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Construction of Response Models for Color Gradation
Skewed Distribution Parameters Extracted from Digital
Wheat Canopy Images in Response to Cold-Spell Effects
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This study examined the response of color information in digital wheat canopy
images from Shandong Province, China, to meteorological indicators during
extreme cold spells. Analysis revealed that low-temperature stress altered
pixel color and grayscale values, with shifts captured by skewness and
kurtosis parameters of color gradation distributions. The kurtosis and
skewness of color gradient distributions showed the strongest sensitivity to
cold stress. Daily minimum temperature was significantly correlated with
kurtosis values for R (0.661), G (0.744), B (0.694), and grayscale (0.744)
channels. Models relating these parameters to meteorological factors were
developed, with polynomial functions outperforming multilinear approaches.
All models demonstrated satisfactory fit, as evidenced by determination
coefficients exceeding 0.480. The kurtosis model for green values achieved
exceptional prediction accuracy, surpassing 90%. Findings demonstrate
quantifiable cold-induced changes in canopy color gradient distribution,
establishing a foundation for enhancing freeze damage monitoring systems
through image-based metrics. These models enable efficient early warning
by linking meteorological data to visible canopy responses, offering practical
tools for mitigating agricultural cold stress impacts.
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INTRODUCTION

Global climate change has significantly increased the frequency and intensity of
extreme weather events, including unseasonably cold temperature episodes, which pose a
significant challenge to agricultural production (Gaupp et al. 2020; Benitez-Alfonso et al.
2023; Hielkema et al. 2023). Wheat, one of the most important sources of human food, is not
exempt from these effects. In particular, cold spells, which constitute one of the more
commonly observed extreme weather phenomena, can damage the cell structure of wheat
plants and cause serious yield losses (Zhu ef al. 2014). Currently deployed methods aimed at
monitoring the severity of low temperature stress exerted on wheat crops mainly rely on
manual field observations and sampling, and because this involves expending significant
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amounts of time and manpower, their suitability for large-scale applications is limited
(Kobayashi et al. 2001). In the field of agricultural research, remote sensing technology is
increasingly being considered as an economically efficient alternative to traditional analysis
methods (Battude ef al. 2016; Jin et al. 2022). However, the spatial and temporal resolution
of data obtained from optical satellites rarely meets the criteria that would be required for
wheat freeze damage monitoring. In addition, satellite images are highly susceptible to
interference by ubiquitous weather phenomena such as clouds, fog, and rain (Yi et al. 2024).
In essence, both traditional ground surveys and modern satellite-based remote sensing
technologies fall short of being able to provide sufficient data enabling the real-time
monitoring of wheat freeze damage severity. In order to find an effective approach for the
development of an early warning system against wheat freeze damage, the primary challenge
is to find an efficient, accurate, and reliable method for characterizing how key wheat growth
factors are affected by exposure to cold spells.

There are several alternatives to satellite imaging, including the use of portable
imaging devices such as mast or drone-mounted digital cameras. The availability,
affordability, and flexibility of these devices have made it increasingly feasible to obtain
RGB, multispectral, hyperspectral, light intensity, and thermal data, thus paving the way for
non-destructively obtaining color-related information about crop canopies for use in
agricultural research. Digital color images are able to record spectral information about a
canopy in the visible light band, thereby effectively characterizing the external phenotypic
features of the targeted crop. Furthermore, digital color images are able to provide a high level
of detail with regard to plant morphology and structure (Zhang et al. 2014), which allows
researchers to readily extract plant leaf color information from them.

Digital color images are typically encoded using the RGB color space model, which
codes each image pixel as a combination of color values for the primary colors red (R), green
(G), and blue (B). Beyond these individual color channels, the RGB system also enables the
derivation of other color representations, such as the grayscale value. Grayscale, often denoted
as 'Y', is a single channel that expresses the brightness of a pixel, devoid of any chromatic
information. (Pettorelli et al. 2005; Hu et al. 2010; Guendouz et al. 2012). Examples of
research applications of the RGB information contained in digital canopy images include
studies on the nitrogen content of winter wheat, the chlorophyll content of rice leaves and the
growth process of mangroves (Saberioon ef al. 2014; Fu et al. 2020; Chen et al. 2022). So far,
however, few studies have investigated how the color of wheat canopies responds to exposure
to meteorological elements such as cold spells.

