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This review article critically examines the integration of Internet of Things
(IoT) sensors and wireless technology into polymer composites,
highlighting its transformative potential in materials science. The focus is
on real-time monitoring of key parameters such as temperature, stress,
strain, humidity, and environmental exposure, which are essential for
predictive maintenance and performance optimization. This review
covers existing research and technological developments in loT-enabled
polymer composites, including sensor technologies, data transmission,
cloud-based analysis, and digital twin creation for rapid design
optimization and troubleshooting. The scope of this review does not
extend to experimental procedures for sensor integration, detailed
material property enhancements unrelated to loT technologies, or the
development of new composite materials without loT integration. Key
challenges such as standardization, data security, and system
interoperability are discussed, and future research directions are
proposed. By defining the scope and boundaries of the discussion, this
review provides a comprehensive overview of how IoT integration is
advancing the performance, reliability, and sustainability of polymer
composites across industries such as aerospace, automotive, and
infrastructure.
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INTRODUCTION

As industries increasingly require advanced materials with superior properties,
lignocellulose-based polymer composites have emerged as a key solution due to their
unique combination of sustainability, strength, lightness, and versatility (Manickaraj et al.
2024b; Palaniappan et al. 2024a). Lignocellulosic materials composed of cellulose,
hemicellulose, and lignin are abundant in natural fibers and are obtained from agricultural
and forestry residues as well. Their renewable and biodegradable nature makes them
highly attractive as reinforcing agents in polymer composites, especially in an era where
environmentally friendly solutions are in high demand. By combining polymer matrices
with lignocellulosic fibers or particles, these composites can be tailored to meet specific
performance requirements in a wide range of applications, from automotive and
construction to consumer products and packaging. This adaptability makes them
invaluable in industries where performance, weight, and sustainability are paramount
(Vasoya 2023; Velrani et al. 2025).

The necessity of automation, detection, and control systems has recently grown in
many chemical processes within the polymer composite industry. However, the life cycle
management of lignocellulosic-based composites presents significant challenges,
particularly due to their heterogeneous structure and sensitivity to environmental
conditions. The integration of the Internet of Things (IoT) and machine learning (ML)
offers innovative solutions to these challenges and enhances the functionality and
reliability of polymer composites throughout their life cycle. An IoT involves the
interconnection of physical devices equipped with sensors, software, and other
technologies that enable them to collect and exchange data. When applied to
lignocellulosic polymer composites, [oT technology enables real-time monitoring of
performance metrics such as temperature, humidity, stress, and strain (Ammar et al.
2022; Vasoya 2023). By embedding IoT sensors into these bio-composites,
manufacturers gain continuous insight into material behavior under varying conditions,
which improves the understanding of durability and structural integrity.

Real-time monitoring is critical in environments where lignocellulosic composites
are exposed to fluctuating or extreme conditions, such as automotive and outdoor
applications. For instance, structural health monitoring in such settings ensures early
detection of material degradation, minimizing risks and enhancing safety (Manickaraj et
al. 2024a; Ramasubbu ef al. 2024). Data collected via IoT sensors can be transmitted to
cloud platforms for further analysis, allowing engineers to evaluate long-term
performance trends. Leveraging this data, organizations can make informed decisions
regarding maintenance schedules, design optimization, and operational practices to
extend material lifespan. Additionally, ML plays a vital role in processing and analyzing
IoT-generated data. ML algorithms are capable of identifying patterns and correlations in
large datasets that manual methods may miss (Chinchanikar and Shaikh 2022). When
trained on historical performance data, these algorithms can predict future behavior under
specific environmental and mechanical conditions. This predictive capability is
particularly useful for maintenance planning, enabling proactive repairs and reducing
downtime and unplanned costs (Baduge et al. 2022).

The synergy between IoT and ML is also transforming the manufacturing process
of lignocellulosic polymer composites. Smart manufacturing systems equipped with IoT
can continuously monitor parameters such as temperature, pressure, and resin flow during
processing. ML algorithms analyze this data in real time to optimize conditions for
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preserving fiber integrity and ensuring desired composite properties (Bin Abu Sofian et
al. 2024). For example, in additive or compression molding techniques, adjusting
processing variables on-the-fly can lead to better surface finishes, mechanical strength,
and reduced material waste. This dynamic control not only improves product quality but
also enhances overall manufacturing efficiency (Aruchamy et al. 2024; Ramakrishnan et
al. 2024). Natural fiber composites are complex and heterogeneous, making it
challenging to monitor their structural integrity and accurately predict potential failures.
For this reason, the integration of the IoT sensors to the process of natural fiber
composites will be useful for the manufacturing process and service life quality of these
composites. Given the complex and heterogeneous nature of natural fiber composites,
real-time structural monitoring using IoT has potential benefits for both the production
and service life stages of the material.

