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who prefer to rely on coatings and wood products for exterior surfaces of 
buildings and other exterior wood items. 
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INTRODUCTION 
  

According to the National Association of Home Builders, most single-family 

houses in the US are being sided (or “clad”) with such products as vinyl siding (25.6%), 

fiber cement (21.7%), or brick-like materials (18.5%), leaving only about 5% of wood-

clad houses (NAHB 2024). Back in 2000, wood comprised about 13% of the share. For 

the wood industry and the paint industry, this circumstance highlights both a challenge 

and an opportunity. On the one hand, many builders and homeowners have come to the 

conclusion that non-wood siding represents a better investment than painted wood 

exteriors. But on the other hand, painted wood still represents a major category that can 

offer attractive prices, workability, and a sense of familiarity. This review article 

considers factors affecting the durability of outdoor-applied finishes for wood surfaces. 

 

Goal: Protection of Exterior Wood 
 The damage that can happen to wood that is exposed to outdoor weather, 

including mold and insect attack, has been covered in earlier review articles (Feist 1996; 

Kropat et al. 2020). For instance, it is well known that exposure of wood to ultraviolet 

light, in combination with periodic rain, will result in weathered wood, which involves 

depletion of lignin in the outermost layer (Williams et al. 1996; Kropat et al. 2020; 

Gurleyen 2021). Cycles of repeated wetting and drying of wood that is exposed outdoors 

can be expected to develop periodic cracks, which are known as checking (Nejad and 

Cooper 2011; Lestari et al. 2020). Boards exposed to periodic rain, followed by drying, 

also can develop cupping, in which the last-dried side may shrink in comparison to the 

rest of the material, leading to a concave shape exposed outwards (Fufa et al. 2012). 

In cases where wood remains moist for a long time, or if it is near to soil, mildew 

and rot may proliferate (Bjurman 1992; Brischke et al. 2006; van Meel et al. 2011). 

Fungal species typically play a leading role in the decay of wood (Goodell 2003; Cogulet 

et al. 2018a), though bacteria also are expected to be involved (Clausen 1996). Wood that 

is near to soil also can be subject to attack by termites, which chew tunnels into the wood 

and build nests (Remadevi et al. 2015). In cases where the wood surface has been 

covered by a coating layer, exposure to outdoor conditions may eventually lead to flaking 

(Williams and Feist 1993), after which at least a portion of the wood becomes directly 

exposed to the weather. 

 

Hypotheses 
For the purpose of focusing attention on some important issues, a series of 

hypotheses, as follows, will be considered in this article (Fig. 1):  

1. The durability of the coating layer itself, including its resistance to cracking, flaking, 

and peeling, is of paramount importance, since without such strength and adhesion to 

the wood surface, it will not remain present to provide its other functions. 

2. Finish formulations for outdoor application need to contain a component capable of 

absorbing ultraviolet light, so as to protect the lignin in the outermost wood layer 

(about 1 mm) from photochemical degradation (Williams et al. 1996). 

3. Finish formulations for outdoor application need to contain sufficient hydrophobic 

resin component to prevent liquid water (from rain) from contacting the wood 

directly. 
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4. Biocidal, including antifungal, antibacterial, and insect-resistant treatments can play 

significant roles in extending the useful lifetime of wood finish in outdoor 

applications. 

5. The formulation of a wood coating for outdoor applications can significantly affect its 

outward appearance both initially and during its period of use.  

6. By investing more in the quality of wood preparation and in the composition of the 

coating layer formulations, there is potential to greatly increase the length of time 

during which a wood coating can effectively protect wood that is exposed outdoors.  

 
 

Fig. 1. Some hypotheses regarding how exterior wood can be better protected by improvements 
involving coating technology and its optimized application 

 

Published Reviews: Finishing for Wood Protection 
 Table 1 lists some key themes of review articles and books that have dealt with 

various aspects of outdoor wood finish applications.  

 

Table 1. Review Articles and Books Dealing with Aspects of Outdoor Wood 
Coatings 
 

Themes of Publications Citation 

External wood finishing & water-repellent coatings Feist & Mraz 1978 

Durability of external wood finishes Feist & Mraz 1980 

Selection, application, & maintenance of coatings Cassens & Feist 1986 

Water-repellent preservatives for wood pre-coating Feist 1990 

Painting and finishing of exterior wood Feist 1996 

Finishes for external wood usage (book) Williams et al. 1996 

Guide for selection of finishes for various applications Bonura et al. 2004 

Acetylation of wood, followed by its coating Rowel & Bongers 2015 

Exterior wood coatings Nejad & Cooper 2017 

Clear coatings to protect against wood weathering Cogulet et al. 2018b 

Bio-based finishes for exterior wood Teaca et al. 2019 

Nanomaterials & antimicrobial paints Ganguli & Chaudhuri 2021 

Multifunctional wood coatings with nanomaterials Wang et al. 2023 

Principles and mechanisms of wood coating systems Hubbe and Laleicke 2025 

 



 

REVIEW ARTICLE bioresources.cnr.ncsu.edu 

 

 

Laleicke & Hubbe (2025). “External wood coating,” BioResources 20(3), 7903-7982.  7906 

The first six items listed in Table 1, covering a period from 1978 through 1996, 

all were written by researchers at the Forest Products Research Laboratory of the Forest 

Service, a division of US Department of Agriculture. Review articles from other sources 

dealing with outdoor application of wood coatings did not begin to appear until 2004, 

though there has been an acceleration in the most recent decade. 

 

 

BACKGROUND OF DAMAGE TO OUTDOOR WOOD 
 
Overview of Wood Weathering and Decay  
 Within the category of wood weathering, this review article will be ultimately 

concerned with what has been called “natural weathering” of coated wood, i.e., that 

which occurs under typical outdoor conditions (Feist 1982a, 1983, 1988, 1994). This is 

an important distinction, since many similar effects can be achieved by artificial or 

“accelerated” weathering and by various approaches intended to simulate the effects of 

weathering relative to the outward appearance of wood surfaces (Kropat et al. 2020). The 

purpose of accelerated weathering is to enable more rapid and reproducible testing, 

especially in the case of newly developed coatings for outdoor applications of wood. 

 
Natural weathering 

 As noted by Cogulet et al. (2018b), wood weathering can be attributed to the 

combined effects of light irradiation (especially the ultraviolet component), water, 

oxygen, temperature, and the colonization of wood by fungi. Striking photographs of 

weathered wood have been presented by Williams et al. (1996). One of the most 

noticeable effects of weathering is a change of color. Often the color undergoes a two-

stage transition, initially acquiring a redder tone, and thereafter tending to become grayer 

and bluer (Kropat et al. 2020). The first part of this transition is understood to involve 

changes in the molecular structure of the lignin component of wood, such that the 

absorption of light in the visible range is increased in transient ways. The second part has 

been generally attributed to the gradual depletion of lignin in the outermost 1 mm or so of 

wood, due to its photochemical breakdown, followed by the leaching action of water. The 

color of weathered wood usually is also affected by the colonization of the surface by 

blue-stain fungus, which takes its name from the color of the fungal hyphae.  

  
Artificial weathering 

Although resistance to genuine outdoor conditions is the true test of a wood 

finish, weather conditions are subject to huge variability. Artificial weathering equipment 

and procedures can overcome such problems, but the outcomes can be expected to show 

some characteristic differences from natural weathering. In particular, wood that has been 

exposed to cycles of ultraviolet light and water spray in a chamber generally will not 

experience any fungal infestation (Kropat et al. 2020). On the other hand, artificial 

weathering tests have made it possible to evaluate a wide range of wood coatings under 

controlled conditions (Cogulet et al. 2019). For instance, Cogulet et al. (2019) were able 

to demonstrate that ultraviolet light plays a critical role in the weathering of wood. 

Likewise, de Mesquite et al. (2020) were able to document changes in lignin structure, by 

means of infrared spectrometry, following artificial weathering. Hinderliter and Sapper 

(2015) used accelerated weathering tests to show differences in the permeability of wood 

coatings, thus affecting the rates of migration of moisture. Podgorski et al. (1994, 1996) 
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used artificial weathering as a means of studying the changes in glass transition 

temperature of alkyd resins of wood coatings in the course of exposure. 

 
Simulated weathering 

 By means of staining, mechanical abrasion, and other such treatments, it is 

possible to render wooden surfaces more suitable for certain kinds of displays, which 

may or may not resemble genuinely weathered wood. For example, wood pieces 

subjected to simulated weathering may help to establish a mood or a theme in an indoor 

setting. This type of treatment has been studied based on social media posts (Kropat et al. 

2020).  

 
General effects of finishes on weathering 

 As a general trend, the application of a conventional wood finish can be expected 

to greatly diminish weathering effects, at least during the recommended lifetime of the 

coating (Feist 1982a, 1983, 1988, 1990, 1994). In addition to the effects of weather on 

exposed wood, the term weathering also can be applied relative to changes in the coatings 

itself in the course of exposure to weather. A prime example is the depletion of binder, 

i.e. “chalking,” in certain wood finishes over the course of exposure to ultraviolet light, 

rain, and general exposure (Allen 1984; Miklecic and Jirous-Rajkovic 2011; Nguyen et 

al. 2018). This phenomenon and its most likely causes are illustrated in Fig. 2. As noted, 

ultraviolet (UV) light is expected to gradually break down the binder. The “chalk” that 

tends to come off onto one’s fingers when inspecting the surface likely comprises mineral 

components of the coating, e.g. TiO2 or CaCO3. In addition, depending on the porosity of 

the wood, some of the binder may have immediately migrated into pores of the wood (i.e. 

vessels or tracheids), thus leaving an insufficient amount of binder within the coating 

layer. 

 

Wood

UV light

Undesired 

migration of 

fresh binder 

from wet 

coating into 

wood’s pores

Rinsing away of 

some degraded 

binder by rain

Binder degradation

Pigment 

particles 

act as the 

“chalk”.

Coating

 
 

Fig. 2. Illustration of some contributions to chalking of paint layers exposed to weather 

 

Overview of Wood Decay  

What would happen if wood didn’t decay? According to Schwarze et al. (2000), 

there is a dynamic balance between the growing amount of woody biomass and its 

breakdown in the natural environment. Decomposing communities (Kahl et al. 2017) of 

biotic agents such as fungi, bacteria, and insects are the main decay agents that 

decompose holocellulose and lignin. By breaking down these main chemical components 

of the woody structure, the nutrients are made available to other organisms, eventually 
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allowing new growth of plants. In the built environment, however, the decay of wood 

affects the longevity of wood structures and requires protection of the wood by physical 

and chemical means. Table 2 lists review articles dealing with various aspects of wood 

decay. 

 

Table 2. Review Articles and Books Dealing with Aspects of Wood Rot and 
Decay 
  

Themes of the Publications Citations 

Fungal decay of wood: soft rot – brown rot – white rot Goodell et al. 2008 

Wood microbiology: decay and its prevention (book) Zabel & Morrell 2012 

Microbial & enzymatic degradation of wood (book) Eriksson et al. 2012 

Delignification by wood-decay fungi Blanchette 1991 

Bacterial associations with decaying wood: A review Clausen 1996 

The bacterial factor in wood decay Greaves 1971 

Wood deterioration by insects Pournou & Pournou 2020 

Wood destroying insects: Wood borers and termites (book) Creffield 1996 

 

Upon the inspection of wooden structures, such as a fence pole, an attic, or a 

standing tree, one can come across three different types of rot: brown rot, white rot, and 

soft rot (Worrall et al. 1997). Different decay fungi cause them, each with their individual 

types of chemical and enzymatic degradation (Veloz Villavicencio et al. 2020), 

conditions of the remaining wood, and impacts on its mechanical strength. The main 

reason for this multiplicity of enzymes is that cellulose, hemicellulose, and lignin require 

different degradation pathways. Different fungal species prefer specific hosts due to their 

differences in composition, such as the types of lignin in softwoods vs. hardwoods (Tuor 

et al. 1995). For fungi to thrive on a digestible substrate, they require a suitable 

combination of moisture (Thybring 2017), temperature, oxygen, and pH. According to 

Zabel and Morrell (2012), fungi need free water, some atmospheric oxygen, and 

temperatures between 15 and 40 °C. This is supported by a review of the degradation 

mechanisms of brown rot by Ringman et al. (2019), who describe how enzymatic 

degradation requires water for transportation of important metabolites.  

  

Soft rot 

Soft rot is caused by deuteromycetes, a.k.a. Fungi Imperfecti and Ascomycetes 

(Goodell et al. 2008, Schwarze et al. 2000, Lee 2000, Worrall et al. 1997). This type of 

decay occurs in wet or aquatic environments (Hale 1986). The fungi cause decay at the 

cellular level and attack the S2 layer of a cellulosic fiber, thus creating a chain of cavities 

along the hyphae in a helical microfibrillar angle. Upon microscopic observation at the 

longitudinal face, cavities appear diamond-shaped (Anagnost 1998). Soft rot fungi 

degrade cellulose and hemicellulose and rarely the lignin (Schwarze et al. 2000).  

According to Anagnost (1998) there are three types of soft rot: regular type 1, 

diffuse type 1, and type 2. Not all types are caused by the same soft rot fungi. Type 1 was 

observed only on pine and birch, whereas type 2 was limited to pine. Major differences 

are related to location and types of cavities and erosion caused by the fungus in the wood.  

While type 1 describes the regular progression of hyphae and cavities within the S2 

sublayer of the cell wall, diffuse type 1 accounts for a more diffuse and irregular 

structure. Type 2 describes soft rot in hardwoods, in which the hyphae penetrate the 

lumen with significant damage of the cell wall (Anagnost et al. 1994). 
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Brown rot 

Brown rot is the most common and most destructive of the three types of rot 

(Green and Highley 1997). It is more commonly found in softwood stands and therefore 

predestined for the decay of structural softwood wood products (Arantes and Goodell 

2014). The result of brown rot is a brown, wood-structured residue that has lost all of its 

holocellulose. The remainder are mostly modified lignin residues and extractives 

(Arantes and Goodell 2014). The main mechanism consists of the degradation of 

polysaccharides as well as partial oxidation of the lignin (Worrall et al. 1997; Jensen et 

al. 2001).  

Brown rot causes weight and strength loss. The decay process commences with 

the degradation of the cellulose, resulting in significant strength loss (Arantes and 

Goodell 2014; Curling et al. 2002). Subsequent weight loss can be observed at later 

stages of the decay process. Curling et al. (2002) showed that even at low weight losses, 

specimens of southern pine exposed to brown rot quickly lost their resistance to plastic 

deformation in bending at a rate of 3.6% per day. The onset of decreasing modulus of 

rupture (1.6% per day) and modulus of elasticity (0.6 % per day) were delayed.  

 

White rot 

White rot fungi primarily degrade the lignin, but they can also degrade the 

cellulose (Worrall et al. 1997). For visual identification, the leftover residue has a 

bleached look (Goodell 2008). Some white-rot fungi are better at removing just the 

lignin, as mentioned by Blanchette (1991) in his review article about the delignification 

by wood-decay fungi.  

There are two types of white rot: Simultaneous white rot and selective white rot. 

The first enables the simultaneous degradation of cellulose, hemicellulose, and lignin. 

The latter is the case when only lignin and hemicellulose are degraded and the cellulose 

remains untouched (Goodell 2008). Therefore, the residues have a white appearance.  

 

Bacteria 

Based on thorough reviews of the roles of bacteria in wood decay by Johnston et 

al. (2016) and Clausen (1996), fungal decay has been much more explored than bacterial 

decomposition. Clausen (1996) dates the initial recognition of a relationship between 

wood and bacteria back to the 1950s and 1960s. Bacteria play an important role in the 

decay of wood and often work in conjunction with fungi. Johnston et al. (2016) describe 

the dynamics and complexity of the types and numbers of bacteria throughout the decay 

process. The number of bacteria, for example, increases as the wood decays.  

Greaves (1971) grouped wood-inhabiting bacteria into four main groups. The 

groups and their characteristics are shown in Table 3.  
 

Table 3. Grouping of Wood-decaying Bacteria and their Characteristics  
 

Group Affect Permeability Affect Strength  Contribution towards Breakdown 

1 Yes No  

2 Yes Yes  

3   Active 

4   Indirect 
 

Groups 1 and 2 impact the permeability of the wood for liquids to more easily 

move through the wood, with Group two degrading the cell walls. The strength, however, 

is only impacted by bacteria in Group 2. Bacteria in the third group contribute to the 
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overall decay of the wood as part of the total amount of microorganisms. Bacteria in the 

4th group are passive and support other organisms in the wood with no direct contribution 

to the decay. 
 

Overview of Insect Damage 

Live and dead wood can provide a habitat for many insects. In the natural 

environment, so-called xylophagous insects are part of the lifecycle of trees and woody 

biomass.  
 

