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To address the challenges posed by complex and variable backgrounds 
coupled with the small-target characteristics of wood surface defects such 
as knots and cracks, a novel wood surface defect detection model based 
on improved You Only Look Once version 8 (YOLOv8) is proposed. The 
model integrates a multi-head mixed self-attention mechanism into the 
backbone to improve the representation of fine-grained defect features. A 
learnable dynamic upsampling module replaces traditional nearest-
neighbor interpolation to mitigate feature loss during resolution recovery. 
Additionally, a structural Re-parameterizable Block is adopted to enhance 
feature expressiveness during inference, and a small-object detection 
head is added to enhance the detection of small defects while minimizing 
both missed and incorrect detections. The experimental results 
demonstrate that the proposed model effectively enhances detection 
performance, increasing the mAP of the baseline model from 72.9% to 
79.5%. Furthermore, the proposed model surpasses other YOLO variants 
in mAP across all defect categories. This improvement better meets the 
quality control requirements of wood processing and manufacturing, 
ensuring the quality of wood products. 
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INTRODUCTION 
 

Wood surface defects significantly affect the quality and efficiency of wood 

processing. These defects not only reduce the utilization of wood, causing resource waste, 

but they also have a considerable negative impact on the mechanical properties and 

functional value of wood products (Chen et al. 2023a; Li et al. 2024). Therefore, surface 

defect detection is a critical step in wood production and classification. Timely detection 

and removal of defective wood can effectively improve the quality of wood products, 

maximize the utilization of wood resources, and thus promote the sustainable development 

of the wood industry (Yi et al. 2024). 

In recent years, wood processing has gradually shifted from manual labor to 

automation, mechanization, and intelligence. In this process, various non-destructive 

testing (NDT) technologies have been widely applied in wood surface defect detection, 

such as ultrasonic testing (Jiang et al. 2024; Wang et al. 2024; ), X-ray inspection (Stängle 

et al. 2015; Zhang 2017), infrared detection (López et al. 2014; Yu et al. 2019), and 

machine vision techniques (Hittawe et al. 2017; Ji et al. 2024a). These technologies 

provide practical solutions for wood defect detection, successfully facilitating the transition 
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from manual to automated and mechanized processes. For instance, Conners et al. (1983) 

designed an automated wood processing system based on computed tomography and 

optical scanning, capable of identifying and classifying eight common wood defects. 

Wyckhuyse and Maldague (2001) experimentally validated the feasibility of infrared 

thermography for wood surface defect detection. Sandak et al. (2020) developed a portable 

spectrometer covering visible and near-infrared light, which can directly detect defects 

such as knots, decay, and resin on the surface of logs in the forest. Although these NDT 

technologies offer high precision and efficiency, their adaptability and real-time 

capabilities in complex environments still face significant limitations. 

With the rapid development of computer and artificial intelligence technologies, 

wood surface defect detection technology has evolved from traditional rule-based methods 

to data-driven deep learning approaches. Deep learning-based detection techniques, due to 

their ability to accurately identify a variety of wood surface defect types and adapt to 

different lighting conditions and wood species, have become a current research hotspot. 

For instance, Sun et al. (2022) proposed a multicriteria framework that integrates deep 

learning for comprehensive wood quality assessment, whereas Ji et al. (2024b) 

concentrated on knot detection in Chinese fir lumber using traditional vision methods. 

Özcan et al. (2024) applied deep learning for general anomaly detection on wood surfaces 

but without structural enhancements for small defect sensitivity. Zhu et al. (2024) 

introduced a multi-source data fusion network targeting fine-grained defect segmentation. 

Currently, deep learning-based defect detection methods are mainly divided into two-stage 

and single-stage detection algorithms. Two-stage algorithms, such as Region-based 

Convolutional Neural Network (R-CNN) (Girshick et al. 2014), Faster R-CNN (Ren et al. 

2017), and Mask R-CNN (He et al. 2017), perform excellently in detection accuracy and 

are widely used in wood surface defect detection tasks (Gao et al. 2021; Li et al. 2021; 

Chen et al. 2023b; Zou et al. 2024). Fan et al. (2019) were the first to apply Faster R-CNN 

to wood defect detection, constructing a real-time defect detection system for solid wood 

flooring that meets industrial production requirements. They validated the practicality of 

the multi-stage Faster R-CNN object detection algorithm under deep learning for solid 

wood board defect detection. Xia et al. (2022) noticed that the texture features of wood 

often accompany wood defects and can interfere with the final recognition results. They 

proposed a Faster R-CNN surface defect detection algorithm that improves image texture 

background using bilateral filtering, enhancing the network’s ability to process multi-scale 

defect features and achieving outstanding performance in detecting small defects. Hu et al. 

(2020) combined Progressive Growing of Generative Adversarial Networks (PGGAN) 

with the Mask R-CNN model and introduced transfer learning to identify and classify 

defects in poplar veneer, compensating for the traditional sample augmentation methods 

that lack fine defect details, poor defect image diversity, and limited sample distribution. 

However, two-stage algorithms typically have high computational complexity, making it 

difficult to fully meet the real-time requirements of wood processing. 

