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Rapid and accurate detection of crude protein and starch content in alfalfa-
potato pomace pellets is crucial for improving their processing and
enhancing nutritional quality. In this study, hyperspectral images of alfalfa-
potato pomace pellets in the near-infrared (NIR) range (900 to 1700 nm)
were acquired. A support vector regression (SVR) model was developed
by combining various spectral preprocessing methods and effective
wavelength selection techniques. Textural features from the surface of the
first principal component (PC1) image sample were also extracted using
the gray-level co-occurrence matrix (GLCM) and fused with the spectral
data, significantly improving the model’s prediction accuracy. The results
indicated that the SNV-GB-COR-SVR model performed best in predicting
crude protein content, with an R?p of 0.907 and an RMSEP of 0.5548,
while the SNV-CARS-ENT-SVR model was most effective in predicting
starch content, with an R?p of 0.7915 and an RMSEP of 1.3970.
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INTRODUCTION

With the continuous development of the feed industry and animal husbandry, the
nutritional value of pellet feed has gained increasing emphasis. This value not only directly
affects the growth and health of animals but also plays a crucial role in the quality of
livestock products. Consequently, detecting and enhancing the nutritional value of pellet
feed promptly has become a key focus of current research. As important feed resources,
alfalfa and potato pomace have attracted significant attention due to their rich nutritional
content and economic benefits. Alfalfa is widely used in feed because of its high crude
protein content and low neutral detergent fiber (Hadidi ez al. 2023). Potato pomace, a by-
product of starch processing, is also commonly used in livestock feed because of its
nutrients, including starch, cellulose, protein, and amino acids (Guo et al. 2017). Therefore,
mixing alfalfa meal, which is not easily molded, with potato pomace for pellet feed
production not only takes advantage of the natural binding effect between these materials
to reduce pelleting costs but also addresses issues like nutritional imbalance and low
feeding rates caused by using a single type of feed, thereby improving feed quality.

Guo et al. (2025). “Imaging of pomace for nutrition,” BioResources 20(4), 10249-10262. 10249


mailto:wenbingwb2000@sina.com

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Accurate testing of nutrient content is essential in the process of enhancing the
nutritional value of pellet feeds. Taking alfalfa-potato pomace pellets as an example, the
crude protein and starch content are key nutritional quality indicators, directly influencing
both the nutritional quality of the feed and the growth and development of animals (Rocha
et al. 2022). However, these key indicators are typically tested using chemical methods,
which are complex, time-consuming, and costly. This constraint limits the ability to quickly
assess nutrients during the development of high-quality pellet feeds. Therefore, finding a
fast, accurate, and stable method for nutritional quality testing, such as through
hyperspectral imaging (HSI) and other techniques, has become crucial to optimizing pellet
feed processing.

The hyperspectral imaging (HSI) technique, which integrates both spectral and
image information, is an advanced and rapid method for nondestructive testing. It has been
widely applied in feed quality assessment (Yan et al. 2019), particularly for predicting
protein content (Fu et al. 2017), pH value (Zhang 2023), and moisture content (Yu et al.
2023). These studies have demonstrated the feasibility of using HSI to predict crude protein
and starch content in pelleted feeds. However, most existing prediction models are based
solely on spectral data, which captures only the chemical compositional information of the
particles. As a result, the surface microtexture features of the particles and their spatial
distribution, which are also important, are not analyzed. Texture features, an important
aspect of image spatial information, reflect characteristics of the sample surface, such as
fine structure, homogeneity, orientation, and roughness (Yang 2024). These features
effectively complement spectral information. Recently, several researchers have
highlighted the importance of simultaneously analyzing both HSI spectral and spatial
information. Examples include the prediction of palmitic and oleic acid content in lamb
(Wang et al. 2020), the prediction of the K-value of pork (Cheng et al. 2016), the prediction
of pH-value in salted meat (Liu et al. 2014), and the prediction of volatile saline nitrogen
content in cooked beef using texture features and color models (Yang ef al. 2017). These
studies suggest that combining spectral and spatial information from HSI provides a more
comprehensive and intuitive analysis compared to traditional methods. The fusion of
spectral and texture features through multidimensional analysis is expected to significantly
enhance the accuracy and robustness of detecting crude protein and starch content in pellet
feed, providing new technical support for the rapid nondestructive testing of feed quality.