Table 4. Common Wood Deteriorating Insects and their Damages (Amburgey 
2008) 
 

Wood Attacked Recognition of Damage  

Type of 
borer 

Part and type Condition Exit holes Galleries 
(tunnels) 

Frass Re-
infested 

Anobiid 
powerderpost 
beetles 

Sapwood of hard- 
woods and soft-
woods; rarely in 
heartwood 

Seasoned Circular, 
1/16 to 1/8 
in diameter 

Circular, up to 
1/8 in diameter; 
numerous; 
random 

Fine powder with 
elongated pellets 
conspicuous; loosely 
packed 

Yes 

Bostrichid 
powderpost 
beetles 

Sapwood of 
hardwoods 

primarily; minor in 
softwoods 

Seasoning 
and newly 
seasoned 

Circular, 
3/23 to 9/32 
in diameter 

Circular 1/16 to 
3/8 in diameter; 
numerous; 
random 

Fine to coarse 
powder; tightly 
packed, tends to 
stick together 

Rarely 

Lyctid 
powderpost 
beetles 

Sapwood of ring- 
and diffuse-porous 
hardwoods only 

Newly 
seasoned, 
with high 
starch 

Circular 
1/32 to 1/16 
in diameter 

Circular, 1/16 in 
diameter; 
numerous; 
random 

Fine, flour like, loose 
in tunnels 

Yes 

Roundheaded 
borers 
(general) 

Sapwood of 
softwoods and 
hardwoods; some 
in heartwood 

Un-
seasoned, 
logs and 
lumber 

Oval to 
circular, 1/8 
to 3/8 in 
long 
diameter 

Oval. Up to ½ in 
long diameter, 
size varies with 
species 

Coarse to fibrous; 
may be mostly 
absent 

No 

Old house 
borer 

Sapwood of 
softwoods, 
primarily pine 

Seasoning 
to 
seasoned 

Oval, ¼ to 
3/8 in long 
diameter 

Oval, up to 3/8 in 
long diameter; 
numerous in 
outer sapwood, 
ripple marks on 
walls 

Very fine powder 
and tiny pellets; 
tightly packed in 
tunnels 

Yes 

Lat oak borer Sapwood and 
heartwood of 
hardwoods, 
primarily oak 

Seasoning 
and newly 
seasoned 

Slightly 
oval; 1/16 
to 1/12 in 
diameter 

Oval, up to 1/12 
in long diameter 

Fine granules No 

Flat-headed 
borers 

Sapwood and 
heartwood of 
softwoods and 
hardwoods 

Seasoning Oval, 1/18 
to ½ in long 
diameter 

Flat oval, up to 
3/8 in long 
diameter; 
winding 

Sawdust-like, may 
contain light and 
dark portions of 
under bark: tightly 
packed 

No 

Bark beetles Inner bark and 
surface of sap-
wood only 

Un-
seasoned 
under bark 
only 

Circular 
1/16 to 3/32 
in diameter 

Circular, up to 3/ 
32 in diameter; 
random 

Coarse to fine 
powder, bark-
colored, tightly 
packed in some 
tunnels 

No 

Ambrosia 
beetles 

Sapwood and 
heartwood of 
hardwoods and 
softwoods 

Un-
seasoned, 
logs and 
lumber 

Circular, 
1/50 to 1/8 
in diameter; 
stained wall 

Circular same 
diam. as holes; 
across grain; 
walls stained 

None present No 

Wood boring 
weevils 

Sapwood and 
heartwood of 
hardwoods and 
softwoods 

Slightly 
damp, 
decayed 

Raggedly 
round or 
elongate, 
1/16 to 1/12 
in diameter 

Circular, up to 
1/16 in diameter 

Very fine powder 
and very tiny pellets, 
tightly packed 

Yes 
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They consume wood at some or all of their life stages. Other insects use wood as 

a temporary or long-term habitat, rather than feeding on the wood substrate. Sometimes, 

during imbalances in forest systems, one can observe calamities in which growing 

populations of insect species can affect, destroy, and eventually help renew large-scale 

forests. In the built environment, the presence of insects can cause damage to wooden 

structures and objects.  

It is possible to distinguish three main groups of wood-destroying insects: 

Coleoptera (beetles), Hymenoptera (bees, ants, wasps), and Isoptera (termites) (Unger et 

al. 2001; Amburgey 2008). Table 4 provides an overview of some common wood-boring 

beetles. Individual species prefer specific substrates and leave characteristic boring and 

frass patterns. Unlike in the case of fungi, the wood does not have to have elevated 

moisture content for some insects. Dry-wood insects, for example, are known to infest in-

service furniture, building components, and artifacts used in dry, interior environments. 

Seasoning, i.e. the exposure of wood to elevated temperatures, typically achieved 

during kiln drying, is known to prevent initial and subsequent infestations with some 

species. As early as 1921, Craighead and Loughborough investigated the fatal 

temperatures for red-headed ash borers infested ash. The experiments showed that the 

effectiveness of kiln drying depends on RH, temperature, and time. Temperatures could 

range from 105 to 135 °F (40 to 57 C) and eliminate all larvae within an hour at low RH. 

Heat treatment at even higher temperatures is also discussed in a later chapter, in which 

the purpose was to improve the dimensional stability of the wood. So-called 

phytosanitation is commonly practiced to control the spread of plant diseases, including 

insects, in commercial goods. Invasive alien species (IAS) have damaged and can create 

significant damage to ecosystems and the built environment (Ormsby 2022). Treatments, 

per national and international regulations, may involve individual methods or 

combinations of heat, fumigation, and chemical applications (Leal et al. 2010; Allen et 

al. 2017). Payette et al. (2015), for example, studied the efficacy of microwave 

irradiation in the context of packaging materials. Slahor et al. (2005) assessed the 

efficacy of hot water baths. Sohi et al. (2016) used ultrasonic energy to generate heat at 

temperatures near 70 °C in pine wood. An abundance of literature sources focuses on 

traditional and alternative methods to balance the effectiveness of treatments, cost, and 

environmental concerns.  
 

Termites 

 Termites are commonly found in subtropical and tropical regions, as they prefer 

relatively warm environments (Kalleshwaraswamy et al. 2022). They can be found 

throughout the United States, except for Alaska (Peterson 2006). They are divided into 

five different groups: subterranean, soil-feeding, dry wood, damp wood, and grass-eating 

(Olaniyan et al. 2015). All of them feed on lignocellulosic materials (Scharf 2020). 

Subterranean and drywood termites are efficient agents in wood decay, and they can 

cause significant damage to wooden structures. In the US, only drywood, dampwood, and 

subterranean termites can be found (Peterson 2006). Infested wood will sound hollow and 

dull when hit with a hammer (Gouge et al. 2009).  
 

Drywood termites 

Drywood termites live in the southern parts of the United States, between North 

Carolina and the Gulf Coast, as well as the coastal areas of California (Gouge et al. 

2009). As their name suggests, they live in sound, dry wood. Their excrement is dry 
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pellets, a common form of identification as they accumulate outside of their entrances.  

They feed on early and latewood, following the grain of the wood. Their major feeding 

source is the cellulose in the wood.  
 

Dampwood termites 

Dampwood termites are more adapted to colder climates (Lacey et al. 2010). This 

relatively small group of termites lives in galleries of moist and decaying wood (Harris 

1955) of living and dead trees (Haverty 2003). 

 

Subterranean termites 

Subterranean termites live in underground nests. A typical identifying feature is 

so-called run-ways made of carton material used for transporting food (Harris 1955). 

Similar to ants, termites form colonies with large numbers of workers, from less than a 

thousand to 2,500,000 (Ewart and Cookson 2014). According to Scharf (2020), most 

termites feed on dead wood, and only a few prefer living trees.  

Identifying the types of wood that are resistant to termite infestations, 

construction principles, and treatments is a major focus in the termite-related literature. 

To prevent subterranean termites, which live underground, from entering structures, 

preventing access is a major strategy. Ghaly and Edwards (2011) propose the use of 

rammed sand and soil, concrete and steel to harden the exterior structures of homes 

against termite infestations and to create impenetrable barriers. This is in line with 

Peterson (2006), who describes the construction of a home as the best time to prevent 

future infestations. Chemical prevention, however, is an important factor in mitigating the 

immense damage of termite attacks.  
 

Wood Treatment Options to Guard Against Rot and Insects 
While the present article focuses on the role of wood coatings, it is important not 

to overlook measures involving impregnating of the wood or otherwise treating it as a 

means to control against various forms of rot, termites and other wood-attacking insects. 

Table 5 lists some review articles and chapters that have covered those areas. 
 

Table 5. Review Articles and Books Dealing with Wood Treatments to Resist Rot 
Organisms, Termites, and Other Insects 
 

Themes of Publications Citation 

Wood modification by chemical, thermal, etc., processes (book) Hill 2006 

A review of wood preservation Schultz et al. 2007 

Natural products for wood protection Singh & Singh 2011 

Non-toxic methods to enhance resistance against fungi Ringman et al. 2013 

Brown-rot biodegradation mechanisms Arantes et al. 2014 

Thermal treatment and its impacts Candelier et al. 2016 

Wood modification technologies reviewed Sandberg et al. 2017 

Thermal treatments of wood against termites & fungi reviewed Lee et al. 2018 

Conventional & nano wood preservation technologies reviewed Teng et al. 2018 

Chemical treatments for decks, railroad ties, etc. reviewed Lebow et al. 2019 

Natural compounds for wood protection reviewed Broda 2020 

 

FACTORS AFFECTING WOOD FINISHING FOR DURABILITY 
  

Homeowners who are faced with the prospect of repeatedly repainting exterior 

wood have a strong motivation to invest in some form of siding or cladding, such that 
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they can greatly extend the time before further repair is needed. According to Williams et 

al. (1996), a typical wood coating, applied outdoors, will last two to eight years, 

depending on many factors. The goal of this section is to examine such factors. 
 
Weather Severity 

Climate clearly can play an important role relative to the rate and extent of 

weathering of wood.  Grüll et al. (2013) found that a site in the United Kingdom that was 

known for wet weather gave more rapid degradation of coated pine panels compared to 

four other European sites. Creemers et al. (2002) carried out matched sets of weathering 

tests at nine different locations in Europe. They found that the general effects could be 

simplified by defining a climate index, which was a function of the amount of irradiation, 

total precipitation, and number of days with more than 0.1 mm of precipitation. Likewise, 

Bobadilha et al. (2021) found that wood finishes failed more quickly in Mississippi than 

in Wisconsin, which they attributed to greater decay. Davis et al. (2022) carried out 

matched weathering tests of coated wood in a warm-summer Mediterranean location and 

in a semi-arid climate of eastern Oregon in the US.  Fungal growth was much more 

prominent in the wetter site. Dawson et al. (2005) compared weathering of matched pine 

wood specimens in Germany and New Zealand. As in the previous example, it was found 

that mold growth played a major role in the degradation of the coated wood specimens. It 

was found that a higher amount of treatment to suppress mold was required at the New 

Zealand site, which was the wetter site. Bratasz et al. (2012) compiled maps based on 

projected climate change, in future years, to be able to estimate the risks to painted wood 

items. 

 
Wood Selection 
Wood species 

 Several studies have revealed differences in coating performance on different 

species of wood. Some key findings are highlighted in Table 6.  

 

Table 6. Effects of Wood Species on the Performance of Outdoor Finishes 
 

Themes of Publications Citation 

The service life of the finish was found to be affected by growth 
rate, density, knots, extractives, juvenile wood, grain orientation, 
and weathering characteristics. 

Williams et al. 2000 

Differences in susceptibility to color change were observed for five 
tropical wood species that had been coated with transparent 
finishes. 

Silva et al. 2007 

Different color changes were observed for ash and for oak in the 
course of conventional accelerated weathering tests. 

Nzokou et al. 2011 

European larch gave higher durability of 20 commercial transparent 
and semi-transparent coatings compared to Siberian larch. 

Simunková et al. 2019 

Coated Norway spruce heartwood exhibited lower moisture content 
and equal or lower fungal infestation compared to the sapwood. 

Sjökvist & Blom 2019; 
Sjökvist et al. 2020 

Teak enabled better performance of wood coatings in comparison 
to pine in Indonesia based on microbial infestation. 

Lestari et al. 2020 

Results from five wood species all showed loss of the protective 
effects of 12 exterior coatings within 1 year. 

Davis et al. 2021 

Water-based acrylic paint was more durable on spruce than oak. Dvorák et al. 2023 
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Notably, certain species such as teak are known to have greater natural resistance 

to decay (Lestari et al. 2020). However, color change is a priority for many users, who 

are not pleased in cases where an expensive, reddish-colored wood tends to become gray 

during exposure to weather (Williams et al. 1996). Feist (2002) provides a broad 

discussion of how not only the species of wood but also differences between the wood of 

individual trees can affect the performance of coatings. For example, it has been found 

that wood having a large proportion of latewood can give rise to adhesion failure of the 

coating after extensive weathering. The cited article provides a table with ratings of 

different wood species with respect to paint-holding ability for oil-based and latex paints. 

 
Wood’s inherent antimicrobial performance 

 Some wood species are inherently more resistant to biological decay. This 

characteristic often has been attributed to the presence and levels of wood extractives 

(Kirker et al. 2013). The cited work showed that after extraction of such compounds from 

the tested wood species, the rates of attack by fungi and termites were higher in nearly all 

cases. Similar results had been obtained earlier by Taylor et al. (2006), but the 

correlations were low. Further confirmation of these effects comes from studies in which 

the extracts from resistant wood species were used to treat non-resistant species, such as 

pine. Thus, Syofuna et al. (2012) found that certain wood extracts could protect pine 

wood against termites. Sablík et al. (2016) found related effects when extracting the 

heartwood of black locust and then impregnating non-resistant beech wood, which then 

showed resistance against fungal decay. 

 

Wood density 

 Sjökvist et al. (2019) reported correlations between the density of Norway spruce 

wood and the tendency of the coated wood to develop cracks during three years of 

outdoor exposure. The lower-density specimens exhibited higher moisture contents. 

However, the higher-density specimens showed a higher number of cracks. Follow-up 

work showed the unexpected effect of higher water uptake into coated high-density 

wood, compared to coated low-density wood (Sjökvist et al. 2020). Williams et al. 

(2000) noted that high-density woods tend to swell and shrink to a greater extent than 

lower-density woods, and that this tendency can lead to a higher rate of checking. It 

makes sense that checking will hurt the performance of coatings. Strikingly different 

effects were found in a study of surface-densified wood (Cheng et al. 2024). Such 

densified surfaces showed superior paint film adhesion, hardness, and resistance to 

impacts, and these were applied to a range of tropical hardwoods. 
 
Grain coarseness 

 Better performance has been reported for wood coatings on fine-grained woods. 

Thus, de Windt et al. (2014) found the lowest degradation rate of coatings on fine-

grained wood. The coatings ranged from clear stains to opaque stains. There appears to 

be a need for more research in this area, not only to confirm the reported observations, 

but also to seek a mechanistic explanation. 

 
Heat-treatment of wood 

 The heat-treatment of wood can be regarded as an additional option related to the 

kiln drying of wood, as illustrated in Fig. 3. Kiln drying, meaning the heating in air for 

many hours or a few days at about 50 to 90 C for most hardwoods and above 100 °C for 
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softwoods, is applied to most commercial lumber as a means to stabilize the dimensions 

of the wood. Due to increased danger of fire, as well as to minimize undesired chemical 

changes, such as oxidation, technologists use various ways to exclude oxygen when using 

higher temperatures, often in the range 180 to 220 C, to heat-treat the wood. Details and 

options for the procedures and conditions of heat-treatment of wood have been reviewed 

(Esteves and Perera 2009; Cao et al. 2022; Hubbe and Laleicke 2025). 

 

Ambient 
drying:
(20-40 oC; 
weeks)

Kiln drying:
(~50-90 oC;

Many hours or days)

Hot air

Heat treatment:
(~180-220 oC;

Minutes to hours)

No oxygen

Wood stacked using 
“stickers” to allow air 
to flow among lumber

 
 

Fig. 3. Simplified comparison of conditions typically used in ambient drying, kiln drying, and heat 
treatment 

 

 The effects of high-temperature treatment already were considered in a 

companion article (Hubbe and Laleicke 2025), where the emphasis was on adhesion 

between the coating and the wood. Heat-treated wood is also of importance in the present 

context, since it is a known strategy to increase resistance to decay. Here the emphasis is 

on whether the combination of heat treatment, followed by coating of the heat-treated 

wood, renders the surface more durable in a practical sense. The highlights listed in Table 

7 are focused on such issues. 

 

Table 7. Overall Effects of Heat Treatment of Wood, Followed by Coating, 
Relative to its Durability 
 

Themes of Publications Citation 

Adding TiO2 nanoparticles to the polyacrylate clear coating helped 
to protect the heat-treated beech wood. 

Miklecic et al. 2017 

Heat-treatment yielded inconsistent effects on the weathering of 
uncoated and coated woods. 

Jirous-Rajkovic & 
Miklecic 2019 

Overall resistance to weathering increased with increasing 
temperature and time of wood treatment. Two kinds of varnish were 
applied after heat treatment. 

Kart et al. 2019 

Coated heat-treated pine and spruce had lower moisture uptake 
and better appearance after weathering compared to coated 
untreated wood. 

Nejad et al. 2019 

Coatings on heat-treated short-rotation teak wood showed better 
performance than on untreated short-rotation teak wood. 

Pratiwi et al. 2019 

Coatings that contained nano TiO2 were effective in reducing color 
change of heat-treated wood with olive leaf extract in a polyacrylate 
coating. 

Nowrouzi et al. 2021a,b 
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Mechanical Processing of Wood for Adhesion of Finish 
There is much evidence that the performance of wood coatings can be improved 

by appropriate preparation of wood surfaces. Aspects to be considered here include the 

freshness of the wood surface (i.e. how recently the surface has been machined or 

sanded), the planing of wood surfaces before coating, and aspects of sanding prior to 

coating application. 

 

The importance of freshness of the wood surface 

 Articles cited by Hubbe and Laleicke (2025) showed that fresh removal of the 

outermost layer of wood is a reliable way to achieve improved adhesion of coatings on 

wood. Wood extractives are expected to gradually migrate to exposed surfaces of wood 

over time. The migration is motivated by a minimization of surface free energy when a 

surface becomes covered by nonpolar compounds. Such compounds, which include fatty 

acids and resin acids, can be expected to inhibit wettability of the surface by some 

coatings, especially water-borne formulations. In addition, the monomeric compounds, 

due to their lack of covalent bonding to the surrounding material, will not be able to 

provide firm anchoring of the coating. In principle, such problems can be minimized if 

the outermost wood is removed shortly before coatings are applied. 

 

Adverse effects of weathering of bare wood on subsequent coating performance 

 Severely adverse effects on coating performance have been reported in cases 

where the uncoated wood surfaces have already been exposed to outdoor weather 

(Williams et al. 1987a,b; Williams and Feist 1993, 1994, 2001). To some extent, such 

problems can be overcome by selecting a specialized finish formulation, such as with 

10% linseed oil and 11% acrylic resin (Williams et al. 1999).  

 Some challenges in the application of coatings on top of weathered wood are 

highlighted in Fig. 4. As shown by articles cited in an earlier review article (Kropat et al. 

2020), one of the major changes resulting from exposure to weather, i.e. combinations of 

ultraviolet (UV) light exposure and periods of rainfall, is a loss of lignin from the 

outermost 1 mm or so of the wood. On the one hand, the loss of lignin results in a 

relatively loose layer of cellulose fibers, which might be regarded as a weak layer. 

However, the cited research suggests also that there is an inherent incompatibility 

between the generally hydrophilic nature of cellulose and hemicellulose (after the loss of 

lignin) and the more hydrophobic nature of typical resins used in wood coating 

formulations. A study by Kanbayashi et al. (2023), based on Raman spectrometry, 

showed that lignin degradation can take place even below both penetrating and film-

forming coatings.  As outlined in another earlier review article (Hubbe and Laleicke 

2025), the strength of adhesion between two materials, depending on various process 

details, is often governed by how similar the two materials are in terms of cohesive 

energy density, polarity, and capacity to form hydrogen bonds. Further challenges, from 

the standpoint of establishing lasting adhesion to a coating layer, may be associated with 

the tendency of lignin-free cellulose fibers to swell a lot when then imbibe water and then 

to shrink a lot when dried (Hubbe et al. 2024). Depending on the flexibility of the dried 

and cured coating, such dimensional changes can be expected to induce strong shearing 

forces at the interface. The presence of lignin, when the fibers are within a sound wood 

structure, tends to restrain such dimensional changes. Since the lignin is the most 

hydrophobic of the three main chemical components of wood, and thereby the most 
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similar in terms of wetting properties to the resins used in coating formulations, its 

presence seems to be important when the goal is to achieve strong adhesion of a coating. 

