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A Novel Wood Surface Defect Detection Model Based on
Improved YOLOvVS
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To address the challenges posed by complex and variable backgrounds
coupled with the small-target characteristics of wood surface defects such
as knots and cracks, a novel wood surface defect detection model based
on improved You Only Look Once version 8 (YOLOVS) is proposed. The
model integrates a multi-head mixed self-attention mechanism into the
backbone to improve the representation of fine-grained defect features. A
learnable dynamic upsampling module replaces traditional nearest-
neighbor interpolation to mitigate feature loss during resolution recovery.
Additionally, a structural Re-parameterizable Block is adopted to enhance
feature expressiveness during inference, and a small-object detection
head is added to enhance the detection of small defects while minimizing
both missed and incorrect detections. The experimental results
demonstrate that the proposed model effectively enhances detection
performance, increasing the mAP of the baseline model from 72.9% to
79.5%. Furthermore, the proposed model surpasses other YOLO variants
in MAP across all defect categories. This improvement better meets the
quality control requirements of wood processing and manufacturing,
ensuring the quality of wood products.
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INTRODUCTION

Wood surface defects significantly affect the quality and efficiency of wood
processing. These defects not only reduce the utilization of wood, causing resource waste,
but they also have a considerable negative impact on the mechanical properties and
functional value of wood products (Chen et al. 2023a; Li et al. 2024). Therefore, surface
defect detection is a critical step in wood production and classification. Timely detection
and removal of defective wood can effectively improve the quality of wood products,
maximize the utilization of wood resources, and thus promote the sustainable development
of the wood industry (Yi et al. 2024).

In recent years, wood processing has gradually shifted from manual labor to
automation, mechanization, and intelligence. In this process, various non-destructive
testing (NDT) technologies have been widely applied in wood surface defect detection,
such as ultrasonic testing (Jiang et al. 2024; Wang et al. 2024; ), X-ray inspection (Stangle
et al. 2015; Zhang 2017), infrared detection (LOpez et al. 2014; Yu et al. 2019), and
machine vision techniques (Hittawe et al. 2017; Ji et al. 2024a). These technologies
provide practical solutions for wood defect detection, successfully facilitating the transition
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from manual to automated and mechanized processes. For instance, Conners et al. (1983)
designed an automated wood processing system based on computed tomography and
optical scanning, capable of identifying and classifying eight common wood defects.
Wyckhuyse and Maldague (2001) experimentally validated the feasibility of infrared
thermography for wood surface defect detection. Sandak et al. (2020) developed a portable
spectrometer covering visible and near-infrared light, which can directly detect defects
such as knots, decay, and resin on the surface of logs in the forest. Although these NDT
technologies offer high precision and efficiency, their adaptability and real-time
capabilities in complex environments still face significant limitations.

With the rapid development of computer and artificial intelligence technologies,
wood surface defect detection technology has evolved from traditional rule-based methods
to data-driven deep learning approaches. Deep learning-based detection techniques, due to
their ability to accurately identify a variety of wood surface defect types and adapt to
different lighting conditions and wood species, have become a current research hotspot.
For instance, Sun et al. (2022) proposed a multicriteria framework that integrates deep
learning for comprehensive wood quality assessment, whereas Ji et al. (2024b)
concentrated on knot detection in Chinese fir lumber using traditional vision methods.
Ozcan et al. (2024) applied deep learning for general anomaly detection on wood surfaces
but without structural enhancements for small defect sensitivity. Zhu et al. (2024)
introduced a multi-source data fusion network targeting fine-grained defect segmentation.
Currently, deep learning-based defect detection methods are mainly divided into two-stage
and single-stage detection algorithms. Two-stage algorithms, such as Region-based
Convolutional Neural Network (R-CNN) (Girshick et al. 2014), Faster R-CNN (Ren et al.
2017), and Mask R-CNN (He et al. 2017), perform excellently in detection accuracy and
are widely used in wood surface defect detection tasks (Gao et al. 2021; Li et al. 2021;
Chen et al. 2023b; Zou et al. 2024). Fan et al. (2019) were the first to apply Faster R-CNN
to wood defect detection, constructing a real-time defect detection system for solid wood
flooring that meets industrial production requirements. They validated the practicality of
the multi-stage Faster R-CNN object detection algorithm under deep learning for solid
wood board defect detection. Xia et al. (2022) noticed that the texture features of wood
often accompany wood defects and can interfere with the final recognition results. They
proposed a Faster R-CNN surface defect detection algorithm that improves image texture
background using bilateral filtering, enhancing the network’s ability to process multi-scale
defect features and achieving outstanding performance in detecting small defects. Hu et al.
(2020) combined Progressive Growing of Generative Adversarial Networks (PGGAN)
with the Mask R-CNN model and introduced transfer learning to identify and classify
defects in poplar veneer, compensating for the traditional sample augmentation methods
that lack fine defect details, poor defect image diversity, and limited sample distribution.
However, two-stage algorithms typically have high computational complexity, making it
difficult to fully meet the real-time requirements of wood processing.

