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Four Vision Transformer (ViT)-based models were optimized to classify 
microscopic wood images. The models were DeiT, Google ViT, BeiT, and 
Microsoft Swin Transformer. Training was performed on a set enriched 
with data augmentation techniques. The generalization ability of the model 
was strengthened by increasing the number of images for each class with 
data augmentation. The dataset used in the study consisted of 112 
different species belonging to 30 families, 37 of which were coniferous and 
75 were angiosperms. The samples had been softened, cut into thin 
sections, colored with the triple staining method, and imaged with fixed 
magnification. The Google ViT model was the most successful, with 
99.40% accuracy. The DeiT model, which stood out with its data efficiency, 
ranked second with 98.51% accuracy, while the BEiT and Microsoft Swin 
Transformer models reached 96.43% and 98.21% accuracy, respectively. 
The Microsoft Swin Transformer model required the least training time. 
Data augmentation techniques improved the performance of all models by 
3% to 5%, thus increasing the resistance of the models to overfitting and 
providing more robust predictions. It was found that ViT-based models 
gave superior performance in microscopic wood image classification tasks 
and that data augmentation significantly improved model performance.  
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INTRODUCTION 
 

Identification and classification of tree species is a critical and important step in 

understanding their biodiversity, role in the ecosystem, economic value, and cultural 

importance. It is of great importance to correctly identify the species to use wood correctly 

and efficiently (Wheeler and Baas 1998). Microscopic wood anatomy is a widely used 

basic method for the classification of coniferous and broad-leaved trees and has become 

more objective and scalable with modern image processing techniques (Filho et al. 2014). 

Species are usually easy to identify when organs, such as flowers, leaves, or seeds, are 

present. However, once the tree is processed, its identification can become quite 

challenging. In this case, identification is based solely on the macroscopic and microscopic 

properties of the wood (Khalid et al. 2008). Traditionally, professional woodworkers have 

classified wood based on macroscopic and microscopic features to identify wood species. 

However, these methods depend on the knowledge and experience of experts and can be 

time-consuming, impractical, costly, and inadequate for classification processes requiring 
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high accuracy (Mohan et al. 2014; Rajagopal et al. 2019). This poses a major problem, 

especially for industries where large quantities of wood species need to be identified in a 

short period of time (Kırbaş and Çifci 2022). In this context, machine learning-based, deep 

learning-based computer vision approaches can offer an important solution in the 

development of faster and more accurate wood species identification methods. 

Computer-aided machine vision-based systems based on visual and textural 

features are gaining increasing interest for automatic wood species identification (Herrera-

Poyatos et al. 2024). Most machine vision-based identification systems have been 

developed for use in laboratory environments (Tou et al. 2007; Khalid et al. 2008; 

Hermanson et al. 2013). In Hermanson et al. (2013), XyloTron, a wood species 

identification system with field application, was developed by the Forest Products 

Laboratory of the United States Department of Agriculture (USDA). In recent years, 

researchers have adapted deep learning approaches for feature extraction and classification 

of tree images at different scales. Hafemann et al. (2014) constructed convolutional neural 

network (CNN) models for classifying and identifying macroscopic (41 classes) and 

microscopic (112 species) images of wood. 

Tang et al. (2017) proposed automatic wood species identification methods with 

macroscopic images of 60 tropical timber species. Kwon et al. (2017) developed an 

automatic identification system to identify five different Korean softwood species. In these 

studies, macroscopic images taken from the cross-section of the wood and recorded with a 

digital camera or a smartphone camera were used. Ravindran et al. (2018) used transfer 

learning method with CNN models to identify 10 neotropical species belonging to the 

Meliaceae family. Machine learning and deep learning methods have been often used for 

the classification of wood species. However, according to the current literature, there has 

been no study on wood categorization with vision transformers (ViT), which is the subject 

of this research. 

Transformers are the name given to models that use a self-attention mechanism that 

independently evaluates the importance of each component of the input data (Maurício et 

al. 2023). Transformers are models developed for the analysis of sequential data and have 

achieved great success, especially due to their self-attention mechanism (Vaswani et al. 