In contrast, single-stage detection algorithms, such as You Only Look Once 

(YOLO) (Redmon et al. 2016) and its series of versions, as well as Single Shot MultiBox 

Detector (SSD) (Liu et al. 2016), convert the object detection problem into an end-to-end 

prediction task. This eliminates the cumbersome process of generating candidate regions, 

offering advantages in real-time performance, simple architecture, and computational 

efficiency. Wang et al. (2023) introduced a wood surface defect detection method called 

Omni-Dynamic Convolution Coordinate Attention-based YOLO (ODCA-YOLO), which 

incorporates an Omni-dimensional dynamic convolution-based coordinate attention 
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(ODCA) mechanism. This method effectively enhances the detection capability for small 

defect targets and was experimentally validated using an optimized wood surface defect 

dataset, fulfilling the practical requirements for accurate wood surface defect detection. 

Meng and Yuan (2023) proposed a YOLOv5 model based on a Semi-Global Network 

(SGN) for wood defect detection. By integrating a lightweight SGN into the backbone 

network to model global context, the method improves detection accuracy while reducing 

model complexity. Effectiveness was validated on a public wood defect dataset, 

significantly enhancing detection performance across various types of defects. Ding et al. 

(2020) utilized machine vision and deep learning techniques to detect three types of wood 

surface defects: live knots, dead knots, and cracks. They applied transfer learning to the 

SSD object detection algorithm and improved it by incorporating a DenseNet network, 

addressing the issues of high labor costs and low efficiency in wood defect detection. 

Furthermore, YOLO-based algorithms have demonstrated considerable potential in various 

fields. For example, Karimi et al. (2024) developed an automated defect detection system 

for Portuguese cultural heritage buildings, specifically targeting tile defects using YOLO. 

Additionally, Mishra and Lourenço (2024) offered a comprehensive review of artificial 

intelligence-assisted visual inspection techniques, emphasizing their application in the 

monitoring and preservation of cultural heritage (CH) sites. These studies highlight the 

effectiveness of YOLO-based frameworks in detecting small-scale defects, thereby 

reinforcing the relevance of our approach in optimizing YOLO for wood defect detection 

tasks. 

However, wood, being a natural material, exhibits highly diverse grain patterns and 

structures, resulting in a complex and variable background that often leads to confusion 

between defect regions (especially small defects) and the inherent grain patterns of the 

wood. The variability in lighting conditions and the irregularities of the wood surface (such 

as knots, cracks, etc.) further complicate the background, making it challenging to 

distinguish defect regions from the surrounding wood. Moreover, wood surface defects are 

typically small in size, with many defects (e.g., fine cracks, stains, knots) measuring just a 

few millimeters or even smaller. These defects often occupy only a small portion of the 

image and fall within the category of small-object detection. Small defects on wood 

surfaces tend to have low contrast, particularly in regions with dense natural grain patterns, 

where they may lack distinct edges or shapes. This makes the task of localization and 

classification more difficult, leading to a higher likelihood of false negatives (missed 

detections) and false positives (incorrect detections). These factors collectively render the 

detection of wood surface defects exceptionally challenging. To address the 

aforementioned issues, this study proposes an improved YOLOv8-based method for wood 

surface defect detection. This approach provides an accurate and efficient solution for the 

application of wood surface defect detection technology in the manufacturing industry. The 

main contributions of this paper are as follows: 

1. A novel lightweight Multi-head Mixed Self-Attention (MMSA) module is designed 

and seamlessly integrated into the C2f module, resulting in the C2f-MMSA module. 

This integration significantly enhances the model’s capacity to capture contextual and 

background information for small targets, effectively overcoming the limitations of 

the original C2f module in detecting small defects within complex backgrounds. 

2. A learnable dynamic upsampling module is introduced to replace the upsampling 

module based on nearest-neighbor interpolation, alleviating the issue of feature 

information loss for small-scale wood surface defects during upsampling, and 

improving the model's feature representation capability and precision. 
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3. A Re-parameterizable Block is designed to accurately capture small-scale and multi-

scale features in complex backgrounds, further exploring the fine-grained and multi-

scale characteristics of wood surface defects. 

 

 

EXPERIMENTAL 
 
Wood Surface Defects Dataset 

The dataset used in this study consists of wood surface defect images collected from 

real-world industrial environments. A custom-designed imaging system was employed for 

data acquisition (the field of view is 15 cm × 500 cm), capturing 10 categories of wood 

surface defects that comprehensively cover common defect types encountered in industrial 

settings (Kodytek et al. 2021). To mitigate potential biases arising from class imbalance 

and limited sample sizes, the dataset was refined to include seven predominant defect 

categories: Live_Knot, Dead_Knot, Knot_with_crack, Knot_missing, Crack, Marrow, and 

Resin, comprising a total of 4,500 annotated images with a resolution of 2800×1024. The 

dataset was split into training and test sets in a 9:1 ratio, with 10% of the training set used 

for validation. The distribution of each defect type, including number of images, 

occurrence frequencies, and proportional representation within the dataset, is 

systematically summarized in Table 1. 