Traditional applications of the RGB model in agricultural research mainly focused on
mean color values, thereby largely ignoring any presence of skewness. In their latest research,
Zhang et al. (2022, 2023) proposed a new way to use the RGB color model by suggesting that
the skewness distribution parameters extracted from digital color images of crop canopies
might be used to assess the internal physiological status of plants after being exposed to
meteorological phenomena. Leveraging this idea makes it possible to incorporate
meteorological factors into crop growth models, which would greatly increase their ability to
predict potential crop damage. The proposed method relies on a total of 20 so-called Color
Gradation Skewed-Distribution (CGSD) parameters extracted from the RGB color
information, which includes the mean, median, mode, skewness, and kurtosis associated with
the distribution of the color and grayscale values. Specifically, the mean, median, and mode
values represent the lightness of the leaf color, while the skewness and kurtosis values
represent how the leaf colors are distributed across the color spectrum. Due to their ability to
provide an accurate description of different aspects of leaf colors, the CGSD analysis of crop
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images has the potential for making a significant contribution to developments in smart
agriculture. Although existing research has achieved certain progress in the analysis of the
relationship between plant canopy color and meteorology, the model construction in current
studies is relatively simple. In addition, the relationship between canopy color and cold waves
has not been thoroughly explored. To fill this gap, this study is based on the CGSD parameters
of wheat canopy images in Shandong Province for in-depth exploration. It aims to accurately
predict the response of wheat canopy to the impact of cold waves and shows higher accuracy
and applicability.

The main objectives of this study were to (1) confirm whether cold spells affect the
color information in digital images of wheat canopies; (2) investigate the correlation between
the CGSD parameters extracted from digital wheat canopy images and a number of key
meteorological factors associated with cold spells; and (3) quantify the extent to which the
CGSD parameters extracted from digital wheat canopy images respond to exposure cold
spells. This research not only enhances the understanding of the relationship between wheat
canopy color changes and cold stress but also provides practical tools for mitigating
agricultural cold stress impacts.

EXPERIMENTAL

Study Area and Experimental Sites

Located on the eastern coast of China (Fig. 1a), Shandong Province is the pioneering
province to achieve a monumental gross agricultural output value exceeding one trillion yuan
in China. Qihe county, in the northwestern part of Shandong Province, and the location of the
second site was Juxian county, in the southeastern part of Shandong Province (Fig. 1b).
Figures 1c-d displayed the photos of these two stations. The selection of experimental sites in
northern and southern Shandong can better represent the wheat growth conditions across the
province, providing a more comprehensive understanding of the response of wheat canopies
to cold spells in different environments (Dong et al. 2017).

The experimental subjects were the wheat variety Jimai 22 at the Qihe site and Jimai
44 at the Juxian site. At both sites, the experimental wheat was sowed using strip sowing with
a row spacing of 0.2 m. Local differences between the growing environments in the northern
and eastern regions of Shandong affected the start of the wheat growing season, which is why
the sowing date for the Qihe site (17 October 2022) was earlier than that used for the Juxian
site (23 October 2022).

Experimental Design

The experiment was designed to determine the relationship between meteorological
factors and CGSD parameters extracted from digital wheat canopy images acquired at two
experimental sites over the duration of the 2022-2023 winter wheat growing season. First,
digital images of the wheat canopy and local meteorological data were collected from two
experimental sites located in Shandong Province, China. The images were grouped and the
CGSD parameters were extracted. The modeling samples were subjected to a Pearson
correlation analysis. Using the ordinary least squares (OLS) quadratic curve fitting algorithm,
a response model between meteorological factors and CGSD parameters was constructed. In
order to improve the goodness of fit of the model, a quadratic term was introduced to optimize
the initial multiple linear model. Finally, the predictive accuracy of the optimized model was
validated by comparing predicted values against actual measurements from both validation
and test groups.
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Fig. 1. (a) Location of Shandong Province in China. (b) Distribution of two experimental sites in
Shandong Province. (c) A field photograph of the Qihe. Site. (d) A field photograph of the Juxian site

Wheat Canopy Images

The wheat canopy images were acquired in sifu, using a camera with an image
resolution of 1920x1080 pixels (model number: DH-SD-65F630U-HN-Q; manufacturer:
Zhejiang Dahua Technology Co. Ltd, China). This camera was mounted at the top of a mast
measuring 580 cm in height, installed by the Shandong Meteorological Bureau. When
creating the images, a fixed focal length exposure and the automatic white balance feature
were provided by the camera. Images were acquired every day at 16:00 for the duration of the
experiment. At the Qihe site, the experiment ran from November 23, 2022 to January 26,
2023; and at the Juxian site it ran from November 6, 2022 to January 31, 2023.