Sustainability is a growing concern across all industries, and the integration of
[oT and ML supports more sustainable lifecycle management of polymer composites. [oT
devices can track environmental impacts from production to disposal, including resource
consumption, emissions, and waste generation (Nair et al. 2013; Azad et al. 2024).
These insights help organizations make responsible decisions to minimize environmental
footprints. Moreover, ML can improve recycling processes for lignocellulosic
composites, which are often difficult to separate due to their mixed organic and synthetic
nature (Kurien ef al. 2023; Sathish et al. 2024a). By analyzing material composition and
degradation patterns, ML can guide the development of more effective recycling
methods, thus supporting circular economy initiatives within the composites industry
(Gomez et al. 2022).

Despite their many advantages, the integration of IoT and ML into lignocellulosic
composites faces several challenges. Effective ML models require high-quality and
diverse datasets, which are often hard to obtain in experimental materials science
(Gurusamy et al. 2024). Integrating [oT systems into traditional manufacturing setups can
also be complex, involving sensor embedding, data communication, and cybersecurity
considerations. Furthermore, the success of these technologies depends on the availability
of skilled professionals—from data scientists to materials engineers—who can bridge the
gap between physical composites and digital systems (Manickaraj et al. 2022).
Specialized knowledge is essential to ensure that embedded sensors do not compromise
the composite’s mechanical performance or structural integrity. Moreover, managing the
vast amount of data generated by IoT devices is a significant hurdle. Looking ahead, the
adoption of IoT and ML in lignocellulose composites is expected to increase, driven by
technological progress and the growing need for efficiency and sustainability. This
encompasses data scientists, who are capable of developing and refining algorithms, as
well as engineers who possess a comprehensive understanding of both materials and
digital technologies. As industries continue to evolve, it is imperative to invest in
education and training to leverage the full potential of these advanced technologies
(Palanisamy ef al. n.d.; Sathesh Babu ef al. n.d.). The integration of the IoT devices with
polymer composites is a complex process, requiring specialized knowledge and
expertship. Moreover, technical challenges related to integrating devices into polymer
composites in a manner that does not affect their performance or integrity. Effective
administration and analysis can be challenging due to the enormous volume of data
generated by loT devices. In the future, it is anticipated that there will be an increased
integration of the IoT and ML in polymer composites, driven by technological
advancements and a growing emphasis on sustainability and efficiency (Janeliukstis and
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Mironovs 2021). Research will likely focus on robust sensor systems, efficient data
processing, and intelligent algorithm design, as well as the creation of protocols and
standards for secure data sharing and system interoperability. Furthermore, the
establishment of standards and protocols for data sharing and security is anticipated to be
pivotal in fostering collaboration across diverse sectors and ensuring the safe utilization
of these technologies (Sathish et al. 2024b).

The current body of research on polymer composites has focused extensively on
enhancing mechanical, thermal, and environmental properties through the incorporation
of advanced fibers and fillers. A notable area of development has been the integration of
sensors, particularly fiber Bragg grating (FBG) sensors, to monitor strain and temperature
changes in composite materials (Zhou et al. 2016; Kakei and Epaarachchi 2018). These
efforts have demonstrated the feasibility of embedding sensors within composites for
real-time monitoring, but their application has often been restricted to controlled
laboratory environments, limiting scalability and industrial adoption (Zhang ef al. 2011).
Studies have highlighted the use of polymer-based FBG sensors for measuring humidity
and strain, revealing promising potential for structural health monitoring (Rajan et al.
2014). However, challenges related to the standardization of sensor integration methods,
data management, and energy efficiency remain unresolved (Luyckx et al. 2009).
Environmental sensors have also been employed to assess exposure conditions and detect
material degradation in composites (Zhang et al. 2015), though most research has focused
on the recyclability and eco-friendliness of composite materials rather than leveraging
real-time monitoring data (Leng and Asundi 2002). Despite these advancements, the
literature indicates a gap in developing fully integrated, scalable systems for predictive
maintenance and data-driven decision-making in polymer composites.