 

Coating 
layer

Protruding 

cellulose 

fibers (lignin

was photo-

degraded)

Poor adhesion at resin-

cellulose interface. Also 

high swelling & shrinkage 

of lignin-free cellulose 

causing shear at interface

Sound wood 

below surface

Lignin becomes 
depleted in top 1 mm

Weak lignin-free layer 

with unbonded fibers

Wood

 
 

Fig. 4. Idealized illustration of weathered wood surface and its ineffective adhesion to a coating 

 

 Figure 5 illustrates the role of fresh mechanical treatment of a surface, as in the 

case of planing or sanding. The mechanical action appears to have three main objectives, 

the first of which is to achieve a specified level of smoothness. The second objective, 

which is sometimes overlooked, is that there ought to be an optimized level of roughness 

of the surface in order to be able to interact in a three-dimensional manner with the 

coating layer. Third, the fresh mechanical action can remove any accumulation of waxy 

substances, which otherwise could impede spreading of the adhesive and development of 

effective bonding with such wood components as lignin, cellulose, and hemicellulose. 

 

Coating 
layer

Sound wood 
rich in lignin 
throughout

Wood

Freshly sanded 

wood surface 

offering “tooth”

and good 

wettability

Mechanical 

interlock

Resin chains 
mixing with 
lignin segments

 
 

Fig. 5. Schematic description of mechanisms by which fresh sanding can provide stronger 
adhesion of coatings to wood 

 

 As illustrated in Fig. 6, the planing of wood employs a blade to improve the 

smoothness of a sawn lumber piece. Studies by de Moura and Hernández (2005) showed 

that improved adhesion of wood coatings could be achieved by peripheral knife planing 

before high-solids polyurethane coating. The wood surface after planing was described as 

“undamaged”. Planing to achieve a fresh surface is commonly done during the assembly 

of Cross-Laminated-Timber, a structural wood panel. Some adhesive manufacturers 

require a timely planing step prior to the application of the primer (Miyamoto 2024). 
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Cool and Hernández (2016) compared oblique cutting, face milling, and helical planing 

as alternative preparations of spruce wood immediately before application of exterior 

acrylic water-based coating. Helical planing achieved superior results, including better 

adhesion of the coating and resistance to weathering. The worst results were with the face 

milling, which gave an uneven coated surface and poor adhesion. Follow-up work 

showed best results with peripheral planing of red oak wood at a rake angle of 25 degrees 

(Ugulina and Hernández 2017). The authors attributed the superior adhesion of the wood 

coating to the fibrillation of the surface in the course of the planing. Altun and Esmer 

(2017) likewise achieved good adhesion of varnish to iroko wood that had been planed. 

  
Cutterhead

Feed rolls

Planed 
surface

 
 

Fig. 6. Simplified diagram of a rotary planing operation 
 

Though a state-of-the-art planing treatment carried out recently before application 

of coating might be favorable for the overall goals of a project, it is important to note that 

a roughly sawn surface may provide superior adhesion of a coating. Thus, Nussbaum et 

al. (1998) reported superior adhesion of alkyd and linseed oil finishes onto sawn and 

rough surfaces.  

 

Sanding 

 It is notable that de Moura and Hernández (2005), even when showing positive 

effects on coating adhesion after planing of the wood surface, found even better results 

following sanding. When using sanding to prepare a wood surface for application of a 

coating, the general recommendation is to start with a level of grit suitable to remove the 

largest features of roughness, such as grooves created by previous sawing or planing 

actions (Allen 1984; Flexner 1994). Detailed measurements of the features left behind by 

sawing have been quantified by Singh and Dawson (2006) and Singh et al. (2007). 

Subsequently, the sanding is repeated with successively finer (higher number) sandpaper 

but not continuing past what is needed. Thus, Allen (1984) recommends starting with 100 

grit and proceeding up to 150 grit for routine house painting or 220 grit for varnish 

applications. Table 8 lists articles dealing with the role of sanding is preparing durable 

external wood coatings. 

Figure 7 illustrates the point made by Landry and Blanchet (2012a) regarding 

optimization of sanding practices in the case of typical outdoor wood coating projects. As 

shown, it has been recommended that a medium coarseness sandpaper such as 160 grit 

may be a good choice for such projects as the final sanding before application of a primer 

coat. When such sandpaper is replaced with sufficient frequency so that it will be sharp 

and not filled with wood particles, it can be expected to provide enough fibrillation and 
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microscopic tearing of the wood surface to provide strong adhesion at the wood-coating 

interface.  

 

Table 8.  Sanding Used as a Means to Improve the Performance of Wood 
Coatings for Outdoor Applications 
 

Themes of Publications Citation 

This review article provides recommendations for routine sanding 
procedures. 

Allen 1984 

The author recommends 220 grit as the finest sandpaper to use. Flexner 1994 

Sanded surfaces enabled good results even with low quality paint 
and low-grade wood 

Richter et al. 1995 

Overly aggressive sanding or too fine a grit can hurt coating 
adhesion. 

Cox 2003 

A sanded surface gave better anchoring of wood coatings.  de Moura & H. 2005 

Two-stage belt sanding is recommended with 17 m/min speed. Cool & H. 2011 

180-grit sandpaper gave good wetting & adhesion of wood coating, 
whereas 150-grit have poor results. 

Landry & B. 2012a 

Adhesion strength on sanded ash and birch woods sometimes 
increased with increasing roughness. 

Vitosyte et al. 2013 

Smoother sanded surfaces before painting resulted in higher 
resistance against cracking due to weathering. 

Panek & R. 2016 

The feed speed of belt sanding could be optimized to achieve the 
highest pull-off strength for the coating. 

Ugulino & H. 2018 

Surface roughness decreased with increasing fineness of the final 
sandpaper employed. 

Liu et al. 2020 

Sanding of hornbeam and ash woods increased adhesion. Miklecic et al. 2022 

Sanding tended to make the wood more wettable. Yu et al. 2023 

 

160
220Grit 

too fine
Ideal

grit fineness

Sharp & clean abrasive Dull & filled abrasive

Wood

Suitable fibrillated & 
torn wood surface: 
Good coating adhesion

Wood surface too 
smooth: Coating tends 
to peel after weathering

 
 

Fig. 7. Schematic illustration of the importance of selecting a sufficiently coarse sand paper and 
replacing it often enough as a means to achieve good long-term coating adhesion 

 

 One of the commonly repeated points of advice regarding the sanding of wood is 

to use fresh sandpaper that is replaced with suitable frequency (Flexner 1994). In 

addition, as noted by Allen (1984), it can be helpful to periodically slap the paper on a 

hard surface to dislodge wood particles and expose the sharp mineral grains. Such 

practices are consistent with the idea that loose material left on the wood surface might 

not be helpful for developing strong adhesion to a coating. Conversely, a sharp sandpaper 
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sheet may be helpful in creating fibrillation or minor tearing of the wood surface in such 

a way as to achieve better mechanical interlocking at a suitable length scale, such that the 

coating becomes well attached, but the surface of the coating does not become rough. 

 

Chemical Treatment of Wood for Finish Durability 
 Though it has not become a common practice, there has been some research 

related to potential chemical treatments of wood surfaces in advance of coating 

application. These can range from bleaching to extraction of the wood surfaces, to plasma 

treatments, and finally to chemical derivatization of the wood surface. 

 
Bleaching 

 Bleaching of wood surfaces provides a means to achieve a lighter appearance of 

wood, when that is desired. Atar et al. (2004) compared a series of different bleaching 

treatments, all based on hydrogen peroxide, for beech wood in preparation for varnish 

application. All of the treatments decreased the hardness of the unfinished wood surface, 

but after varnish application, the initial hardness had been restored in all cases. Budakçı 

(2006) showed that bleaching treatment can be effective for restoration of wood’s color 

after weathering of clear-coated wood. 

 Going another step beyond conventional bleaching treatments, Dawson et al. 

(2008a,b) explored the feasibility of intentionally removing lignin from the outermost 2 

or 3 mm of the wood surface before application of a clear coat. The idea was to 

preemptively remove the component of wood that is susceptible to photodecomposition 

in the presence of ultraviolet light and thereby stabilize the system. The desired 

delignification was achieved by means of oxidation with peracetic acid. The resulting 

surface was judged to still have sufficient strength to work well with the coating. It is 

worth noting, however, that surface delignification also can be achieved by natural or 

conventional weathering, the results of which are often unfavorable to the adhesion of 

wood coatings (Kleive 1986; Hubbe and Laleicke 2025).  

 
Extraction of wood 

 Ghofrani et al. (2016) showed that stronger adhesion of varnish to wood could be 

achieved by removal of extractives. Alder and ironwood were compared, and the 

extractive media were either hot water or ethanol. The extracted surfaces showed superior 

wettability to the two-part waterborne urethane-alkyd varnish formulations, as well as 

showing higher pull-off strength. The authors attributed the improvements to avoidance 

of the blocking action of the wood extractives. The extractives would have prevented 

direct contact between the coating and the polymeric components of the wood. Wu et al. 

(2020) used nanoindentation to show that a waterborne formulation achieved higher 

hardness after extractive removal from a wood surface. The benefit was attributed to the 

better wettability of the surface by aqueous media.  

 

Plasma pretreatment of wood 

 As discussed in recent review articles (Klébert et al. 2022; Hubbe and Laleicke 

2025), treatment of a wood surface with plasma, especially the so-called corona treatment 

that involves relatively low energy plasma in air, can be used as a way to increase 

adhesion, especially in the case of water-borne coatings. As illustrated in Fig. 8, some of 

the potential beneficial effects of corona treatment, possibly in preparation for the coating 

of wood, can include the cleaning of waxy substances from the surface, the etching of the 
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surface on a microscopic level, and oxidation of the surface, leading to good wettability 

by aqueous formulations (Klébert et al. 2022; Zigon et al. 2022). Here the emphasis is on 

developing resistance to outdoor exposure. Reinprecht and Somsák (2015) and 

Reinprecht et al. (2020) showed that plasma treatment aided the stability of clear acrylic 

and alkyd coatings on spruce specimens that were exposed to artificial weathering. 

Gholamiyan et al. (2022) compared plasma treatments with air, nitrogen, and carbon 

dioxide media on the performance of waterborne and solvent-borne coatings on fir. They 

found increased weather resistance of both waterborne and solvent-borne coatings. Even 

though the plasma treatment rendered the wood surface more hydrophilic, the final result 

achieved greater hydrophobic character of the coated surface. Kettner et al. (2020) 

pointed out that resinous woods, including pine, are often preferred for outdoor 

applications, in recognition that the hydrophobic nature of wood resins can help resist 

water, but that the same resins can hurt the performance of coatings. They were able to 

overcome the adverse effects by a specialized plasma treatment involving chemical vapor 

deposition. Blue-stain fungal infestation was effectively suppressed by the treatment 

before application of a glaze or lacquer coating. 
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Fig. 8. Reported effects of corona treatment, a relatively inexpensive cold plasma treatment using 
air, for preparation of a wood surface to receive a coating 

 

 Czarniak et al. (2022) found better wettability of common wood finishes after 

corona treatment; however, there was no corresponding improvement in adhesion of the 

coating layer. Thus, it makes sense in practical cases to determine whether or not plasma 

treatment is either needed or beneficial, depending on various details. 

 

Acetylation of wood 

 By treatment of the wood surface with acetic anhydride, some of the -OH groups 

that are prevalent especially within the hemicellulose and cellulose components can be 

converted to their acetylated forms. Such an operation is illustrated schematically in Fig. 

9. This kind of treatment can be interesting from a wood protection standpoint, since 

acetylated wood is much more resistant to wetting and swelling in water (Rowell and 

Bongers 2015). The cited authors explained that the improved dimensional stability of the 

wood, relative to changing moisture conditions, reduces the stress at the coating-wood 

interface, such that less there will be less tendency for peeling of the coating over time. 

Studies have shown that acetylated wood is more resistant to weathering (Beckers et al. 

1998; Fodor et al. 2022). Beckers et al. (1998) showed furthermore that acetylated pine 



 

REVIEW ARTICLE bioresources.cnr.ncsu.edu 

 

 

Laleicke & Hubbe (2025). “External wood coating,” BioResources 20(3), 7903-7982.  7922 

wood still adhered well to a variety of different wood primers, including waterborne and 

solvent-borne. Fodor et al. (2022) reported decreased absorbance of pigmented stains into 

acetylated hornbeam wood, though the acetylated wood was more durable and 

dimensionally stable under outdoor conditions. Although acetylation has been shown to 

increase the service life of exterior wood, as in the case of wood siding on houses, it does 

not prevent color change due to weathering (Sandak et al. 2021). The cited authors 

showed that so-called hybrid processing, using a range of commercially available 

treatments, all of which were coatings. Nagarajappa et al. (2020) showed that the 

photostability of acetylated wood could be improved by adding an ultraviolet light 

absorber, ZnO, to the coating formulation. 
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Fig. 9. Surface acetylation of wood, using acetic anhydride 
 

Wood Impregnation and Wood Finish Performance 
Resin impregnation 

 Wood impregnation has become a popular way to improve its weathering 

characteristics, especially with respect to attack by fungi and termites. As illustrated in 

Fig. 10, such treatment can be achieved by first immersing the lumber pieces in a solution 

or suspension of the material to be impregnated, then applying vacuum, and then 

releasing the vacuum. The evacuated pores of the wood then suck the impregnating fluid 

into the pores of the wood, including vessels and fiber lumens. Subsequently, the 

suspending medium is expected to evaporate. 
 

Vacuum applied

Wood with 

idealized pores

Vacuum released; solution or 

suspension flows into pores 

due to ambient pressure and 

capillary forces.

 
 

Fig. 10. Schematic diagram of steps in a process of impregnating wood by use of application and 
release of vacuum 
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Table 9 highlights some work that has been carried out to find the impact of such 

impregnation on the performance of coatings. The most commonly studied impregnants 

have been copper-based antimicrobial treatments and formaldehyde resin formulations. In 

a majority of cases, the impregnation resulted in better resistance to weathering. 

 

Table 9.  Effects of Wood Impregnation on the Performances of Exterior Wood 
Finishes 
 

Themes of Publications Citation 

The authors of a review article state that impregnation with 
chromated copper arsenide will enhance the durability of finish 
applied later to the wood. 

Williams et al. 1996 

Impregnation of pine, spruce, oak, and Douglass fir wood with 
melamine resin before varnish coating provided protection against 
photochemical degradation of the wood by weathering and 
resistance against blue-stain fungus, but it did not protect against 
cracking and the effects of high moisture content. 

Rapp & Peek 1999 

Impregnation of pine and chestnut woods with chromium-copper-
boron before application of either polyurethane varnish or an alkyd 
varnish, followed by outdoor exposure, stabilized the surface color, 
but the adhesion of the coating was adversely affected. 

Yalinkilic et al. 1999a,b 

Impregnation with two commercial formulations, one waterborne 
and one solvent-borne, including sodium chromate, copper sulfate, 
and hydrogen borate, had little effect on the hardness after 
waterborne varnishing. 

Atar et al. 2004 

Impregnation of Pterocarbus marsupium wood with ammoniacal 
copper ferricyanamide and related agents before three commercial 
wood finishes increased water repellency and dimensional stability 
during weathering, thus giving longer service life of the coatings. 

Upreti & Pandey 2005 

Impregnation with boron compounds before varnishing decreased 
surface roughness. 

Örs et al. 2006 

Modification of the wood with N-methylol compound improved the 
adhesion of both waterborne and solvent-borne finishes. 

Xie et al. 2006 

Weathering resistance was increased following the combination of 
impregnation with copper-chromated boron and then either 
polyurethane or alkyd varnish. 

Baysal 2008 

Both copper-based wood preservative impregnation and varnish 
coating improved the surface characteristics of pine specimens 
after accelerated weathering. 

Baysal et al. 2014 

Impregnation of pine and beech woods before two kinds of varnish 
and 3 months of natural weathering that surface hardness values 
decreased in all cases, especially for the impregnated wood. 

Turkoglu et al. 2015a,b 

Impregnation with phenol-formaldehyde resin improved the 
performance of clear coatings on oak and pine. 

Evans et al. 2016 

Impregnation with copper monoethanolamine solutions enhanced 
the durability of semitransparent penetrating stains on larch wood. 

Isaji & Kojima 2017 

Impregnation with copper-based chemicals resulted in more stable 
color after varnishing and accelerated weathering. 

Gunduz et al. 2019a 

Impregnation with copper-based chemicals resulted in increased 
surface hardness and gloss after varnishing and accelerated 
weathering. 

Gunduz et al. 2019b 

Wood specimens impregnated with ammonium tetra-fluoroborate, 
ammonium pentaborate, and boric acid were covered by liquid 
glass. Good resistance to weathering was observed, except for a 
pronounced reddening and yellowing. 

Kucuktuvek et al. 2020 

Impregnation of pine wood with three commercial copper-based Türkoglu et al. 2020 
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products, followed by waterborne varnish and six months of natural 
weathering resulted in less loss of lightness. 

Impregnation with copper-based chemicals increased the surface 
roughness of pine even after coating with varnish. Adhesion 
strength after weathering was decreased by the impregnation. 

Baysal et al. 2021 

Impregnation of pine sapwood with phenol-formaldehyde resin 
before painting decreased discoloration associated with resin 
exudation after exposure to artificial weathering. 

Karlsson et al. 2022 

Sealing of oak with an epoxy resin enhanced the durability of 
several exterior paint systems exposed to outdoor weathering. 

Dvorák et al. 2023 

 

 Even in the absence of biocidal treatment, it has been shown that various clear 

and tinted coating formulations can provide resistance against mildew for 12 months or 

so, followed by a decline (Morrell et al. 2001). After 21 or 39 months of weathering, the 

coating surfaces on western red cedar were generally found to be hydrophilic and in poor 

condition.  

 

Primer Coats and Finish Performance 
Why apply a primer?  

The most important aim of applying a primer coat to a wood surface is to provide 

strong adhesion to the wood and thereby achieve reliable anchoring of subsequent coating 

layers. The practice of employing a primer layer for this purpose is consistent with an 

expectation that the wood-coating interface is likely to be a point of failure, including 

eventual peeling of coating from the wood (Knaebe et al. 1996; Williams et al. 1996). 