To improve the accuracy of the color gradation analysis, images acquired during
conditions of intense lighting, frost, or snow cover were discarded, leaving a total of 52
canopy images deemed usable as input for analysis; 31 images were acquired at the Qihe site
and 21 images were acquired at the Juxian site. This filtering process resulted in a limited
number of images. In order to increase the amount of data and better train and validate the
model, samples were constructed by dividing the wheat canopy image into four equal parts,
as shown in Fig. 2. It should be noted that the image preprocessing procedure followed Chen
et al.’s (2020) method to remove soil backgrounds. The upper-left quadrant of each of the 31
images acquired at the Qihe site were designated as modeling samples to be used for
regression analysis and model construction, and the three remaining quadrants as samples to
be used for model validation (Fig. 2a), providing a total of 31 modeling samples and 93
samples for validation against images from the same site providing the images used for
modeling. All four quadrants of the images acquired at the Juxian site were designated to be
used for application test (Fig. 2b), providing a total of 84 samples used for validation against
results from a different site to the one providing the images used for modeling.
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Fig. 2. (a) Sample construction from the wheat canopy images acquired at the Qihe site; (b) Sample
construction from the wheat canopy images acquired at the Juxian site

Meteorological Data

The experiment used meteorological data collected by in-situ microclimate
observatories at each site, as well as national weather stations in Qihe and Juxian. To
comprehensively characterize the low-temperature processes and their intensities, this study
systematically summarized data on 31 pertinent meteorological factors, as illustrated in Table
1. The foundational data were sourced from Shandong Meteorological Bureau.
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Table 1. Meteorological Factors

Factor code Description
Z1 Effective accumulated temperature since sowing
Z22 Daily mean temperature
Z3 3-day moving average of daily mean temperature
Z4 5-day moving average of daily mean temperature
zZ5 Daily mean temperature at 30 cm in wheat fields
Z6 3-day moving average of daily mean temperature at 30 cm in wheat fields
z7 5-day moving average of daily mean temperature at 30 cm in wheat fields
Z8 Daily mean temperature at 60 cm in wheat fields
Z9 3-day moving average of daily mean temperature at 60 cm in wheat fields
Z10 5-day moving average of daily mean temperature at 60 cm in wheat fields
Z11 Daily mean temperature at 150 cm in wheat fields
212 3-day moving average of daily mean temperature at 150 cm in wheat fields
Z13 5-day moving average of daily mean temperature at 150 cm in wheat fields
Z14 Daily minimum temperature
Z15 3-day moving average of daily minimum temperature
Z16 5-day moving average of daily minimum temperature
217 24-hour temperature change
Z18 3-day moving average of 24-hour temperature change
Z19 5-day moving average of 24-hour temperature change
Z20 Daily mean dew point temperature
Z21 3-day moving average of daily mean dew point temperature
222 5-day moving average of daily mean dew point temperature
Z23 Daily mean grass temperature
224 3-day moving average of daily mean grass temperature
225 5-day moving average of daily mean grass temperature
Z26 Daily mean relative humidity
227 3-day moving average of daily mean relative humidity
Z28 5-day moving average of daily mean relative humidity
229 Daily precipitation
Z30 3-day moving average of daily precipitation
Z31 5-day moving average of daily precipitation