In contrast, single-stage detection algorithms, such as You Only Look Once
(YOLO) (Redmon et al. 2016) and its series of versions, as well as Single Shot MultiBox
Detector (SSD) (Liu et al. 2016), convert the object detection problem into an end-to-end
prediction task. This eliminates the cumbersome process of generating candidate regions,
offering advantages in real-time performance, simple architecture, and computational
efficiency. Wang et al. (2023) introduced a wood surface defect detection method called
Omni-Dynamic Convolution Coordinate Attention-based YOLO (ODCA-YOLO), which
incorporates an Omni-dimensional dynamic convolution-based coordinate attention
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(ODCA) mechanism. This method effectively enhances the detection capability for small
defect targets and was experimentally validated using an optimized wood surface defect
dataset, fulfilling the practical requirements for accurate wood surface defect detection.
Meng and Yuan (2023) proposed a YOLOvVS5 model based on a Semi-Global Network
(SGN) for wood defect detection. By integrating a lightweight SGN into the backbone
network to model global context, the method improves detection accuracy while reducing
model complexity. Effectiveness was validated on a public wood defect dataset,
significantly enhancing detection performance across various types of defects. Ding et al.
(2020) utilized machine vision and deep learning techniques to detect three types of wood
surface defects: live knots, dead knots, and cracks. They applied transfer learning to the
SSD object detection algorithm and improved it by incorporating a DenseNet network,
addressing the issues of high labor costs and low efficiency in wood defect detection.
Furthermore, YOLO-based algorithms have demonstrated considerable potential in various
fields. For example, Karimi et al. (2024) developed an automated defect detection system
for Portuguese cultural heritage buildings, specifically targeting tile defects using YOLO.
Additionally, Mishra and Lourenco (2024) offered a comprehensive review of artificial
intelligence-assisted visual inspection techniques, emphasizing their application in the
monitoring and preservation of cultural heritage (CH) sites. These studies highlight the
effectiveness of YOLO-based frameworks in detecting small-scale defects, thereby
reinforcing the relevance of our approach in optimizing YOLO for wood defect detection
tasks.

However, wood, being a natural material, exhibits highly diverse grain patterns and
structures, resulting in a complex and variable background that often leads to confusion
between defect regions (especially small defects) and the inherent grain patterns of the
wood. The variability in lighting conditions and the irregularities of the wood surface (such
as knots, cracks, etc.) further complicate the background, making it challenging to
distinguish defect regions from the surrounding wood. Moreover, wood surface defects are
typically small in size, with many defects (e.g., fine cracks, stains, knots) measuring just a
few millimeters or even smaller. These defects often occupy only a small portion of the
image and fall within the category of small-object detection. Small defects on wood
surfaces tend to have low contrast, particularly in regions with dense natural grain patterns,
where they may lack distinct edges or shapes. This makes the task of localization and
classification more difficult, leading to a higher likelihood of false negatives (missed
detections) and false positives (incorrect detections). These factors collectively render the
detection of wood surface defects exceptionally challenging. To address the
aforementioned issues, this study proposes an improved YOLOv8-based method for wood
surface defect detection. This approach provides an accurate and efficient solution for the
application of wood surface defect detection technology in the manufacturing industry. The
main contributions of this paper are as follows:

1. A novel lightweight Multi-head Mixed Self-Attention (MMSA) module is designed
and seamlessly integrated into the C2f module, resulting in the C2f-MMSA module.
This integration significantly enhances the model’s capacity to capture contextual and
background information for small targets, effectively overcoming the limitations of
the original C2f module in detecting small defects within complex backgrounds.

2. A learnable dynamic upsampling module is introduced to replace the upsampling
module based on nearest-neighbor interpolation, alleviating the issue of feature
information loss for small-scale wood surface defects during upsampling, and
improving the model's feature representation capability and precision.
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3. A Re-parameterizable Block is designed to accurately capture small-scale and multi-
scale features in complex backgrounds, further exploring the fine-grained and multi-
scale characteristics of wood surface defects.

EXPERIMENTAL

Wood Surface Defects Dataset

The dataset used in this study consists of wood surface defect images collected from
real-world industrial environments. A custom-designed imaging system was employed for
data acquisition (the field of view is 15 cm x 500 cm), capturing 10 categories of wood
surface defects that comprehensively cover common defect types encountered in industrial
settings (Kodytek et al. 2021). To mitigate potential biases arising from class imbalance
and limited sample sizes, the dataset was refined to include seven predominant defect
categories: Live_Knot, Dead_Knot, Knot_with_crack, Knot_missing, Crack, Marrow, and
Resin, comprising a total of 4,500 annotated images with a resolution of 2800x1024. The
dataset was split into training and test sets in a 9:1 ratio, with 10% of the training set used
for validation. The distribution of each defect type, including number of images,
occurrence frequencies, and proportional representation within the dataset, is
systematically summarized in Table 1.