Another part of this general expectation is that adhesion between successive layers of 

coating is likely to be relatively strong, especially if only hours or days have separated 

application of the different layers. A further role of the primer coat, especially when 

covering resinous wood species, is to act as a sealant against permeation of wood 

extractives into the final layers of coating (Cassens and Feist 1986). As was illustrated in 

Fig. 2, excessive migration of resin from freshly applied coating into the pores of the 

wood can contribute to chalking; it follows that one of the roles of the primer, in addition 

to other intermediate coating layers, is to reduce such undesired depletion of binder from 

the top coating layer when it is still wet. According to the USDA Forest Products 

Laboratory (1972), “The fist, or prime coat of paint, is the most important coat to be 

applied to wood.” Despite this assertion, the literature search carried out in preparation of 

this article found that relatively little research has been carried out relative to the 

performance of primers.  

Figure 11 illustrates the concept of using a primer. As shown, the low viscosity 

and relatively low solids content of a primer allows it to penetrate deeply into vessel 

openings, lumens, and fiber-level tear-out defects near to the wood’s surface, thus 

achieving good chemical and mechanical bonding. Achieving such a beachhead of good 

adhesion can be very important, especially if the wood-finish interface later becomes the 

critical site for initiation of peeling. 
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Fig. 11. Schematic diagram contrasting the deep penetration to be achieved by an idealized 
primer coat, vs. a typical film-forming finish coating formulation 
 

Typical primer formulations 

 Consistent with the goal of penetrating well into the pores of the wood surface, 

primers are generally formulated with a relatively high content of liquid medium (Hubbe 

and Laleicke 2025). The USDA Forest Products Laboratory (1972) has recommended 

usage of an alkyd oil-based formulation, with inclusion of TiO2 particles as a preferred 

primer choice. Liu et al. (2021) suggested using a polyurethane sealing primer on poplar 

wood. However, the main reported benefit was a higher gloss, not resistance to 

weathering.  

In cases where resistance to discoloration of coatings by wood resins is a priority, 

Coniglio (2023a,b) have recommended using a water-borne primer, followed by a 

solvent-borne subsequent coating layer. This combination was reported to be very 

effective in protection against the bleeding of extractives from knots. Pánek et al. (2017) 

advocated priming oak wood surfaces with a transparent, hydrophobic coating to prolong 

the service resistance of coatings the undesired bleeding of tannins. 

 Considering the widespread agreement among experts that primer application 

should not be skipped, it seems remarkable how few times the formulation of primer 

coatings was found in the literature search for this article. It follows that the formulation 

of primer coatings, relative to such factors as coating adhesion, wood resin migration, and 

resistance to weathering effects, can be regarded as priority topics for future research. 

 

Water-repellent preservative 

 Several articles have described the application of formulations called water-

repellent preservatives, which appear to play a role analogous to that of a primer, or 

maybe as an impregnation treatment preceding usage of a primer coating. Highlights 

from such publications are provided in Table 10.   

It is notable that Williams et al. (1996) disclosed the usage of wax, which appears 

to have been the main hydrophobic ingredient in the formulations being recommended in 

a series of articles and publications coming from employees of the USDA Forest 

Products Laboratory. However, the application of wax prior to coating prompts the 

following question, which might be considered in future research: Are there 

circumstances under which the wax itself may play a role as a weak boundary layer, thus 

increasing the likelihood of future peeling of a coating layer at its interface with the wax 

or within the wax layer? That question does not appear to have received an answer in the 

published literature. 
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Table 10.  Effects of a Water-repellent Preservative, as a Primer Coating, on the 
Performances of Exterior Wood Finishes 
 

Themes of Publications Citation 

Recommends using a commercially available water-repellent 
preservative solution before painting. The composition is not 
described. 

USDA Forest Products 
Laboratory 1972 

Water-repellent preservatives are described as containing a 
fungicide, wax, resin or drying oil, and either solvent or water. Such 
treatment is recommended before applying exterior coatings. 

Williams et al. 1996 

Recommends first treating with either a water repellent or a 
combination of water repellent and a preservative, before painting 
of outdoor wood surfaces. The hydrophobic component(s) is not 
mentioned in the article. 

Williams & Feist 1999 

A double-vacuum pressurized treatment was used to apply 
hydrophobic coatings based on polyurethane or acrylic resin to 
achieve resistance to weathering. 

Bahchevandziev & M. 
2022 

 

Primer coats acting alone, vs. weathering effects 

 Though primer coats are not usually envisioned as acting by themselves, without 

at least one subsequent coating layer, there are some special circumstances under which 

this may happen. For instance, there might be a change of weather that delays the 

application of the intended subsequent coats. Ahola (1995) has reported that under such 

conditions, application of a pigmented stain (which essentially would be serving as a 

primer coat) made it possible to minimize adverse effects of leaving the wood exposed. 

 

Table 11. Effects of the Choice of Finish Type on Resistance to Weathering 
 

Themes of Publications Citation 

25 different paint systems were compared on five different wood 
types. The major factors governed weathering effects: wood 
species, location, and surface roughness. Different coating types 
(lacquer, oil-based, dispersion) showed similar trends to each 
other. 

Bottcher 1975 

Several coatings were evaluated on rough-sawn and smooth-
planed aspen in three locations of natural weathering. The best 
results were obtained with acrylic paints (two coats) over an oil-
based primer. 

Feist 1994 

Data are tabulated for several commercially available paints 
exposed on wood surfaces in the US and Europe for five years. 

Kropf et al. 1994 

Eight different varnish products were compared, some of which 
performed better than others, as evaluated on pine and iroko under 
accelerated and natural weathering conditions. 

Custodio & E. 2006 

Varius exterior coatings, including alkyd primer followed by either 
alkyd paint or resin varnish exposed to natural weathering were 
compared. A stain decreased the total color change. 

Sivrikaya et al. 2011 

Various coatings were evaluated on pine sapwood panels exposed 
to natural and artificial weathering. Pigmented (“opaque”) coatings 
greatly exceeded the durability of clear coatings. For instance, even 
after 60 weeks of artificial weathering, three such systems were so 
durable that they had not yet met the failure criteria for that study. 

Grüll et al. 2014 

Eight transparent or pigmented coating systems, including oil, 
acrylate, alkyd, and urethane alkyd on oak wood were exposed to 
natural and acerated aging. Oil coatings minimized color change. 
Acrylate coatings minimized changes in gloss and wettability. 

Oberhofnerová et al. 
2019 
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Coating Type 
 When considering different options to achieve resistance to weathering, one of the 

important questions is whether the type of coating, i.e. the main resin ingredients, makes 

a difference in terms of its effectiveness and service lifetime. Table 11 highlights studies 

that shed light on such issues. A notable point about this collection of cited work is that 

there have been relatively few reported studies comparing completely different wood 

coating types under matched weathering conditions. In addition, none of these cited 

reports gave persuasive evidence that any particular type of wood coating ought to be 

completely avoided for outdoor applications. On the other hand, to help answer questions 

regarding weathering issues, it would make sense to carry out a systematic study 

involving a large number of coating types, some involving use of a primer coat, all on the 

same wood and with the same weathering conditions. An interesting research question to 

consider is whether or not a wide range of commercially available formulations intended 

for outdoor use all show comparable resistance to color change, cracking of the coating, 

checking of the wood, or peeling when subjected to the same weathering conditions. 

 

Finish Coat Application Factors and Durability 
 Another kind of question to consider is whether the results of coating 

performance, especially in exterior applications, depend on such factors as the application 

method, the number of coats, the total coat weight, the method of application, the time 

passage between applications of successive coats, or the weather conditions (e.g. 

humidity or rain) during or immediately before the application. Here, attention will be 

paid to the finish coats, i.e. the coating layers that follow the primer coat. 

 

Application methods, brushing, rolling, wiping, and spraying, 

 In principle, coating formulations can be applied to wood surfaces by brushing, 

rolling, wiping, dipping, and spraying (Williams et al. 1996; Landry and Blanchet 

2012a). These four systems are illustrated in Fig. 12.  

 

 
 

Fig. 12. Common systems for application of wood coating formulations 
 

Of these, brush painting is the most common for coating of wood in external applications. 

Flexner (1994) provides a detailed description of the most popular type of paintbrush, 

which typically has a chisel-shaped tip and taper bristles that are flagged into multiple 

filaments near their tips. The flagging provides some extra capacity to hold wet coating 
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formulation. In the case of roller application, which is widely used for applying paint to 

gypsum board (drywall), the fineness of the pattern has been shown to depend on the nap 

(meaning the size of the filaments in the felt-like material). In addition, there has been 

some work on the relationship between spattering of paint during roller application and 

the rheological properties of the formulation (Chaudhary et al. 2020). However, the 

literature search carried out for this article did not discover any scientific study to 

compare different application methods with each other with respect to outcomes such as 

the quality and service life of the resulting coating. 

 

Number of coats  

 Several studies have considered issues related to the number of coats that should 

be applied to wood for exterior usage. Key findings or recommendations of those studies 

are highlighted in Table 12. In terms of effects on weathering, the most pertinent findings 

were from the 1972 USDA Forest Products Laboratory publication, since it basically 

predicted an increased service life of about 7 years due to application of a second finish 

coat. These findings are reinforced by work of Grüll et al. (2014). The results of Hysek et 

al. (2018) provide circumstantial evidence that a higher number of coatings has the 

potential to achieve a more uniform final effect. 

 

Table 12.  Findings from Studies Considering the Number of Coating Layers for 
External Wood Applications 
 

Themes of Publications Citation 

The recommendation is to apply two finish coats (or “topcoats”) on 
top of a primer coat. The system with just a primer and one topcoat 
was estimated to last 3 years, whereas the application of the 
second finish coat extended the estimated time to 10 years. 

USDA Forest Products 
Laboratory 1972 

The durability of external coats was found to increase with an 
increasing number of layers. 

Boxall 1981 

Recommends using multiple coats, with sanding in between. These 
were general recommendations, not specific to external wood 
applications.  

Flexner 1994 

Increasing the number of applied coatings from 1 to 2 to 3 yielded 
large increases in the time to failure according to both artificial and 
natural weathering tests of various acrylic, alkyd, and polyurethane-
acrylic coatings. 

Grüll et al. 2014 

Best results were achieved with two pigmented acrylate coating 
layers and a final transparent hydrophobic (water-repellent) layer. 

Panek & R. 2016 

The total waterborne acrylic coating thickness was found to 
correlate strongly with resistance to permeation of moisture through 
the total layer; but the correlation was affected by the number of 
coating layers. Four-layer coatings gave stronger correlations of 
water absorption rate vs. net thickness than 3-layer coatings. 

Hysek et al. 2018 

Gloss of a surface coated with a waterborne transparent 
formulation increased with the number of layers, but it decreased 
when sanding was done after coating. 

Slabejová et al. 2016 

Plywood was coated with either one, two, or three layers of solvent-
based, waterborne, and hard wax layers. The authors were mainly 
interested in roughness and gloss effects, not weathering. Quality 
increased with increasing numbers of layers. 

Slabejová & S. 2022 

 

 Figure 13 illustrates some reasons to expect that multiple layers of a finish coating 

ought to have a more durable effect than just one. If it is assumed that each coating will 
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have defects, such as gaps or thin spots, the next layer can be expected to fill in such 

defects. If such defects are assumed to be random, then the application of multiple layers 

decreases the probability that inadequately covered areas will remain. Finally, multiple 

coatings allows for a greater overall thickness, while avoiding such problems as sagging 

of wet coating on vertical surfaces, which might be expected if excessive amounts are 

used in individual layers. 

Wood

Primer

First finish coat:

Uneven and possibly 

exhibiting gaps

Two finish coats:

More uniform net effect

Three finish coats, with 

a primer, for high net 

uniformity & durability

 
 

Fig. 13. Illustration of how the usage of multiple coatings may be able to compensate for un-
evenness of individual coating layers, leading to a thicker and more durable combined coating 
 

Net coating weight 

 Grüll et al. (2014) found that higher total film thickness led to greater resistance 

to the effects of weathering. Liu and Xu (2022) found that there was an optimum layer 

thickness when implementing a three-layer system in which a sealing primer was covered 

by a default primer and then a polyurethane topcoat. The sealing primer layer thickness 

did not show any significant effects. Best performance, in terms of adhesion and gloss 

were achieved with wet layer thicknesses of 60 g/m2 for the sealing primer, 100 g/m2 for 

the waterborne primer, and 120 g/m2 for the self-made topcoat formulation. 

 Given the finding that coating performance often has been correlated with 

increasing total coat weight, it is worth considering whether it is feasible to increase the 

thickness of individual layers. Allen (1984) states that excessive layer thickness is likely 

to give rise to wrinkling. Such an effect might be expected on vertical surfaces in the case 

of coatings having a tendency to form an outer skin in the early stages of drying due to 

evaporation from the surface. A high thickness would imply a large amount of wet, low-

viscosity material persisting long enough below the surface to allow the outer skin layer 

to sag, possibly in an uneven manner, giving rise to wrinkles. Cox (2003) recommended 

an ideal layer thickness of 4 wet milli-inches (equal to a total of about 0.1 mm) for a 

primer layer and 3 wet milli-inches (~ 0.075 mm) for a topcoat. 

 

Time between coating applications   

 In principle, it is expected that there should be an optimum window of time 

during which to apply a second or layer coating layer to wood. Cox (2003) pointed out 

that sufficient time must have passed in order to allow the previous layer to have dried. 

The USDA Forest Product Laboratory (1972) and Cassens and Feist (1986) recommend 

applying each layer within two weeks of application of the preceding layer. As illustrated 

in Fig. 14, presumably with the further passage of time, the polymer segments within a 

coating layer become increasingly difficult to mobilize, thus limiting the amount of 
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mixing of polymer segments at the interface between layers when applying the next 

coating. 

 

Wood
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mingle at 
interface

Relatively 

fresh primer
Very old primer 
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Less segment 
mingling; more 
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peeling at later 
dates

 
 

Fig. 14. Schematic illustration of an effect of time between application of successive coating 
layers on the development of polymer segment mixing at the interface 
 

Sanding between coats 

 It makes logical sense that abrading a layer of coating with a suitable fine 

sandpaper ought to increase its adhesion to the next layer, due to mechanical interlocking, 

but the questions to consider is whether or not such improvements are needed and 

whether the effects are large enough to be worth the effort. As already was shown in 

Table 12, Flexner (1994) recommends sanding between layers of coating when there is a 

need to improve adhesion between them. Liu et al. (2021) reported improved bonding of 

a nitrocellulose transparent coating to a nitrocellulose transparent primer on poplar wood. 

However, the application was antique furniture, not exterior wood. It would be interesting 

to test this approach for systems that are subsequently exposed to weathering. 

 

Weather conditions during application  

 Though it is reasonable to discontinue exterior painting well before the onset of a 

rainstorm, the weather circumstance most often mentioned by experts is almost the 

opposite – the warming of previously cold wood by sunlight (Ulfvarson and Pattyran 

1972). A likely cause of this problem is illustrated in Fig. 15.  

 

Wood (having higher 
moisture in cool and 
damp weather)

Painters start 
work before dawn 
on damp day

Paint still wet

Skin on surface

Blister

Vapor

 
 

Fig. 15. Schematic illustration of what can happen when a fresh coating is applied to cool, damp 
wood not long before the rising of the sun, thus allowing a skin to form on the surface of the wet 
coating layer, followed by buildup of vapor pressure from the evaporation of water in the wood 
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When cold wood is coated, and when the sun subsequently is able to heat the 

surface before drying of the coating, it is likely that substantial liquid (water or solvent) 

may still be present underneath a skin of cured resin. Such a situation can give rise to 

blisters (USDA Forest Product Laboratory 1972; Williams et al. 1996; Cox 2003). 

 

Moisture Control and Finish Durability 
 Water, together with ultraviolet light, can be regarded as a key enemy to the 

preservation of exterior wood. In particular, multiple episodes of wetting and drying will 

give rise to periodic vertical cracks, i.e. checking (Feist 1982b; Kropat et al. 2020). The 

wood swells each time that it is wetted, and it shrinks each time that it is dried. Steep 

moisture gradients can arise, for instance when wet wood is exposed to strong sunlight. It 

follows that the wood will experience shear stresses periodically during such moisture 

cycling (Flexner 2005). These shear stresses can result in check formation. 

 To combat the effects just described, an effective wood finish for exterior use 

needs to do two things.  

• First it needs to block liquid water (from rain, dew, etc.) from entering the pores 

of the wood.  

• Second, it needs to have sufficient vapor permeability to allow any water that 

might be trapped below the finish to gradually diffuse out. If not, there is a danger 

that the wood may decay (van Meel et al. 2011). 

 
Hydrophobic character of finish 

 During rainstorms, as well as morning dew, coated wood surfaces are periodically 

exposed to liquid water. Many studies have been carried out to evaluate different 

additives that might act as hydrophobic agents, often with the goal of decreasing the 

amount of water that might permeate through the coating. Figure 16 highlights three 

classes of hydrophobic agents that can be components of various exterior coating 

formulations for wood. The main findings of such studies are highlighted in Table 13. As 

shown, the studied treatments have been highly diverse. Though the concept of using 

hydrophobic additives in wood coatings appears to be widely shared, no particular type of 

treatment has achieved a large proportion of research attention. 

Though research into hydrophobic additives has shown that the contact angle of 

water on wood coatings can be increased, it is worth keeping in mind that the initial hy-

drophobic charter of such a surface can be expected to change over time due to the grad-

ual oxidation of coating layers, the build-up of dirt, and any biological growth, such as 

mildew. Though it is possible, in the lab, to prepare surfaces so hydrophobic that drops of 

water just roll off of them (Huang et al. 2022), it is realistic to expect that coating wood 

surfaces exposed to rain will soon become completely wetted by water.  

 Even if the outside surface of a coating layer becomes completely wetted by wa-

ter, especially with continued rainfall, that does not necessarily mean that the hydropho-

bic nature of a wood coating does not play a role in keeping the underlying wood dry. 

Suppose, for instance, that the coating layer has capillary pores within it; a hydrophobic 

nature of the walls of such pores will be expected to resist penetration by water (Lucas 

1918; Washburn 1921). Such a mechanism can become important in cases where there 

are pinhole-like features in a coating layer. 
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Table 13. Studies Evaluating the Addition of Hydrophobic Components to Coat-
ing Formulations for External Applications 
 

Themes of Publications Citation 

Water repellents, for the treatment of wood, keep the wood dry, 
whereas water repellent preservatives also control fungus. They 
can be used as a pretreatment before other coatings. 

Williams & Feist 1999 

Wax esters are used as hydrophobic components in industrial 
wood coatings. Life cycle impacts of the products were compared. 

