making them suitable for various visual recognition applications.

4. Tt is envisaged that the method can be used and developed in areas such as wood
categorization and wood defect detection. It has shown higher speed and accuracy
performance compared to existing methods. It is anticipated that it can be used in many
areas in the wood industry.

5. The high accuracy, speed, and generalization capabilities provided by ViT-based
models offer great potential in field-applicable tasks such as wood species
identification and classification. The barriers to the use of such deep learning-based
systems in industry are gradually decreasing and it is expected to become more
widespread.

6. Microsoft Swin Transformer model exhibited the fastest training time of 10.06 minutes,
while the other models have approximately 19.44 minutes for DeiT, 19.24 minutes for
Google ViT, and 21.04 minutes for BEiT. The Swin Transformer completed the normal
classification task in approximately 50-66% shorter time compared to other models.
This time advantage was especially evident in the classification with augmented
images, indicating that the model can be used more efficiently in practical applications.
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