Table 1. Distribution of Each Defect Type in Dataset

Defect Type Number of Images with Number of Defect Images in

Defect Occurrences Dataset (%)
Live Knot 2956 5112 65.69
Dead_Knot 2075 3574 46.11
Knot_with_crack 327 574 7.27
Knot_missing 152 208 3.38
Crack 479 671 10.64
Marrow 281 316 6.24
Resin 623 719 13.84

Note: The Images in dataset (%) means the proportion of images with such defects in the
dataset.

YOLOV8 Improvement

To address the aforementioned challenges, this study adopted YOLOvV8 as the
baseline model. A novel version of the model was developed with a particular emphasis on
enhancing small object detection performance. This involved tuning the network’s
multiscale feature representation and adjusting detection heads to better capture fine-
grained details, ensuring that small defects receive sufficient attention during inference.
Details are as follows:

In the Backbone, a novel Multi-head Mixed Self-Attention (MMSA) mechanism
was designed to effectively integrate channel attention and spatial information, thereby
enhancing the representation of wood surface defect features under complex backgrounds.
The MMSA module was incorporated into the C2f module to improve the model’s ability
to capture contextual and background information for small targets, effectively addressing
the limitations of the original C2f module in detecting small defects under complex
backgrounds.
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In the Neck, to mitigate the loss of fine-grained details during feature fusion and
reduce the degradation of small-scale defect features, an ultra-lightweight learnable
dynamic upsampling module (DySample) was introduced. This module enhances feature
representation capability and localization accuracy by adaptively preserving critical spatial
information. Furthermore, a structural Re-parameterizable Block (RepBlock) was
integrated to precisely capture multi-scale defect features, enabling the model to exploit
latent fine-grained and multi-scale characteristics of wood surface defects.

For the detection Head, an additional small-object detection head with a resolution
of 160x160 was introduced. This design ensures that fine-grained features of small defects
propagate through the downsampling pathway to other feature maps at scales of 20x20,
40x40, and 80x80, thereby improving detection performance for small defects under
complex backgrounds and reducing false positives and missed detections. The architecture

of the proposed model is illustrated in Fig. 1.
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Fig. 1. Architecture of the proposed model
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C2f-MMSA

The C2f is a key feature capture and fusion module in YOLOVS8, employing the
Cross Stage Partial Networks (CSPNet) design to enhance feature propagation and fusion
(Varghese and Sambath 2024). However, when applied to small object detection tasks,
particularly in the context of wood surface defects with complex backgrounds, the C2f
structure presents several challenges:

o Insufficient Fusion of Local and Global Information: The C2f structure merges
features from different layers through cross-stage fusion, with a primary focus on the
propagation of local features. However, it does not fully consider global context
information, which is crucial for accurate localization of wood surface defects, often
embedded within complex backgrounds. These defects typically require global
information from surrounding areas for precise detection.

e Inadequate Focus on Small Targets: C2f is designed to process larger or more
conventional objects through hierarchical feature fusion. However, for small targets,
particularly those occupying only a few pixels, the C2f structure may fail to capture
fine-grained features adequately. In particular, when feature map sizes are reduced or
when information is sparsely distributed, small target information may be lost or
incorrectly localized.

e Separation of Channel and Spatial Information: While C2f strengthens cross-layer
feature fusion, it does not specifically address the relationship between channel and
spatial information. In small object detection tasks, the interaction between channel
information and spatial information is crucial. However, C2f lacks the mechanisms to
dynamically capture these interactions effectively.

To address these issues, this paper introduces a lightweight MMSA (Su et al. 2025)
mechanism, combining the concepts of multi-head attention and multi-scale attention,
inspired by the Efficient Channel Attention (ECA) design pattern. This mechanism
effectively integrates local and global information within the image, as well as channel and
spatial information, capturing global contextual information across both spatial and
channel dimensions. With this mechanism, the model is better equipped to understand the
context and background of small targets in the image, thereby overcoming the challenges
encountered by the C2f in wood surface defect detection in complex backgrounds.
Additionally, the incorporation of the multi-head attention mechanism allows the model to
dynamically adjust the attention allocated to different features, enabling adaptive attention
distribution across different scales and regions. This enhances the model’s ability to focus
on small defect regions and facilitates feature extraction across multiple scales.

The principle of the MMSA is illustrated in Fig. 2. First, the input image feature
vectors undergo Local Max Pooling (LMP) to extract local spatial information, which is
then transformed into a 1xCxksxks vector. The structure comprises two branches: one
captures global information, while the other focuses on local spatial information. The
information extracted by LMP is transformed into a 1xCxksxks vector, which is then
processed by a 1D convolution (Convld). Afterward, de-pooling is applied to recover the
original resolution of both vectors, followed by the fusion of attention information from
the two branches.