Determination of the CGSD Parameters

To determine the CGSD parameters characterizing wheat freeze injury severity, the
method proposed by Chen ef al. (2020) was used. This method involves obtaining a histogram
of the cumulative color gradation from the canopy images, and separating, denoising, and
ordering the resulting RGB and grayscale information. Prior to the extraction of the CGSD
parameters, a normality test was conducted on the collected RGB color data to determine the
characteristics of the data distribution. The Jarque-Bera test was used to assess the normality
of the pixel value distribution for each color channel (Bera et al. 1981). The test results
showed that the data of all color channels did not meet the assumption of normal distribution
(p < 0.05). Then, the mean, median, mode, skewness, and kurtosis functions were used to
analyze the canopy leaf CGSD characteristics, respectively. Twenty CGSD parameters were
then obtained, inCIUding RMean, RMedian, RMode, Rskewness, RKurtosis, GMean, GMedian, GMode,
GSkewness, GKunosis, BMean, BMedian, BMode, BSkewness, BKurtosis, Y Mean, Y; Median, Y Mode, Y: Skewness and
Ykurtosis-

Construction and Validation of Response Model
The model performance was assessed using key statistical indicators: R-squared,
adjusted R-squared, RMSE (Root Mean Square Error), and the F-statistic with its significance
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level. R-squared measures the model’s ability to explain the variance of the dependent
variable, with a higher value indicating a better fit to the data. Adjusted R-squared further
incorporates a penalty for model complexity by accounting for the number of predictors,
where a higher value reflects better model performance after penalizing redundant variables.
A smaller RMSE (Root Mean Square Error) signifies lower prediction errors in the model. A
larger F-value indicates that at least one predictor variable has a statistically significant impact
on the response variable. Notably, a statistically significant model fit was confirmed when the
F-statistic’s p-value was less than 0.05, adhering to conventional thresholds in hypothesis
testing. To evaluate the model, calculate its accuracy based on the following equation (Zhang
et al. 2023).

PA:[I—

where projected data are denoted as y, and actual data are denoted as y.

Y, =¥
y

]XIOO%
(1)

RESULTS

Impact of Cold Spells on the Color Gradient Distribution in Wheat Canopy
Images

The frequency distributions of the R, G, B, and Y values of the pixels extracted from
the wheat canopy images acquired at the Qihe site before, during, and after a cold spell are
shown in Fig. 3. The time the three images were captured was as close together as possible in
order to avoid color differences caused by crop growth. The color gradient distribution curves
were slightly shifted to the left over the duration of the cold spell, with the R channel being
most strongly affected. Interestingly the curves representing all four values remained being
shifted to the left after the cold spell ended, and that their shapes had flattened compared to
those representing the times before and during the cold spell. This finding confirms that
drastic changes in meteorological conditions can give rise to physiological and biochemical
responses in plants that are reflected in the visible light spectrum of crop canopy images
(Gitelson et al. 2003). In particular, severely adverse conditions caused by climate change can
cause crops to exhibit obvious signs of aging, which are typically associated with color
changes in the canopy (Han ef al. 2019). It is therefore no surprise that our results indicate
that after a period of exposure to low-temperature stress wheat canopy images exhibit changes
with respect to their color gradient distribution.
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Fig. 3. Frequency distribution of the R, G, B and Y channel of the pixels from wheat canopy image
samples acquired at the Qihe site before (T1), during (T2) and after (T3) a cold spell

Correlation between Meteorological Factors and CGSD Parameters

Figure 4 shows the results of a correlation analysis of the 20 CGSD parameters
extracted from the modeling samples of our experimental wheat canopies against the 31
meteorological factors used to characterize cold spells. The correlation between individual
CGSD parameters and the meteorological factors exhibited large variations. The most notable
results were that the kurtosis values of all four color values were positively correlated with
most meteorological factors (the only exceptions being Z/ and Z17-19) and that most of these
correlations were significant. The highest correlation values were observed between the four
kurtosis values and meteorological factor Z/4 (daily minimum temperature), which reached
values of 0.661, 0.744, 0.694, and 0.744 for R, G, B and Y, respectively. Regarding the
skewness value, it was interesting to note that, at p < 0.01, the only significantly positively
correlated meteorological factor with any of the CGSD parameters was ZI (effective
accumulated temperature since sowing); the corresponding correlation coefficient exceeded
the value of 0.6, whereas all other meteorological factors were either negatively or only
weakly positively correlated (p > 0.05). The analysis confirmed that the kurtosis and skewness
values exhibited a stronger response to meteorological factors associated with cold spells than
the other CGSD parameters did.