 

Table 1. Distribution of Each Defect Type in Dataset 

Defect Type 
Number of Images with 

Defect 
Number of Defect 

Occurrences 
Images in 

Dataset (%) 

Live_Knot 2956 5112 65.69 

Dead_Knot 2075 3574 46.11 

Knot_with_crack 327 574 7.27 

Knot_missing 152 208 3.38 

Crack 479 671 10.64 

Marrow 281 316 6.24 

Resin 623 719 13.84 

Note: The Images in dataset (%) means the proportion of images with such defects in the 
dataset. 

 

YOLOv8 Improvement 
To address the aforementioned challenges, this study adopted YOLOv8 as the 

baseline model. A novel version of the model was developed with a particular emphasis on 

enhancing small object detection performance. This involved tuning the network’s 

multiscale feature representation and adjusting detection heads to better capture fine-

grained details, ensuring that small defects receive sufficient attention during inference. 

Details are as follows: 

In the Backbone, a novel Multi-head Mixed Self-Attention (MMSA) mechanism 

was designed to effectively integrate channel attention and spatial information, thereby 

enhancing the representation of wood surface defect features under complex backgrounds. 

The MMSA module was incorporated into the C2f module to improve the model’s ability 

to capture contextual and background information for small targets, effectively addressing 

the limitations of the original C2f module in detecting small defects under complex 

backgrounds. 
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In the Neck, to mitigate the loss of fine-grained details during feature fusion and 

reduce the degradation of small-scale defect features, an ultra-lightweight learnable 

dynamic upsampling module (DySample) was introduced. This module enhances feature 

representation capability and localization accuracy by adaptively preserving critical spatial 

information. Furthermore, a structural Re-parameterizable Block (RepBlock) was 

integrated to precisely capture multi-scale defect features, enabling the model to exploit 

latent fine-grained and multi-scale characteristics of wood surface defects.  

For the detection Head, an additional small-object detection head with a resolution 

of 160×160 was introduced. This design ensures that fine-grained features of small defects 

propagate through the downsampling pathway to other feature maps at scales of 20×20, 

40×40, and 80×80, thereby improving detection performance for small defects under 

complex backgrounds and reducing false positives and missed detections. The architecture 

of the proposed model is illustrated in Fig. 1. 
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Fig. 1. Architecture of the proposed model  
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C2f-MMSA 

The C2f is a key feature capture and fusion module in YOLOv8, employing the 

Cross Stage Partial Networks (CSPNet) design to enhance feature propagation and fusion 

(Varghese and Sambath 2024). However, when applied to small object detection tasks, 

particularly in the context of wood surface defects with complex backgrounds, the C2f 

structure presents several challenges:  

• Insufficient Fusion of Local and Global Information: The C2f structure merges 

features from different layers through cross-stage fusion, with a primary focus on the 

propagation of local features. However, it does not fully consider global context 

information, which is crucial for accurate localization of wood surface defects, often 

embedded within complex backgrounds. These defects typically require global 

information from surrounding areas for precise detection. 

• Inadequate Focus on Small Targets: C2f is designed to process larger or more 

conventional objects through hierarchical feature fusion. However, for small targets, 

particularly those occupying only a few pixels, the C2f structure may fail to capture 

fine-grained features adequately. In particular, when feature map sizes are reduced or 

when information is sparsely distributed, small target information may be lost or 

incorrectly localized. 

• Separation of Channel and Spatial Information: While C2f strengthens cross-layer 

feature fusion, it does not specifically address the relationship between channel and 

spatial information. In small object detection tasks, the interaction between channel 

information and spatial information is crucial. However, C2f lacks the mechanisms to 

dynamically capture these interactions effectively. 

To address these issues, this paper introduces a lightweight MMSA (Su et al. 2025) 

mechanism, combining the concepts of multi-head attention and multi-scale attention, 

inspired by the Efficient Channel Attention (ECA) design pattern. This mechanism 

effectively integrates local and global information within the image, as well as channel and 

spatial information, capturing global contextual information across both spatial and 

channel dimensions. With this mechanism, the model is better equipped to understand the 

context and background of small targets in the image, thereby overcoming the challenges 

encountered by the C2f in wood surface defect detection in complex backgrounds. 

Additionally, the incorporation of the multi-head attention mechanism allows the model to 

dynamically adjust the attention allocated to different features, enabling adaptive attention 

distribution across different scales and regions. This enhances the model’s ability to focus 

on small defect regions and facilitates feature extraction across multiple scales. 

The principle of the MMSA is illustrated in Fig. 2. First, the input image feature 

vectors undergo Local Max Pooling (LMP) to extract local spatial information, which is 

then transformed into a 1×C×ks×ks vector. The structure comprises two branches: one 

captures global information, while the other focuses on local spatial information. The 

information extracted by LMP is transformed into a 1×C×ks×ks vector, which is then 

processed by a 1D convolution (Conv1d). Afterward, de-pooling is applied to recover the 

original resolution of both vectors, followed by the fusion of attention information from 

the two branches. 
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Fig. 2. Block diagram of MMSA 

 

For Multi-head Attention, the input data is reshaped (feature vector transformation), 

and Multi-head Attention weights are computed to select feature vectors that meet the 

weight requirements. The feature vectors are then reshaped once again. Finally, the 

attention outputs from the three components are weighted and fused. The MMSA 

mechanism combines global channel attention, localized channel attention that refines 

spatial information, and multi-head attention results. 