Gustafsson & B. 2007 

Hydrophobic fumed silica was added to transparent UV-curable 
coatings. The additive improved scratch resistance. 

Nkeuwa et al. 2014b 

A top-applied water protective coating delayed the degradation of 
paint on spruce wood exposed to three years natural weathering. 

Panek & R. 2014 

Nanoparticles comprising poly(styrenemaleimide) with optional 
vegetable oil were used to coat high-density and low-density wood 
surfaces. The combination of both additives achieved hydrophobic 
surfaces. 

Samyn et al. 2014 

Beech and fir wood specimens were thermally treated in oil and 
then covered with poly-dimethylsiloxane. The hydrophobicity 
persisted after weathering. 

Saei et al. 2015 

A commercial hydrophobic topcoat provided limited durability 
against artificial weathering. Failure was due to micro-crack 
formation and the adverse effects of oak tannins and large vessels. 

Pánek et al. 2017 

Bark extracts from red cedar and lodgepole pine were evaluated for 
usage in primer and topic coatings. 

Huang et al. 2019 

Polymeric films were prepared based on natural latex and rosin as 
waterproofing coatings for bamboo particleboards. Latex formed a 
smooth hydrophobic film, whereas the rosin did not. 

Nakanishi et al. 2019 

Hydrophobic oils were added to either synthetics or waterborne 
acrylate with wax additive for oak wood. The hydrophobic treatment 
increased resistance to accelerated weathering. 

Pánek et al. 2019a 

Shellac was used to increase the hydrophobicity of bamboo. Its 
effectiveness was shown by contact angle tests. 

Acarali & Demir 2021 

Post-application of hexadecyltrimethoxysilane, etc., reduced water 
permeation. 

Yona et al. 2021b 

Lignin-based polyurethane contributed to the hydrophobic 
character of a wood surface, but it promoted crack development. 

Bergamasco et al. 2022 

Jatropha curcas seed oil and vegetable resins contributed to the 
hydrophobicity of a bio-based varnish formulation. 

Bessike et al. 2022 

Application of waterborne (acrylic) and solvent-borne (polyester) 
coatings greatly increased the hydrophobicity of fir wood after 
plasma treatments with air, nitrogen, and carbon dioxide gases. 

Gholamiyan et al. 2022 

Thyme essential oils were added to solvent-borne or waterborne 
polyurethane coatings. Biocidal effects were found, especially when 
the oils were encapsulated. Hydrophobicity was not considered. 

Tari et al. 2022 

Hexadecyltrimethyoxysilane and related hydrophobic agents were 
used with vegetable-oil-based thermoset coatings. 

Husić et al. 2023 

Melamine was added to a polyurethane/acrylic dispersion to 
achieve hydrophobic character or a fire-resistant wood coating. 

Puyadena et al. 2024 

 

The next topic to consider is factors affecting the rate of diffusion of water mon-

omers (i.e. water vapor) through the coating itself, regardless of whether or not the exter-

nal surface has a low contact angle with liquid water. 
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Fig. 16. Three classes of hydrophobic agents that may be present in coating formulations 
  

Moisture barrier issues 

 Table 14 highlights key findings from studies that have considered the rate of 

permeation of water vapor and other monomeric substances through layers of wood 

coatings. Of particular note is the point that waterboard coatings, which involve the 

coalescence of polymer segments on adjacent latex particles during evaporative drying 

and curing, are known for providing greater breathability, meaning that their water vapor 

transmission rate is higher (Allen 1984). Another key point is the finding that defects 

such as cracks in a coating layer can be expected to have a disproportionately large effect 

on the overall protective ability of a coating (Williams et al. 1996). For example, 

interfacial incompatibility between a kind of particle and a kind of resin within a coating 

layer has potential to yield air gaps, which can serve as a conduit for water vapor 

transport (Donkers et al. 2013). 

 

Table 14.  Studies Considering Rates of Diffusion and Factors Affecting Rates of 
Diffusion of Water Vapor and Other Monomers through Wood Coatings 
 

Themes of Publications Citation 

Increased water vapor absorption can be a sign of deterioration of 
the paint. This was shown in a study of 28 paint systems on fir and 
oak woods. 

Botcher 1975 

Waterborne coatings for wood tend to be more breathable, 
meaning that the moisture vapor transmission rate is higher. 

Allen 1984 

Moisture transported into pine and spruce was affected by the 
presence of any of nine different joinery paints. Absorption of water 
also was affected by weathering and the type of wood. Many of the 
coatings showed much higher transport of water vapor or liquid 
water after three years of weathering. Stain was not effective as a 
moisture barrier. Acrylic resin was less effective than other coating 
types at slowing water vapor transmission. 

Ahola 1991 

Air leaks tend to be more important than diffusion issues; thus, any 
vapor retarding treatment must form a continuous film. 

Williams et al. 1996 

Moisture diffusion coefficients were calculated from rates of weight 
gain after abrupt changes in relative humidity. These values were 
affected by both the coating system and the wood. 

de Meijer & Militz 2001 

Nuclear magnetic resonance (NMR) spectrometry was used to 
quantify moisture permeation into wood. Diffusion was the 
dominant mechanism of transport. An acrylic resin was more 
effective at inhibiting oxygen transport compared to an alkyd resin. 

van Meel et al. 2011 



 

REVIEW ARTICLE bioresources.cnr.ncsu.edu 

 

 

Laleicke & Hubbe (2025). “External wood coating,” BioResources 20(3), 7903-7982.  7934 

The effect was attributed to closure of pores during resin drying. 

Though it makes sense to consider using minerals to block 
moisture absorption, what appears to happen in some cases is that 
the moisture shows enhanced moisture permeability near to the 
surface of the mineral, which suggests the presence of air gaps. 

Donkers et al. 2013 

Addition of 0.5% hydrophobic nano-silica together with 1% of nano-
clay gave the best results on birch wood with respect to barrier 
properties and adhesion strength.  

Nkeuwa et al. 2014a 

Water vapor resistance was evaluated for four commercially 
available coating systems. Systems based on alkyd resins were 
effective at blocking water transmission. Mineral addition tended to 
make the coatings more permeable. 

Volkmer et al. 2015 

Permeability decreased with increasing coating layer thickness, 
with the number of coats, and was affected by coating composition. 
Certain pigment types affected permeability. Water vapor 
absorption dominated over permeability of liquid water. The rate of 
desorption from the coated wood was half the rate of water uptake. 

Hysek et al. 2018 

Moisture content of coatings was highly correlated with their water 
vapor permeability. A water-based acrylic coating showed lower 
water uptake compared to a solvent-based alkyd and a waterborne 
alkyd coating. 

Gezici-Koç et al. 2019 

Penetrating coatings provided little resistance against water vapor 
diffusion into larch and ash woods. Film-formers were much more 
effective. 

Miklecic & Jirous-
Rajkovic 2021 

Nanofibrillated cellulose was added to acrylic resin to form a film on 
wood panels that decreased oxygen gas permeation and increased 
film strength. 

Shimokawa et al. 2021 

Differences in permeation of water vapor through various coatings 
were attributed to open pores in formulations including silicon-
based components. Post-treatment with alkyltrialkoxysilanes 
reduced water vapor permeability. 

Yona et al. 2021b 

Spruce wood absorbed more water than larch, independent of 
whether or not it had been charred or coated with a waterborne 
acrylic high-build stain. 

Zigon & Pavlic 2023 

 

Ahola (1991) compared nine different joinery paints with respect to their rates of 

water vapor and liquid water transport on pine and spruce woods. Tests were done in 

outdoor conditions for a year. One of the biggest contrasts was the much slower flux of 

water into wood when using film-forming coatings (typically about 1 to 1.5 kg/m2s) 

rather than a stain (about 5 kg/m2s). Surprisingly, three years of weathering did not have 

a large effect on the transmission rate, with a few exceptions. Follow-up work showed 

that the absolute rate of water permeation through the finish did not depend on the 

underlying wood species (Ahola et al. 1999). Williams et al. (1996) mention a 

commercial “vapor retarder” product having the purpose of slowing down the diffusion 

of water into wood through the coating layer. However, the note was made that in many 

cases air leaks through cracks or other defects in a coating may have a more important 

effect than the rate of diffusion through unblemished parts. Allen (1984) noted that oil-

based primers tend to be resistant to vapor diffusion, whereas water-based primers can be 

generally described as breathable. Gezici-Koç et al. (2019) found a correlation between 

the amount of water present in a coating, on the wood surface, and its rate of diffusional 

transport of water vapor. Similar results were obtained for two alkyd coatings (one 

solvent-borne and one waterborne, and a water-borne acrylic formulation). 
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 Excessive resistance to water vapor diffusion can be a problem in cases where the 

wood tends to retain too much moisture after rainfalls and a coating slows subsequent 

transport and evaporation of that moisture (Bronski and Ruggiero 2000). The cited 

authors pointed out that surface-sealing barrier coats may tend to entrap moisture within a 

wall system.  

Rapp and Peek (1999) likewise blamed a varnish layer for long-lasting periods of 

high moisture content during natural weathering of spruce, oak, and Douglass fir 

specimens. On the other hand, as noted by van Meel et al. (2011), a coating also can 

reduce the amount of moisture taken up by the wood during rain events, leading to net 

positive results in typical cases. 

 

Binder Attributes and Durability 
The question considered here is whether certain attributes of the binder, i.e., the 

softness or stretchability of the polymer used in different wood coating formulations, has 

been found to correlate with its performance in external wood coating applications. Thus, 

de Meijer and Nienhuis (2009) considered the susceptibility of different coating 

formulation to develop internal stresses and compared those findings to cracking and 

flaking results.  

It was found that high levels of stress were developed when there were large 

differences in swelling between the wood and the coating. Results were compared with 

accelerated and natural weathering test results, and a good correlation was found. Best 

results were found with those primers (especially solvent-borne) having less swelling 

tendency and therefore less stress development at the interface. 

 According to Baumstark and Tiarks (2002), an ideal resin for exterior wood 

coatings ought to be non-tacky, hard, resistant to blocking, but also very flexible, such 

that it will be resistant to cracking. They found that those criteria were best met, in the 

case of acrylic binder systems, by using multi-phase acrylic emulsions. A combination of 

a soft hydrophobic monomer (2-ethyl hexyl acrylate) and methyl methacrylate gave the 

best resistance to weathering, including the least uptake of water by the wood. Rather 

than try to achieve a uniform or random copolymer, it was found that particles with soft 

and hard phases performed best. A particle size of about 100 nm was recommended, such 

as to allow good penetration and distribution. 

 

Silicones for durability  

 Silane and silicate-type coatings appear to offer a wide range of possibilities for 

such purposes as cross-linking and the development of hydrophobicity in wood coatings. 

Highlights from related studies are provided in Table 15. As indicated by the table 

contents, the properties provided by these treatments were quite diverse, such that time 

and effort will need to be devoted to formulation of the best ratios of additives in various 

cases. Alkyltrialkoxysilanes and related chemicals were effective both as crosslinking 

agents and as hydrophobizing additives (Husić et al. 2023). Systems based on 

precipitation of water glass (a highly alkaline solution of silicate) tended to be brittle, but 

suitable as a pre-coating treatment; film-forming additives can be employed to overcome 

the brittleness (Tshabalala et al. 2011). 
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Table 15. Studies of Effects of Different Formulations of Silane-type or Silicate-
type Components in Exterior Wood Coatings 
 

Themes of Publications Citation 

A radiation-curable coating based on two acrylate monomers was 
supplemented with a silane coupling agent. 

Landry et al. 2008 

Wood veneers were dipped into mixtures of alkyltrimethoxysilanes 
and aluminum isopropoxide precursors as an aqueous sol with an 
acrylic self-crosslinking binder formulation to provide effective 
weathering resistance. 

Tshabalala et al. 2011 

Organosilane nanoparticles in nitrocellulose and polyester lacquer 
coating formulations formed a uniform layer on poplar wood, 
providing weathering resistance. The hydrophobic particles 
reduced wettability of the surfaces. 

Gholamiyan & T. 2018 

The authors describe a final coating with “liquid glass,” which was 
described as a two-part waterproofing system. Further information 
is not provided, but the name suggests silicon-type chemistry. 

Kucuktuvek et al. 2020 

Silicate treatments could be prepared on wood surfaces, especially 
following pre-mineralization (highly alkaline water-glass silica 
solution followed by either boric acid or sodium bicarbonate). 
Cracking problems could be overcome by careful formulation. 

Yona et al. 2021a 

The silicate-based coatings tended to be porous to water 
permeation, but also quite hydrophobic. Post treatment with alkyl-
trialkoxysilane reduced liquid water permeation and increased 
durability. 

Yona et al. 2021b 

Incorporation of alkyltrialkoxysilanes was able to achieve highly 
durable brass-containing coatings for fine art on wood. 

Han & Yan 2023 

Hexadecyltrimethoxysilane and related agents provided increased 
hydrophobicity. The balance between hydrophobicity and physical 
strength could be balanced by the selection of different monomers. 

Husić et al. 2023 

Fast-growing wood was hydrophobized and rendered weather-
resistant by dip-coating with methyltriethoxysilane and silica 
particles. 

Qu et al. 2023 

 

UV-cured finishes and durability 

 Decker (1996) appears to have been the first to describe the development of a 

UV-cured coating for exterior application of wood. A large increase in weatherability of 

the wood specimens was observed in comparison to uncoated wood. No pigmentation or 

absorbers for UV light (beyond the photosensitizer for curing of the resin itself) was 

employed. Gurleyen (2021) improved weathering performance by application of UV-

cured varnishes for flooring applications. Again, no additional UV-absorbing materials 

were employed. Weichelt et al. (2010) developed a UV-cured coating for outdoor wood 

application. This was done with the addition of nano-sized ZnO particles to protect 

against ultraviolet light. Vardanyan et al. (2015) showed that adding cellulose 

nanocrystals to a UV-curing polyurethane acrylate transparent coating formulation 

decreased color change during accelerated weathering. Irmouli et al. (2012) found that 

adding UV absorbers having different absorbance spectra compared to the photoinitiator 

did not provide any improvement in resistance to artificial weathering of UV-cured clear 

finishes on oak and spruce woods. Dixit et al. (2021) did not consider weathering effects, 

but they formulated a UV-cured wood coating system to have antimicrobial properties. 

Because UV-curing coating formulations already have to contain an initiator that absorbs 

UV light, there is reason to suspect that there might be a significant contribution of that 

additive to later protecting the coating and the wood during outdoor exposure. However, 
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there does not appear to have been a study addressing such a contribution to the 

performance of UV-cured coatings. 

 

Reinforcing Particles and Durability 
 Many coating formulations that are intended for external usage on wood are filled 

with particles. Often it is possible to classify such particles based on certain roles that 

they play with respect to the performance of the coating product. For instance, the word 

“filler” can be used in cases where a prime consideration is to decrease the overall cost of 

the formulation. But in addition, it is possible to utilize solid additives for the purpose of 

enhancing the hardness or other strength properties, and such components can be 

regarded as reinforcing particles. Another category is particles that have a propensity to 

impede diffusion of such items as water vapor or air. Finally, it makes sense to consider 

the extent to which special advantages might be achieved by the addition of particles that 

interact with light. The refractive index of TiO2 particles is high enough (2.55 to 2.7) so 

that there is a large contrast with the typical refractive index of binders (often 1.5 to 1.6), 

which can give rise to strong scattering of light if the particles are in the diameter range 

of about 0.2 to 1 µm. Adding such particles to a coating formulation contributes to 

opacity. When the goal is to achieve high absorption of UV light, one option is to use 

nano-sized TiO2 particles. For example, the tendency for particles to contribute to the 

scattering of visible light, leading to increased opacity, decreases more and more with 

decreasing diameter below about 200 nm (Jalava 2006). The cited article quantifies how 

decreases in particle size of TiO2 particles in the range 237 down to 166 nm tend to shift 

the interactions with light more and more into the ultraviolet region. 

 

Fillers 

 According to Flexner (1994) a filler in a wood coating is just a binder with a 

mineral particle inside. To the extent that such a description is valid, it underscores the 

idea that some minerals might be regarded as merely occupying space. Yan et al. (2018) 

used inexpensive talcum powder or calcium carbonate particles and achieved good 

hardness, adhesion, and impact strength. Relatively inexpensive mineral particles can be 

obtained, for instance from calcination of rice husks; Guo et al. (2019) found that such 

material could be added to waterborne acrylic coating recipes. But even in that case, 

substantial benefits were observed, including increases in tensile strength, elastic 

modulus, and pencil harness of the coating. Likewise, Meng et al. (2020) added silica 

particles, but the source of the material was a combination of sol-gel and thiol-ene 

reactions. The particles were added to a castor-oil-based waterborne acylate formulation. 

Again, increases in Young’s modulus and hardness of the resulting coatings were 

observed. Thus, even when considering examples from the literature that would best 

correspond to the idea of merely filling the coating film with an inexpensive kind of 

mineral, many researchers have reported reinforcing effects as well. None of the articles 

cited in this paragraph had anything to report with respect to weathering, however. 

 

Reinforcing particles, including nanocellulose 

 In principle, when the goal is to increase the strength or elastic modulus of a 

coating film, three attributes to look for in a particle are its interfacial compatibility with 

the resin, an elongated or even fibrillar character, and an inherent strength that is 

sufficiently high. These three attributes, ideally, would allow each of the particles to 

interact with multiple resin particles, for instance in a typical latex formulation. As an 
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example, Yan et al. (2019) employed glass fiber powder in waterborne coatings at levels 

ranging from 1 to 7%. The best overall performance was found at a 3% level. A key 

benefit was in preventing decoloration of a thermochromic ink in the formulation. 

However, strength benefits were not observed in that study.  

Greater success, in terms of strength development, has been reported for 

nanocellulose, which typically has a generally fibrillar character. For instance, Vardanyan 

et al. (2014) added cellulose nanocrystals (CNCs) to a UV-cured waterborne coating 

formulation. Increased scratch resistance, hardness, and adhesion to the wood were 

observed. Veigel et al. (2014) obtained similar results with the same additives and a 

waterborne wood coating. Poaty et al. (2014) reported follow-up work in which either 

alkyl quaternary ammonium bromide or acryloyl chloride was used to render the CNC 

surfaces more hydrophobic and thereby more compatible with an acrylic resin in the 

coating formulation. The presence of the compatibilized CNC particles raised the 

abrasion and scratch resistance by 24 to 38%. Cheng et al. (2016) utilized a certain kind 

of nanocellulose nanofibers (called TEMPO-oxidized) in a waterborne polyurethane 

coating. Young’s modulus and hardness were increased. However, the nanocellulose at a 

1% addition by mass tended to hurt the adhesion of the coating. Likewise, Kluge et al. 