2017). These models optimize information transfer by considering the relationship between 

each component of the input data. Transformers, which have made breakthroughs in fields, 

such as natural language processing (NLP) and computer vision, are also widely used in 

tasks, such as image classification and object detection, as an alternative to convolutional 

neural networks (CNN) (Dosovitskiy et al. 2016). Multi-layer deep learning architectures, 

such as CNN, have high GPU utilization (Kılıç et al. 2025). A similar situation also exists 

in ViT approaches. 

In recent years, the success of deep learning models in image classification has 

enabled the development of new approaches for the identification and classification of 

wood species. Transformer-based models have demonstrated high performance with their 

attention mechanisms on visual data and broken new ground in the field of image 

processing. In this study, automatic classification of wood species is considered using the 

Vision Transformer (ViT) model. ViT offers more effective classification performance 

compared to traditional CNN due to its attention mechanisms that analyze images in parts 

and capture the global context. The study aims to demonstrate the adaptation of the ViT 

model to the task of wood species classification and the advantages it provides in this 

context. 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Kılıç (2025). “Wood species categorization with ViT,” BioResources 20(3), 6394-6405.  6396 

EXPERIMENTAL 
 

Data Set 
 In this study, a database containing 112 different forest species, catalogued by the 

Laboratory of Wood Anatomy of the Federal University of Parana, was used. Obtaining 

the images had included the steps of softening the wood by boiling, cutting thin slices with 

a microtome, coloring with the triple staining technique, dehydration with an alcohol series, 

and recording the images with an Olympus Cx40 microscope at 100× magnification. A 

total of 2,240 microscopic images were obtained in uncompressed PNG format and at a 

resolution of 1024 x 768 pixels. The database contains species belonging to a total of 85 

genera and 30 families, 37 of which are coniferous (23 genera, 8 families) and 75 leafy (62 

genera, 22 families) (Filho et al. 2014). Table 1 shows softwood species (gymnosperms), 

Table 2 shows hardwood species (angiosperms). 

Examples of microscopic wood images used in the research are given in Fig. 1.           

        

 
 

Fig. 1. Some examples of microscopic wood images used in the study: (a) Cedrela fissilis, (b) Ficus 
gomelleira, (c) Tetraclinis articulata, and (d) Cedrus libani 

 

Table 1. Softwood Species (Gymnosperms) 

ID Family Genus Species ID Family Genus Species 
1 Ginkgoaceae Ginkgo biloba 20 Pinaceae Cedrus atlantica 

2 Araucariaceae Agathis beccarii 21 Pinaceae Cedrus libani 

3 Araucariaceae Araucaria angustifolia 22 Pinaceae Cedrus sp 

4 Cephalotaxaceae Cephalotaxus drupacea 23 Pinaceae Keteleeria fortunei 

5 Cephalotaxaceae Cephalotaxus harringtonia 24 Pinaceae Picea abies 

6 Cephalotaxaceae Torreya nucifera 25 Pinaceae Pinus arizonica 

7 Cupressaceae Calocedrus decurrens 26 Pinaceae Pinus caribaea 

8 Cupressaceae Chamaecyparis formosensis 27 Pinaceae Pinus elliottii 

9 Cupressaceae Chamaecyparis pisifera 28 Pinaceae Pinus greggii 

10 Cupressaceae Cupressus arizonica 29 Pinaceae Pinus maximinoi 

11 Cupressaceae Cupressus lindleyi 30 Pinaceae Pinus taeda 

12 Cupressaceae Fitzroya cupressoides 31 Pinaceae Pseudotsuga macrolepsis 

13 Pinaceae Larix laricina 32 Pinaceae Tsuga canadensis 

14 Pinaceae Larix leptolepis 33 Pinaceae Tsuga sp 

15 Pinaceae Larix sp 34 Podocarpaceae Podocarpus lambertii 

16 Cupressaceae Tetraclinis articulata 35 Taxaceae Taxus baccata 

17 Cupressaceae Widdringtonia cupressoides 36 Taxodiaceae Sequoia sempervirens 

18 Pinaceae Abies religiosa 37 Taxodiaceae Taxodium distichum 

19 Pinaceae Abies vejarii  
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Table 2. Hardwood Species (Angiosperms) 

ID Family Genus Species ID Family Genus Species 
38 Ephedraceae Ephedra californica 76 Lauraceae Nectandra sp 