To achieve the fusion of spatial and channel attention, 1D convolution (Conv1d) as 

shown in Fig. 2 is employed. The size of the 1D convolution kernel K is proportional to 

the number of channels C. When capturing local cross-channel interactions, only the 

relationship between each channel and its K neighboring channels is considered. The 

selection of K follows the approach used in ECA (Wang et al. 2020). 

Figure 3 illustrates the relationships between Global Max Pooling (GMP), LMP, 

and Unpooling Average Pooling (UNAP) within the MMSA structure. The GMP extracts 

the global maximum feature, producing a feature map of size 1×1. The LMP divides the 

entire feature map into k×k small regions and performs k×k max pooling within each region. 

The UNAP, also known as reverse pooling, focuses on preserving the attributes of the 

pooled features while expanding them to the desired size. The UNAP can be implemented 

using adaptive pooling to ensure that the output size matches the size of the original feature 

map. 

When extending LMP, if the size of the pooled features is not 1×1, a direct 

expansion operation is not feasible. Instead, the UNAP process must be employed to restore 

the feature map to its original size. As shown in Fig. 3, UNAP restores the resolution of 

the original feature map by applying parameters derived from the unpooling operation, 

filling the corresponding positions with the pooled results. 
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Fig. 3. Relationships between GMP, LMP, and UNAP within the MMSA 
 

The structural relationships among LMP, GMP, and UNAP in MMSA are 

illustrated in Fig. 2 and Fig. 3 and can be summarized as follows: LMP ⟶ (C, ks, ks) ⟶ 

GMP ⟶ (1, 1, C) ⟶ Conv1d ⟶ (1, 1, C) ⟶ UNAP.  

When expanding LMP, direct expansion is not feasible if the feature size is not 1×1. 

To address this limitation, the UNAP process is employed to restore the feature map to its 

original resolution. Specifically, during the LMP ⟶ (C, ks, ks) ⟶ GMP ⟶ (1, 1, C) ⟶ 

Conv1d ⟶ (1, 1, C) ⟶ UNAP sequence, the UNAP utilizes the parameters from the 

pooling operation to recover the resolution of the original feature map. Subsequently, the 

pooled results are placed at their corresponding locations. In this process, a Reshape 

operation is introduced within the LMP ⟶ GMP ⟶ UNAP pathway to facilitate proper 

feature alignment. 

As depicted in Fig. 2, after extracting global attention and local attention within the 

MMSA module, the two attention mechanisms are adaptively fused using weighted 

summation. The resulting fused features are combined with the initial input via a residual 

connection, followed by integration with the multi-head attention output. This final step 

produces the output of the MMSA. Additionally, the MMSA adopts the Hard-sigmoid 

function as the normalization mechanism, effectively mitigating gradient vanishing issues 

during backpropagation. 

 

 

Fig. 4. Processing flow of the MMSA 
 

The detailed processing flow of the Multi-head Mixed Self-Attention (MMSA) 

mechanism is illustrated in Fig. 4. It involves the following steps:  

First, the feature map undergoes both Local Max Pooling (LMP) and Global Max 

Pooling (GMP) to extract local and global contextual information. The pooled feature map 
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is then reshaped into a format suitable for Multi-Head Attention computation. Self-

attention is computed based on this reshaped feature representation, capturing 

dependencies across different spatial regions. The self-attention results are subsequently 

transformed back to match the original feature map dimensions. Local and global attention 

weights are derived from the self-attention results, followed by the application of a Hard 

Sigmoid function to constrain these weights within the range of 0 to 1. To ensure scale 

consistency, the attention weights undergo adaptive average pooling. Next, the local and 

global attention weights are fused to construct a comprehensive attention map, which is 

then applied to the original feature map to emphasize critical features. Finally, the self-

attention result is added back to the original feature map, producing the refined output 

feature map with enhanced feature representation. 

The MMSA mechanism is integrated into the C2f, as shown in Fig. 5, and 

subsequently embedded into the Backbone of YOLOv8 to enhance the model’s feature 

extraction and fusion capabilities.  

 

 

Fig. 5. Structure of C2f-SMMA 
 

Dynamic upsampling 

The YOLOv8 model employs nearest neighbor interpolation for feature map 

upsampling, facilitating feature fusion across different layers. While this method is 

computationally efficient and fast, the simplicity of nearest neighbor interpolation (Wang 

et al. 2019) leads to the loss of fine details, particularly affecting the features of small-scale 

spatial targets. This results in inadequate feature representation, which, as the network 

depth increases, severely impacts the detection accuracy of small targets. To address this 

issue, this paper introduces a super-lightweight, learnable dynamic upsampling 

(DySample) method (Liu et al. 2023), designed to mitigate feature loss and enhance both 

feature representation and detection accuracy. The specific structure is shown in Fig. 6. 

