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Rapid and accurate detection of crude protein and starch content in alfalfa-
potato pomace pellets is crucial for improving their processing and 
enhancing nutritional quality. In this study, hyperspectral images of alfalfa-
potato pomace pellets in the near-infrared (NIR) range (900 to 1700 nm) 
were acquired. A support vector regression (SVR) model was developed 
by combining various spectral preprocessing methods and effective 
wavelength selection techniques. Textural features from the surface of the 
first principal component (PC1) image sample were also extracted using 
the gray-level co-occurrence matrix (GLCM) and fused with the spectral 
data, significantly improving the model’s prediction accuracy. The results 
indicated that the SNV-GB-COR-SVR model performed best in predicting 
crude protein content, with an R2p of 0.907 and an RMSEP of 0.5548, 
while the SNV-CARS-ENT-SVR model was most effective in predicting 
starch content, with an R2p of 0.7915 and an RMSEP of 1.3970.  
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INTRODUCTION 
 

With the continuous development of the feed industry and animal husbandry, the 

nutritional value of pellet feed has gained increasing emphasis. This value not only directly 

affects the growth and health of animals but also plays a crucial role in the quality of 

livestock products. Consequently, detecting and enhancing the nutritional value of pellet 

feed promptly has become a key focus of current research. As important feed resources, 

alfalfa and potato pomace have attracted significant attention due to their rich nutritional 

content and economic benefits. Alfalfa is widely used in feed because of its high crude 

protein content and low neutral detergent fiber (Hadidi et al. 2023). Potato pomace, a by-

product of starch processing, is also commonly used in livestock feed because of its 

nutrients, including starch, cellulose, protein, and amino acids (Guo et al. 2017). Therefore, 

mixing alfalfa meal, which is not easily molded, with potato pomace for pellet feed 

production not only takes advantage of the natural binding effect between these materials 

to reduce pelleting costs but also addresses issues like nutritional imbalance and low 

feeding rates caused by using a single type of feed, thereby improving feed quality. 
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Accurate testing of nutrient content is essential in the process of enhancing the 

nutritional value of pellet feeds. Taking alfalfa-potato pomace pellets as an example, the 

crude protein and starch content are key nutritional quality indicators, directly influencing 

both the nutritional quality of the feed and the growth and development of animals (Rocha 

et al. 2022). However, these key indicators are typically tested using chemical methods, 

which are complex, time-consuming, and costly. This constraint limits the ability to quickly 

assess nutrients during the development of high-quality pellet feeds. Therefore, finding a 

fast, accurate, and stable method for nutritional quality testing, such as through 

hyperspectral imaging (HSI) and other techniques, has become crucial to optimizing pellet 

feed processing. 

The hyperspectral imaging (HSI) technique, which integrates both spectral and 

image information, is an advanced and rapid method for nondestructive testing. It has been 

widely applied in feed quality assessment (Yan et al. 2019), particularly for predicting 

protein content (Fu et al. 2017), pH value (Zhang 2023), and moisture content (Yu et al. 

2023). These studies have demonstrated the feasibility of using HSI to predict crude protein 

and starch content in pelleted feeds. However, most existing prediction models are based 

solely on spectral data, which captures only the chemical compositional information of the 

particles. As a result, the surface microtexture features of the particles and their spatial 

distribution, which are also important, are not analyzed. Texture features, an important 

aspect of image spatial information, reflect characteristics of the sample surface, such as 

fine structure, homogeneity, orientation, and roughness (Yang 2024). These features 

effectively complement spectral information. Recently, several researchers have 

highlighted the importance of simultaneously analyzing both HSI spectral and spatial 

information. Examples include the prediction of palmitic and oleic acid content in lamb 

(Wang et al. 2020), the prediction of the K-value of pork (Cheng et al. 2016), the prediction 

of pH-value in salted meat (Liu et al. 2014), and the prediction of volatile saline nitrogen 

content in cooked beef using texture features and color models (Yang et al. 2017). These 

studies suggest that combining spectral and spatial information from HSI provides a more 

comprehensive and intuitive analysis compared to traditional methods. The fusion of 

spectral and texture features through multidimensional analysis is expected to significantly 

enhance the accuracy and robustness of detecting crude protein and starch content in pellet 

feed, providing new technical support for the rapid nondestructive testing of feed quality. 