39 Lecythidaceae Cariniana estrellensis 77 Lauraceae Ocotea porosa 

40 Lecythidaceae Couratari sp 78 Lauraceae Persea racemosa 

41 Lecythidaceae Eschweilera matamata 79 Annonaceae Porcelia macrocarpa 

42 Lecythidaceae Eschweilera chartacea 80 Magnoliaceae Magnolia grandiflora 

43 Sapotaceae Chrysophyllum sp 81 Magnoliaceae Talauma ovata 

44 Sapotaceae Micropholis guyanensis 82 Melastomataceae Tibouchina sellowiana 

45 Sapotaceae Pouteria pachycarpa 83 Myristicaceae Virola oleifera 

46 Fabaceae-Cae. Copaifera trapezifolia 84 Myrtaceae Campomanesia xanthocarpa 

47 Fabaceae-Cae. Eperua falcata 85 Myrtaceae Eucalyptus globulus 

48 Fabaceae-Cae. Hymenaea courbaril 86 Myrtaceae Eucalyptus grandis 

49 Fabaceae-Cae. Hymenaea sp 87 Myrtaceae Eucalyptus saligna 

50 Fabaceae-Cae. Schizolobium parahyba 88 Myrtaceae Myrcia racemulosa 

51 Fabaceae-Fab. Pterocarpus violaceus 89 Vochysiaceae Erisma uncinatum 

52 Fabaceae-Mim. Acacia tucunamensis 90 Vochysiaceae Qualea sp 

53 Fabaceae-Mim. Anadenanthera colubrina 91 Vochysiaceae Vochysia laurifolia 

54 Fabaceae-Mim. Anadenanthera peregrina 92 Proteaceae Grevillea robusta 

55 Fabaceae-Fab. Dalbergia jacaranda 93 Proteaceae Grevillea sp 

56 Fabaceae-Fab. Dalbergia spruceana 94 Proteaceae Roupala sp 

57 Fabaceae-Fab. Dalbergia variabilis 95 Moraceae Bagassa guianensis 

58 Fabaceae-Mim. Dinizia excelsa 96 Moraceae Brosimum alicastrum 

59 Fabaceae-Mim. Enterolobium schomburgkii 97 Moraceae Ficus gomelleira 

60 Fabaceae-Mim. Inga sessilis 98 Rhamnaceae Hovenia dulcis 

61 Fabaceae-Mim. Leucaena leucocephala 99 Rhamnaceae Rhamnus frangula 

62 Fabaceae-Fab. Lonchocarpus subglaucescens 100 Rosaceae Prunus sellowii 

63 Fabaceae-Mim. Mimosa bimucronata 101 Rosaceae Prunus serotina 

64 Fabaceae-Mim. Mimosa scabrella 102 Rubiaceae Faramea occidentalis 

65 Fabaceae-Fab. Ormosia excelsa 103 Meliaceae Cabralea canjerana 

66 Fabaceae-Mim. Parapiptadenia rigida 104 Meliaceae Carapa guianensis 

67 Fabaceae-Mim. Parkia multijuga 105 Meliaceae Cedrela fissilis 

68 Fabaceae-Mim. Piptadenia excelsa 106 Meliaceae Khaya ivorensis 

69 Fabaceae-Mim. Pithecellobium jupunba 107 Meliaceae Melia azedarach 

70 Rubiaceae Psychotria carthagenensis 108 Meliaceae Swietenia macrophylla 

71 Rubiaceae Psychotria longipes 109 Rutaceae Balfourodendron riedelianum 

72 Bignoniaceae Tabebuia roseoalba 110 Rutaceae Citrus aurantium 

73 Bignoniaceae Tabebuia sp 111 Rutaceae Fagara rhoifolia 

74 Oleaceae Ligustrum lucidum 112 Simaroubaceae Simarouba amara 

75 Lauraceae Nectandra rigida  

 
Preprocessing 
Resize 

In the first step, all input images were rescaled to 224 x 224 pixels with transforms. 

Resize((224, 224)). This is necessary to adapt to the input sizes of models, such as the ViT, 

and to achieve consistency in training. It also optimizes GPU memory usage and ensures 

stability in data loading. 