Neither the mean, median, nor mode values of any of the four color channels exhibited
a clear response to any of the meteorological factors, with the exception of Rmean, BMean, and
BMedian, which were significantly correlated with Z31; Gwmedian, GMode, and Ymode, Which were
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significantly correlated with Z/; Bwmean, Which was significantly correlated with Z26; and
BMode, which was significantly correlated with Z27. All correlations in the mean, median and
mode values, however, were at a lower significance level (p < 0.05) than those found for the
kurtosis and skewness. In conclusion, of all CGSD parameters associated with digital canopy
images, the kurtosis and skewness associated with the distribution of the four color channels
exhibited the most sensitive response to meteorological factors related to cold spells. Notably,
the response of the kurtosis value was strong enough to be used for further analysis of the
relationship between CGSD parameters and meteorological factors.
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Fig. 4. Heatmap of the correlations between the CGSD parameters extracted from canopy images
and meteorological factors associated with cold spells (red for positive, blue for negative). ** indicates
a significant correlation at p < 0.01; * indicates a significant correlation at p < 0.05.

Construction of the Wheat Canopy Color Response Model

Using the OLS method, each of the CGSD parameters was expressed as a multilinear
function of the meteorological factors, after which the goodness of fit of each function was
determined (Table 2). In line with an earlier finding that the kurtosis and skewness parameters
are significantly correlated with some of the meteorological factors at the 0.01 significance
level, the results demonstrated that the goodness of fit of the models representing the response
of these parameters was excellent for all four color channels, as indicated by the R-square
parameter being greater than or equal to 0.480. Notably, the models for Gskewness and Gxurtosis
outperformed all other CGSD parameters, having R-square values of 0.677 and 0.742 and
RMSE scores of 0.150 and 0.368, respectively. It is interesting to note that the main factors
that determined the skewness and kurtosis of the image color gradient distribution were Z1,
Z5, and Z14. Table 2 also shows that five of the mean, median, and mode parameters could
not be modeled (Rwmedian, RMode, GMean, YMean, and Ymedian). The R-square values of the
remaining linear models ranged from 0.135 to 0.201, which is significantly worse than the
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corresponding values of the skewness and kurtosis parameters, and their adjusted R-square
and RMSE metrics exhibited the same trend. This result demonstrates that the mean, median,
and mode values associated with either the R, G, B and Y channels were not suitable for
modeling the response of canopy color to cold spells.

Among the skewness and kurtosis parameters of the four color channels, Gskewness and
Gxurtosis €xhibited the highest R-square values and the lowest RMSE values, indicating that
these parameters were the most suitable ones for modeling how the color of wheat canopies
responds to meteorological factors.

Table 2. Summary of Modeling Functions and Statistical Metrics for the
Relationship Between CGSD Parameters and Meteorological Factors

CGSD " ] _ R- deusted RMSE F Significance
parameter odeling function square -square value value of
value value F value
Ruiean 100.192 — 2.990 x Z31 0.167 0.138 6.073 | 5818 0.022
Rskewness -3.062 + 0.007 x Z1 0.482 0.465 0131 | 27.029 0.000
Riurtosis 3434+ 0151 x Z14 —0.103 x Z5 | _0.550 0518 0315 | 17.134 0.000
Ghedian 235515 — 0.266 x Z1 0.190 0.162 0582 | 6.784 0.014
Ghode 370.579 — 0.573 x Z1 0.201 0173 19.006 | 7.277 0.000
Gstewness 5369 + 0.012 x Z1 0.677 0.665 0150 | 60.649 0.000
Giurtosis 233;‘1‘?30*_ 1%5032"52:3_8903;233 1"8 0.742 0.702 0.368 | 18.662 0.000
Bhsean 113.928 — 3.181 x Z31 0.169 0.140 6414 | 5903 0.022
Bhegian 111.808 — 2.976 x Z31 0.135 0.106 6.841 | 4.545 0.042
Bwode 89.511 + 0.230 x Z27 0.144 0114 7357 | 4.872 0.035
Bskewness -3.060 + 0'0051121 +0.012x 0.480 0.443 0127 | 12.910 0.000
Brurtosis 3498 + 0172 x Z14 —0.111x 75 | 0.578 0.548 0356 | 19.175 0.000
Yiode 293.225 — 0.418 x Z1 0.163 0.134 16.476 | 5.658 0.024
Yskewness 4.658 + 0.011 x Z1 0.635 0.622 0.144 | 50.374 0.000
Yicurtosis 3.646 + 0.212 x Z14 —0.126 x Z5 | 0.632 0.606 0415 | 24.040 0.000