The 900 to 1700 nm wavelength range was chosen for this study because it 

effectively captures absorption features of key chemical groups in feed components. It 

detects N-H bending and C=O stretching vibrations in proteins, which are essential for 

predicting protein content (Du et al. 2024). Additionally, starch and other sugars show 

distinct absorption characteristics in this range, aiding in starch estimation. Previous studies 

have shown that NIR spectroscopy in this range is effective for analyzing crude protein 

and starch in feed. For example, Tang et al. (2004) used hyperspectral methods to estimate 

the crude protein and crude starch content in rice ears and grains. Rukundo et al. (2021) 

demonstrated that handheld NIR spectrometers (900 to 1700 nm) can accurately predict 

protein content in animal feed, making them suitable for field use . 

The main objective of this study was to utilize the combination of spectral and 

image texture information to predict the crude protein and starch contents in alfalfa-potato 

pomace pellet feed. Hyperspectral data of the pellet feed, ranging from 900 to 1700 nm, 

were collected. The optimal preprocessing method and characteristic wavelength selection 

were determined by applying four preprocessing methods and two variable selection tools. 

Texture information of the pellet feed was extracted using the gray-level co-occurrence 
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matrix. An SVR prediction model was then established, based on both the spectral data and 

the fusion of spectral and texture information, to predict the crude protein and starch 

content in the pellet feed. 

It was hypothesized that the textural features of pellet feed are crucial because key 

nutrients, such as crude protein and starch, may be unevenly distributed within the pellet. 

Nutrients could concentrate in specific areas, influenced by the pellet’s shape and surface 

structure. For example, surface roughness or homogeneity may correlate with nutrient 

density in particular regions. By combining textural and spectral data, we can enhance the 

understanding and accuracy of crude protein and starch content predictions, thereby 

improving the robustness of feed quality models. 

 
 
EXPERIMENTAL 
 
Sample Preparation 

The test samples used in this study were pellet feeds compressed and molded from 

alfalfa meal mixed with potato pomace, produced in Hohhot, Inner Mongolia. The initial 

moisture contents of the alfalfa meal and potato pomace were 15% and 60%, respectively. 

After pressing and molding, the resulting alfalfa-potato pomace pellet feeds were randomly 

selected and weighed, with individual samples weighing approximately 70 g and having a 

pellet diameter of 8 mm. A total of 201 samples were numbered, placed in self-sealing bags 

(14 cm × 20 cm), and stored in a refrigerator at about 8 °C. 

 
Nutrient Content Testing 

The determination of crude protein content in feed was carried out using the 

Kjeldahl method, following the GB/T 6432 (2018) standard (Huang et al. 2021). The crude 

protein content was calculated using the following formula, 

             𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(%) =
(𝑉1−𝑉0)×𝐶×𝑀×𝑝

𝑚
× 100                     (1) 

where V1 is the volume of standard acid solution consumed in the titration of the 

sample(mL), V0 is the volume of standard acid solution consumed in the titration of the 

blank(mL), C is the concentration of the standard acid solution(mol/L), M is the molar mass 

of nitrogen(g/mol), p is the conversion factor of protein, and m is the mass of the sample(g). 

The starch content was determined according to the GB/T 15683 (2008) standard 

using the following formula, 

𝑠𝑡𝑎𝑟𝑐ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡（%） =
𝐶×𝑉×𝑝

𝑚
× 100                                       (2) 

where C is the concentration of reducing sugar in the sample solution(g/L), V is the total 

volume of the sample extract(mL), p is the conversion factor for the conversion of starch 

to glucose, and m is the sample mass(g). 

 
Hyperspectral Data Acquisition and Information Extraction 

Hyperspectral image acquisition 

Hyperspectral data acquisition of pellet feed was performed using a Specim FX17 

hyperspectral imaging system (Specim, Oulu, Finland). The system consists of a Specim 

FX17 hyperspectral camera, a 150 W halogen lamp, a sample stage, and a computer, as 

shown in Fig. 1. The camera captures spectral data from 900 to 1700 nm across 224 bands. 