Dou & You (2025). “Wood defect identification,” BioResources 20(3), 5709-5730. 5714



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Cxksxks

CxHxW /
1x1xC  1x1xC |

|

IGMP™ ¢ |UNAP
| onvld |

! / k / !

|

,,,,,,,,,,,,,,,,,,,

Input .

Reshape

|
|
|
i . Convld
|
|
|
|
|

<
: > inum é
/ k / 3
Multi-head Attention =
Lnum:ks><ks

Ix1x(Cxksxks)

Output . A4
. Where ks=5
Residual Structure

feature vectors +x Feature vectors Feature vectors Feature vectors after

CxHXW after LMP after GMP in global [l Convid in global

branch branch

Feature vectors Multi-head Feature vectors after Feature vectors after

[ after UNAP Attention M Reshape inlocal Convid in local

branch branch

Fig. 2. Block diagram of MMSA

For Multi-head Attention, the input data is reshaped (feature vector transformation),
and Multi-head Attention weights are computed to select feature vectors that meet the
weight requirements. The feature vectors are then reshaped once again. Finally, the
attention outputs from the three components are weighted and fused. The MMSA
mechanism combines global channel attention, localized channel attention that refines
spatial information, and multi-head attention results.

To achieve the fusion of spatial and channel attention, 1D convolution (Conv1d) as
shown in Fig. 2 is employed. The size of the 1D convolution kernel K is proportional to
the number of channels C. When capturing local cross-channel interactions, only the
relationship between each channel and its K neighboring channels is considered. The
selection of K follows the approach used in ECA (Wang et al. 2020).

Figure 3 illustrates the relationships between Global Max Pooling (GMP), LMP,
and Unpooling Average Pooling (UNAP) within the MMSA structure. The GMP extracts
the global maximum feature, producing a feature map of size 1x1. The LMP divides the
entire feature map into kxk small regions and performs kxk max pooling within each region.
The UNAP, also known as reverse pooling, focuses on preserving the attributes of the
pooled features while expanding them to the desired size. The UNAP can be implemented
using adaptive pooling to ensure that the output size matches the size of the original feature
map.

When extending LMP, if the size of the pooled features is not 1x1, a direct
expansion operation is not feasible. Instead, the UNAP process must be employed to restore
the feature map to its original size. As shown in Fig. 3, UNAP restores the resolution of
the original feature map by applying parameters derived from the unpooling operation,
filling the corresponding positions with the pooled results.
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Fig. 3. Relationships between GMP, LMP, and UNAP within the MMSA

The structural relationships among LMP, GMP, and UNAP in MMSA are
illustrated in Fig. 2 and Fig. 3 and can be summarized as follows: LMP — (C, ks, ks) —
GMP — (1, 1, C) — Convid — (1, 1, C) — UNAP.

When expanding LMP, direct expansion is not feasible if the feature size is not 1x1.
To address this limitation, the UNAP process is employed to restore the feature map to its
original resolution. Specifically, during the LMP — (C, ks, ks) — GMP — (1,1, C) —
Convld — (1, 1, C) — UNAP sequence, the UNAP utilizes the parameters from the
pooling operation to recover the resolution of the original feature map. Subsequently, the
pooled results are placed at their corresponding locations. In this process, a Reshape
operation is introduced within the LMP — GMP — UNAP pathway to facilitate proper
feature alignment.

As depicted in Fig. 2, after extracting global attention and local attention within the
MMSA module, the two attention mechanisms are adaptively fused using weighted
summation. The resulting fused features are combined with the initial input via a residual
connection, followed by integration with the multi-head attention output. This final step
produces the output of the MMSA. Additionally, the MMSA adopts the Hard-sigmoid
function as the normalization mechanism, effectively mitigating gradient vanishing issues
during backpropagation.
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Fig. 4. Processing flow of the MMSA

The detailed processing flow of the Multi-head Mixed Self-Attention (MMSA)
mechanism is illustrated in Fig. 4. It involves the following steps:

First, the feature map undergoes both Local Max Pooling (LMP) and Global Max
Pooling (GMP) to extract local and global contextual information. The pooled feature map
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is then reshaped into a format suitable for Multi-Head Attention computation. Self-
attention is computed based on this reshaped feature representation, capturing
dependencies across different spatial regions. The self-attention results are subsequently
transformed back to match the original feature map dimensions. Local and global attention
weights are derived from the self-attention results, followed by the application of a Hard
Sigmoid function to constrain these weights within the range of 0 to 1. To ensure scale
consistency, the attention weights undergo adaptive average pooling. Next, the local and
global attention weights are fused to construct a comprehensive attention map, which is
then applied to the original feature map to emphasize critical features. Finally, the self-
attention result is added back to the original feature map, producing the refined output
feature map with enhanced feature representation.