 

 

Fig. 6. Structure of DySample 
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of size 2gs2×H×W. To increase the flexibility of the offsets, a Sigmoid function along with 

a static factor of 0.5 is used to produce a per-point “dynamic range factor,” with the 

dynamic range taking values within the range of [0, 0.5]. Finally, Pixel Shuffle (Ps) is 

applied to reshape the offset O into a size of 2g × sH × sW. The mathematical expression 

for this process is as follows: 

𝑶 = 𝑃𝑠 (0.5 × Sigmoid(linear(𝑭)⊙ linear(𝑭))) 

The sampling set S is the sum of the offset O and the original sampling grid G, i.e., 

S = G + O 

 

Re-parameterizable Block 

In the Neck section, although the C2f partially facilitates feature extraction for 

wood surface defects, it struggles to accurately capture features of small-scale and multi-

scale wood surface defects under complex backgrounds. This limitation hinders the 

effective exploration of fine-grained and multi-scale features. To address these challenges, 

the structural Re-parameterizable module (RepBlock) is introduced to alleviate these 

issues. RepBlock leverages a multi-branch structure during the training phase to enrich 

feature representation, capturing wood surface defect features from global to local scales 

and from small to large scales, thereby effectively improving detection accuracy.  

During the inference phase, the reparameterization technique transforms the multi-

branch structure into a more compact single-branch form, effectively accelerating model 

inference speed without compromising detection performance, thus meeting real-time 

requirements. The structure of Re-parameterizable Convolution (RepConv) during both 

training and inference phases is illustrated in Fig. 7. During training, the multi-branch 

structure consists of a 3×3 convolution, a 1×1 convolution, a residual structure, and batch 

normalization (BN) layers. After reparameterization, it is converted into a single-branch 

3×3 convolution for inference. 

 

 

Fig. 7. Structure of RepConv during both training and inference phases 

 

The structural reparameterization of RepConv is illustrated in Fig. 8. The specific 

steps are as follows:  

(1) Convert the 1×1 convolution and residual structure into a 3×3 convolution. In 

the convolution conversion step, the original 3×3 convolution remains unchanged, while 

the 1×1 convolution is transformed into a 3×3 convolution by padding zeros around it. The 

residual structure can be constructed with four convolution kernels, two of which have 

center values of 1, and the remaining two are set to 0. The output of the input feature matrix, 

processed through these four convolution kernels, is identical to the input. 

(2) Fusion of the BN layer with the convolution layer: The structure is transformed 
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from the convolution plus BN layer into a convolution structure with bias. Let X∈RH×W×C 

be the input tensor. The computation for the BN layer is given by, 

𝐵𝑁(𝑋) = 𝛾
𝑋−𝜇

𝜎
+ 𝛽         (1) 

        

where μ represents the mean of the samples, and σ represents the variance of the samples. 

γ and β are learnable parameters, corresponding to the scaling and shifting factors, 

respectively. The computation for the convolution without bias is given by, 

𝐶𝑜𝑛𝑣(𝑋) = 𝑋 ∗ 𝑊         (2) 
       

where W is the weight matrix, which is used to perform a weighted sum on the input signals. 

 
Convolutional kernel 

parameters

Number of 

BN layers

β 

σ  

μ  

ᵞ  

b

 
 

Fig. 8. Structural reparameterization of RepConv 

 

The input tensor X, after passing through the convolutional layer and BN layer, can 

be expressed as: 

𝐵𝑁(𝐶𝑜𝑛𝑣(𝑋)) = 𝛾
𝑋∗𝑊−𝜇

𝜎
+ 𝛽        

  (3) 

That is, 

𝐵𝑁(𝐶𝑜𝑛𝑣(𝑋)) = 𝑋 ∗ (
𝛾

𝜎
𝑊)𝛾 −

𝛾𝜇

𝜎
+ 𝛽       

  (4) 

Let 𝑊𝑓𝑢𝑠𝑒𝑑 =
𝛾

𝜎
𝑊  , 𝑏𝑓𝑢𝑠𝑒𝑑 = −

𝛾𝜇

𝜎
 , Wfused and bfused represent the fused 

convolution kernel weights and bias terms, respectively. The final result of the convolution 

and BN layer fusion is expressed as: 

𝐵𝑁(𝐶𝑜𝑛𝑣(𝑋)) = 𝑋 ∗ 𝑊𝑓𝑢𝑠𝑒𝑑 + 𝑏𝑓𝑢𝑠𝑒𝑑       

  (5) 
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By the fusion method described above, the 3×3 convolutional layers and BN layers 

in Step (1) can be merged, reducing the number of parameters in the network. 

