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This study examined the response of color information in digital wheat canopy 
images from Shandong Province, China, to meteorological indicators during 
extreme cold spells. Analysis revealed that low-temperature stress altered 
pixel color and grayscale values, with shifts captured by skewness and 
kurtosis parameters of color gradation distributions. The kurtosis and 
skewness of color gradient distributions showed the strongest sensitivity to 
cold stress. Daily minimum temperature was significantly correlated with 
kurtosis values for R (0.661), G (0.744), B (0.694), and grayscale (0.744) 
channels. Models relating these parameters to meteorological factors were 
developed, with polynomial functions outperforming multilinear approaches. 
All models demonstrated satisfactory fit, as evidenced by determination 
coefficients exceeding 0.480. The kurtosis model for green values achieved 
exceptional prediction accuracy, surpassing 90%. Findings demonstrate 
quantifiable cold-induced changes in canopy color gradient distribution, 
establishing a foundation for enhancing freeze damage monitoring systems 
through image-based metrics. These models enable efficient early warning 
by linking meteorological data to visible canopy responses, offering practical 
tools for mitigating agricultural cold stress impacts. 
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INTRODUCTION 
 

Global climate change has significantly increased the frequency and intensity of 

extreme weather events, including unseasonably cold temperature episodes, which pose a 

significant challenge to agricultural production (Gaupp et al. 2020; Benitez-Alfonso et al. 

2023; Hielkema et al. 2023). Wheat, one of the most important sources of human food, is not 

exempt from these effects. In particular, cold spells, which constitute one of the more 

commonly observed extreme weather phenomena, can damage the cell structure of wheat 

plants and cause serious yield losses (Zhu et al. 2014). Currently deployed methods aimed at 

monitoring the severity of low temperature stress exerted on wheat crops mainly rely on 

manual field observations and sampling, and because this involves expending significant 
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amounts of time and manpower, their suitability for large-scale applications is limited 

(Kobayashi et al. 2001). In the field of agricultural research, remote sensing technology is 

increasingly being considered as an economically efficient alternative to traditional analysis 

methods (Battude et al. 2016; Jin et al. 2022). However, the spatial and temporal resolution 

of data obtained from optical satellites rarely meets the criteria that would be required for 

wheat freeze damage monitoring. In addition, satellite images are highly susceptible to 

interference by ubiquitous weather phenomena such as clouds, fog, and rain (Yi et al. 2024). 

In essence, both traditional ground surveys and modern satellite-based remote sensing 

technologies fall short of being able to provide sufficient data enabling the real-time 

monitoring of wheat freeze damage severity. In order to find an effective approach for the 

development of an early warning system against wheat freeze damage, the primary challenge 

is to find an efficient, accurate, and reliable method for characterizing how key wheat growth 

factors are affected by exposure to cold spells. 

There are several alternatives to satellite imaging, including the use of portable 

imaging devices such as mast or drone-mounted digital cameras. The availability, 

affordability, and flexibility of these devices have made it increasingly feasible to obtain 

RGB, multispectral, hyperspectral, light intensity, and thermal data, thus paving the way for 

non-destructively obtaining color-related information about crop canopies for use in 

agricultural research. Digital color images are able to record spectral information about a 

canopy in the visible light band, thereby effectively characterizing the external phenotypic 

features of the targeted crop. Furthermore, digital color images are able to provide a high level 

of detail with regard to plant morphology and structure (Zhang et al. 2014), which allows 

researchers to readily extract plant leaf color information from them. 

Digital color images are typically encoded using the RGB color space model, which 

codes each image pixel as a combination of color values for the primary colors red (R), green 

(G), and blue (B). Beyond these individual color channels, the RGB system also enables the 

derivation of other color representations, such as the grayscale value. Grayscale, often denoted 

as 'Y', is a single channel that expresses the brightness of a pixel, devoid of any chromatic 

information. (Pettorelli et al. 2005; Hu et al. 2010; Guendouz et al. 2012). Examples of 

research applications of the RGB information contained in digital canopy images include 

studies on the nitrogen content of winter wheat, the chlorophyll content of rice leaves and the 

growth process of mangroves (Saberioon et al. 2014; Fu et al. 2020; Chen et al. 2022). So far, 

however, few studies have investigated how the color of wheat canopies responds to exposure 

to meteorological elements such as cold spells. 