The MMSA mechanism is integrated into the C2f, as shown in Fig. 5, and
subsequently embedded into the Backbone of YOLOvVS8 to enhance the model’s feature
extraction and fusion capabilities.
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Fig. 5. Structure of C2f-SMMA

Dynamic upsampling

The YOLOvV8 model employs nearest neighbor interpolation for feature map
upsampling, facilitating feature fusion across different layers. While this method is
computationally efficient and fast, the simplicity of nearest neighbor interpolation (Wang
et al. 2019) leads to the loss of fine details, particularly affecting the features of small-scale
spatial targets. This results in inadequate feature representation, which, as the network
depth increases, severely impacts the detection accuracy of small targets. To address this
issue, this paper introduces a super-lightweight, learnable dynamic upsampling
(DySample) method (Liu et al. 2023), designed to mitigate feature loss and enhance both
feature representation and detection accuracy. The specific structure is shown in Fig. 6.
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Fig. 6. Structure of DySample

Given the upsampling scale factor s and a feature map F of size CxHxW, the
feature map is first divided along the channel dimension into g groups (g=4), which helps
further reduce computational complexity. A linear layer is then applied to generate offsets

Dou & You (2025). “Wood defect identification,” BioResources 20(3), 5709-5730. 5717



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

of size 2gs?xHxW. To increase the flexibility of the offsets, a Sigmoid function along with
a static factor of 0.5 is used to produce a per-point “dynamic range factor,” with the
dynamic range taking values within the range of [0, 0.5]. Finally, Pixel Shuffle (Ps) is
applied to reshape the offset O into a size of 2g x sH x sW. The mathematical expression
for this process is as follows:

0=P (0.5 X Sigmoid(linear(F) ® linear(F)))

The sampling set S is the sum of the offset O and the original sampling grid G, i.e.,
S=G+0

Re-parameterizable Block

In the Neck section, although the C2f partially facilitates feature extraction for
wood surface defects, it struggles to accurately capture features of small-scale and multi-
scale wood surface defects under complex backgrounds. This limitation hinders the
effective exploration of fine-grained and multi-scale features. To address these challenges,
the structural Re-parameterizable module (RepBlock) is introduced to alleviate these
issues. RepBlock leverages a multi-branch structure during the training phase to enrich
feature representation, capturing wood surface defect features from global to local scales
and from small to large scales, thereby effectively improving detection accuracy.

During the inference phase, the reparameterization technique transforms the multi-
branch structure into a more compact single-branch form, effectively accelerating model
inference speed without compromising detection performance, thus meeting real-time
requirements. The structure of Re-parameterizable Convolution (RepConv) during both
training and inference phases is illustrated in Fig. 7. During training, the multi-branch
structure consists of a 3x3 convolution, a 1x1 convolution, a residual structure, and batch
normalization (BN) layers. After reparameterization, it is converted into a single-branch
3x3 convolution for inference.

‘ 1x1Conv2d ‘ ‘ 3x3Conv2d ‘ ‘ BN ‘ ‘ 3x3Convad ‘

CU.
=2
T ¢
=z

SiLU

7: <
SiLU

Train Val

Fig. 7. Structure of RepConv during both training and inference phases

The structural reparameterization of RepConv is illustrated in Fig. 8. The specific
steps are as follows:

(1) Convert the 1x1 convolution and residual structure into a 3x3 convolution. In
the convolution conversion step, the original 3x3 convolution remains unchanged, while
the 1x1 convolution is transformed into a 3x3 convolution by padding zeros around it. The
residual structure can be constructed with four convolution kernels, two of which have
center values of 1, and the remaining two are set to 0. The output of the input feature matrix,
processed through these four convolution kernels, is identical to the input.

(2) Fusion of the BN layer with the convolution layer: The structure is transformed
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from the convolution plus BN layer into a convolution structure with bias. Let XeRH*W~C
be the input tensor. The computation for the BN layer is given by,

BN(X) =y=—=+p (1)

where u represents the mean of the samples, and o represents the variance of the samples.
y and p are learnable parameters, corresponding to the scaling and shifting factors,
respectively. The computation for the convolution without bias is given by,

Conv(X) =X*xW )

where W is the weight matrix, which is used to perform a weighted sum on the input signals.
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Fig. 8. Structural reparameterization of RepConv

The input tensor X, after passing through the convolutional layer and BN layer, can
be expressed as:

XxW—-u

BN(Conv(X)) =y —+p

3
That is,
BN(Conv(X)) =X + (Xw)y -2 + 8

4)
Let Wryseq = EW , brusea = —% ., Wrsed and brses represent the fused

convolution kernel weights and bias terms, respectively. The final result of the convolution
and BN layer fusion is expressed as:

BN(COHU(X)) =X=* qused + bfused
()
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By the fusion method described above, the 3x3 convolutional layers and BN layers
in Step (1) can be merged, reducing the number of parameters in the network.