The 900 to 1700 nm wavelength range was chosen for this study because it
effectively captures absorption features of key chemical groups in feed components. It
detects N-H bending and C=O stretching vibrations in proteins, which are essential for
predicting protein content (Du et al. 2024). Additionally, starch and other sugars show
distinct absorption characteristics in this range, aiding in starch estimation. Previous studies
have shown that NIR spectroscopy in this range is effective for analyzing crude protein
and starch in feed. For example, Tang et al. (2004) used hyperspectral methods to estimate
the crude protein and crude starch content in rice ears and grains. Rukundo et al. (2021)
demonstrated that handheld NIR spectrometers (900 to 1700 nm) can accurately predict
protein content in animal feed, making them suitable for field use .

The main objective of this study was to utilize the combination of spectral and
image texture information to predict the crude protein and starch contents in alfalfa-potato
pomace pellet feed. Hyperspectral data of the pellet feed, ranging from 900 to 1700 nm,
were collected. The optimal preprocessing method and characteristic wavelength selection
were determined by applying four preprocessing methods and two variable selection tools.
Texture information of the pellet feed was extracted using the gray-level co-occurrence
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matrix. An SVR prediction model was then established, based on both the spectral data and
the fusion of spectral and texture information, to predict the crude protein and starch
content in the pellet feed.

It was hypothesized that the textural features of pellet feed are crucial because key
nutrients, such as crude protein and starch, may be unevenly distributed within the pellet.
Nutrients could concentrate in specific areas, influenced by the pellet’s shape and surface
structure. For example, surface roughness or homogeneity may correlate with nutrient
density in particular regions. By combining textural and spectral data, we can enhance the
understanding and accuracy of crude protein and starch content predictions, thereby
improving the robustness of feed quality models.

EXPERIMENTAL

Sample Preparation

The test samples used in this study were pellet feeds compressed and molded from
alfalfa meal mixed with potato pomace, produced in Hohhot, Inner Mongolia. The initial
moisture contents of the alfalfa meal and potato pomace were 15% and 60%, respectively.
After pressing and molding, the resulting alfalfa-potato pomace pellet feeds were randomly
selected and weighed, with individual samples weighing approximately 70 g and having a
pellet diameter of 8 mm. A total of 201 samples were numbered, placed in self-sealing bags
(14 cm x 20 cm), and stored in a refrigerator at about 8 °C.

Nutrient Content Testing

The determination of crude protein content in feed was carried out using the
Kjeldahl method, following the GB/T 6432 (2018) standard (Huang et al. 2021). The crude
protein content was calculated using the following formula,

crude protein content(%) = M %X 100 (D
where Vi is the volume of standard acid solution consumed in the titration of the
sample(mL), Vo is the volume of standard acid solution consumed in the titration of the
blank(mL), C is the concentration of the standard acid solution(mol/L), M is the molar mass
of nitrogen(g/mol), p is the conversion factor of protein, and m is the mass of the sample(g).

The starch content was determined according to the GB/T 15683 (2008) standard
using the following formula,

__ CXVXxp

starch content (%) =-——x100 )
m

where C is the concentration of reducing sugar in the sample solution(g/L), V is the total
volume of the sample extract(mL), p is the conversion factor for the conversion of starch
to glucose, and m is the sample mass(g).