Traditional applications of the RGB model in agricultural research mainly focused on 

mean color values, thereby largely ignoring any presence of skewness. In their latest research, 

Zhang et al. (2022, 2023) proposed a new way to use the RGB color model by suggesting that 

the skewness distribution parameters extracted from digital color images of crop canopies 

might be used to assess the internal physiological status of plants after being exposed to 

meteorological phenomena. Leveraging this idea makes it possible to incorporate 

meteorological factors into crop growth models, which would greatly increase their ability to 

predict potential crop damage. The proposed method relies on a total of 20 so-called Color 

Gradation Skewed-Distribution (CGSD) parameters extracted from the RGB color 

information, which includes the mean, median, mode, skewness, and kurtosis associated with 

the distribution of the color and grayscale values. Specifically, the mean, median, and mode 

values represent the lightness of the leaf color, while the skewness and kurtosis values 

represent how the leaf colors are distributed across the color spectrum. Due to their ability to 

provide an accurate description of different aspects of leaf colors, the CGSD analysis of crop 
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images has the potential for making a significant contribution to developments in smart 

agriculture. Although existing research has achieved certain progress in the analysis of the 

relationship between plant canopy color and meteorology, the model construction in current 

studies is relatively simple. In addition, the relationship between canopy color and cold waves 

has not been thoroughly explored. To fill this gap, this study is based on the CGSD parameters 

of wheat canopy images in Shandong Province for in-depth exploration. It aims to accurately 

predict the response of wheat canopy to the impact of cold waves and shows higher accuracy 

and applicability. 

The main objectives of this study were to (1) confirm whether cold spells affect the 

color information in digital images of wheat canopies; (2) investigate the correlation between 

the CGSD parameters extracted from digital wheat canopy images and a number of key 

meteorological factors associated with cold spells; and (3) quantify the extent to which the 

CGSD parameters extracted from digital wheat canopy images respond to exposure cold 

spells. This research not only enhances the understanding of the relationship between wheat 

canopy color changes and cold stress but also provides practical tools for mitigating 

agricultural cold stress impacts. 
 

 

EXPERIMENTAL 
 

Study Area and Experimental Sites  
Located on the eastern coast of China (Fig. 1a), Shandong Province is the pioneering 

province to achieve a monumental gross agricultural output value exceeding one trillion yuan 

in China. Qihe county, in the northwestern part of Shandong Province, and the location of the 

second site was Juxian county, in the southeastern part of Shandong Province (Fig. 1b). 

Figures 1c-d displayed the photos of these two stations. The selection of experimental sites in 

northern and southern Shandong can better represent the wheat growth conditions across the 

province, providing a more comprehensive understanding of the response of wheat canopies 

to cold spells in different environments (Dong et al. 2017). 

The experimental subjects were the wheat variety Jimai 22 at the Qihe site and Jimai 

44 at the Juxian site. At both sites, the experimental wheat was sowed using strip sowing with 

a row spacing of 0.2 m. Local differences between the growing environments in the northern 

and eastern regions of Shandong affected the start of the wheat growing season, which is why 

the sowing date for the Qihe site (17 October 2022) was earlier than that used for the Juxian 

site (23 October 2022). 
 

Experimental Design 
The experiment was designed to determine the relationship between meteorological 

factors and CGSD parameters extracted from digital wheat canopy images acquired at two 

experimental sites over the duration of the 2022-2023 winter wheat growing season. First, 

digital images of the wheat canopy and local meteorological data were collected from two 

experimental sites located in Shandong Province, China. The images were grouped and the 

CGSD parameters were extracted. The modeling samples were subjected to a Pearson 

correlation analysis. Using the ordinary least squares (OLS) quadratic curve fitting algorithm, 

a response model between meteorological factors and CGSD parameters was constructed. In 

order to improve the goodness of fit of the model, a quadratic term was introduced to optimize 

the initial multiple linear model. Finally, the predictive accuracy of the optimized model was 

validated by comparing predicted values against actual measurements from both validation 

and test groups.  
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Fig. 1. (a) Location of Shandong Province in China. (b) Distribution of two experimental sites in 
Shandong Province. (c) A field photograph of the Qihe. Site. (d) A field photograph of the Juxian site 

 

Wheat Canopy Images 
The wheat canopy images were acquired in situ, using a camera with an image 

resolution of 1920×1080 pixels (model number: DH-SD-65F630U-HN-Q; manufacturer: 

Zhejiang Dahua Technology Co. Ltd, China). This camera was mounted at the top of a mast 

measuring 580 cm in height, installed by the Shandong Meteorological Bureau. When 

creating the images, a fixed focal length exposure and the automatic white balance feature 

were provided by the camera. Images were acquired every day at 16:00 for the duration of the 

experiment. At the Qihe site, the experiment ran from November 23, 2022 to January 26, 

2023; and at the Juxian site it ran from November 6, 2022 to January 31, 2023.  