(3) Fusion of the convolution layers with their respective biases: the three sets of
3x3 convolutional kernels and their corresponding biases are stacked together, resulting in
a single 3x3 convolutional kernel and bias. Let the convolution kernel parameters and
biases of the three sets of 3x3 convolutions be W1, W2, W3 and by, bz, bs, respectively. The
output tensor YERMW*C after processing the input tensor XeR™*WC through the three sets
of 3x3 convolutions and their corresponding biases can be expressed as:

That is,

Based on the above calculations, the RepConv multi-branch structure from the
training phase is transformed into a single-branch convolutional structure through
structural reparameterization. Subsequently, RepConv is incorporated into the RepBlock
module, as shown in Fig. 9.

1x1Conv

o 1x1Conv

N x
1x1Conv —» RepConv —

Fig. 9. Structure of RepBlock

The RepBlock module combines RepConv with a dual-path architecture. It consists
of two parallel 1x1 convolution layers: one directly passes the original information, while
the other adjusts the channel size. This is followed by a module composed of multiple
RepConv layers for in-depth feature extraction. Through the RepConv layers, RepBlock is
capable of capturing complex features within the image with greater detail, which is crucial
for improving detection accuracy. Additionally, the parallel residual connections help
retain the original features, mitigating the vanishing gradient problem, and enhancing the
stability and reliability of the model.

Addition of small-object detection head

In the dataset used in this study, small-object targets occupy a very small portion
of the image. After setting the image size to 640x640, many targets are smaller than 3x3
pixels. After multiple downsampling pooling operations, most of the features are lost,
resulting in a high likelihood of false negatives. The detection heads in the baseline model
have sizes of 20x20, 40x40, and 80x80, and when using the smallest detection head
(80%80) to detect each grid in the image, the receptive field is only 8x8. This limits the
model’s ability to recognize small targets.

To address this, a small-object detection head with a size of 160x160 is added to
the Head layer of the baseline model, improving the model’s detection capability for small
targets. The structure of the new detection head is shown in Fig. 2. First, the 80x80 feature
map from the second layer of the backbone network is stacked with the upsampled feature
maps from the Neck layer. After passing through RepBlock and DySample processing,
additional feature layers with small-object characteristics are obtained. These are then
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concatenated with the 160x160 feature map output from the second layer of the backbone
network, enhancing the 160x160 scale feature layer’s ability to represent small targets
related to wood surface defects. The added detection head allows small-object feature
information to be propagated through the detection layers along the downsampling path to
other feature layers at different scales. This enables small-object features to be extracted at
deeper network layers, enhancing the detection of wood surface defects in complex
backgrounds and effectively reducing both false positives and false negatives at different
scales.

RESULTS AND DISCUSSION

Ablation Experiments

The software and hardware configuration used in the experiment is detailed in
Table 2. The specific training hyperparameters are as follows: (1) Input image size: 640
pixels. (2) Number of iterations: 200. (3) Batch size: 8. (4) Initial learning rate: 0.01. (5)
Weight decay coefficient: 0.0005. (6) Momentum: 0.937. To assess the accuracy and
effectiveness of our method, two performance evaluation metrics were employed: Average
Precision (AP) and mean Average Precision (mAP).

Table 2. Configuration of Software and Hardware Used in the Experiment

Device name Parameter
GPU NVIDIA GeForce RTX 4060 Laptop 8G
CPU 13th Gen Intel(R) Core(TM) i9-13900HX 2.2GHz
Computer operating system Windows 11
Development environment software PyCharm 2023.2.1
Programming language Python 3.8
Deep learning framework PyTorch 2.1.0
Computational acceleration CUDA11.0

To evaluate the impact of each module in the improved model, an ablation study
was conducted with YOLOVS8 as the baseline model. This study aimed to validate the
effectiveness of the proposed enhancements. The results of the ablation experiments are
presented in Table 3. The table presents the results of different configurations, where each
variant isolates the effect of an individual module to evaluate its contribution to overall
performance. YOLOvV8+C2f-MMSA indicates that the MMSA module is seamlessly
integrated into the C2f module, replacing the C2f module in the backbone of YOLOVS.
YOLOv8+Dysample indicates the incorporation of Dysample into the neck section for
upsampling. YOLOv8+RepBlock denotes the integration of the RepBlock module into the
neck section. YOLOvV8+P2 denotes the incorporation of the small-object detection head
module into the Head section. “This work” denotes the current proposed improved model.
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Table 3. Results of Ablation Experiment

Methods mAP - - AP . —
Live Knot Marrow Resin Dead Knot Knot with_Crack Knot Missing Crack
YOLOvV8 0.729 0.787 0.823 0.667 0.877 0.422 0.804 0.725
YOLOv8+C2f-MMSA 0.750 0.759 0.858 0.768 0.875 0.464 0.803 0.723
YOLOv8+Dysample 0.747 0.783 0.778 0.720 0.870 0.523 0.776 0.776
YOLOv8+RepBlock 0.754 0.784 0.829 0.762 0.862 0.492 0.809 0.739
YOLOv8+P2 0.735 0.786 0.842 0.700 0.868 0.507 0.706 0.733
This work 0.795 0.887 0.891 0.790 0.893 0.610 0.750 0.743