(3) Fusion of the convolution layers with their respective biases: the three sets of 

3×3 convolutional kernels and their corresponding biases are stacked together, resulting in 

a single 3×3 convolutional kernel and bias. Let the convolution kernel parameters and 

biases of the three sets of 3×3 convolutions be W1, W2, W3 and b1, b2, b3, respectively. The 

output tensor Y∈RH×W×C after processing the input tensor X∈RH×W×C through the three sets 

of 3×3 convolutions and their corresponding biases can be expressed as: 

𝑌 = (𝑋 ∗𝑊1 + 𝑏1) + (𝑋 ∗𝑊2 + 𝑏2) + (𝑋 ∗𝑊3 + 𝑏3)    (6)  
 

That is， 

𝑌 = 𝑋 ∗ (𝑊1 +𝑊2+𝑊3) + (𝑏1 + 𝑏2 + 𝑏3)      (7) 
      

Based on the above calculations, the RepConv multi-branch structure from the 

training phase is transformed into a single-branch convolutional structure through 

structural reparameterization. Subsequently, RepConv is incorporated into the RepBlock 

module, as shown in Fig. 9. 

 

 

Fig. 9. Structure of RepBlock 
 

The RepBlock module combines RepConv with a dual-path architecture. It consists 

of two parallel 1×1 convolution layers: one directly passes the original information, while 

the other adjusts the channel size. This is followed by a module composed of multiple 

RepConv layers for in-depth feature extraction. Through the RepConv layers, RepBlock is 

capable of capturing complex features within the image with greater detail, which is crucial 

for improving detection accuracy. Additionally, the parallel residual connections help 

retain the original features, mitigating the vanishing gradient problem, and enhancing the 

stability and reliability of the model. 

 

Addition of small-object detection head 

In the dataset used in this study, small-object targets occupy a very small portion 

of the image. After setting the image size to 640×640, many targets are smaller than 3×3 

pixels. After multiple downsampling pooling operations, most of the features are lost, 

resulting in a high likelihood of false negatives. The detection heads in the baseline model 

have sizes of 20×20, 40×40, and 80×80, and when using the smallest detection head 

(80×80) to detect each grid in the image, the receptive field is only 8×8. This limits the 

model’s ability to recognize small targets. 

To address this, a small-object detection head with a size of 160×160 is added to 

the Head layer of the baseline model, improving the model’s detection capability for small 

targets. The structure of the new detection head is shown in Fig. 2. First, the 80×80 feature 

map from the second layer of the backbone network is stacked with the upsampled feature 

maps from the Neck layer. After passing through RepBlock and DySample processing, 

additional feature layers with small-object characteristics are obtained. These are then 

1×1Conv

1×1Conv RepConv

1×1Conv

N×
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concatenated with the 160×160 feature map output from the second layer of the backbone 

network, enhancing the 160×160 scale feature layer’s ability to represent small targets 

related to wood surface defects. The added detection head allows small-object feature 

information to be propagated through the detection layers along the downsampling path to 

other feature layers at different scales. This enables small-object features to be extracted at 

deeper network layers, enhancing the detection of wood surface defects in complex 

backgrounds and effectively reducing both false positives and false negatives at different 

scales. 

 

 

RESULTS AND DISCUSSION 
 

Ablation Experiments 
The software and hardware configuration used in the experiment is detailed in 

Table 2. The specific training hyperparameters are as follows: (1) Input image size: 640 

pixels. (2) Number of iterations: 200. (3) Batch size: 8. (4) Initial learning rate: 0.01. (5) 

Weight decay coefficient: 0.0005. (6) Momentum: 0.937. To assess the accuracy and 

effectiveness of our method, two performance evaluation metrics were employed: Average 

Precision (AP) and mean Average Precision (mAP).  

 

Table 2. Configuration of Software and Hardware Used in the Experiment 

Device name Parameter 

GPU NVIDIA GeForce RTX 4060 Laptop 8G 

CPU 13th Gen Intel(R) Core(TM) i9-13900HX 2.2GHz 

Computer operating system Windows 11 

Development environment software PyCharm 2023.2.1 

Programming language Python 3.8 

Deep learning framework PyTorch 2.1.0 

Computational acceleration CUDA11.0 

 

To evaluate the impact of each module in the improved model, an ablation study 

was conducted with YOLOv8 as the baseline model. This study aimed to validate the 

effectiveness of the proposed enhancements. The results of the ablation experiments are 

presented in Table 3. The table presents the results of different configurations, where each 

variant isolates the effect of an individual module to evaluate its contribution to overall 

performance. YOLOv8+C2f-MMSA indicates that the MMSA module is seamlessly 

integrated into the C2f module, replacing the C2f module in the backbone of YOLOv8. 

YOLOv8+Dysample indicates the incorporation of Dysample into the neck section for 

upsampling. YOLOv8+RepBlock denotes the integration of the RepBlock module into the 

neck section. YOLOv8+P2 denotes the incorporation of the small-object detection head 

module into the Head section. “This work” denotes the current proposed improved model. 
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Table 3. Results of Ablation Experiment 

Methods mAP 
AP 

Live_Knot Marrow Resin  Dead_Knot Knot_with_Crack Knot_Missing Crack 

YOLOv8 0.729 0.787 0.823 0.667 0.877 0.422 0.804 0.725 

YOLOv8+C2f-MMSA 0.750 0.759 0.858 0.768 0.875 0.464 0.803 0.723 

YOLOv8+Dysample 0.747 0.783 0.778 0.720 0.870 0.523 0.776 0.776 

YOLOv8+RepBlock 0.754 0.784 0.829 0.762 0.862 0.492 0.809 0.739 

YOLOv8+P2 0.735 0.786 0.842 0.700 0.868 0.507 0.706 0.733 

This work 0.795 0.887 0.891 0.790 0.893 0.610 0.750 0.743 

 