To improve the accuracy of the color gradation analysis, images acquired during 

conditions of intense lighting, frost, or snow cover were discarded, leaving a total of 52 

canopy images deemed usable as input for analysis; 31 images were acquired at the Qihe site 

and 21 images were acquired at the Juxian site. This filtering process resulted in a limited 

number of images. In order to increase the amount of data and better train and validate the 

model, samples were constructed by dividing the wheat canopy image into four equal parts, 

as shown in Fig. 2. It should be noted that the image preprocessing procedure followed Chen 

et al.’s (2020) method to remove soil backgrounds. The upper-left quadrant of each of the 31 

images acquired at the Qihe site were designated as modeling samples to be used for 

regression analysis and model construction, and the three remaining quadrants as samples to 

be used for model validation (Fig. 2a), providing a total of 31 modeling samples and 93 

samples for validation against images from the same site providing the images used for 

modeling. All four quadrants of the images acquired at the Juxian site were designated to be 

used for application test (Fig. 2b), providing a total of 84 samples used for validation against 

results from a different site to the one providing the images used for modeling. 
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(a) 

 
(b) 
 
Fig. 2. (a) Sample construction from the wheat canopy images acquired at the Qihe site; (b) Sample 
construction from the wheat canopy images acquired at the Juxian site 

 

Meteorological Data 
The experiment used meteorological data collected by in-situ microclimate 

observatories at each site, as well as national weather stations in Qihe and Juxian. To 

comprehensively characterize the low-temperature processes and their intensities, this study 

systematically summarized data on 31 pertinent meteorological factors, as illustrated in Table 

1. The foundational data were sourced from Shandong Meteorological Bureau. 
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Table 1. Meteorological Factors  

Factor code Description 

Z1 Effective accumulated temperature since sowing 

Z2 Daily mean temperature 

Z3 3-day moving average of daily mean temperature 

Z4 5-day moving average of daily mean temperature 

Z5 Daily mean temperature at 30 cm in wheat fields 

Z6 3-day moving average of daily mean temperature at 30 cm in wheat fields 

Z7 5-day moving average of daily mean temperature at 30 cm in wheat fields 

Z8 Daily mean temperature at 60 cm in wheat fields 

Z9 3-day moving average of daily mean temperature at 60 cm in wheat fields 

Z10 5-day moving average of daily mean temperature at 60 cm in wheat fields 

Z11 Daily mean temperature at 150 cm in wheat fields 

Z12 3-day moving average of daily mean temperature at 150 cm in wheat fields 

Z13 5-day moving average of daily mean temperature at 150 cm in wheat fields 

Z14 Daily minimum temperature 

Z15 3-day moving average of daily minimum temperature 

Z16 5-day moving average of daily minimum temperature 

Z17 24-hour temperature change 

Z18 3-day moving average of 24-hour temperature change 

Z19 5-day moving average of 24-hour temperature change 

Z20 Daily mean dew point temperature 

Z21 3-day moving average of daily mean dew point temperature 

Z22 5-day moving average of daily mean dew point temperature 

Z23 Daily mean grass temperature 

Z24 3-day moving average of daily mean grass temperature 

Z25 5-day moving average of daily mean grass temperature 

Z26 Daily mean relative humidity 

Z27 3-day moving average of daily mean relative humidity 

Z28 5-day moving average of daily mean relative humidity 

Z29 Daily precipitation 

Z30 3-day moving average of daily precipitation 

Z31 5-day moving average of daily precipitation 

 

Determination of the CGSD Parameters 
To determine the CGSD parameters characterizing wheat freeze injury severity, the 

method proposed by Chen et al. (2020) was used. This method involves obtaining a histogram 

of the cumulative color gradation from the canopy images, and separating, denoising, and 

ordering the resulting RGB and grayscale information. Prior to the extraction of the CGSD 

parameters, a normality test was conducted on the collected RGB color data to determine the 

characteristics of the data distribution. The Jarque-Bera test was used to assess the normality 

of the pixel value distribution for each color channel (Bera et al. 1981). The test results 

showed that the data of all color channels did not meet the assumption of normal distribution 

(p < 0.05). Then, the mean, median, mode, skewness, and kurtosis functions were used to 

analyze the canopy leaf CGSD characteristics, respectively. Twenty CGSD parameters were 

then obtained, including RMean, RMedian, RMode, RSkewness, RKurtosis, GMean, GMedian, GMode, 

GSkewness, GKurtosis, BMean, BMedian, BMode, BSkewness, BKurtosis, YMean, YMedian, YMode, YSkewness and 

YKurtosis.  
 