Hyperspectral Data Acquisition and Information Extraction
Hyperspectral image acquisition

Hyperspectral data acquisition of pellet feed was performed using a Specim FX17
hyperspectral imaging system (Specim, Oulu, Finland). The system consists of a Specim
FX17 hyperspectral camera, a 150 W halogen lamp, a sample stage, and a computer, as
shown in Fig. 1. The camera captures spectral data from 900 to 1700 nm across 224 bands.
The light sources are positioned on both sides of the sample stage at a height of 50 cm.
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Before taking measurements, the instrument underwent a 20-minute warm-up period to
ensure the light source was stable. It was then calibrated using a standard whiteboard. Each
pellet feed sample was measured three times independently, and the average of these
measurements was recorded. After the spectral data was collected, it was saved in a
designated folder on the computer and calibrated using the Lumo Scanner software by
Specim to guarantee the precision and reliability of further analyses.
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Fig. 1. The hyperspectral imaging system

Spectral information extraction

Spectral data with significant features were extracted using Python 3.11 software.
The pixel values of the pseudo-color images were clustered and segmented using the K-
means algorithm, and the resulting segmentation map was visualized. Cluster labels were
manually selected to create the mask map (ROI), which was used to extract the spectral
data and calculate the average reflectance for each band. The extraction results are shown
in Fig. 2, where Fig. 2a shows the original spectral image, and Fig. 2b highlights the portion
of the white area containing the alfalfa-potato pomace pellet sample.

(b)

Fig. 2. Selection of Alfalfa-Potato Pomace Pellet Feed Area. (a) Original spectrogram;
(b) Algorithm selected region
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Data Preprocessing
Abnormal sample rejection

During the process of spectral data collection and nutrient testing, abnormal values
may arise due to instrumental interferences, which can significantly impact the
performance of subsequent prediction models. Therefore, in this study, a combination of
leverage and studentized residuals was used to detect abnormal samples (Xie 2013).

The results of abnormal sample detection for crude protein and starch content in
alfalfa-potato pomace pellets are shown in Fig. 3. The crude protein abnormal value
detection results in Fig. 3a indicate that both the leverage value and the student residuals
of sample No. 16 exceeded the set threshold range, leading to its identification as an
abnormal sample. Similarly, the starch abnormal value detection results in Fig. 3b show
that samples No. 16 and No. 18 were recognized as abnormal. The statistical results for
each nutrient content, after rejecting the abnormal samples, are presented in Table 1.
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Fig. 3. Leverage-Studentized residuals abnormal sample rejection plot. (a) Abnormal sample
rejection of crude protein; (b) Abnormal sample rejection of starch

Table 1. Statistical Data of Measured Results for Crude Protein and Starch
Content in Pellet Feed

Category Number of Anomalous Range (g/100g) Mean SD
Samples
Crude Protein 1 7.3889-21.1555 10.1998 2.0215
Starch 2 16.1565-37.2638 3.1613 3.2136

Spectral information division

Sample set partitioning based on joint X-Y distances (SPXY) was used to partition
the sample set after rejecting abnormal samples, which integrates the distances between the
independent variable X and the dependent variable Y, which can ensure the consistency
and balance between the calibration set and the validation set in terms of data distribution
and representativeness (Moen et al. 2021). In this study, the experimental data after
rejecting abnormal samples were divided into correction and prediction sets using the
SPXY classification method at a ratio of 3:1.
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Preprocessing methods

Due to factors such as instrument performance, environmental conditions during
testing, and measurement conditions, directly acquired spectral images often contain some
noise. This noise is typically distributed at the baseline and peak signals, making it difficult
to identify within the total signal. To mitigate or even eliminate the effect of noise, the
main preprocessing methods used in this study included mean centering (MC), standard
normal variate (SNV), Savitzky-Golay (SG) convolutional smoothing (with a derivative
order of 2 and a smoothing point of 9), and orthogonal signal correction (OSC) for spectral
data preprocessing.

Extraction of Effective Wavelengths

Due to the characteristics of full-spectrum data, such as high dimensionality, many
bands, large data volume, and redundant information, a significant amount of computation
is required when establishing the prediction model. Therefore, to reduce computational
demands, the original data must be downscaled. In this study, competitive adaptive
reweighted sampling (CARS) (L1 ef al. 2009) and Gradient Boosting (GB) (Bentéjac ef al.
2021) methods were used to extract the effective wavelengths.