In the second step, the image was transformed into a PyTorch tensor with 

transforms. ToTensor(). In this process, the color channel layout was converted from the 

PIL format (height x width x channel) layout to the PyTorch format (channel x height x 

width) layout, and the pixel values are normalized from the range [0, 255] to the range [0, 

1]. 

In the last step, each pixel value was normalized with transforms. Normalize(mean, 

std). Here, mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225], representing the 

mean and standard deviation of RGB channels for the ImageNet dataset. This process 
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allows the model to learn faster and more stably and improves performance when 

performing transfer learning with models trained on ImageNet. 

Augmentation 

 This research, which was carried out to categorize microscopic wood images using 

ViT, aimed at creating more diversity in the training set of the model and to increase its 

generalization ability through data augmentation processes. The images were sized as 224 

x 224. Then, a horizontally symmetric version of each image was created with a 50% 

probability by random horizontal flipping, allowing the model to recognize objects at 

different orientations. With random rotation, each image was randomly rotated between -

20 and +20°, allowing the model to gain the ability to recognize objects at different angles. 

In addition, color variation was added, and the features of each image such as brightness, 

contrast, saturation and hue were randomly changed. In this way, the model can classify 

correctly in different lighting conditions and color changes. Finally, each image was 

normalized, allowing the model to learn faster and more accurately. 

Data augmentation techniques were applied to prevent over-learning on the 

training data and to increase the generalization ability of the model. In this context, 

horizontal flip (RandomHorizontalFlip) with a 50% probability, random rotation between 

-20° and +20° (RandomRotation) and ColorJitter (change in brightness, contrast, saturation 

and hue values within the range of 0.2) were applied to each image during training. These 

transformations were applied to each training example in a random order and together in 

each epoch, thus increasing the model’s ability to learn against different variations. 

These augmentation operations produced various alternatives for each image. For 

example, horizontal flipping offers 2 alternatives for each image (original and flipped), 

while rotation and color swapping can create many more alternatives for each image. In 

this way, the training set, which initially started with 14 images, grew significantly, thanks 

to the augmentation, thereby increasing the generalization capacity of the model and 

reducing the risk of overfitting. According to the parameters used, 3 augmented images 

were created for each original image, resulting in a total of 42 augmented images. Training 

was performed with 56 images in each class, including the original images. 

 

ViT-based Image Classification Methods 
In 2017, the Google team proposed the Transformer structure based solely on the 

Attention mechanism, abandoning the traditional CNN and RNN structures to solve 

machine translation tasks. This innovative approach has become widely used in deep 

learning. In 2020, the Google team proposed the ViT model by adapting the Transformer 

structure to image classification tasks. The ViT reached a milestone in the application of 

transformers in computer vision (CV) by offering strong scalability with its “simple” and 

efficient design, and inspired subsequent research (Huo et al. 2023). 

In this study, four different ViT-based models were used. Details, features, and 

explanations of mathematical structures of each model are given below. 

 

DeiT (Data-efficient ımage transformer) Base Patch16 224 

 The DeiT model is a model proposed by Touvron et al. (2021) and based on ViT. 

DeiT is specifically focused on improving data efficiency and aims to achieve successful 

performance with smaller data sets. The model is trained with the help of a “teacher model” 

using distillation techniques. 

Mathematically, the DeiT model is based on the standard ViT structure. The input 

image is in the form of 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 where, 𝐻,𝑊, 𝐶 represent the image height, width, and 
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number of channels, respectively. This image is divided into patches of a fixed size, 16 × 

16 pixel patches. Each patch is vectorized as follows, 

𝑥𝑝 ∈ 𝑅𝑁×(𝑃2⋅𝐶)                                                           (1) 

where P is the patch size and 𝑁 =
𝐻⋅𝑊

𝑃2
 is the total number of patches. The following 

operations are performed on the patches, 

𝑧0 = [𝑥𝑝1𝐸; 𝑥𝑝2𝐸;… ; 𝑥𝑝𝑁𝐸] + 𝐸pos                                         (2) 

where 𝐸 is a learnable matrix encoding patch features, and 𝐸pos the positional feature 

matrix. Then, the processing is done with the multi-head attention mechanism and feed-

forward network. 