The light sources are positioned on both sides of the sample stage at a height of 50 cm. 
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Before taking measurements, the instrument underwent a 20-minute warm-up period to 

ensure the light source was stable. It was then calibrated using a standard whiteboard. Each 

pellet feed sample was measured three times independently, and the average of these 

measurements was recorded. After the spectral data was collected, it was saved in a 

designated folder on the computer and calibrated using the Lumo Scanner software by 

Specim to guarantee the precision and reliability of further analyses. 

 

 
 

Fig. 1. The hyperspectral imaging system 

 

Spectral information extraction 

Spectral data with significant features were extracted using Python 3.11 software. 

The pixel values of the pseudo-color images were clustered and segmented using the K-

means algorithm, and the resulting segmentation map was visualized. Cluster labels were 

manually selected to create the mask map (ROI), which was used to extract the spectral 

data and calculate the average reflectance for each band. The extraction results are shown 

in Fig. 2, where Fig. 2a shows the original spectral image, and Fig. 2b highlights the portion 

of the white area containing the alfalfa-potato pomace pellet sample. 

 

  
(a) (b) 

 

Fig. 2. Selection of Alfalfa-Potato Pomace Pellet Feed Area. (a) Original spectrogram;  
(b) Algorithm selected region 
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Data Preprocessing 
Abnormal sample rejection 

During the process of spectral data collection and nutrient testing, abnormal values 

may arise due to instrumental interferences, which can significantly impact the 

performance of subsequent prediction models. Therefore, in this study, a combination of 

leverage and studentized residuals was used to detect abnormal samples (Xie 2013).  

The results of abnormal sample detection for crude protein and starch content in 

alfalfa-potato pomace pellets are shown in Fig. 3. The crude protein abnormal value 

detection results in Fig. 3a indicate that both the leverage value and the student residuals 

of sample No. 16 exceeded the set threshold range, leading to its identification as an 

abnormal sample. Similarly, the starch abnormal value detection results in Fig. 3b show 

that samples No. 16 and No. 18 were recognized as abnormal. The statistical results for 

each nutrient content, after rejecting the abnormal samples, are presented in Table 1. 

 

  
(a) (b) 

 

Fig. 3. Leverage-Studentized residuals abnormal sample rejection plot. (a) Abnormal sample 
rejection of crude protein; (b) Abnormal sample rejection of starch 
 

Table 1. Statistical Data of Measured Results for Crude Protein and Starch 
Content in Pellet Feed 

Category Number of Anomalous 
Samples 

Range (g/100g) Mean SD 

Crude Protein 1 7.3889-21.1555 10.1998 2.0215 

Starch 2 16.1565-37.2638 3.1613 3.2136 

 

Spectral information division 

Sample set partitioning based on joint X-Y distances (SPXY) was used to partition 

the sample set after rejecting abnormal samples, which integrates the distances between the 

independent variable X and the dependent variable Y, which can ensure the consistency 

and balance between the calibration set and the validation set in terms of data distribution 

and representativeness (Moen et al. 2021). In this study, the experimental data after 

rejecting abnormal samples were divided into correction and prediction sets using the 

SPXY classification method at a ratio of 3:1. 
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Preprocessing methods 

Due to factors such as instrument performance, environmental conditions during 

testing, and measurement conditions, directly acquired spectral images often contain some 

noise. This noise is typically distributed at the baseline and peak signals, making it difficult 

to identify within the total signal. To mitigate or even eliminate the effect of noise, the 

main preprocessing methods used in this study included mean centering (MC), standard 

normal variate (SNV), Savitzky-Golay (SG) convolutional smoothing (with a derivative 

order of 2 and a smoothing point of 9), and orthogonal signal correction (OSC) for spectral 

data preprocessing. 

 

Extraction of Effective Wavelengths 

Due to the characteristics of full-spectrum data, such as high dimensionality, many 

bands, large data volume, and redundant information, a significant amount of computation 

is required when establishing the prediction model. Therefore, to reduce computational 

demands, the original data must be downscaled. In this study, competitive adaptive 

reweighted sampling (CARS) (Li et al. 2009) and Gradient Boosting (GB) (Bentéjac et al. 

2021) methods were used to extract the effective wavelengths.  