(2017) added cellulose nanocrystals and nanofibrillated cellulose (NFC) at the 0.5 and 

2% levels to waterborne wood coating formulation. Substantial increases in tensile 

strength (to breakage) and elastic modulus were found, especially at the 2% level of the 

NFC. Grüneberger et al. (2014) added NFC to eight commercial acrylic and alkyd 

polymeric binders; all the resulting films were stiffer, stronger, and less extensible. 

Pacheco et al. (2021) prepared a composite from SiO2, TiO2, and nanocellulose in 

waterborne varnish and improved the mechanical performance and stability. Shimokawa 

et al. 2021) showed that adding NFC to waterborne primer formulation resulted in 

increased breaking stress by a factor of about 1.5. Song et al. (2023) showed that NFC 

and CNC particles, prepared directly from lignocellulose, improved the hardness, 

abrasion resistance, and adhesion strength of a waterborne wood coating. Neelambaram 

et al. (2023) likewise found strength gains upon addition of NFC to a siloxane acrylic 

latex formulation. Wang et al. (2023) reviewed related work in which nanocellulose has 

been used as a reinforcement in coatings. It is notable, however, that none of the work 

mentioned so far in this paragraph involved analysis of the effects of weathering. A rare 

exception was research reported by Yoo and Youngblood (2017), who studied the effect 

of adding CNC to tung oil finish formulations. Greater color stability was observed due 

to the presence of the CNC during weathering of the coated wood. Likewise, Yuan et al. 

(2021) reported strong reinforcing effects of NFC, in the presence of carbon nitride 

nanosheets (as a UV absorber), which together improved the weathering resistance of a 

transparent coating on wood. 

Though many of the studies just cited, involving addition of nanocellulose 

products to wood coating formulations, can seem promising in terms of developing 

Youngs modulus and strength attributes of the coating films, research attention will be 

needed with respect to the rheological behavior of such coatings. It is well known that the 

presence of nanocellulose in aqueous systems can greatly increase the viscosity of the 

mixtures (Hubbe et al. 2017; Li et al. 2020; Koo et al. 2021). 

 

Tortuosity and effects on vapor diffusion 

 In principle and in practice, platy particles such as clays are expected to be the 

most effective in decreasing the permeation of water vapor or other gases through a 
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coating film (Wolf and Streider 1990). This expectation is supported by Nkeuwa et al. 

(2014a), who considered nanoclay in transparent UV-cured coatings. In particular, 

multilayer coatings achieved good barrier properties. However, contrary results were 

observed by Donkers et al. (2013). The latter results raise a suspicion that there may have 

been poor contact within the coating layer between the resin and the mineral, thus 

allowing water to migrate through void spaces within the coating. For instance, a failure 

of the resin to wet the surface of the mineral during formulation and drying may have 

resulted in gaps between the mineral surfaces and the resin within the dried coatings. 

Again, none of the studies cited in this paragraph specifically studied weathering effects. 

Given that mineral particles are relatively inexpensive, as well as the potential benefits of 

increasing the tortuosity of exterior coating products, it is recommended that such studies 

be carried out as a priority. 

 

UV Light Absorbers: Mineral 
 Another key purpose of adding minerals to a coating formulation, especially for 

outdoor applications, is for protection of both the coating and the wood against adverse 

effects of ultraviolet light. As noted in an earlier review article (Kropat et al. 2020), the 

combination of UV light with periodic rainfall is expected to result in degradation and 

removal of the lignin from the outer layer of unprotected wood. 

 As illustrated in Fig. 17, one can place UV-absorbers, as used in coating 

formulations, into three categories. When using high refractive index particles, such as 

conventional TiO2 products, both visible and UV light will be impeded from transmission 

through the coating. When the mineral particles are very small or have a refractive index 

similar to that of the resins in the coating, then it may be possible to absorb the UV light 

without affecting the visible appearance. The third category is organic compounds having 

sufficient conjugation of unsaturated carbon-to-carbon bonds in their molecular structure 

to allow them to absorb UV light. 
 

TiO2 particles 

for opacity: 

0.2 to 0.4 µm 

diameter

TiO2, ZnO, or 
CeO2 particles 
to absorb UV: 
up to ~100 nm
diameter

Molecularly dispersed 

UV absorbers, e.g.

benzotrialoze

N

N

N

H

Wood (vulnerable to UV 
degradation of the lignin)

 
 

Fig. 17. Three classes of UV-absorbing components that can be used in coating formulations 
 

TiO2 pigment  

 Due to its high index of refraction (2.55 or 2.7), titanium dioxide has proven itself 

very effective in the scattering of light (Jalava 2006), making it a good choice for 

increasing the opacity of coatings. High-quality white paints are usually rich in TiO2. 

Another reason to favor TiO2 in external wood coatings is its strong ability to absorb UV 

light. In terms of nomenclature, many authors have used the term “nanoparticle” when 

describing the types of TiO2 employed in wood coatings. It should be noted, however, 
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that TiO2 particles in the diameter range of about 200 to 500 nm had become well 

established in the paint industry long before nanotechnology had emerged as a popular 

topic. Thus, the term “nano” tends to be absent in much of the older literature. When 

formulators wish to minimize the scattering of light, which leads to opaque coatings, they 

need to use even smaller particles, e.g. with diameters less than about 100 nm (Allen et 

al. 2002). Table 16 highlights studies in which the addition of TiO2 to exterior wood 

coating formulations was evaluated. Schaller et al. (2012) have reviewed related 

literature comparing TiO2 with other light stabilizers. In addition, Ganguli and Chaudhuri 

(2021) have reviewed the topic of using nanomaterials, including TiO2, to minimize 

biodegradation of the underlying wood. 
 

Table 16.  Studies Considering the Effects of Adding Titanium Dioxide Particles 
to Exterior Wood Coating Formulations 
 

Themes of Publications Citation 

Ultrafine (nanoparticle) TiO2 was added to waterborne acrylic and 
isocyanate-acrylic formulations. Strong UV absorption was 
observed. There was reduced photodegradation of the wood. 

Allen et al. (2002) 

Artificial weathering of coatings on black spruce wood showed that 
TiO2 particles reduced chemical degradation of the wood. 

Cristea et al. 2010, 2011 

TiO2 particles were added to waterborne acrylic coating 
formulations. Coating thickness decreased with increasing 
weathering time. Coatings containing TiO2 were somewhat more 
effective than ZnO and an organic UV absorber in retaining the 
coating thickness. 

Saha et al. 2011b,c 

Adding TiO2 articles to acrylic stain coating formulations made them 
less affected by accelerated weathering. 

Fufa et al. 2012 

The surfaces of TiO2 particles were modified by deposition of an 
alumina or silica layer to minimize undesired photoactivity. The 
treatment made it easier to disperse the particles, and they 
achieved higher UV absorbance. The coatings also were more 
resistant to weathering. 

Godnjavec et al. 2012 

Adding TiO2 particles to different coatings led to the least 
discoloration of beech and pine specimens, compared to some 
other UV absorbers subjected to artificial weathering. 

Ozgenc et al. 2012 

Adding TiO2 particles to an acrylic clear coating formulation 
stabilized the coating against loss of Young’s modulus and 
elongation to breakage, as well as color changes, upon exposure to 
xenon arc illumination. However, the TiO2 catalyzed photooxidation 
reactions due to its photoactivity. 

Forsthuber et al. 
2013a,b 

Adding TiO2 particles to waterborne acrylic coating formulations 
slightly decreased degradation of the lignin in the underlying wood. 

Fufa et al. 2013a,b 

The photocatalytic activity of TiO2 particles suppressed bacterial 
activity an aqueous acrylic paint in the presence of fluorescent light, 
rendering an antibacterial effect.  

Zuccheri et al. 2013 

The surfaces of TiO2 particles were treated with amorphous silica to 
suppress the photocatalytic effects. Color change in response to 
UV irradiation was reduced. 

Veronovski et al. 2013 

The presence of TiO2 particles interfered with the curing of UV-
curing epoxy acrylate coatings. 

Kardar et al. 2014 

The undesired photoactivity of TiO2 particles was revealed by a 
transformation of lodgepole pine wood surfaces from hydrophobic 
to hydrophilic. Peeling of the TiO2 layer gave further evidence of 
wood deterioration upon exposure to UV light.  

Zheng et al. 2016 

Rutile TiO2 particles in a waterborne polyacrylate coating Miklecic et al. 2017 
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formulation improved the weathering performance. The color of 
beech wood was more stable. Unlike ZnO particles, there was no 
sign of cracking and peeling. 

Adding TiO2 particles at the 1.5% level to waterborne varnish 
formulation improved the color stability of tropical wood. 

Moya et al. 2017 

Oak wood was protected by applying TiO2 particles before coating 
with exterior transparent coating formulations. Resistance to 
weathering was best with thick waterborne acrylic coatings. 

Pánek et al. 2019b 

The presence of TiO2 particles in waterborne acrylic paint rendered 
the coating more resistant to weathering. 

Ling et al. 2020 

Adding TiO2 particles to a polyacrylate formulation resulted in less 
color change and crack development in the course of accelerated 
weathering of thermally modified Picea wood. 

Nowrouzi et al. 2021a,b 

Adding TiO2 nanoparticles to transparent oil and acrylic coating 
formulations increased resistance to artificial weathering of spruce 
and beech woods. Tests also involved caffeine addition. 

Pánek et al. 2021 

The photoactivity of TiO2 particles helped to reduce the colonization 
of coating surfaces with basidiomycetes fungi. 

Hernandez et al. 2023 

Lignin/TiO2 composite nanoparticles were added to waterborne 
polyurethane coatings. Good color stability was observed in the 
course of UV irradiation. 

Song et al. 2024 

 

ZnO pigment 

 After TiO2, the next most studied UV-absorbing additive for wood coatings has 

been ZnO. Especially in cases where the goal is not to increase the opacity and hiding 

power of a paint layer, there may not be a strong need to consider TiO2, which has a 

higher refractive index (2.55 or 2.7) in comparison to ZnO (1.54). However, in common 

with TiO2, ZnO is photoactive (Thi and Lee 2017), which can raise concerns about 

undesired generation of high-energy species such as free radicals during service life of 

the coating, leading to possible breakdown of the coating or the underlying wood. For 

instance, such effects might possibly be responsible for an observed higher frequency of 

crack development in some coating systems containing ZnO particles (Allen 1984). 

However, as in the case of TiO2, the undesired photocatalytic effects can be reduced by 

coating the ZnO particles with other materials (Weng et al. 2014; Yin and Casey 2014). 

 

Table 17.  Studies Considering the Effects of Adding Zinc Oxide Particles to 
Exterior Wood Coating Formulations 
 

Themes of Publications Citation 

The presence of ZnO can contribute to cracking of a coating layer. Allen 1984 

Adding ZnO2 to a polydimethylsiloxane film, followed by plasma 
curing, conferred resistance to weathering, as indicated by lower 
weight loss. 

Denes & Young 1999 

Nano ZnO was shown to be an efficient UV absorber. Improved 
weathering resistance was shown. 

Weichelt et al. 2010 

ZnO nanoparticle outperformed CuO to reduce wood discoloration. Auclair et al. 2011 

ZnO was added to the formulation of an acrylic polyurethane 
coating. Coating thickness decreased during artificial weathering. 
The ZnO was less effective than TiO2 in preventing the effect.  

Saha et al. 2011c 

ZnO did not perform as well as 2-hydroxyphenyl-s-triazine in 
extending the service life of waterborne coatings. Specimens were 
exposed to xenon illumination and color deviations were noted. 

Schaller et al. 2012 

Nanofibrillated cellulose aided in the distribution and colloidal 
stability of the ZnO particles in the formulation. Color stability was 

Grüneberger et al. 2015 
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improved by the ZnO, as shown by artificial weathering. 

Oak wood was protected by modifying the surface with ZnO before 
adding a commercial hydrophobic topcoat. The protection against 
weathering was limited in its effectiveness. 

Pánek et al. 2017 

ZnO in combination with tannin in a coating was used to treat pine 
wood, which was exposed to accelerated weathering. The ZnO 
decreased color change. The best results were with a combination 
of different UV protective additives. 

Tomak et al. 2018b 

Adding Zn/ZnO particles with a cold plasma spraying process, as 
well as using the particle as a layer followed by sealants, provided 
protection against color change upon exposure to UV light. The 
best results were with a polyurethane coating, which appeared to 
be stabilized by the nanoparticles. An alkyd coating was 
photodegraded. 

Wallenhorst et al. 2018 

ZnO was applied to oak wood, followed by application of several 
coating formulations. A positive effect of ZnO, as well as of other 
UV absorbers, was shown by accelerated weathering tests. 

Panek et al. 2019 

Nano ZnO was added in an acrylic paint to improve weathering 
performance of beech wood. The particles reduced color changes 
and mold growth on the weathered samples. 

Akbarnezhad et al. 2020 

Acetylated wood was coated with nano ZnO particles, then 
exposed to accelerated weathering. The treatment reduced color 
change and degradation of wood polymers upon weathering. 

Nagarajappa & N. 2020 

ZnO particles applied with wood coating formulations were found to 
mostly remain associated with the wood surface in the course of 
one year of natural weathering. 

Thornton et al. 2020 

ZnO treatment was less effective than TiO2 or 2-hydroxyphenyl)-
benzotriazone UV absorbers to resist effects of natural weathering. 

Nowrouzi et al. 2021b 

Shellac-based varnish formulation was prepared with ZnO, which 
was functionalized by grafting with shellac, using an epoxy reagent. 
Photoprotective behavior was shown. 

Weththimuni et al. 2021 

Pine specimens were treated with ZnO particles, then coated with 
various formulations and exposed to natural weathering.  The ZnO 
decreased microbial colonization as well as color change. 

Hernandez et al. 2023 

 

Other minerals 

 Table 18 lists key findings for studies that have considered the addition of other 

mineral types, with an emphasis on absorbance of UV light. As shown, there has been 

quite a lot of research done on cerium oxide (CeO2), which has been found to be an 

effective absorber of UV light.  

 

Table 18. Studies Considering the Effects of Adding Other Inorganic Agents to 
Exterior Wood Coating Formulations 
 

Themes of Publications Citation 

Chromium trioxide was less effective as a UV absorber for 
protection of wood veneers, compared to PF resin and other 
options. 

Kiguchi et al. 2001 

CeO2 particles were among the UV absorbents used with 
waterborne clear coats; however, all other systems were out-
performed by 2-hydroxyphenyl-s-triazine. 

Schaller et al. 2012 

CeO2 particles were added to an acrylic polyurethane coating 
formulation on thermally treated jack pine. The additive reduced the 
color change of the thermally treated wood during accelerated 
weathering. 

Saha et al. 2013 
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Chromic acid pretreatment of the wood improved the performance 
of clear coatings. However, results also depended on the coating 
flexibility and its propensity to form surface defects. 

Vollmer & Evans 2013 

The release of CeO2 particles from an acrylic stain was evaluated 
during accelerated weathering. Two kinds of release were 
observed, namely loose material and particles released due to 
gradual breakdown of the coating. 

Scifo et al. 2018 

Tannin and CeO2 were used in coating formulations that were 
exposed to artificial weathering. The combination treatment was 
more effective than the individual components. 

Tomak et al. 2018b 

A layer-by-layer deposition process was used to apply CeO2 
particles and either chitosan or cationic starch to a wood surface 
with the goal of protecting wood from UV light. The amount of color 
change induced by UV light was decreased. 

Janesch et al. 2020 

Boric acid was used to protect pine and beech sapwood samples in 
various waterborne acrylic resin coating systems exposed to 
natural weathering.  The boric acid increased the durability. 

Özgenç 2020 

Nano CeO2 particles aided weather resistance when added to fire-
retardant coating formulations. 

Yang et al. 2024 

 

Organic UV Absorbers 
 As an alternative to the mineral particles just considered, e.g. TiO2, ZnO, and 

CeO2, the other main class of candidate UV absorbers that can be used especially in 

exterior paints can be described as organic UV absorbers. Within that category, there are 

a wide range of choices. Some of the most widely studied include benzotriazole, 

hydroxyphenyl-s-triozine, and hindered amine light stabilizers (HALS). But in addition, 

studies have also considered the usage of lignin, carbon particles, dihydroxy 

benzophenone, stains, and various other compounds as UV absorbers for addition to 

external coating formulations. Figure 18 shows the molecular structures of three of the 

most often studied organic compounds or classes of compounds used to protect the 

underlying wood from UV rays.  
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Fig. 18. Three classes of UV-absorbing components that can be used in coating formulations 
 

Benzotriazole  

 As shown in Fig. 18, benzotriazole can be described based on a pair of resonance 

structures, one of which contains an aromatic ring. As is well known, compounds that 

have sufficient conjugation (double-single-double, etc., carbon-carbon bonding) will 

absorb light of various wavelengths (Yuan et al. 2018).  The relatively short conjugation 
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sequences present in at least one of these structures are apparently well suited for the 

absorption of UV light in a range that can be effective for external coating usage. Another 

attribute that follows from the chemical structure of benzotriazole is a positive charge, 

due to the presence of a primary amine in its protonated form. The positive ionic charge 

can, in principle, favor association of the compound within negatively charged groups, 

such as the carboxylate groups present in typical acrylic latex products that utilize alkali-

swellable latex products (Padget 1994; Larson et al. 2022). 

 Table 19 lists some studies aimed at evaluating the performance of benzotriazole 

in the formulation of external wood coatings. As shown, both benzotriazole and its 

derivatives (usually hydroxyphenyl-benzotriazole) were generally found to be helpful in 

reducing effects of weathering. 

 

Table 19. Highlights from Studies Considering Benzotriazole as a UV Absorbing 
Agent in External Coating Formulations 
 

Themes of Publications Citation 

UV-cured polyurethane-acrylic films were prepared with the 
addition of benzotriazole. Excellent resistance to weathering was 
reported. 

Decker 1996 

The performance of a benzotriazole derivative in preventing the 
effects of weathering was found to be almost as good as that of 
TiO2. Results of natural weathering were confirmed with xenon light 
exposure tests. 

Forsthuber et al. 
2013a,b 

Coatings that included a benzotriazole derivative were shown to be 
effective in protecting bamboo from UV radiation. 

Li et al. 2015 

Plasma-treated spruce specimens were protected using a 
benzotriazole derivative with optional hindered amine light 
stabilizers in a transparent acrylic or alkyd coating formulation. The 
color stability was improved, as shown by accelerated weathering. 