Extraction of Textural Data

Texture features are important visual features in image analysis, reflecting the
spatial structure and homogeneity of an image. They not only reveal the macroscopic
properties of the sample but also provide insight into its microstructure. The gray-level co-
occurrence matrix (GLCM) is the most widely used technique for texture analysis,
extracting features by analyzing the spatial relationships of pixel gray values in an image
(Jiang et al. 2019). Since images captured at different angles and distances can produce
varying gray-level co-occurrence matrices, this study sets the distance to 1 and considers
four texture features—energy, entropy, homogeneity, and correlation—at four different
directions (0, 45, 90, and 135°).

Before extracting texture features, principal component analysis (PCA) was
performed on the hyperspectral image data. The texture features of the image were
successfully extracted by the GLCM analysis of the first principal component (PC1) score
image and explained 95.39% of the variance. Based on this, texture variables were
calculated for all samples, and the average texture values in different directions were
selected as the texture features for each sample. In the end, four texture features were
obtained from each image for subsequent modeling analysis.

Model Development and Evaluation

The support vector regression (SVR) model was used to predict crude protein and
starch content in feed pellets. SVR is an application of the Support Vector Machine (SVM),
primarily used for reliability analysis and response prediction. The basic idea behind SVR
is to map a nonlinear problem to a high-dimensional space using a kernel function, enabling
linear regression for optimal learning.

To evaluate the accuracy and predictive ability of the models, the coefficient of
determination (R?) and root mean square error (RMSE) were used. The closer the R2 is to
1 and the smaller the RMSE, the higher the correlation between the spectral information
extracted by the model and the nutrient content, indicating better model performance and
stability.
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RESULTS AND DISCUSSION

Prediction Models with Full Spectral Range

In this study, four algorithms , namely MC, SNV, SG convolutional smoothing, and
OSC were used to process the raw spectra to eliminate the background information
interference.

SVR analysis was performed on the raw and preprocessed spectral data to establish
a prediction model for crude protein and starch content in pellet feed. As shown in Fig. 4,
when raw spectra were used for the determination of crude protein and starch, the R?p was
0.8318, and the RMSEP was 0.7550. For starch, the R?p was 0.7317, and the RMSEP was
1.5816. The results indicate that, compared to raw spectra, the prediction performance with
SNV preprocessed spectra was better, exhibiting smaller errors, primarily due to the
reduction of noise and bias. This suggests that SNV preprocessing reduces light scattering
and non-informative variations, allowing the model to better capture key features, thus
improving the prediction accuracy of crude protein and starch.
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Fig. 4. Performance of full wavelength model based on different pre-processing methods. (a)
Crude protein; (b) Starch

Prediction Models with Effective Wavelengths

The first 30 important feature wavelengths extracted by the GB method are shown
in Fig. 5. The band corresponding to the wavelength of 1556.1 nm in Fig. 5a was selected
as the most important feature for crude protein, while the band corresponding to the
wavelength of 1119.6 nm in Fig. 5b was selected as the most important feature for starch.
Figures 5c and 5d show the wavelengths corresponding to each feature in the spectral
region for crude protein and starch in pelleted feeds, respectively. From Fig. 5c, it can be
observed that the characteristic bands selected by crude protein were primarily
concentrated from 1100 to 1140 nm and 1450 to 1650 nm. The band at 1450 to 1550 nm
is associated with the N-H bending vibration in the protein, while the band at 1600 to 1650
nm is mainly attributed to the C=0 stretching vibration in the peptide bond of the protein
(Yan 2005).