 

Extraction of Textural Data 
Texture features are important visual features in image analysis, reflecting the 

spatial structure and homogeneity of an image. They not only reveal the macroscopic 

properties of the sample but also provide insight into its microstructure. The gray-level co-

occurrence matrix (GLCM) is the most widely used technique for texture analysis, 

extracting features by analyzing the spatial relationships of pixel gray values in an image 

(Jiang et al. 2019). Since images captured at different angles and distances can produce 

varying gray-level co-occurrence matrices, this study sets the distance to 1 and considers 

four texture features—energy, entropy, homogeneity, and correlation—at four different 

directions (0, 45, 90, and 135°). 

Before extracting texture features, principal component analysis (PCA) was 

performed on the hyperspectral image data. The texture features of the image were 

successfully extracted by the GLCM analysis of the first principal component (PC1) score 

image and explained 95.39% of the variance. Based on this, texture variables were 

calculated for all samples, and the average texture values in different directions were 

selected as the texture features for each sample. In the end, four texture features were 

obtained from each image for subsequent modeling analysis. 

 
Model Development and Evaluation 

The support vector regression (SVR) model was used to predict crude protein and 

starch content in feed pellets. SVR is an application of the Support Vector Machine (SVM), 

primarily used for reliability analysis and response prediction. The basic idea behind SVR 

is to map a nonlinear problem to a high-dimensional space using a kernel function, enabling 

linear regression for optimal learning. 

To evaluate the accuracy and predictive ability of the models, the coefficient of 

determination (R2) and root mean square error (RMSE) were used. The closer the R² is to 

1 and the smaller the RMSE, the higher the correlation between the spectral information 

extracted by the model and the nutrient content, indicating better model performance and 

stability.  
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RESULTS AND DISCUSSION 
 
Prediction Models with Full Spectral Range 

In this study, four algorithms , namely MC, SNV, SG convolutional smoothing, and 

OSC were used to process the raw spectra to eliminate the background information 

interference. 

SVR analysis was performed on the raw and preprocessed spectral data to establish 

a prediction model for crude protein and starch content in pellet feed. As shown in Fig. 4, 

when raw spectra were used for the determination of crude protein and starch, the R2p was 

0.8318, and the RMSEP was 0.7550. For starch, the R2p was 0.7317, and the RMSEP was 

1.5816. The results indicate that, compared to raw spectra, the prediction performance with 

SNV preprocessed spectra was better, exhibiting smaller errors, primarily due to the 

reduction of noise and bias. This suggests that SNV preprocessing reduces light scattering 

and non-informative variations, allowing the model to better capture key features, thus 

improving the prediction accuracy of crude protein and starch. 

 

  
(a) (b) 

 

Fig. 4. Performance of full wavelength model based on different pre-processing methods. (a) 
Crude protein; (b) Starch 

 
Prediction Models with Effective Wavelengths 

The first 30 important feature wavelengths extracted by the GB method are shown 

in Fig. 5. The band corresponding to the wavelength of 1556.1 nm in Fig. 5a was selected 

as the most important feature for crude protein, while the band corresponding to the 

wavelength of 1119.6 nm in Fig. 5b was selected as the most important feature for starch. 

Figures 5c and 5d show the wavelengths corresponding to each feature in the spectral 

region for crude protein and starch in pelleted feeds, respectively. From Fig. 5c, it can be 

observed that the characteristic bands selected by crude protein were primarily 

concentrated from 1100 to 1140 nm and  1450 to 1650 nm. The band at 1450 to 1550 nm 

is associated with the N-H bending vibration in the protein, while the band at 1600 to 1650 

nm is mainly attributed to the C=O stretching vibration in the peptide bond of the protein 

(Yan 2005).  

The effective wavelengths were extracted from the crude protein and starch spectral 

data using the CARS method, with the Monte Carlo sample size set to 40 and incorporating 

10-fold cross-validation. Figure 6a represents the trend of the root mean square error 
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(RMSE) as a function of the number of samples in the cross-validation. Figure 6b shows 

the path of the regression coefficients during each sampling, with the thick vertical line 

indicating the minimum value of RMSECV, which occurs when the number of sampling 

runs is 35. At this point, the information unrelated to crude protein is excluded, and a total 

of 44 feature wavelengths that provide the most relevant information are selected. Figure 

6c illustrates the corresponding wavelengths for crude protein in pellet feed within the 

spectral region. The effective wavelengths of the starch content samples, extracted by the 

CARS method, are shown in Fig. 7, with a total of 44 effective wavelengths selected. As 

shown in Fig. 7c, the characteristic bands selected for starch are primarily concentrated 

from 1150 to 1200 nm and 1400 to 1550 nm. The band at 1150 to 1200 nm is associated 

with the stretching vibration of the starch C-H bond, while the band at 1450 to 1550 nm is 

mainly related to the -OH stretching vibration (Yan 2005). 