Table 4. Comparison of Various Detection Models
Methods mAP - - AP - —
Live_Knot Marrow Resin Dead Knot Knot_with_Crack Knot_Missing Crack
YOLOvV5 0.746 0.764 0.786 0.774 0.868 0.476 0.837 0.716
YOLOv7 0.734 0.767 0.814 0.724 0.858 0.529 0.782 0.665
YOLOvV8 0.729 0.787 0.823 0.667 0.877 0.422 0.804 0.725
YOLOV9 0.757 0.789 0.805 0.786 0.875 0.515 0.759 0.769
YOLOv10 0.672 0.725 0.799 0.671 0.851 0.378 0.690 0.590
YOLO11 0.745 0.768 0.805 0.768 0.879 0.488 0.752 0.757
YOLOv12 0.746 0.773 0.835 0.760 0.882 0.493 0.814 0.666
Wang et al. (2024) 0.777 0.814 0.958 0.852 0.868 0.481 0.825 0.642
Xi et al. (2024) 0.784 0.854 0.871 0.779 0.831 0.595 0.866 0.693
This work 0.795 0.887 0.891 0.790 0.893 0.610 0.750 0.743
Dou & You (2025). “Wood defect identification,” BioResources 20(3), 5709-5730. 5722
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Integrating the MMSA module into the C2f structure (YOLOv8+C2f-MMSA)
improved mAP by 2.1% compared to the baseline, demonstrating its effectiveness in
enhancing feature extraction for small defects. Similarly, the introduction of Dysample
(YOLOv8+Dysample) led to an 1.8% improvement, indicating that the learnable dynamic
upsampling strategy mitigates information loss during feature scaling. The addition of
RepBlock (YOLOv8+RepBlock) further enhanced performance by 2.5%, suggesting its
ability to capture multi-scale defect features effectively. Finally, incorporating the small-
object detection head (YOLOv8+P2) provided an additional boost of 0.6%, validating its
role in refining small defect detection. By integrating all proposed enhancements, the final
model (Ours) achieved the highest performance, surpassing the baseline by 6.6% in mAP.
This demonstrates that the combined improvements contribute synergistically to the
accuracy and robustness of wood surface defect detection.

Comparison Experiments with Benchmark Models

To further validate the effectiveness of the proposed model, a comparative
experiment was conducted against several state-of-the-art wood surface defect detection
models. The benchmark models selected for comparison include YOLOvV5, YOLOv?7,
YOLOV9, YOLOv10, YOLO11, YOLOvV12, and YOLOVS8 (baseline). All models were
trained and evaluated under identical conditions using the dataset mentioned in section 2.1
to ensure fairness.

The results, as shown in Table 4, indicate that the proposed model achieved the
highest mAP, outperforming other models in detecting wood surface defects. Specifically,
the present method improved the mAP by 6.6% over the YOLOV8 baseline, demonstrating
the effectiveness of the introduced C2f-MMSA module, Dysample upsampling strategy,
RepBlock, and small-object detection head in enhancing small defect recognition. In the
AP results, the model of Xi et al. (2024) achieved the highest AP of 0.866 for the
Knot_Missing defect, while YOLOV9 attained the best AP of 0.769 for the Crack defect.
For the remaining defect types, including Live_Knot, Marrow, Resin, Dead_Knot, and
Knot_with_Crack, the proposed model consistently outperformed the other benchmark
models, achieving the highest AP values across these categories. These results demonstrate
the effectiveness of the proposed improvements in enhancing the detection performance
for various wood surface defects.

The Precision-Recall (P-R) curve provides an intuitive visualization of the Average
Precision (AP) values. It represents the trade-off between precision and recall, with a larger
area under the curve indicating superior model performance. When the area reaches 1, it
signifies that the model has perfectly detected all targets. Figure 10 illustrates the AP values
for the seven types of wood defects evaluated in this study. Subfigures (a), (b), (c), (d), (e),
(P, (9) and (h) correspond to the AP values obtained by YOLOvV5, YOLOv7, YOLOVS,
YOLOV9, YOLOv10, YOLO11, YOLOvV12, and the proposed model, respectively.