Table 4. Comparison of Various Detection Models 

Methods mAP 
AP 

Live_Knot Marrow Resin Dead_Knot Knot_with_Crack Knot_Missing Crack 

YOLOv5 0.746 0.764 0.786 0.774 0.868 0.476 0.837 0.716 

YOLOv7 0.734 0.767 0.814 0.724 0.858 0.529 0.782 0.665 

YOLOv8 0.729 0.787 0.823 0.667 0.877 0.422 0.804 0.725 

YOLOv9 0.757 0.789 0.805 0.786 0.875 0.515 0.759 0.769 

YOLOv10 0.672 0.725 0.799 0.671 0.851 0.378 0.690 0.590 

YOLO11 0.745 0.768 0.805 0.768 0.879 0.488 0.752 0.757 

YOLOv12 0.746 0.773 0.835 0.760 0.882 0.493 0.814 0.666 

Wang et al. (2024) 0.777 0.814 0.958 0.852 0.868 0.481 0.825 0.642 

Xi et al. (2024) 0.784 0.854 0.871 0.779 0.831 0.595 0.866 0.693 

This work 0.795 0.887 0.891 0.790 0.893 0.610 0.750 0.743 
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Integrating the MMSA module into the C2f structure (YOLOv8+C2f-MMSA) 

improved mAP by 2.1% compared to the baseline, demonstrating its effectiveness in 

enhancing feature extraction for small defects. Similarly, the introduction of Dysample 

(YOLOv8+Dysample) led to an 1.8% improvement, indicating that the learnable dynamic 

upsampling strategy mitigates information loss during feature scaling. The addition of 

RepBlock (YOLOv8+RepBlock) further enhanced performance by 2.5%, suggesting its 

ability to capture multi-scale defect features effectively. Finally, incorporating the small-

object detection head (YOLOv8+P2) provided an additional boost of 0.6%, validating its 

role in refining small defect detection. By integrating all proposed enhancements, the final 

model (Ours) achieved the highest performance, surpassing the baseline by 6.6% in mAP. 

This demonstrates that the combined improvements contribute synergistically to the 

accuracy and robustness of wood surface defect detection. 

 

Comparison Experiments with Benchmark Models 
To further validate the effectiveness of the proposed model, a comparative 

experiment was conducted against several state-of-the-art wood surface defect detection 

models. The benchmark models selected for comparison include YOLOv5, YOLOv7, 

YOLOv9, YOLOv10, YOLO11, YOLOv12, and YOLOv8 (baseline). All models were 

trained and evaluated under identical conditions using the dataset mentioned in section 2.1 

to ensure fairness. 

The results, as shown in Table 4, indicate that the proposed model achieved the 

highest mAP, outperforming other models in detecting wood surface defects. Specifically, 

the present method improved the mAP by 6.6% over the YOLOv8 baseline, demonstrating 

the effectiveness of the introduced C2f-MMSA module, Dysample upsampling strategy, 

RepBlock, and small-object detection head in enhancing small defect recognition. In the 

AP results, the model of Xi et al. (2024) achieved the highest AP of 0.866 for the 

Knot_Missing defect, while YOLOv9 attained the best AP of 0.769 for the Crack defect. 

For the remaining defect types, including Live_Knot, Marrow, Resin, Dead_Knot, and 

Knot_with_Crack, the proposed model consistently outperformed the other benchmark 

models, achieving the highest AP values across these categories. These results demonstrate 

the effectiveness of the proposed improvements in enhancing the detection performance 

for various wood surface defects. 

The Precision-Recall (P-R) curve provides an intuitive visualization of the Average 

Precision (AP) values. It represents the trade-off between precision and recall, with a larger 

area under the curve indicating superior model performance. When the area reaches 1, it 

signifies that the model has perfectly detected all targets. Figure 10 illustrates the AP values 

for the seven types of wood defects evaluated in this study. Subfigures (a), (b), (c), (d), (e), 

(f), (g) and (h) correspond to the AP values obtained by YOLOv5, YOLOv7, YOLOv8, 

YOLOv9, YOLOv10, YOLO11, YOLOv12, and the proposed model, respectively. 