Reinprecht & S. 2015 

Usage of benzotriazole in an acrylate coating decreased the loss in 
brightness during accelerated weathering. 

Oberhofnerová et al. 
2018 

A mixture of benzotriazole, hindered amine light stabilizers, and 
TiO2 was the most effective in protecting oak wood with a clear 
exterior coating.  

Panek et al. 2019 

A combination of benzotriazole and ZnO were used as an acrylic-
based coating to protect bamboo against aging by UV light 
exposure. 

Rao et al. 2019 

A benzotriazole derivative with optional hindered amine light 
stabilizers was added to transparent alkyd or acrylic coating 
formulations. There was no effect of the benzotriazole on adhesion 
strength, based on accelerated weathering tests. 

Reinprecht et al. 2020 

A benzotriazole derivative was added to a waterborne polyacrylate 
formulation in combination with olive leaf extract. Weathering 
resistance was demonstrated, especially in combination with TiO2. 

Nowrouzi et al. 2021b 

 

Hydroxyphenyl-s-triazine  

 The generalized structure of hydroxyphenyl-s-triazine, indicating points of 

optional substitution of this class of compounds, is was shown in Fig. 18. Note that, like 

the benzotriazole just considered, this is a structure with conjugated double and single 

carbon-to-carbon bonds. In addition, the tertiary amines on the central ring will allow for 

the development of a positive charge due to protonation. 
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Table 20 provides some highlights of studies to evaluate the effectiveness of 

hydroxyphenyl-s-triazine in exterior coatings. Most notably, though it was found to be 

effective against weathering, the studies often found that other agents were more 

effective. 

 

Table 20. Highlights from Studies Considering Hydroxyphenyl-s-triazine as a UV 
Absorbing Agent in External Coating Formulations 
 

Themes of Publications Citation 

Hydroxyphenyl-s-triazine is described as a new UV-absorbing 
compound suitable for exterior wood coatings. 

Schaller et al. 2008 

Hydroxyphenyl-s-triazine was added to different coating 
formulations to protect beech and pine woods. Protection by 
hydroxyphenyl-s-triazine was almost as effective as TiO2. 

Özgenç et al. 2012 

The authors compared several UV absorbers in waterborne 
coatings.  The 2-hydroxyphenyl-s-triazine outperformed several 
other UV-absorbing compounds. 

Schaller et al. 2012 

Hydroxyphenyl-s-triazine was added to waterborne acrylic and 
alkyd formulations. There was reduced color change upon 
exposure to weathering. However, even greater protection was 
provided by bark extract from alder and maritime pine. 

Özgenç et al. 2020 

 

Hindered amine light stabilizers (HALs)  

 Table 21 lists highlights from studies evaluating the protective effects of HALs in 

coatings for exterior wood. Note that the molecular structure of one of the most widely 

used HALs additives, namely bis(2,2,6,6,-tetramethyl-4-poperidyl) sebacate, was shown 

in Fig. 18. 

 

Table 21. Highlights from Studies Considering Hindered Amine Light Stabilizers 
as UV Absorbing Agents in External Coating Formulations 
 

Themes of Publications Citation 

Several different UV-light absorbers were compared in waterborne 
coatings. The 2-hydroxyphenyl-s-triazine outperformed the 
hindered amine light stabilizer and other candidates. 

Shaller et al. 2012 

Color stability of spruce specimens coating with transparent acrylic 
and alkyd formulations was improved by the presence of hindered 
amine light stabilizer, as shown by accelerated weathering. 

Reinprecht  S. 2015 

Hindered amine light stabilizer was spread on oak wood before 
application of a hydrophobic coating and exposure to accelerated 
weathering. Limited durability was achieved. 

Pánek et al. 2017 

Hindered amine light stabilizer was encapsulated in PMMA 
microspheres and used in clear acrylic water-based coating. Color 
change and photooxidation of the binder were both minimized, as 
shown by accelerated weathering. 

Queant et al. 2019 

Hindered amine light stabilizer was added to transparent acrylic 
and alkyd coatings. The additive did not affect the adhesion of the 
coating after accelerated weathering. 

Reinprecht et al. 2020 

The addition of hindered amine light stabilizer improved the 
protection of bamboo scrimber by an acrylic formulation. 

Yang et al. 2022 
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Other UV absorbers 

 Finally, a variety of other additives have been considered in at most three 

published studies that were found in the literature search in preparation for this article.  

Highlights from these studies are given in Table 22. 

 

Table 22.  Highlights from Studies Considering Other Potential UV Absorbing 
Agents in External Coating Formulations 
 

Themes of Publications Citation 

Melamine resin was added to varnish to help protect pine, spruce, 
ok, and Douglas fir woods from natural weathering. Protection was 
effective against wood degradation, but not against cracking and 
high moisture content. 

Rapp & Peek 1999 

The UV-absorber 2-hydroxy-4 (2,3-epoxypropoxy) benzophenone 
was added to or grafted onto wood.  The grafting increased the 
effectiveness to decrease weight loss in the course of weathering. 

Kiguchi et al. 2001 

Bark extract was added to an acrylic polyurethane coating 
formulation to protect pine wood. There was less color change in 
the course of weathering. A combination of bark extract and lignin 
gave the best results. 

Saha et al. 2011a 

Opaque acrylic coatings with poly(vinylidene fluoride) (PVDF) were 
used to protect spruce and pine. The PVDF was shown to be 
effective in resisting UV light. 

Landry & Blanchet 
2012b 

Lignin was used in combination with CeO2 in an acrylic 
polyurethane formulation that was coated on pine wood and 
exposed to accelerated weathering. Color stability was moderately 
improved due to the lignin addition. 

Saha et al. 2023 

Phenol-formaldehyde and N-methyl melamine, in an addition to a 
dye, served the role of UV absorbers in a translucent waterborne 
acrylic coating to protect beech wood. Capillary uptake of water 
was reduced. There was less blistering and higher adhesion in the 
course of natural weathering due to the phenolic and melamine 
resins. 

Kielmann & Mai 2016a 

Using the same system described immediately above, the authors 
also showed that N-methyl melamine was the most effective for 
decreasing color change. There was also less flaking and cracking. 

Kielmann & Mai 2016b 

Beech wood was treated first with extracts of mimosa and 
quebracho, then coated with polyurethane, water-based, and 
cellulosic varnishes. Accelerated weathering tests showed higher 
loss of adhesion strength for the specimens with the extracts. 

Yalcin & Ceylan 2017 

Beech wood specimens were impregnated with aqueous solutions 
of tannins and then varnished. After accelerated weathering, the 
tannin-impregnated wood showed greater color change.  

Yalcin et al. 2017 

Condensed tannin addition to acrylic-based clear coatings gave 
20% better performance than hindered amine light stabilizers for 
exterior exposure. 

Grigsby 2018 

Accelerated weathering tests showed that adding condensed 
tannins from tree bark and esterification or etherification of the 
tannins in clear acrylic or styrene-acrylic coatings resulted in longer 
service life. 

Grigsby & Steward 2018 

Tannins were added to the water-based transparent and opaque 
coating formulations, which were coated on pine wood and 
exposed to artificial weathering. Color changes were reduced at 
high levels of treatment. 

Tomak et al. 2018a 

Tannins were added in combination with zinc oxide and cerium Tomak et al. 2018b 
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oxide to wood coating formulations. The presence of tannins made 
it possible to reduce the amounts of UV-absorbing inorganic 
particles to protect against weathering. 

Tree bark extract was added to acrylic and alkyd formulations in 
combination with other UV-absorbers to protect pine wood surface 
from artificial weathering.  The extract was especially effective with 
the alkyd system. 

Özgenç et al. 2020 

Extract of Chinese fir bark was added to polyurethane-acrylate 
coating, which was applied to pine wood. Accelerated weathering 
tests showed free radical scavenging ability and protection of the 
wood. The phenolic compounds in the extract were converted to 
ketones and quinones in the process of weathering. 

Peng et al. 2020 

Lignin and cellulose nanocrystals were added to acrylic 
formulations to coat beech wood. CNC promoted take-up of the 
coating by the wood, whereas lignin did not show any benefits. 

Jusic et al. 2021 

Thermally modified wood was protected with polyacrylate coating 
that contained olive leaf extract. This was effective in reducing 
natural and accelerated weathering, especially in combination with 
TiO2 and 2-(2-hydroxyphenel)-benzotriazole. 

Nowrouzi et al. 2021a 

Continuing the study introduced immediately above, the authors 
showed that olive leaf extract was the most effective in reducing the 
wettability of the coatings in the course of natural weathering. 
Adhesion of the coating also was improved. 

Nowrouzi et al. 2021b 

Bark extracts from various trees were used as UV-absorbers to 
help protect pine and beech garden furniture in waterborne acrylic 
coatings. The bark extracts helped to protect the wood against 
weathering. Some of the coatings with the extracts developed 
cracks with weathering. 

Özgenç et al. 2021a,b 

Caffeine was used in combination with TiO2 to protect spruce and 
beech wood from UV radiation and mold. Accelerated weathering 
tests showed positive results in the case of acrylate coatings. 

Pánek et al. 2021 

A diglycidyl ether of bisphenol A was crosslinked with a resin 
acid/maleic anhydride adduct to treat pine wood with a coating. 
Color changes were reduced during exposure to UV radiation. 

Rosu et al. 2021 

Nanofibrillated cellulose was added to the water-based primer 
containing acrylic resin. The coating reduced the transmittance of 
UV light and oxygen permeation, as well as increasing the breaking 
stress of the coating. 

Shimokawa et al. 2021 

Graphitic carbon nitride nanosheets were used in a hydrophobic 
and transparent coating with nanofibrillated cellulose as a film-
forming carrier. Spin-coating was used to apply a film on the wood. 
A hydrophobic coating was then applied by chemical vapor 
deposition.  Accelerated weathering tests showed a 79.6% 
reduction in color change due to the carbon nitride. 

Yuan et al. 2021 

Benzoyl chloride and chromic acid were found to be the most 
effective treatments to reduce the effects of weathering on wetting 
and adhesion of solvent-based polyurethane and waterborne alkyd 
coating. 

Kardar & Amini 2022 

Lignin nanospheres were added to waterborne wood coating. The 
treatment blocked UV radiation and decreased color changes 
during exposure to UV light. 

Song et al. 2022 

Adding lignin to a solvent-based lacquer primer and to a topcoat 
helped to protect spruce and oak woods. Accelerated aging tests 
showed that the lignin addition can increase color stability. 

Kudela et al. 2023 

Up to 20% of carbon particles added to tung oil did not affect the 
hydrophobicity. The carbon particles at the highest level protected 
the coated wood against a decrease in water repellence. 

Marrot et al. 2023 
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Microfibrillated cellulose was used to improve the mechanical 
strength and functionality of exterior coatings applied to birch 
veneer and exposed to natural and artificial weathering. The 
microfibrillated cellulose decreased discoloration in combination 
with the TiO2 or when present alone. A primer was optionally 
coated on top of the microfibrillated cellulose. 

Orelma et al. 2023 

Nanoparticles with lignin and TiO2 were added to waterborne 
polyurethane formulation, which showed good color stability on 
exposure to UV radiation. 

Song et al. 2024 

 

Clear Coats for External Application 
 Clear coats, which allow the user to clearly see the underlying wood, represent a 

particular challenge for outdoor applications (Morrell et al. 2001). As described in the 

preceding sections, many of the materials that can be used to provide protection against 

ultraviolet light work by scattering light aggressively, making the coating layer highly 

opaque. Others strongly absorb visible light, in addition to UV light, thus rendering the 

coating strongly colored and thereby hiding the underlying wood (Evans et al. 2015). 

This section considers studies that have addressed this set of challenges, attempting to 

create clear coating systems that nevertheless exhibit increased resistance to weathering. 

 One of the intriguing facts associated with the seven immediately preceding tables 

is that most of the cited studies have been concerned with clear coat applications. This is 

consistent with an expectation that opaque or deeply colored coatings generally do not 

raise concerns regarding UV protection. As shown by Oberhofnerová et al. (2019), 

pigmented coatings typically display much higher resistance to weathering in comparison 

to clear coatings. According to a review by de Meijer (2001), photodegradation of the 

underlying wood is not expected in the case of coatings that are opaque due to the 

presence of high refractive index mineral particles that are large enough to scatter light 

effectively, i.e. greater than 100 nm. This assertion is supported by the results of Tomak 

et al. (2018a), who found that opaque coating alone, without any UV absorbing additives, 

was sufficient to protect against the effects of UV light exposure. The difference can be 

attributed to the effective scattering of both visible and UV light by the pigments in the 

opaque coatings. In addition, pigments that are colored in the visible spectrum are often 

strong absorbers of UV light as well. Thus, the incoming UV light is scattered and 

absorbed before it can reach the underlying wood. Coatings having a darker color also 

have been shown to provide better protection of the underlying wood (Reinprecht and 

Panek 2013). 

 
Biocidal Treatments in the Wood Coating 

In addition to the effects of UV light and rainfall, wood products that are exposed 

outdoors also can be attacked by fungi, bacteria, termites, and other pests. These issues 

will be considered in this section. 

 

Antibacterial agents 

 Compared to fungal attack, there has been less research attention to the effects of 

bacteria during the decomposition of external wood used in buildings. Table 23 lists some 

key findings from studies that have considered this topic. It is notable that several 

different classes of effective antibacterial components of wood coatings have been 

demonstrated. These include the biocides 2,3,5,6-tetrachloro-4-(methylsulfonyl)-pyridine 

(de Souza and Gaylarde 2002) and mono(hydroxyethoxy-ethyl)phthalate (Lu and Chang 
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2020). Another class of demonstrated antibacterial treatment involves metals. Thus, silver 

nanoparticles (Cheng et al. 2020) and silver-copper alloy nanoparticles (Qi et al. 2024) 

have been found effective. Another intriguing approach has been to utilize the interaction 

of photoactive TiO2 particles with light as a means of suppressing bacteria (Zuccheri et 

al. 2013). 

 

Table 23.  Key Findings from Studies Considering Wood Coatings that Protect 
Against Bacterial Degradation 
 

Themes of Publications Citation 

Adding melamine to wood, optionally followed by varnish, gave 
photochemical protection during two years of weathering, but it did 
not protect against bacterial attack, which was predominant on the 
inside of the coating layer. 

Rapp & Peek 1999 

The biocide 2,3,5,6-tetrachloro-4-(methylsulfonyl)-pyridine was 
added to the formulation of an alkyd varnish. The treatment had 
more effect on fungi than on bacteria. 

de Souza & G. 2002 

The photocatalytic behavior of TiO2 was used in combination with 
visible light by its incorporation in a waterborne acrylic paint. 
Fluorescent light activated antimicrobial effects against E. coli, S. 
aureus, and Pseudomonas aeruginosa. 

Zuccheri et al. 2013 

Silver nanoparticles were supplemented with cellulose nanocrystals 
in waterborne polyurethane coatings. Antibacterial effects were 
observed. 

Cheng et al. 2020 

Various antimicrobial agents based on mono(hydroxyethoxy-
ethyl)phthalate (M(HEEP)(2)) with different metals (“M”) were 
added to waterborne urethane formulations. The treatment was 
effective against E. coli and S. aureus.  

Lu & Chang 2020 

Nanosilver particles were shown to be effective in water-borne 
formulations as microcapsules to protect against bacterial attack. 
Results were maximized at an HLB value of 1.97 of the emulsifier. 

Pan & Yan 2023 

Antibacterial capsules, with UF resin containing Ag solution, were 
added to water-based coating formulations for aundoung wood.  
The treatment was very effective against E. coli and S. aureus. 

Zou et al. 2023 

AgCu alloy nanoparticles were coated onto wood and showed 
100% antibacterial effect, suggesting a synergistic action. 

Qi et al. 2024 

An antibacterial agent used in a waterborne stain did not prevent 
fungal infection during a rainy season. 

Yang & Kang 2024 

 

Fungicides 

 Protection against fungal attack, by means of wood coatings, has received 

considerable research attention, which is summarized in Table 24. According to the 

review article by Stirling and Temiz (2014), treatments of uncoated wood to protect it 

against fungi generally can be placed into the categories of oil-based treatments, 

inorganic treatments, and a category that here will be called “petrochemical”. Some of 

the most important agents are listed under these categories in Fig. 19. 
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Oil-based

Inorganic

Petrochemical
Heavy oils with…

Creosote

Pentachlorophenol

Chromated copper borate

Copper boron azole

Zinc naphthenate

Previously: chromated copper arsenate

Triazoles

Thiabendazole

Propiconazole

Tebuconazole

Carbamates

Chlorothalonil

 
Fig. 19. Three categories of agents or formulations for the protection of wood (mostly by 
impregnation) against fungal colonization and degradation 

Based on Table 24, it is apparent that a wide range of additives have been found 

to be effective in suppressing fungal growth on coated wood surfaces. These include 

known fungicides, such as copper naphthalate and bis(tri-N-butyl tine) oxide (Williams et 

al 1996), melamine (Rapp and Peek 1999), copper-containing compounds (Upreti and 

Pandey 2005), silver nanoparticles (Sorensen et al. 2010; Boivin et al. 2019), cooper 

nanoparticles (Yang and Kang 2024, natural oils such as olive oil, jatropha seed oil, and 

thyme oil (van Nieuwenhuijzen et al. 2015; Bessike et al. 2022; Tari et al. 2022), alkyd-

type coatings (Bjurman 1992; Bobadilha et al. 2020), mono(hydroxyethoxy-

ethyl)phthalate (Lu and Chang 2020), and pyridine-related compounds (Awad et al. 

2023). In a couple of cases, the antifungal effects appeared to be enhanced by systems of 

microencapsulation of the fungicide (Kazemi et al. 2022; Tari et al. 2022). In addition, 

UV-absorbing oxide particles have been found to be effective in combination with 

incident light (Weththimuni et al. 2021; Hernandez et al. 2023). 

 

Table 24.  Key Findings from Studies Considering Wood Coatings that Protect 
Against Fungal Degradation 
 

Themes of Publications Citation 

Spruce wood was painted with 23 different formulations. Those with 
an alkyd resin generally showed good antifungal ability. Coatings 
that included unidentified fungicide were very effective against 
fungal colonization. 

Bjurman 1992 

Effective fungicides include copper naphthalate and bis(tri-N-butyl 
tin) oxide. It is recommended that all outdoor paints should include 
an anti-mildew agent to prevent the greying of a paint layer. 

Williams et al. 1996 

Different paint formulations, some with fungicides, were applied to 
spruce wood, which was placed in a humid environment.   

Bardage 1998 

Melamine pretreatment of pine and spruce suppressed fungal 
colonization, even at low concentrations.  