In addition, to validate the performance of the current model in complex
backgrounds, the present results were compared with other YOLO-based studies
addressing similarly challenging detection environments. For instance, tile defect detection
in historical buildings Karimi et al. (2024) report overall accuracy of over 72%. For wood
surface defect detection (Wang et al. 2024; Xi et al. 2024), researchers report mAP values
of 77.7% and 78.4%, respectively. The present model achieved a comparable or higher
detection accuracy (79.5% mAP), particularly under diverse wood textures and irregular
defect patterns. These results highlight the robustness and generalization capacity of the
present approach under real-world complexity.
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Fig. 10. Precision—recall (P-R) curves

The proposed model achieved higher AP values than other benchmark models for
almost all seven types of wood defects, except for Knot_Missing and Crack. Despite the
overall improvements achieved by the proposed model, the detection performance for
Knot_Missing and Crack defects did not surpass that of YOLOv5 and YOLOVY9,
respectively. This can be attributed to the following factors: (1) Knot_Missing defects
typically exhibit clear edges and relatively large missing regions, making them more
distinguishable. YOLOV5, as a well-established model, may have been optimized for such
easily identifiable defects, resulting in superior performance. (2) Crack defects, in contrast,
are characterized by irregular, thin, and elongated structures, which can resemble natural
wood grain patterns. The strong performance of YOLOV9 in this category suggests that its
feature extraction and detection heads are more suited for capturing fine-grained and linear
features. (3) The distribution of Knot_Missing and Crack samples in the training dataset
may impact the model’s generalization capability. If these defect types are
underrepresented or exhibit high variability, the model may struggle to learn a robust
representation for them. (4) Knot_Missing defects, being relatively large and distinct, may
not benefit as significantly from the added feature extraction enhancements, as their
characteristics are already well captured by standard detection modules.

The visual comparison results are illustrated in Fig. 11. Each detection box is
associated with a confidence score, which quantifies the model's certainty regarding its
detection outcome. This score ranges from 0 to 1, where higher values indicate greater
confidence in the detection, whereas lower values suggest increased uncertainty in the
model's predictions. The experimental results highlight the superior performance of the
proposed model in wood defect detection. For instance, in detecting the Marrow defect, the
confidence scores achieved by the proposed model were 0.94 and 0.92, compared to only
0.84 and 0.72 for the YOLOVS, reflecting improvements of 0.10 and 0.20, respectively. In
detecting the Resin defect, the confidence score is the highest at 0.95. Furthermore, the
proposed model exhibited no misclassifications or missed detections across all defect types,
demonstrating its high reliability and accuracy in wood defect detection.
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Fig. 11. Examples of visual comparison results

Figure 12 presents the visual results obtained using Grad-CAM for YOLOVS8 and
the proposed model in wood defect detection tasks. Grad-CAM is a visualization technique
designed to enhance model interpretability by leveraging gradient information to generate
heatmaps that highlight the most influential regions of the input image for a given
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prediction. This approach provides an intuitive way to illustrate the model’s attention
distribution and explain its decision-making process. The proposed model exhibits a more
precise focus on key defect areas during wood defect detection. The generated heatmaps
display deeper color intensities, indicating a stronger response to the target regions, with
attention concentrated on the critical defect features. In contrast, YOLOvV8’s heatmap
presents a more dispersed color distribution, suggesting that its attention is spread across a
broader area, potentially including irrelevant regions. This distinction highlights the
superior feature extraction and defect localization capabilities of the proposed model,
enabling more accurate identification of wood defects and ultimately enhancing detection
accuracy and reliability.

Original image YOLOvS Ours

Fig. 12. Grad-CAM comparison of wood defects

CONCLUSIONS

The detection of wood surface defects is crucial for ensuring the quality and
performance of wood products. To address the challenges posed by complex and variable
backgrounds, as well as the small size of certain defects, this paper proposes an improved
YOLOv8-based detection model that enhances accuracy while minimizing false positives
and missed detections. Specifically, the MMSA module is integrated into the C2f structure
in the Backbone to improve the model’s ability to capture contextual and background
information for small targets. In the Neck, the DySample module mitigates fine-grained
detail loss during feature fusion, and the RepBlock module strengthens the extraction of
multi-scale defect features. Additionally, a small-object detection head improves detection
accuracy for small defects.

1. Ablation experiments demonstrate that the integration of different enhanced modules
leads to statistically significant improvements in the detection accuracy of the baseline
model, with varying degrees of enhancement observed across the modules (e.g., +2.1%
mAP with C2f-MMSA, +1.8% mAP with DySample, +2.5% mAP with RepBlock).

2. Comparison experiments further reveal that, compared to the baseline model, the
proposed method achieves improved AP values across all defect categories except
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Knot_Missing. Similarly, when compared to YOLO variants (v5, v7, v9, v10, 11, and
v12), the proposed model generally outperforms them in most defect categories.
However, for Crack, YOLOV9 attains the highest AP value, while for Knot_Missing,
YOLOVS performs best.

3. Visualization results further confirm that the proposed method effectively reduces both
missed and incorrect detections, ensuring more accurate and reliable defect
identification under complex wood surface conditions.

In summary, the proposed method effectively addresses the challenges of detecting
small-target features in complex backgrounds for wood surface defect detection. It
enhances detection accuracy and reliability, fulfilling the practical requirements of wood
surface defect detection. Future work will explore adaptive training strategies and
lightweight deployment frameworks to further improve performance in in different
scenarios of wood production.
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