 

Google ViT Base Patch16 224 

The original Vision Transformer model proposed by Google (Dosovitskiy et al. 

2021) is a model that adapts the pure transformer structure to image classification tasks. 

The original Vision Transformer model proposed by Google divides the input image into 

patches and feeds these patches to an Encoder. 

Patch transformation: 

𝑥𝑝 = 𝑃𝑎𝑡𝑐ℎ𝑖𝑓𝑦(𝑥),     𝑥𝑝 ∈ ℝ(𝑁×(𝑃2⋅𝐶))
                                     (3) 

Here, 𝑃 denotes the patch size and 𝑁 =
𝐻𝑊

𝑃2
 denotes the total number of patches. 

Attention Mechanism: 

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾⊤

√𝑑𝑘
)𝑉                                       (4) 

Here, 𝑄,𝐾, 𝑉 represent query, key, and value matrices, respectively 𝑑𝑘, represents 

dimensionality reduction. 

Finally, the classification process is performed using the [CLS] token. 

 

BEiT (Bidirectional encoder representations from ımages) Base Patch16 

The BEiT model (Bao et al. 2021) was developed with a pretraining method based 

on masked image modeling. This method is an image-adapted version of masked language 

modeling in language models. 

Masked Patch Modeling: 

𝑦̂ = argmax
𝑦

𝑃 ( 𝑦 ∣∣ 𝑥masked )                                                (5) 

Here, 𝑥masked denotes the masked patch input. BEiT learns image features by 

estimating these masked patches. 

 

Microsoft/swin-tiny-patch4-window7-224 

 Swin Transformer (Liu et al. 2021) performs the attention process within local 

windows with the shifted window mechanism. It gathers broader context information by 

scrolling between windows. 

 Attention Calculation: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑊𝑄⋅𝐾𝑊𝐾

𝑇

√𝑑𝑘
)𝑉𝑊𝑉                             (6) 

Here, 𝑄,𝐾, 𝑉 represent Query, Key, and Value matrices, respectively, 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 

are the learnable weight matrices, 𝑑𝑘 is the size of the key vectors, and 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 is the 

process that normalizes the distribution of attention. 

 

Experimental Setup 
In this experiment, different ViT models and data augmentation techniques were 

used to solve the problem of categorizing wood images into 112 microscopic classes. In 

these experiments performed on the NVIDIA Tesla T4 GPU on the Kaggle platform, three 

different model architectures, DeiT, Google ViT, and BEiT, and Microsoft Swin 

Transformer models, were optimized and used. All four models were loaded with pre-

trained versions of Hugging Face and adapted to visual classification tasks such as 

microscopic wood categorization. 

DeiT is an architecture specifically designed to provide data efficiency. This model 

has the ability to perform better with less data. Google ViT has a unique architecture that 

performs well on larger dataset sizes and is particularly successful on large datasets. BEiT, 

on the other hand, is a model for learning contextual representations from visual data and 

attracts attention with its transformer-based structures. Microsoft Swin Transformer uses a 

window-based approach to rendering visual data. Swin Transformer is a hybrid model 

designed to effectively learn local features and produce more efficient results. Dataset and 

data separation, a dataset consisting of microscopic images with 112 classes was used. The 

dataset is appropriately divided for training (70%), validation (15%), and testing (15%); 14 

images for each class were divided into a training set, 3 images validation set and 3 images 

testing set. When data augmentation is performed, the training set consists of 56 images. 

Data augmentation: Various augmentations were applied to the training data to 

increase the generalization ability of the model and prevent over-learning. In this way, the 

size and diversity of the training set was increased, and the model was able to make more 

accurate predictions under different conditions. In the validation and test sets, the actual 

performance of the model was evaluated using only normal transformations. 

The AdamW optimization algorithm was used in training the models. The learning 

rate was initially set to 0.0001 and the weight decay value was 0.01. CrossEntropyLoss 

was preferred as the loss function. The ReduceLROnPlateau strategy was applied to 

automatically reduce the learning rate when the validation loss did not improve during 

training. This mechanism reduces the learning rate by a factor of 0.1 when the validation 

loss did not decrease for a certain period of time, allowing the model to learn more stably. 