 

  
(a)  (b) 

 
 

(c) (d) 
 

Fig. 5. Results of feature wavelengths extracted by the GB algorithm. (a) Top thirty feature bands 
of crude protein contribution; (b) Top thirty feature bands of starch contribution; (c) Distribution of 
crude protein effective wavelengths; (d) Distribution of starch effective wavelengths 
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(a) 

 
(c)  

(b) 
 

Fig. 6. Result of CARS effective band selection for crude protein. Different color curves represent 
different variables. (a) Trend of RMSECV with increasing sample size; (b) Trend of extracted 
variables with increasing sample size; (c) Distribution of effective wavelengths 

 
Table 2 presents the statistical results of the crude protein and starch content 

predictions, where crude protein and starch were predicted using full spectral variables, as 

well as spectral variables selected by the CARS method and the GB algorithm, 

respectively. 

 

 
(a) 

 

 
(c) 

 
(b) 

 

Fig. 7. Result of CARS effective band selection for starch. Different color curves represent 
different variables. (a) Trend of RMSECV with increasing sample size; (b) Trend of extracted 
variables with increasing sample size; (c) Distribution of effective wavelengths 

 

For the prediction of crude protein, the full-spectrum method (224 bands) 

demonstrated good fitting performance on both the calibration and prediction sets, with an 

R2c of 0.8779, an R2p of 0.8534, and RMSEC and RMSEP values of 0.7694 and 0.7048, 

respectively. The CARS method (44 bands) further improved prediction performance, with 

an R2p of 0.8812 and RMSEP reduced to 0.5919. The GB method (30 bands) performed 
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the best, with an R2p of 0.8861 and a minimum RMSEP of 0.5845. The above results show 

that the 30 optimal wavelengths selected using the GB method were information-rich and 

suitable to effectively replace the full-wavelength method.  

 
Table 2. Performance of the Developed Models Based on the Full Wavelength 
and Effective Wavelength of Crude Protein and Starch Contents 

Category Model No. of 
variables 

Extraction 
method 

Calibration set Prediction set 

R2c RMSEC R2p RMSEP 

Protein SVR 224 Full spectra 0.8779 0.7694 0.8534 0.7048 

44 Cars 0.8733 0.7877 0.8812 0.5919 

30 GB 0.9027 0.6948 0.8861 0.5845 

starch SVR 224 Full spectra 0.7869 1.5570 0.7774 1.4407 

44 Cars 0.7731 1.6830 0.7752 1.4852 

30 GB 0.7327 1.7407 0.6897 1.7108 

 

For the prediction of starch, the prediction performance of all three band selection 

methods was inferior to that of the crude protein samples. Although the full-spectrum 

method (224 bands) demonstrated some predictive ability, with an R2c of 0.7869 and an 

R2p of 0.7774, the RMSEC and RMSEP were relatively large, at 1.5570 and 1.4407, 

respectively, indicating lower model fitting and prediction accuracy. The prediction 

performance of the CARS method (44 bands) after feature extraction was further degraded, 

with an R2p of 0.7752 and an RMSEP of 1.4852, indicating a significant increase in error. 

The GB method (30 bands) showed the worst prediction performance after feature 

extraction, with an R2p of 0.6897 and an RMSEP of 1.7108, resulting in the largest 

prediction error. Because the prediction model for starch performed poorly under all band 

selection methods, the CARS method was selected as the preferred method for selecting 

starch effective wavelengths for subsequent modeling, based on a comprehensive 

assessment. 

 

Prediction Models Integrated with Spectral and Textural Data  
Before fusing the texture data with the spectral data, each region of interest (ROI) 

image was subjected to PCA to reduce the spectral dimensions. By extracting the first three 

principal component images (PC1, PC2, and PC3), their cumulative spectral variances 

were obtained to be 95.39%, 4.16%, and 0.21%, respectively. Therefore, the PC1 image 

was selected as the best representation of the original sample for subsequent texture 

information extraction.  