Construction and Validation of Response Model 
The model performance was assessed using key statistical indicators: R-squared, 

adjusted R-squared, RMSE (Root Mean Square Error), and the F-statistic with its significance 
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level. R-squared measures the model’s ability to explain the variance of the dependent 

variable, with a higher value indicating a better fit to the data. Adjusted R-squared further 

incorporates a penalty for model complexity by accounting for the number of predictors, 

where a higher value reflects better model performance after penalizing redundant variables. 

A smaller RMSE (Root Mean Square Error) signifies lower prediction errors in the model. A 

larger F-value indicates that at least one predictor variable has a statistically significant impact 

on the response variable. Notably, a statistically significant model fit was confirmed when the 

F-statistic’s p-value was less than 0.05, adhering to conventional thresholds in hypothesis 

testing. To evaluate the model, calculate its accuracy based on the following equation (Zhang 

et al. 2023).  

       (1) 

where projected data are denoted as yp and actual data are denoted as y. 

 

 
RESULTS 
 
Impact of Cold Spells on the Color Gradient Distribution in Wheat Canopy 
Images 

The frequency distributions of the R, G, B, and Y values of the pixels extracted from 

the wheat canopy images acquired at the Qihe site before, during, and after a cold spell are 

shown in Fig. 3. The time the three images were captured was as close together as possible in 

order to avoid color differences caused by crop growth. The color gradient distribution curves 

were slightly shifted to the left over the duration of the cold spell, with the R channel being 

most strongly affected. Interestingly the curves representing all four values remained being 

shifted to the left after the cold spell ended, and that their shapes had flattened compared to 

those representing the times before and during the cold spell. This finding confirms that 

drastic changes in meteorological conditions can give rise to physiological and biochemical 

responses in plants that are reflected in the visible light spectrum of crop canopy images 

(Gitelson et al. 2003). In particular, severely adverse conditions caused by climate change can 

cause crops to exhibit obvious signs of aging, which are typically associated with color 

changes in the canopy (Han et al. 2019). It is therefore no surprise that our results indicate 

that after a period of exposure to low-temperature stress wheat canopy images exhibit changes 

with respect to their color gradient distribution. 
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Fig. 3. Frequency distribution of the R, G, B and Y channel of the pixels from wheat canopy image 
samples acquired at the Qihe site before (T1), during (T2) and after (T3) a cold spell 

 
Correlation between Meteorological Factors and CGSD Parameters 

Figure 4 shows the results of a correlation analysis of the 20 CGSD parameters 

extracted from the modeling samples of our experimental wheat canopies against the 31 

meteorological factors used to characterize cold spells. The correlation between individual 

CGSD parameters and the meteorological factors exhibited large variations. The most notable 

results were that the kurtosis values of all four color values were positively correlated with 

most meteorological factors (the only exceptions being Z1 and Z17-19) and that most of these 

correlations were significant. The highest correlation values were observed between the four 

kurtosis values and meteorological factor Z14 (daily minimum temperature), which reached 

values of 0.661, 0.744, 0.694, and 0.744 for R, G, B and Y, respectively. Regarding the 

skewness value, it was interesting to note that, at p ≤ 0.01, the only significantly positively 

correlated meteorological factor with any of the CGSD parameters was Z1 (effective 

accumulated temperature since sowing); the corresponding correlation coefficient exceeded 

the value of 0.6, whereas all other meteorological factors were either negatively or only 

weakly positively correlated (p > 0.05). The analysis confirmed that the kurtosis and skewness 

values exhibited a stronger response to meteorological factors associated with cold spells than 

the other CGSD parameters did.  