In order to prevent overfitting of the model, the early stopping mechanism was triggered 

three times during the training period. In this way, the training process was stopped when 

the validation loss did not show improvement for a certain period of time, thus preventing 

unnecessary long training times and overlearning. A maximum of 10 epochs and batch size 

= 8 were used in the training process. All experiments were conducted with the same 

parameters, with the goal of ensuring equality.  

The hardware and software environment accelerated the training process of the 

model using the NVIDIA Tesla T4 GPU in the Kaggle environment. PyTorch framework 

and Hugging Face Transformers libraries were used in the training process. Training, 

validation and testing processes have been successfully completed with Python and related 

libraries. 
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This experimental setup aims to compare different transformer-based models and 

investigate the impact of data augmentation techniques on model performance. 

 

Evaluation metrics 

 In this research paper, commonly used metrics, namely F1-score, accuracy, 

precision, and recall, were used to evaluate the performance of machine learning 

classification algorithms. The formulas used to calculate these metrics are presented in Eqs. 

(7 to 10), respectively. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                           (7)  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
                                            (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                     (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                           (10) 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 

negative values, respectively. 

 
RESULTS AND DISCUSSION 
  

 There have been no studies conducted with ViT in the existing literature regarding 

wood categorization. There are different machine learning and deep learning approaches 

to categorize wood images. ViT technologies are new computer vision technologies that 

have been a research area in the last few years under the topic of deep learning. 

 The performances of ViT models were tested with different parameters. Table 3 

presents the success of these models in categorizing images, while Table 4 shows the 

categorization performance of the same models on augmented images. 

 

Table 3. Performance of ViT Models in Categorizing Images 

ViT Model Duration Precision Recall F1-Score Accuracy 
DeiT 12.32 min 0.9538 0.9315 0.9208 0.9315 

Google ViT 12.30 min 0.9610 0.9464 0.9401 0.9464 

BEiT 13.55 min 0.9536 0.9345 0.9206 0.9345 

Microsoft Swin Transformer 4.53 min 0.9603 0.9435 0.9330 0.9435 

 

 Table 3 shows that the DeiT model was quite successful, with an accuracy of 

93.15% in approximately 12.32 min. The model, which exhibited high performance with a 

Precision value of 95.38% and a Recall value of 93.15%, also reached a value of 92.08% 

in terms of F1-Score. Although Google ViT was just behind this model, it attracted 

attention with its 94.64% accuracy and 96.10% precision values. Although BEiT lagged 

behind other models, it delivered impressive results with 93.45% accuracy and 95.36% 

precision. Microsoft Swin Transformer was the model that showed the best performance, 

especially in terms of speed, with 94.35% accuracy and 96.03% precision, achieving high 

accuracy in just 4.53 min. 
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Table 4. Performance of ViT Models in Categorizing Augmented Images 

ViT Model Duration Precision Recall F1-Score Accuracy 
DeiT 19.44 min  0.9911 0.9851 0.9820 0.9851 

Google ViT 19.24 min 0.9955 0.9940 0.9939 0.9940 

BEiT 21.04 min 0.9779 0.9643 0.9607 0.9643 

Microsoft Swin Transformer 10.06 min 0.9913 0.9821 0.9790 0.9821 

 Table 4 demonstrates the performance of similar models in tests performed on 

augmented images. Google ViT showed the highest success with 99.55% precision, 

99.40% recall, and 99.39% F1-Score, and was the most successful result in this category 

with 99.40% accuracy. Although other models were also successful, DeiT maintained its 

high performance with an F1-Score of 98.51% and ranked second with an accuracy of 

98.51%. BEiT and Microsoft Swin Transformer ranked third and fourth with an accuracy 

of 96.43% and 98.21%, respectively. It is observed that the accuracy and F1-Score values 

of all models increased significantly, especially in the augmented images, which shows 

how data augmentation improves the model performance. 

 Studies on wood categorization in the existing literature are presented in Table 5. 