Figure 8 illustrates the Pearson correlation between crude protein and starch content 

and the textural parameters (energy, entropy, homogeneity, and correlation). From the 

figure, it can be seen that crude protein and starch content had little correlation with the 

four texture parameters. Among them, entropy showed the greatest correlation with crude 

protein, followed by correlation. Starch had the greatest correlation with energy, followed 

by homogeneity. Because the surface texture features of pellet feed samples had little 

influence on their crude protein and starch contents, though some correlation still was 

apparent, entropy and correlation were selected as texture features for crude protein. 

Meanwhile, energy and homogeneity were chosen as texture features for starch. These 

features were selected to be applied to the subsequent fusion model. 
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SVR prediction model based on extracted texture features and optimal spectral data  

Table 3 presents the performance data of the developed fusion model in predicting 

crude protein and starch content, showing an improvement in prediction accuracy. 

 

 
Fig. 8. Correlation between crude protein and starch with texture parameters extracted using 
GLCM 

 

Table 3. Prediction of Crude Protein and Starch Contents Based on Fused Data 

Category Model 
Fusion type 

 

Calibration set Prediction set 

R2c RMSEC R2p RMSEP 

Protein SVR 

GB 0.9027 0.6948 0.8861 0.5845 

GB -ENT 0.8974 0.7153 0.8820 0.5782 

GB- COR 0.9127 0.6513 0.9070 0.5548 

GB-COR-ENT 0.9048 0.6879 0.8169 0.7296 

Starch SVR 

CARS 0.7731 1.6830 0.7752 1.4852 

CARS-ENE 0.7654 1.6310 0.7915 1.3970 

CARS-HOM 0.7610 1.6513 0.7906 1.3864 

CARS -ENE-HOM 0.7425 1.7085 0.735 1.5745 

 

For crude protein prediction, the SVR model combining COR parameters (GB-

COR-SVR) outperformed the SVR models using spectral data alone or incorporating other 

texture parameters. Specifically, the GB-COR-SVR model achieved an R2c of 0.9127, an 

R2p of 0.9070 an RMSEC of 0.6513, and an RMSEP of 0.5548. Compared to the model 

built with the effective wavelengths, the R2p value was increased by 0.0209, while the 

RMSEP value decreased by 0.0297. For starch prediction, the CARS-ENE-SVR model 

performed the best, outperforming models that used spectral data alone or incorporated 

other texture parameters. This was demonstrated by an R2c of 0.7654, R2p of 0.7915, 

RMSEC of 1.6310, and RMSEP of 1.3970. 

In summary, the fusion of texture parameters and spectral features significantly 

improved the accuracy of predicting crude protein and starch contents, with crude protein 

predictions being more accurate than starch. However, the model still faces challenges in 

real-world applications: environmental factors such as light, temperature, and humidity 

may introduce noise, affecting prediction stability, and the model’s generalizability needs 

further validation, as current samples are mainly from specific regions and materials. 
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Future research should focus on enhancing data robustness, optimizing real-time 

predictions, and expanding sample diversity to improve the model's applicability in broader 

production scenarios. 

 
 
CONCLUSIONS 
 

1. In order to quickly and accurately detect the crude protein and starch content in alfalfa-

potato pomace pellets, this study utilized hyperspectral imaging technology to collect 

hyperspectral images of the particles in the 900 to 1700 nm wavelength range. 

Additionally, various spectral preprocessing methods and effective wavelength 

selection techniques were combined to construct a support vector regression (SVR) 

model. The results demonstrated that the 30 and 44 effective wavelengths selected by 

Gradient Boosting (GB) and competitive adaptive reweighted sampling (CARS) 

showed good validity for predicting crude protein and starch content. 

2. To further improve prediction accuracy, this study incorporated texture features based 

on spectral data. Texture features, including energy, entropy, homogeneity, and 

correlation, were extracted using the gray-level co-occurrence matrix (GLCM). The 

modeling analysis of the fused mapping information revealed that the SNV-GB-COR-

SVR fusion model was the most effective for predicting crude protein, with an R2p of 

0.907 and an RMSEP of 0.5548. Meanwhile, the SNV-CARS-ENT-SVR fusion model 

performed best for predicting starch content, with an R2p of 0.7915 and an RMSEP of 

1.3970.  
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