Neither the mean, median, nor mode values of any of the four color channels exhibited 

a clear response to any of the meteorological factors, with the exception of RMean, BMean, and 

BMedian, which were significantly correlated with Z31; GMedian, GMode, and YMode, which were 
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significantly correlated with Z1; BMean, which was significantly correlated with Z26; and 

BMode, which was significantly correlated with Z27. All correlations in the mean, median and 

mode values, however, were at a lower significance level (p ≤ 0.05) than those found for the 

kurtosis and skewness. In conclusion, of all CGSD parameters associated with digital canopy 

images, the kurtosis and skewness associated with the distribution of the four color channels 

exhibited the most sensitive response to meteorological factors related to cold spells. Notably, 

the response of the kurtosis value was strong enough to be used for further analysis of the 

relationship between CGSD parameters and meteorological factors. 

 
Fig. 4. Heatmap of the correlations between the CGSD parameters extracted from canopy images 
and meteorological factors associated with cold spells (red for positive, blue for negative). ** indicates 
a significant correlation at p ≤ 0.01; * indicates a significant correlation at p ≤ 0.05. 

 
Construction of the Wheat Canopy Color Response Model 

Using the OLS method, each of the CGSD parameters was expressed as a multilinear 

function of the meteorological factors, after which the goodness of fit of each function was 

determined (Table 2). In line with an earlier finding that the kurtosis and skewness parameters 

are significantly correlated with some of the meteorological factors at the 0.01 significance 

level, the results demonstrated that the goodness of fit of the models representing the response 

of these parameters was excellent for all four color channels, as indicated by the R-square 

parameter being greater than or equal to 0.480. Notably, the models for GSkewness and GKurtosis 

outperformed all other CGSD parameters, having R-square values of 0.677 and 0.742 and 

RMSE scores of 0.150 and 0.368, respectively. It is interesting to note that the main factors 

that determined the skewness and kurtosis of the image color gradient distribution were Z1, 

Z5, and Z14. Table 2 also shows that five of the mean, median, and mode parameters could 

not be modeled (RMedian, RMode, GMean, YMean, and YMedian). The R-square values of the 

remaining linear models ranged from 0.135 to 0.201, which is significantly worse than the 
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corresponding values of the skewness and kurtosis parameters, and their adjusted R-square 

and RMSE metrics exhibited the same trend. This result demonstrates that the mean, median, 

and mode values associated with either the R, G, B and Y channels were not suitable for 

modeling the response of canopy color to cold spells. 

Among the skewness and kurtosis parameters of the four color channels, GSkewness and 

GKurtosis exhibited the highest R-square values and the lowest RMSE values, indicating that 

these parameters were the most suitable ones for modeling how the color of wheat canopies 

responds to meteorological factors. 

 
Table 2. Summary of Modeling Functions and Statistical Metrics for the 
Relationship Between CGSD Parameters and Meteorological Factors 

CGSD 
parameter 

Modeling function 
R-

square 
value 

Adjusted 
R-square 

value 

RMSE 
value 

F 
value 

Significance 
of 

F value 

RMean 100.192 – 2.990 × Z31 0.167 0.138 6.073 5.818 0.022 

RSkewness -3.062 + 0.007 × Z1 0.482 0.465 0.131 27.029 0.000 

RKurtosis 3.434 + 0.151 × Z14 – 0.103 × Z5 0.550 0.518 0.315 17.134 0.000 

GMedian 235.515 – 0.266 × Z1 0.190 0.162 9.582 6.784 0.014 

GMode 370.579 – 0.573 × Z1 0.201 0.173 19.906 7.277 0.000 

GSkewness ˗5.369 + 0.012 × Z1 0.677 0.665 0.150 60.649 0.000 

GKurtosis 
3.478 + 0.200 × Z14 + 0.296 × 

Z31 – 0.122 × Z5 + 0.093 × Z18 
0.742 0.702 0.368 18.662 0.000 

BMean 113.928 – 3.181 × Z31 0.169 0.140 6.414 5.903 0.022 

BMedian 111.808 – 2.976 × Z31 0.135 0.106 6.841 4.545 0.042 

BMode 89.511 + 0.230 × Z27 0.144 0.114 7.357 4.872 0.035 

BSkewness 
-3.060 + 0.008 × Z1 + 0.012 × 

Z14 
0.480 0.443 0.127 12.910 0.000 

BKurtosis 3.498 + 0.172 × Z14 – 0.111 × Z5 0.578 0.548 0.356 19.175 0.000 

YMode 293.225 – 0.418 × Z1 0.163 0.134 16.476 5.658 0.024 

YSkewness -4.658 + 0.011 × Z1 0.635 0.622 0.144 50.374 0.000 

YKurtosis 3.646 + 0.212 × Z14 – 0.126 × Z5 0.632 0.606 0.415 24.040 0.000 

 