Optimization of the Wheat Canopy Color Response Model

To optimize the goodness of fit of the functions used to model the CGSD parameters
that had performed best during our initial multilinear approach (Gskewness and Gkaurtosis),
quadratic terms were introduced. The resulting polynomial functions outperformed the
multilinear functions, as indicated by their R-square values, which reached 0.682 for the
quadratic function used to model Gskewness and 0.775 for the quadratic function used to model
Gkurtosis: When comparing the other indicators for the goodness of fit, both the adjusted R-
square and RMSE value for the polynomial function used to model Gskewness Were marginally
worse than the corresponding values for the multilinear model (Fig. 5), but for the function
used model Gkurosis they were both better (Fig. 6). Overall, the goodness of fit of the
polynomial functions used to model both Gskewness and Gxkurtosis Was superior to that of the
multilinear functions, which is consistent with previously reported findings that polynomial
functions can more effectively model climate responses than multilinear ones (Zhang et al.
2023). The polynomial function models have been found to be superior to multilinear methods
in capturing the relationship between meteorological factors and wheat canopy color
distribution parameters, which is consistent with the research of Zhang et al. (2022). The
possible reason is that the duration and intensity of cold stress interact in complex ways to
influence plant physiology and, consequently, the canopy color. The polynomial terms in the
models allow for a more flexible and accurate representation of these non-linear interactions,
thereby improving the model fit and predictive power.
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Fig. 6. Optimized polynomial function used to model Gkurtosis

Prediction Accuracy of The Optimized Gkurtosis Model

Figure 7 shows violin plots depicting the probability density of the prediction accuracy
of the Gkurosis model with respect to the modeling group used to construct it, the validation
group from the same site (Qihe), and the application test group from the other site (Juxian).
The plots indicate that the model’s prediction accuracy for all three groups types was good:
Although there were only 31 modeling samples, the median prediction accuracy with respect
to the modeling group reached 93.22%. The prediction accuracy with respect to the validation
group and application test group were also excellent, having median values of 89.50% for
samples from the site providing the former, 90.01% for samples from the latter. Notably, the
shapes of the violin plots for groups taken at modeling and validation were similar, which
may be due to the fact that the samples were acquired under consistent climatic conditions. It
is also interesting to note that, although the overall prediction accuracy with respect to the
application test group was slightly lower than that with respect to the modeling group, the
most probable prediction accuracies were still between 85% and 95%. Finally, it should be
noted that the probability density decreases slightly near the median prediction accuracy, and
that there are no outliers in the prediction accuracy values for any sample type.
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Fig. 7. Violin plots depicting the probability density of the prediction accuracy of the meteorological
response model for Gkurtosis for the different sample types included in our experiment

DISCUSSION

Previous studies have shown that crop leaves can play a crucial role in generating
nutrients (GroBkinsky ez al. 2018), and that their color, as a typical phenotypic feature, reflects
the crop’s growth status (Vasseur et al. 2018). For this reason, it was hypothesized that it must
be possible to obtain information about the growth and development of crops exposed to cold
spell from digital images using the widely used RGB format. The CGSD features of wheat
canopy images were extracted, and the relationship between those features and a number of
meteorological factors related to cold spells were studied. In this study, the response model
of CGSD parameters to meteorological factors was established for the first time to study the
response of wheat crops to cold wave in Shandong Province.

The results exhibited certain differences between the CGSD parameters extracted
from wheat canopy images captured at the same location but at different times. A possible
explanation is the fact that the digital cameras automatically adjust their exposure time and
image calibration parameters to the ambient lighting conditions (Mufioz-Huerta ef al. 2013;
Barbedo ef al. 2016; Wang et al. 2016). Growth and development of wheat may also lead to
changes in image data. Nevertheless, the present findings exhibited uncontroversial evidence
of the RBG values and color gradient distribution of the pixels making up wheat canopy
images being affected by exposure to cold spells (Bera et al. 1981).