The effective wavelengths were extracted from the crude protein and starch spectral
data using the CARS method, with the Monte Carlo sample size set to 40 and incorporating
10-fold cross-validation. Figure 6a represents the trend of the root mean square error
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(RMSE) as a function of the number of samples in the cross-validation. Figure 6b shows
the path of the regression coefficients during each sampling, with the thick vertical line
indicating the minimum value of RMSECV, which occurs when the number of sampling
runs is 35. At this point, the information unrelated to crude protein is excluded, and a total
of 44 feature wavelengths that provide the most relevant information are selected. Figure
6¢ illustrates the corresponding wavelengths for crude protein in pellet feed within the
spectral region. The effective wavelengths of the starch content samples, extracted by the
CARS method, are shown in Fig. 7, with a total of 44 effective wavelengths selected. As
shown in Fig. 7c, the characteristic bands selected for starch are primarily concentrated
from 1150 to 1200 nm and 1400 to 1550 nm. The band at 1150 to 1200 nm is associated
with the stretching vibration of the starch C-H bond, while the band at 1450 to 1550 nm is
mainly related to the -OH stretching vibration (Yan 2005).
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Fig. 5. Results of feature wavelengths extracted by the GB algorithm. (a) Top thirty feature bands
of crude protein contribution; (b) Top thirty feature bands of starch contribution; (c) Distribution of
crude protein effective wavelengths; (d) Distribution of starch effective wavelengths
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Fig. 6. Result of CARS effective band selection for crude protein. Different color curves represent
different variables. (a) Trend of RMSECYV with increasing sample size; (b) Trend of extracted
variables with increasing sample size; (c) Distribution of effective wavelengths

Table 2 presents the statistical results of the crude protein and starch content
predictions, where crude protein and starch were predicted using full spectral variables, as
well as spectral variables selected by the CARS method and the GB algorithm,
respectively.
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Fig. 7. Result of CARS effective band selection for starch. Different color curves represent
different variables. (a) Trend of RMSECYV with increasing sample size; (b) Trend of extracted
variables with increasing sample size; (c) Distribution of effective wavelengths

For the prediction of crude protein, the full-spectrum method (224 bands)
demonstrated good fitting performance on both the calibration and prediction sets, with an
R%c of 0.8779, an R?p of 0.8534, and RMSEC and RMSEP values of 0.7694 and 0.7048,
respectively. The CARS method (44 bands) further improved prediction performance, with
an R?p of 0.8812 and RMSEP reduced to 0.5919. The GB method (30 bands) performed
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the best, with an R?p of 0.8861 and a minimum RMSEP of 0.5845. The above results show
that the 30 optimal wavelengths selected using the GB method were information-rich and
suitable to effectively replace the full-wavelength method.

Table 2. Performance of the Developed Models Based on the Full Wavelength
and Effective Wavelength of Crude Protein and Starch Contents

Category | Model No. of Extraction Calibration set Prediction set

variables method R?%c RMSEC R%p RMSEP

Protein SVR 224 Full spectra 0.8779 0.7694 0.8534 0.7048
44 Cars 0.8733 0.7877 | 0.8812 0.5919

30 GB 0.9027 0.6948 | 0.8861 0.5845

starch SVR 224 Full spectra 0.7869 1.5570 0.7774 1.4407
44 Cars 0.7731 1.6830 | 0.7752 1.4852

30 GB 0.7327 1.7407 | 0.6897 1.7108

For the prediction of starch, the prediction performance of all three band selection
methods was inferior to that of the crude protein samples. Although the full-spectrum
method (224 bands) demonstrated some predictive ability, with an R%c of 0.7869 and an
R?p of 0.7774, the RMSEC and RMSEP were relatively large, at 1.5570 and 1.4407,
respectively, indicating lower model fitting and prediction accuracy. The prediction
performance of the CARS method (44 bands) after feature extraction was further degraded,
with an R?p of 0.7752 and an RMSEP of 1.4852, indicating a significant increase in error.
The GB method (30 bands) showed the worst prediction performance after feature
extraction, with an R*p of 0.6897 and an RMSEP of 1.7108, resulting in the largest
prediction error. Because the prediction model for starch performed poorly under all band
selection methods, the CARS method was selected as the preferred method for selecting
starch effective wavelengths for subsequent modeling, based on a comprehensive
assessment.

Prediction Models Integrated with Spectral and Textural Data

Before fusing the texture data with the spectral data, each region of interest (ROI)
image was subjected to PCA to reduce the spectral dimensions. By extracting the first three
principal component images (PC1, PC2, and PC3), their cumulative spectral variances
were obtained to be 95.39%, 4.16%, and 0.21%, respectively. Therefore, the PC1 image
was selected as the best representation of the original sample for subsequent texture
information extraction.