Optimization of the Wheat Canopy Color Response Model  
To optimize the goodness of fit of the functions used to model the CGSD parameters 

that had performed best during our initial multilinear approach (GSkewness and GKurtosis), 

quadratic terms were introduced. The resulting polynomial functions outperformed the 

multilinear functions, as indicated by their R-square values, which reached 0.682 for the 

quadratic function used to model GSkewness and 0.775 for the quadratic function used to model 

GKurtosis. When comparing the other indicators for the goodness of fit, both the adjusted R-

square and RMSE value for the polynomial function used to model GSkewness were marginally 

worse than the corresponding values for the multilinear model (Fig. 5), but for the function 

used model GKurtosis they were both better (Fig. 6). Overall, the goodness of fit of the 

polynomial functions used to model both GSkewness and GKurtosis was superior to that of the 

multilinear functions, which is consistent with previously reported findings that polynomial 

functions can more effectively model climate responses than multilinear ones (Zhang et al. 

2023). The polynomial function models have been found to be superior to multilinear methods 

in capturing the relationship between meteorological factors and wheat canopy color 

distribution parameters, which is consistent with the research of Zhang et al. (2022). The 

possible reason is that the duration and intensity of cold stress interact in complex ways to 

influence plant physiology and, consequently, the canopy color. The polynomial terms in the 

models allow for a more flexible and accurate representation of these non-linear interactions, 

thereby improving the model fit and predictive power. 
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Fig. 5. Optimized polynomial function used to model GSkewness 

 

 
Fig. 6. Optimized polynomial function used to model GKurtosis 

 
Prediction Accuracy of The Optimized GKurtosis Model 

Figure 7 shows violin plots depicting the probability density of the prediction accuracy 

of the GKurtosis model with respect to the modeling group used to construct it, the validation 

group from the same site (Qihe), and the application test group from the other site (Juxian). 

The plots indicate that the model’s prediction accuracy for all three groups types was good: 

Although there were only 31 modeling samples, the median prediction accuracy with respect 

to the modeling group reached 93.22%. The prediction accuracy with respect to the validation 

group and application test group were also excellent, having median values of 89.50% for 

samples from the site providing the former, 90.01% for samples from the latter. Notably, the 

shapes of the violin plots for groups taken at modeling and validation were similar, which 

may be due to the fact that the samples were acquired under consistent climatic conditions. It 

is also interesting to note that, although the overall prediction accuracy with respect to the 

application test group was slightly lower than that with respect to the modeling group, the 

most probable prediction accuracies were still between 85% and 95%. Finally, it should be 

noted that the probability density decreases slightly near the median prediction accuracy, and 

that there are no outliers in the prediction accuracy values for any sample type. 
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Fig. 7. Violin plots depicting the probability density of the prediction accuracy of the meteorological 
response model for GKurtosis for the different sample types included in our experiment 

 

 

DISCUSSION 
 

Previous studies have shown that crop leaves can play a crucial role in generating 

nutrients (Großkinsky et al. 2018), and that their color, as a typical phenotypic feature, reflects 

the crop’s growth status (Vasseur et al. 2018). For this reason, it was hypothesized that it must 

be possible to obtain information about the growth and development of crops exposed to cold 

spell from digital images using the widely used RGB format. The CGSD features of wheat 

canopy images were extracted, and the relationship between those features and a number of 

meteorological factors related to cold spells were studied. In this study, the response model 

of CGSD parameters to meteorological factors was established for the first time to study the 

response of wheat crops to cold wave in Shandong Province. 

The results exhibited certain differences between the CGSD parameters extracted 

from wheat canopy images captured at the same location but at different times. A possible 

explanation is the fact that the digital cameras automatically adjust their exposure time and 

image calibration parameters to the ambient lighting conditions (Muñoz-Huerta et al. 2013; 

Barbedo et al. 2016; Wang et al. 2016). Growth and development of wheat may also lead to 

changes in image data. Nevertheless, the present findings exhibited uncontroversial evidence 

of the RBG values and color gradient distribution of the pixels making up wheat canopy 

images being affected by exposure to cold spells (Bera et al. 1981). 