Although the color gradient distribution of RGB images of plant leaves typically
exhibits a certain amount of skewness (Bera ef al. 1981; Chen et al. 2020), existing research
has tended to overlook skewness, mainly focusing on analyzing the mean and standard
deviation of the color gradient distribution. The 20 CGSD parameters used in this study
greatly expanded the number of color gradient distribution parameters extracted from the
digital images and allowed a more rational and systematic characterization of the leaf colors.
The findings indicated that the mean, mode, and median values associated with the color
gradient distribution correlated only weakly with the meteorological factors related to cold
spells, while the skewness and kurtosis correlate strongly. This may be due to the
physiological processes of wheat plants being affected when they encounter cold waves,
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leading to changes in plant pigments and cell structure. The skewness of the color distribution
reflects the asymmetry of color changes across different parts of the canopy, while the kurtosis
indicates the degree of color concentration or dispersion (Zhang et al. 2022, 2023). These
changes in skewness and kurtosis can be effectively captured by digital image analysis,
making them sensitive indicators of cold stress. For this reason, this study prioritized the use
of skewness and kurtosis as the key parameters for polynomial modeling how the color
gradient distribution of wheat canopy images responds to cold spells. This study showed the
feasibility of using CGSD parameters to construct accurate and stable models for how the
color gradient distribution of digital wheat canopy images respond to meteorological factors
related to cold spells.

Overall, the research results indicated that skewness and kurtosis parameters were the
most sensitive to cold stress, demonstrating the potential of using color parameters to reflect
plant stress and emphasizing the importance of color distribution in understanding plant
physiological states. Moreover, the polynomial functions provided a better fit to the data,
which can more effectively capture the non-linear responses of wheat canopy color to cold
stress. This suggests that the relationship between canopy color and cold stress is inherently
non-linear. These results are consistent with previous research findings (Zhang et al. 2023
and Chen et al. 2020). The constructed response model of wheat canopy color to cold spells
holds significant promise for cold wave warning systems. It enables the prediction of potential
cold damage by monitoring changes in canopy color, which are indicative of plant stress. This
can help agricultural authorities and farmers to take proactive measures to reduce the risk of
yield losses.

Future work is needed to collect more data and involve advanced modeling methods
such as deep learning and machine. To expand the scope of this results, the relationship
between meteorological factors and the color gradient distribution of wheat canopy images
potentially involves many spectral features not captured by the CGSD parameters, such as the
green leaf vegetation index (GLI) (Hunt ez a/. 2011), the modified green red vegetation index
(MGRVI) (Bendig et al. 2015), the visual atmospheric resistance vegetation index (VARI)
(Gitelson et al. 2022), and the excess red vegetation index (ExR) (Mao ef al. 2004), as well
as several other color and texture features such as HSV, Lab, Lch, Luv, (Cheng ef al. 2001;
Garcia-Mateos et al. 2015; Viscarra et al. 2006 ), angular second moment (ASM), contrast
(CON), correlation (COR), and entropy (ENT) (Haralick et al. 1973). Finally, it might be
worth analyzing the response relationship between CGSD parameters and other crop-related
factors, such as meteorological factors in terms of growth stage (GroBkinsky et al. 2018), soil
quality, or even latitude and longitude.

CONCLUSIONS

1. Exposure to low-temperature stress can significantly affect the kurtosis values associated
with the color gradient distribution of digital wheat canopy images. The coefficients of
determination for the relationships between Rkurtosis, GKurtosis, BKurtosis and Ykurtosis and the
daily minimum temperature reached 0.661, 0.744, 0.694, and 0.744, respectively.

2. Both the skewness and kurtosis of the RGB color and grayscale value distribution of pixels
from wheat canopy images could be accurately modeled. All models featuredba an R-
square coefficient that exceeded the value of 0.480.

3. The goodness of fit of the optimized models was good. The polynomial models for
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Gskewness and Grkurtosis featured adjusted R-square values of 0.660 and 0.741, respectively,
which was even better than the corresponding values we obtained for the multilinear
models.

4. The prediction accuracy of the polynomial Gkurosis curve model was excellent, reaching
93.22%, 89.50%, and 90.01% with respect to the modeling group, validation group, and
application test group, respectively.
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