Rapp & Peek 1999 

A pyridine biocide was evaluated in an alkyd varnish applied to pine 
panels, followed by incubation for 30 days in a chamber. The 
addition of 0.3% biocide was sufficient to suppress filamentous 
fungi and bacteria. 

de Sousa & G. 2002 

More effective fungicidal coatings were needed in New Zealand in 
comparison to Germany. 

Dawson et al. 2005 

After treatment with aqueous solutions of ammoniacal copper 
ferricyanide, acid copper chromate, acid copper chrome arsenate, 
ammoniacal copper chromate, and ammoniacal copper chrome 
ferricyanide, wood surfaces were then coated with three different 

Upreti & Pandey 2005 
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formulations. Acid copper chromate was the most effective 
treatment against fungal growth during outdoor exposure. 

This review article considered the usage of fungicides in wood 
products and coating formulations for wood. 

Hansen 2008 

Silica nanoparticles were employed to achieve slow release of 3-
iodoprop-2-ynyl N-butylcarbamate biocide within a wood coating. 
The fungicide had a prolonged effect, as shown by accelerated 
weathering tests. 

Sorensen et al. 2010 

Addition of various organic biocides to various coating formulations 
was found to be effective against various tested fungi in lab and 
field tests. 

Stirling et al. 2011 

A bluish shade of painted spruce specimens exposed to natural 
weathering suggests that the surfaces had been colonized by blue-
stain fungus. Color change was less in pigmented coatings. 

Reinprecht & P. 2015 

Shellac-based varnishes were applied to wood.  One of the 
formulations showed moderate resistance against decay fungi. 

Remadeva et al. 2015  

An intentional fungal mold staining of wood was achieved as a 
decorative effect on linseed oil treated pine sapwood exposed to 
outdoor weather. Olive oil promoted the growth of the mold. 

van Neiuwenhuijzen et 
al. 2015 

The best performance on larch wood was found with a semi-
transparent oil-based film containing TiO2 and a propiconazole 
fungicide. However, after artificial weathering, all coatings were 
susceptible to fungal mold. 

Simunková et al. 2019 

Silver nanoparticles were added to acrylic latex formulations. A 
level of 0.03% was able to suppress S. pityophila and E. nigrum 
growth. Higher treatment was needed to suppress A. pullulans. 

Boivin et al. 2019 

Solvent-based and waterborne coatings were applied to wood and 
exposed outdoors for a year. Fungal growth was lower on 
pigmented coatings. Higher moisture content yielded more growth. 

Podgorski et al. 2019 

Cross-laminated timber was coated with various commercial water- 
and solvent-based stains. Alkyd-type coatings completely 
prevented fungal decay. 

Bobadilha et al. 2020 

Various antimicrobial agents based on mono(hydroxyethoxy-
ethyl)phthalate (M(HEEP)(2)) with different metals (“M”) were 
added to waterborne urethane formulations. The treatment was 
effective against E. coli and S. aureus. 

Lu & Chang 2020 

Fungicide addition to transparent acrylic or alkyd coatings for 
spruce wood did not influence adhesion strength of the coating, 
based on outdoor weathering tests. 

Reinprecht et al. 2020 

ZnO and ZrO2 nanoparticles were silane-treated and then added to 
shellac-based varnish. Both nanoparticles showed hydrophobicity 
and conferred fungal resistance. 

Weththimuni et al. 2021 

Jatropha curcas seed oil and vegetable resins were added to a 
varnish formulation for the coating of ayous wood Triplochiton 
scleroxylon. The treated varnish was effective against multiple 
types of fungi, as shown by reduced loss of mass. 

Bessike et al. 2022 

A slow-release microbial paint was developed and found to be 
effective, based on zones of inhibition and weathering tests. 

Kazemi et al. 2022 

Thyme oil was used in both free and encapsulated form in 
waterborne polyurethane cations. The encapsulated system was 
much more effective, even after accelerated aging. 

Tari et al. 2022 

Dihydropyridine derivative was added to polyurethane formulation 
as an anti-fungal agent. Antifungal effects were observed. 

Awad et al. 2023 

Inorganic photoactive nanoparticles (TiO2 and ZnO) and coatings 
were used to protect weathered pine surfaces from fungal 
colonization. None of the particle treatments were effective. 

Hernandez et al. 2023 
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Cellulose nanocrystals were added to a waterborne acrylic coating 
formulation. Improved fungal resistance was shown in terms of 
reduced weight loss and FTIR tests. 

Tamantini et al. 2023 

Copper nanoparticles in a waterborne stain provided resistance to 
fungi. 

Yang & Kang 2024 

 

Insecticidal additives 

 Termites are a major concern to homeowners. Wood degradation by termites not 

only can degrade the value of a wood-constructed building, but it also can interfere with 

the approval of mortgages for the purchase and sale of properties. However, relatively 

little research has been devoted to anti-insect or anti-termite additives for wood coatings. 

It is possible that researchers have assumed that wood impregnation treatments, rather 

than formulation of wood coatings, may be a more appropriate way to address such 

problems. 

 

Table 25.  Key Findings from Studies Considering Wood Coatings that Protect 
Against Insects, Including Termites 
 

Themes of Publications Citation 

Extracts from Thuja plicata and Chamaecyparis nootkatensis were 
found to be effective in protecting against termite attack. 

Taylor et al. 2006 

Organophosphate- and pyrethroid-containing coatings for wood 
achieved long-term effectiveness against Triatoma infestans, which 
is a major vector of a serios disease in South America. 

Amelotti et al. 2009 

Three wood stains were found effective against termite attack. Taşcıoğlu et al. 2014 

Certain wood extracts were shown to protect pine wood against 
termite infestation. 

Syofuna et al. 2016 

Pressure-impregnation of shellac-based varnish was especially 
effective against termite colonization. 

Remadevi et al. 2015 

Addition of herbal oils to varnish formulation almost completely 
eliminated the mass loss due to termite action. 

Bessike et al. 2022 

Dihydropyridine derivatives were added to the formulation of 
polyurethane wood coatings. Insecticidal effects were observed. 

Awad et al. 2023 

Waterborne stain was prepared with an antibacterial agent, an 
insect repellent, and copper nanoparticles.  

Yang & Kang 2024 

 

Repainting of Coated Wood 
 It appears that relatively little attention has been paid to the science of repainting 

wood that previously had been coated, followed by weathering of the coated wood. 

Bottcher (1984) found that almost any coating that they considered was successful in the 

repainting of wood, with the stipulation that there first needed to be inspection and 

appropriate conditioning of the previously painted surfaces. In some cases this can 

include removal of loose paint, washing using conventional solutions, hot water rinsing, 

fungicidal treatments if needed, and replacement of wood that is no longer in good 

condition. Feist and Ross (1995) considered the refinishing of previously coated wood 

that had initially been coated with several different formulations after impregnation with 

chromated copper arsenate (CCA). Refinishing efforts were judged to be successful, with 

a noticeable benefit due to the CCA pretreatment before the original coatings. 
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SUMMARY OF MEASURES TO ACHIEVE LONG SERVICE LIFE OF 
COATINGS ON EXTERIOR WOOD 
 

 The purpose of this section is to provide a stepwise summary of recommended 

options, based on the literature reviewed in this article, when the goal is to achieve wood 

protection that lasts for a long time in outdoor applications. The order of presentation 

does not correspond to the relative importance of the steps. Rather, it reflects a logical 

ordering of steps, noting that in many cases the order may be flexible. 

 

1. Select a type and grade level of wood that is suitable for the project (e.g. providing 

siding for a house in Alabama vs. Minnesota) that is being envisioned. For example, 

lower-graded wood is likely to have a higher proportion of knots, which can cause 

trouble with bleeding of wood resins, which can adversely affect coating performance 

(Pánek et al. 2017). 

2. Apply any desired heat treatment of the wood (for purposes of developing a more 

attractive color and enhancing the dimensional stability) before any other chemical 

treatments. 

3. Apply pressure impregnation in cases where the wood needs to be highly resistant to 

termites and microbiological attach, such as wood pieces that will be in contact with 

the ground. 

4. Carry out suitable planing of the wood surfaces, not only to achieve the target 

dimensions of the lumber pieces, but also to favor the performance of coatings. For 

instance, peripheral planing has been shown to lead to favorable adhesion of coatings 

(Cool and Hernández 2016). 

5. In cases where chemical derivatization of the wood surface is planned (although this 

is not a commonly used step), it would make sense to wait until after planing of the 

wood before carrying out such treatment. Acetylation of wood by exposing it to acetic 

anhydride has been shown to render the wood more resistant to decay and allowing 

for longer service life of wood coatings due to resistance to peeling (Beckers et al. 

1998; Rowell and Bongers 2015, 2017; Fodor et al. 2022). 

6. Sanding of the wood surface, with avoidance of unnecessary delay before the first 

coating application (such as a primer), should begin with a coarseness suitable for 

removing any relatively large defects (such as groove patterns) left by sawing or 

planing (Singh and Dawson 2006; Singh et al. 2007). The final grit fineness, for 

routine outdoor applications, is suggested as 150 or 180 grit (Allen 1984), aiming for 

a level that is course enough to offer strong adhesion of the coating but not contribute 

to a large increase in the final roughness of the coated surface. Especially for the final 

sanding, the sandpaper should be replaced with suitable frequency before it becomes 

dull or overly filled with debris too stubbornly attached to come off with routine 

tapping of the surface (Flexner 1994). 

7. Apply any specialized pretreatments, such as bleaching, extraction of wood resins, 

stains, antibacterial impregnants, or specialized sealants. For example, wood 

impregnation is commonly used to protect it against rot and termites if it will be 

exposed to damp conditions during usage (Williams et al. 1996). If plasma treatment 

is planned, this would be a suitable place in the order of treatments to include such a 

treatment (Reinprecht and Somsák 2015; Reinprecht et al. 2020; Gholamiyan et al. 

2022). 
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8. Apply a primer coat to the sanded wood surface (Cassens and Feist 1986; Knaebe et 

al. 1996; Williams et al. 1996). Again, this should be done with a minimum of delay 

(usually within a day or less, when possible) of the last mechanical treatment, such as 

planing or sanding. Select a primer that has suitably low viscosity to be able to 

penetrate well into the pores at the wood surface and which has a resin type that 

offers good wettability and adhesion for the next planned coating formulation. When 

any coating is applied outdoors, it is recommended to wait until after the surfaces 

have been warmed by the sun (USDA Forest Product Laboratory 1972; Williams et 

al. 1996; Cox 2003). 

9. Select a coating type that makes sense for your application. For example, water-borne 

acrylic formulations are often preferred due to the low amounts of volatile organic 

compounds, the ease of washing the brushes with soap and water, and the flexibility 

and toughness of the films (Feist 1994). However, one needs to check whether the 

surface has been previously coated with a suitable primer, such as to achieve 

satisfactory adhesion of such a waterborne coating to the wood. 

10. Apply at least two layers and ideally three layers of the finish coating (or “topcoat”) 

formulation. A higher number of coatings has been shown to greatly extend the 

expected service life of the coating system (USDA Forest Products Laboratory 1972; 

Grüll et al. 2014; Hysek et al. 2018). Successive layers (including the first finish coat 

applied over a primer layer) should be applied without delay (no more than a few 

days) of the previous coating (Cox 2003). 

11. The inclusion of UV-absorbing or UV-scattering additives in finish coating layer 

formulations is highly recommended. In the case of opaque paints, especially white 

paints, it is recommended to use TiO2 particles that have been prepared with a surface 

layer of silica. The purpose of such treatment is to minimize unwanted effects of the 

photoactivity of the TiO2, while still taking advantage of its very strong absorbance of 

UV light and (when the particles diameters are greater than about 100 nm) to strongly 

scatter light, leading to high opacity and further protection against UV light. Other 

options include ZnO particles (Weichelt et al. 2010) and organic compounds such as 

benzotriazole, hydroxyphenyl-s-triozine, and hindered amine light stabilizers (HALS) 

(Özgenç et al. 2012; Reinprecht and Somsák 2015; Oberhofnerová et al. 2018; 

Queant et al. 2019; Reinprecht et al. 2020). 

12. The inclusion of highly platy mineral particles is recommended, after suitable 

development and testing, for coating layers that are intended to provide a strong 

barrier against diffusion of water vapor or oxygen (Nkeuwa et al. 2014a). However, 

for routine applications, there is a need to avoid excessive blocking of water vapor, 

which needs to be able to diffuse back out of the wood material after rain events or 

plumbing failures. 

13. A more promising goal, to maximize coating performance in exterior applications, is 

to consider adding an agent to increase the hydrophobic nature of the coating. For 

instance, silicone and silane agents have been found to be effective (Husić et al. 

2023). 

14. Further developmental work is needed before strong recommendations can be made 

regarding the inclusion of reinforcing particles, such as nanocellulose, within wood 

coatings. Research findings have shown promise (Wang et al. 2023). 

15. Inclusion of biocidal agents in wood coating formulations appears to be a good idea, 

especially in such applications where mildew or rot have been encountered (de Souza 

and Gaylarde 2002). 
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CONCLUDING STATEMENTS  

 

 One of the lessons that appears to emerge from this review of ways to achieve 

more effective wood coatings for external use is that there is not just one key measure 

that should be recommended. Rather, there are a large number of best practices. Some of 

them can be optionally selected, whereas some others, such as fresh sanding of surfaces 

to be coated with a primer, can be regarded as mandatory. In addition, as represented by 

the list of best practices presented in the previous section, many of these recommended 

best practices are amenable to being combined in different ways, depending on the 

desired outcomes.  

  

The Hypotheses Revisited 
Near to the beginning of this article there was a set of hypotheses presented. 

These statements will be repeated again here, each followed by some perspective based 

on the reviewed findings from the literature: 
 

1. Durability of the coating layer itself, including its resistance to clacking, flaking, and 

peeling, is of paramount importance, since without such strength and adhesion to the 

wood surface, it will not remain present to provide its other functions. 

This hypothesis appears to be generally supported by the fact that many studies 

have reported better weathering resistance of coated wood products in comparison 

to uncoated wood (de Meijer and Militz 2001; Miklecic and Jirous-Rajkovic 

2011; Fufa et al. 2013b; Sjökvist et al. 2019; Kabasakal et al. 2023; Kelkar et al. 

2023). 

2. Finish formulations for outdoor application need to contain a component capable of 

absorbing ultraviolet light, so as to protect the lignin in the outermost wood layer 

(about 1 mm) from photochemical degradation. 

This statement is supported not only by the review article of Williams et al. 

(1996) but also by numerous studies that have shown the effectiveness of UV-

absorbing compounds and mineral oxide particles and nanoparticles in protecting 

the wood against discoloration and the breakdown of the underlying lignin (see 

Tables 16 through 18). 

3. Finish formulations for outdoor application need to contain sufficient hydrophobic 

resin component to prevent liquid water (from rain) from contacting the wood 

directly. 

Although this hypothesis is regarded as generally true, it is somewhat difficult to 

demonstrate based on the published literature, since the resin composition of 

typical coating formulations intended for outdoor use in wood coatings are 

already hydrophobic.  Perhaps the best demonstration in favor of this hypothesis 

are studies showing the additional protection of wood that can be achieved by 

supplemental addition of hydrophobic additives (Williams and Feist 1999; Panek 

and Reinprecht 2014; Samyn et al. 2014; Saei et al. 2015; Gholamiyan and 

Tarmian 2018; Bessike et al. 2022; Husić et al. 2023). 

4. Biocidal, including antifungal, antibacterial, and insect-resistant treatments can play 

significant roles in extending the useful lifetime of wood finish in outdoor 

applications. 
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Multiple studies have shown the effectiveness of antibacterial (Table 23), 

antifungal (Table 24), and anti-termite (Table 25) treatments. 

5. The formulation of a wood finish for outdoor applications can significantly affect its 

outward appearance both initially and during its period of use.  

The effect of weathering on the color of unprotected wood is well known (Kropat 

et al. 2020). Coatings of different types are able to either hide, modify (such as 

conferring a glossy appearance), or minimize changes over time of the initial 

color of the wood (Schaller et al. 2012; Forsthuber et al. 2013a,b; Veronovski et 

al. 2013; Grüneberger et al. 2015; Wallenhorst et al. 2018; Akbarnezhad et al. 

2020; Janesh et al. 2020; Hernandez et al. 2023; Song et al. 2024).  

6. By investing more in the quality of wood preparation and in the composition of the 

coating layer formulations, there is potential to greatly increase the length of time 

during which a wood coating can effectively protect wood that is exposed outdoors.  

This final hypothesis is quite hard to demonstrate, since no one set of studies that 

was considered in this review article attempted to investigate the effects of more than a 

handful of different strategies being carried out all at the same time. The coating 

developer’s dream would be to come up with a system that is durable, yet also so 

affordable, that it would take back a much larger part of the market currently shared with 

vinyl siding, aluminum siding, fiber-cement cladding, and other competitors to coated 

wood. Based on what has been learned from the research cited in this article, it can be 

expected that such a system will tend to raise the cost, since there will be more time spent 

in such steps as wood preparation (e.g. sanding), pretreatments, better primer technology, 

insisting on high-quality resins, insisting on suitable levels of UV-blocking additives 

(including TiO2 levels in pigmented coatings), and also antimicrobial additives. It is 

likely that the recommended system to achieve a long lifetime also would entail more 

coating layers compared to current typical practice.  

Since many of these extra measures are aimed at achieving results that won’t be 

obvious until several years in the future, there will be a strong motivation for steps to be 

skipped. It follows that some form of certification could be helpful. When the consumer 

buys a set of vinyl siding, they can directly see what they are buying. To raise a 

comparable level of confidence in a system based on wood preparation and wood 

coatings, the consumer needs some assurance that the steps to be used in preparing that 

system have been certified for an expected number of years, depending on such factors as 

climate and recommended maintenance. 

 

Some Areas Requiring Research Input 
In addition to showing the effectiveness of many individual treatment steps and 

individual chemical components, the present review also revealed some areas in which 

more research seems to be needed. These can be listed as follows: 

• More research to improve the effectiveness of primer coats, with an emphasis on 

more reliable long-term adhesion of wood coatings, especially in external 

applications. 

• More research aimed at replacing petroleum-based components of wood coatings 

with plant-based ingredients, including high-performing resin systems. 
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• Development of bio-based cladding products, including any specialized coating 

systems suitable for such products, with a goal to increase the amounts of wood 

and other plant-based materials in long-lasting products.  

• More consideration of end-of-life issues, making sure that coated wood, when 

taken from deconstructed buildings, still can be used in such projects as recovered 

solid wood, strand board, particleboard, and wood pellets for fuel, etc. 
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