In addition, to validate the performance of the current model in complex 

backgrounds, the present results were compared with other YOLO-based studies 

addressing similarly challenging detection environments. For instance, tile defect detection 

in historical buildings Karimi et al. (2024) report overall accuracy of over 72%. For wood 

surface defect detection (Wang et al. 2024; Xi et al. 2024), researchers report mAP values 

of 77.7% and 78.4%, respectively. The present model achieved a comparable or higher 

detection accuracy (79.5% mAP), particularly under diverse wood textures and irregular 

defect patterns. These results highlight the robustness and generalization capacity of the 

present approach under real-world complexity. 
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Fig. 10. Precision–recall (P–R) curves 

 

The proposed model achieved higher AP values than other benchmark models for 

almost all seven types of wood defects, except for Knot_Missing and Crack. Despite the 

overall improvements achieved by the proposed model, the detection performance for 

Knot_Missing and Crack defects did not surpass that of YOLOv5 and YOLOv9, 

respectively. This can be attributed to the following factors: (1) Knot_Missing defects 

typically exhibit clear edges and relatively large missing regions, making them more 

distinguishable. YOLOv5, as a well-established model, may have been optimized for such 

easily identifiable defects, resulting in superior performance. (2) Crack defects, in contrast, 

are characterized by irregular, thin, and elongated structures, which can resemble natural 

wood grain patterns. The strong performance of YOLOv9 in this category suggests that its 

feature extraction and detection heads are more suited for capturing fine-grained and linear 

features. (3) The distribution of Knot_Missing and Crack samples in the training dataset 

may impact the model’s generalization capability. If these defect types are 

underrepresented or exhibit high variability, the model may struggle to learn a robust 

representation for them. (4) Knot_Missing defects, being relatively large and distinct, may 

not benefit as significantly from the added feature extraction enhancements, as their 

characteristics are already well captured by standard detection modules. 

The visual comparison results are illustrated in Fig. 11. Each detection box is 

associated with a confidence score, which quantifies the model's certainty regarding its 

detection outcome. This score ranges from 0 to 1, where higher values indicate greater 

confidence in the detection, whereas lower values suggest increased uncertainty in the 

model's predictions. The experimental results highlight the superior performance of the 

proposed model in wood defect detection. For instance, in detecting the Marrow defect, the 

confidence scores achieved by the proposed model were 0.94 and 0.92, compared to only 

0.84 and 0.72 for the YOLOv8, reflecting improvements of 0.10 and 0.20, respectively. In 

detecting the Resin defect, the confidence score is the highest at 0.95. Furthermore, the 

proposed model exhibited no misclassifications or missed detections across all defect types, 

demonstrating its high reliability and accuracy in wood defect detection. 
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Fig. 11. Examples of visual comparison results 

 

Figure 12 presents the visual results obtained using Grad-CAM for YOLOv8 and 

the proposed model in wood defect detection tasks. Grad-CAM is a visualization technique 

designed to enhance model interpretability by leveraging gradient information to generate 

heatmaps that highlight the most influential regions of the input image for a given 
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prediction. This approach provides an intuitive way to illustrate the model’s attention 

distribution and explain its decision-making process. The proposed model exhibits a more 

precise focus on key defect areas during wood defect detection. The generated heatmaps 

display deeper color intensities, indicating a stronger response to the target regions, with 

attention concentrated on the critical defect features. In contrast, YOLOv8’s heatmap 

presents a more dispersed color distribution, suggesting that its attention is spread across a 

broader area, potentially including irrelevant regions. This distinction highlights the 

superior feature extraction and defect localization capabilities of the proposed model, 

enabling more accurate identification of wood defects and ultimately enhancing detection 

accuracy and reliability. 

 
 

Fig. 12. Grad-CAM comparison of wood defects 
 
 

CONCLUSIONS 
 

The detection of wood surface defects is crucial for ensuring the quality and 

performance of wood products. To address the challenges posed by complex and variable 

backgrounds, as well as the small size of certain defects, this paper proposes an improved 

YOLOv8-based detection model that enhances accuracy while minimizing false positives 

and missed detections. Specifically, the MMSA module is integrated into the C2f structure 

in the Backbone to improve the model’s ability to capture contextual and background 

information for small targets. In the Neck, the DySample module mitigates fine-grained 

detail loss during feature fusion, and the RepBlock module strengthens the extraction of 

multi-scale defect features. Additionally, a small-object detection head improves detection 

accuracy for small defects. 

1. Ablation experiments demonstrate that the integration of different enhanced modules 

leads to statistically significant improvements in the detection accuracy of the baseline 

model, with varying degrees of enhancement observed across the modules (e.g., +2.1% 

mAP with C2f-MMSA, +1.8% mAP with DySample, +2.5% mAP with RepBlock).  

2. Comparison experiments further reveal that, compared to the baseline model, the 

proposed method achieves improved AP values across all defect categories except 
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Knot_Missing. Similarly, when compared to YOLO variants (v5, v7, v9, v10, 11, and 

v12), the proposed model generally outperforms them in most defect categories. 

However, for Crack, YOLOv9 attains the highest AP value, while for Knot_Missing, 

YOLOv5 performs best.  

3. Visualization results further confirm that the proposed method effectively reduces both 

missed and incorrect detections, ensuring more accurate and reliable defect 

identification under complex wood surface conditions. 

In summary, the proposed method effectively addresses the challenges of detecting 

small-target features in complex backgrounds for wood surface defect detection. It 

enhances detection accuracy and reliability, fulfilling the practical requirements of wood 

surface defect detection. Future work will explore adaptive training strategies and 

lightweight deployment frameworks to further improve performance in in different 

scenarios of wood production.  
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