Although the color gradient distribution of RGB images of plant leaves typically 

exhibits a certain amount of skewness (Bera et al. 1981; Chen et al. 2020), existing research 

has tended to overlook skewness, mainly focusing on analyzing the mean and standard 

deviation of the color gradient distribution. The 20 CGSD parameters used in this study 

greatly expanded the number of color gradient distribution parameters extracted from the 

digital images and allowed a more rational and systematic characterization of the leaf colors. 

The findings indicated that the mean, mode, and median values associated with the color 

gradient distribution correlated only weakly with the meteorological factors related to cold 

spells, while the skewness and kurtosis correlate strongly. This may be due to the 

physiological processes of wheat plants being affected when they encounter cold waves, 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Zhang et al. (2025). “Wheat cold damage assessment,” BioResources 20(3), 7162-7178.  7174 

leading to changes in plant pigments and cell structure. The skewness of the color distribution 

reflects the asymmetry of color changes across different parts of the canopy, while the kurtosis 

indicates the degree of color concentration or dispersion (Zhang et al. 2022, 2023). These 

changes in skewness and kurtosis can be effectively captured by digital image analysis, 

making them sensitive indicators of cold stress. For this reason, this study prioritized the use 

of skewness and kurtosis as the key parameters for polynomial modeling how the color 

gradient distribution of wheat canopy images responds to cold spells. This study showed the 

feasibility of using CGSD parameters to construct accurate and stable models for how the 

color gradient distribution of digital wheat canopy images respond to meteorological factors 

related to cold spells.  

Overall, the research results indicated that skewness and kurtosis parameters were the 

most sensitive to cold stress, demonstrating the potential of using color parameters to reflect 

plant stress and emphasizing the importance of color distribution in understanding plant 

physiological states. Moreover, the polynomial functions provided a better fit to the data, 

which can more effectively capture the non-linear responses of wheat canopy color to cold 

stress. This suggests that the relationship between canopy color and cold stress is inherently 

non-linear. These results are consistent with previous research findings (Zhang et al. 2023 

and Chen et al. 2020). The constructed response model of wheat canopy color to cold spells 

holds significant promise for cold wave warning systems. It enables the prediction of potential 

cold damage by monitoring changes in canopy color, which are indicative of plant stress. This 

can help agricultural authorities and farmers to take proactive measures to reduce the risk of 

yield losses. 

Future work is needed to collect more data and involve advanced modeling methods 

such as deep learning and machine. To expand the scope of this results, the relationship 

between meteorological factors and the color gradient distribution of wheat canopy images 

potentially involves many spectral features not captured by the CGSD parameters, such as the 

green leaf vegetation index (GLI) (Hunt et al. 2011), the modified green red vegetation index 

(MGRVI) (Bendig et al. 2015), the visual atmospheric resistance vegetation index (VARI) 

(Gitelson et al. 2022), and the excess red vegetation index (ExR) (Mao et al. 2004), as well 

as several other color and texture features such as HSV, Lab, Lch, Luv, (Cheng et al. 2001; 

García-Mateos et al. 2015; Viscarra et al. 2006 ), angular second moment (ASM), contrast 

(CON), correlation (COR), and entropy (ENT) (Haralick et al. 1973). Finally, it might be 

worth analyzing the response relationship between CGSD parameters and other crop-related 

factors, such as meteorological factors in terms of growth stage (Großkinsky et al. 2018), soil 

quality, or even latitude and longitude. 

 

 

CONCLUSIONS 
 
1. Exposure to low-temperature stress can significantly affect the kurtosis values associated 

with the color gradient distribution of digital wheat canopy images. The coefficients of 

determination for the relationships between RKurtosis, GKurtosis, BKurtosis and YKurtosis and the 

daily minimum temperature reached 0.661, 0.744, 0.694, and 0.744, respectively. 

2. Both the skewness and kurtosis of the RGB color and grayscale value distribution of pixels 

from wheat canopy images could be accurately modeled. All models featuredba an R-

square coefficient that exceeded the value of 0.480. 

3. The goodness of fit of the optimized models was good. The polynomial models for 
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GSkewness and GKurtosis featured adjusted R-square values of 0.660 and 0.741, respectively, 

which was even better than the corresponding values we obtained for the multilinear 

models. 

4. The prediction accuracy of the polynomial GKurtosis curve model was excellent, reaching 

93.22%, 89.50%, and 90.01% with respect to the modeling group, validation group, and 

application test group, respectively.  
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