 

Table 5. Studies on Wood Categorization 

Study Method Number of Wood 
Types 

Accuracy Rate 

Hafemann et al. 
(2014) 

CNN 41 (macroscopic), 112 
(microscopic) 

Macroscopic: 
95.77%, 

Microscopic: 97.32% 

Tang et al. (2017) CNN (Macroscopic 
Images) 

60 tropical timber 
species 

96.00% 

Kwon et al. (2017) Automatic 
Identification System 

5 (softwood types) 99.30% 

Ravindran et al. 
(2018) 

CNN and Transfer 
Learning 

10 (family Meliaceae) 97.50% 

He et al. (2021) CNN 41 macroscopic 98.81% 

Wood Type 
Categorization with 
ViT (This research) 

ViT tabanlı modeller 112 classes of 
microscopic images 

 
99.40% 

  

 In the study by Hafemann et al. (2014), 95.77% accuracy was achieved with 

macroscopic images and 97.32% accuracy was achieved with microscopic images. These 

are higher accuracy rates than achieved using traditional CNN. ViT-based models, 

especially models, such as Google ViT, have outperformed these accuracy rates with 

99.40% test accuracy rates. This suggests that ViT-based models may perform better on 

more complex and larger datasets. 

 Tang et al. (2017) classified 60 tropical timber species with 96% accuracy using 

macroscopic images. In this research, the ViT models used reached much higher accuracy 

rates and 99.40% accuracy was reached with Google ViT. This difference is evidence that 

ViT can perform better, especially in visual recognition tasks. 

 He et al. (2021) proposed an ensemble structure combining three deep CNN models 

using magnified macroscopic wood images and achieved wood species identification with 

up to 98.81% accuracy on two different datasets. CNN architectures perform quite well in 

these subjects. However, studies using ViT approach among deep learning approaches are 

gaining importance nowadays. Ensemble learning is difficult and time consuming. In this 

proposed research, it is seen that only optimization yields highly successful results. 
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 Kwon et al. (2017) achieved 99.30% accuracy in identifying five different Korean 

softwood species. In this study, the 99.40% accuracy obtained with ViT models shows that 

ViT-based models offer superior success. 

 In Ravindran et al. (2018), 97.50% accuracy was achieved using CNN and transfer 

learning methods. ViT models have achieved high success rates, especially with Google 

ViT and DeiT, such as 99.40% accuracy and 98.51% accuracy, which once again confirms 

the success of ViT-based models in transfer learning and large datasets. 

 The high accuracy, speed, and generalization capabilities provided by ViT-based 

models, especially in visual recognition tasks, are quite promising for their applications in 

the field of categorizing wood species. It is revealed that ViT-based models achieve much 

higher accuracies in wood type classification compared to traditional methods and offer 

advantages in terms of speed.  This is a significant improvement over previous studies in 

the literature and suggests that ViT-based models will become more common in future 

applications. 

 

 

CONCLUSIONS 
 

1. The accuracy performances of ViT-based models achieved in this work were quite 

high. While Google ViT exhibited the best performance with 99.40% accuracy, DeiT 

(98.51%) and Microsoft Swin Transformer (98.21%) also attracted attention with their 

high accuracy rates. These results indicate that ViT models offer overall strong 

performance in visual recognition tasks such as wood type classification. 

2. In tests with augmented images, a significant increase in accuracy of ViT-based models 

of 3 to 5% was observed. This shows that data augmentation techniques improve the 

generalization ability of the model and provide better results. 

3. ViT-based models can flexibly achieve high accuracy on different image types and 

classification tasks, making them suitable for various visual recognition applications. 

4. It is envisaged that the method can be used and developed in areas such as wood 

categorization and wood defect detection. It has shown higher speed and accuracy 

performance compared to existing methods. It is anticipated that it can be used in many 

areas in the wood industry. 

5. The high accuracy, speed, and generalization capabilities provided by ViT-based 

models offer great potential in field-applicable tasks such as wood species 

identification and classification. The barriers to the use of such deep learning-based 

systems in industry are gradually decreasing and it is expected to become more 

widespread. 

6. Microsoft Swin Transformer model exhibited the fastest training time of 10.06 minutes, 

while the other models have approximately 19.44 minutes for DeiT, 19.24 minutes for 

Google ViT, and 21.04 minutes for BEiT. The Swin Transformer completed the normal 

classification task in approximately 50-66% shorter time compared to other models. 

This time advantage was especially evident in the classification with augmented 

images, indicating that the model can be used more efficiently in practical applications. 
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