Figure 8 illustrates the Pearson correlation between crude protein and starch content
and the textural parameters (energy, entropy, homogeneity, and correlation). From the
figure, it can be seen that crude protein and starch content had little correlation with the
four texture parameters. Among them, entropy showed the greatest correlation with crude
protein, followed by correlation. Starch had the greatest correlation with energy, followed
by homogeneity. Because the surface texture features of pellet feed samples had little
influence on their crude protein and starch contents, though some correlation still was
apparent, entropy and correlation were selected as texture features for crude protein.
Meanwhile, energy and homogeneity were chosen as texture features for starch. These
features were selected to be applied to the subsequent fusion model.
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SVR prediction model based on extracted texture features and optimal spectral data
Table 3 presents the performance data of the developed fusion model in predicting
crude protein and starch content, showing an improvement in prediction accuracy.

Protein

0.3H | Starch

Energy Homogeneity

Entropy Correlation

Carrelation coefficient

Fig. 8. Correlation between crude protein and starch with texture parameters extracted using
GLCM

Table 3. Prediction of Crude Protein and Starch Contents Based on Fused Data

Category | Model Fusion type Calibration set Prediction set
R?%c RMSEC R%p RMSEP
GB 0.9027 0.6948 0.8861 0.5845
i GB -ENT 0.8974 0.7153 0.8820 0.5782
Protein SVR
GB- COR 0.9127 0.6513 0.9070 0.5548
GB-COR-ENT 0.9048 0.6879 0.8169 0.7296
CARS 0.7731 1.6830 0.7752 1.4852
CARS-ENE 0.7654 1.6310 0.7915 1.3970
Starch SVR
CARS-HOM 0.7610 1.6513 0.7906 1.3864
CARS -ENE-HOM 0.7425 1.7085 0.735 1.5745

For crude protein prediction, the SVR model combining COR parameters (GB-
COR-SVR) outperformed the SVR models using spectral data alone or incorporating other
texture parameters. Specifically, the GB-COR-SVR model achieved an R%*c of 0.9127, an
R?p of 0.9070 an RMSEC of 0.6513, and an RMSEP of 0.5548. Compared to the model
built with the effective wavelengths, the R’p value was increased by 0.0209, while the
RMSEP value decreased by 0.0297. For starch prediction, the CARS-ENE-SVR model
performed the best, outperforming models that used spectral data alone or incorporated
other texture parameters. This was demonstrated by an R%c of 0.7654, R?*p of 0.7915,
RMSEC of 1.6310, and RMSEP of 1.3970.

In summary, the fusion of texture parameters and spectral features significantly
improved the accuracy of predicting crude protein and starch contents, with crude protein
predictions being more accurate than starch. However, the model still faces challenges in
real-world applications: environmental factors such as light, temperature, and humidity
may introduce noise, affecting prediction stability, and the model’s generalizability needs
further validation, as current samples are mainly from specific regions and materials.
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Future research should focus on enhancing data robustness, optimizing real-time
predictions, and expanding sample diversity to improve the model's applicability in broader
production scenarios.

CONCLUSIONS

1. Inorder to quickly and accurately detect the crude protein and starch content in alfalfa-
potato pomace pellets, this study utilized hyperspectral imaging technology to collect
hyperspectral images of the particles in the 900 to 1700 nm wavelength range.
Additionally, various spectral preprocessing methods and effective wavelength
selection techniques were combined to construct a support vector regression (SVR)
model. The results demonstrated that the 30 and 44 effective wavelengths selected by
Gradient Boosting (GB) and competitive adaptive reweighted sampling (CARS)
showed good validity for predicting crude protein and starch content.

2. To further improve prediction accuracy, this study incorporated texture features based
on spectral data. Texture features, including energy, entropy, homogeneity, and
correlation, were extracted using the gray-level co-occurrence matrix (GLCM). The
modeling analysis of the fused mapping information revealed that the SNV-GB-COR-
SVR fusion model was the most effective for predicting crude protein, with an R?p of
0.907 and an RMSEP of 0.5548. Meanwhile, the SNV-CARS-ENT-SVR fusion model
performed best for predicting starch content, with an R*p of 0.7915 and an RMSEP of
1.3970.
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