The integration of IoT and machine learning into the lifecycle management of
lignocellulosic polymer composites presents significant opportunities to enhance material
performance, manufacturing efficiency, and sustainability (Ahmed et al. 2021). Through
real-time monitoring, predictive analytics, and data-driven optimization, these
technologies empower manufacturers to improve reliability and resource efficiency. As
industries increasingly embrace bio-based materials and digital innovation, the synergy of
IoT and ML will be a driving force in shaping the future of sustainable composite
applications across various sectors (Gokul et al. 2024).

loT Sensors in Polymer Composites

The integration of IoT sensors within polymer composites represents a
transformative advancement in the domains of material science and engineering. By
integrating these sensors directly into composite structures, manufacturers can achieve
continuous monitoring of critical parameters that influence performance and durability
(Senthilkumar et al. 2021). This real-time data collection is essential for understanding
how materials behave under varying operational conditions, leading to improved safety,
reliability, and overall performance.

Types of loT sensors

The sensors utilized in polymer composites can be classified according to the
parameters they measure. Each sensor plays a crucial role in the monitoring of material
performance and the assurance of longevity. The IOT sensors are displayed in Fig. 1.

Temperature sensors
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Temperature is one of the most fundamental and significant factors in analyzing
and controlling a variety of technical processes in the manufacture and processing of
polymer composites. Particularly, thermal sensing is essential for controlling the thermal
degradation temperature of natural fillers, melting, and rheology of the polymer matrix.
In numerous cases, direct contact measurements are not feasible due to the examined
movement of the material, distance, or temperature (Chen et al. 2016; Everton et al.
2016).
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Fig. 1. Various IOT sensors used for real-time monitoring in polymer composites

Accurate and automated temperature determination is required for complex heat-
treatment procedures, along with quick correction and error management. Fiber optic
sensors may be the most suitable choice as temperature meters in many situations for
several reasons such as unfavorable conditions including electromagnetic or ionizing
radiation, excessively high or low pressure, and a chemically aggressive environment
(Ramakrishnan et al. 2016).

Temperature sensors are integral for the monitoring of the thermal conditions that
polymer composites experience throughout their lifecycle (Nielsen et al. 2014; Duan and
Liu 2024). Temperature fluctuations can significantly affect the properties of polymers,
such as viscosity during processing and mechanical strength post-curing. For instance,
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excessive heat can lead to thermal degradation, altering the composite’s structural
integrity. By providing continuous temperature data, these sensors enable engineers to
optimize processing conditions and maintain quality control. This capability is
particularly vital in high-performance applications like aerospace, where even minor
temperature fluctuations can have a significant impact on safety and functionality.
Different types of temperature sensors can be utilized for the real-time monitoring of
composite materials. Common properties, values, and parameters of different sensors are
given in Table 1. Thermocouples are a popular option due to their broad temperature
range and availability in various types. While they do have some drawbacks, such as
potential drift and sensitivity issues, they are well-regarded for their high accuracy (Lu et
al. 2018).

Table 1. Various Temperature Sensors Used for Real-Time Monitoring of
Composites (Arockiasamy et al. 2023; Ge et al. 2023)

Temperature Sensor Properties Values Parameters

Thermocounles Such as type K, J, -200 to Response time, accuracy, drift,

P T.E 1750 °C sensitivity
Resistance Temperature | Such as platinum, -200 to Resistance, a-value, linearity,

Detectors (RTDs) nickel, copper 850 °C hysteresis
. -100 to Resistance, B-value, accuracy,

Thermistors NTC, PTC 300 °C interchangeability
-50 to Emissivity, wavelength, distance-

Infrared Thermometers - 3000 °C | to-spot ratio, ambient temperature

. . Such as Bragg -200 to Strain, temperature, accuracy,
Fiber Optic Sensors grating, Fabry- | 1000 °C resolution, bandwidth
Perot-
Surface-mounted . -55 to 150 | Response time, accuracy, stability,
Diodes, ICs o
Temperature Sensors C package type

Stress and strain sensors

Stress and strain sensors, including strain gauges and piezoelectric sensors, are
imperative for the assessment of polymer composite deformation under load. These
sensors offer real-time insights into the mechanical behavior of the material during
operational conditions (Zhao et al. 2023). This data is critical for applications where
structural integrity is paramount, such as in aerospace and automotive components.
Understanding how materials respond to dynamic loads allows engineers to design
components that can withstand expected stresses, enhancing safety and performance.
Moreover, continuous monitoring enables the identification of potential failure points
before they lead to catastrophic failures, facilitating predictive maintenance strategies.

Strain sensors are essential for the real-time monitoring of composite materials,
as they provide important information about the loads and stresses applied to these
materials (Ramakrishnan et al. 2016; Qureshi et al. 2020). The most commonly used
types of strain sensors in composites include electrical resistance strain gauges, optical
strain sensors, and piezoelectric sensors.

Humidity sensors
Humidity sensors measure moisture levels within and around polymer
composites. High humidity can significantly impact the properties of these materials,
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leading to issues such as hydrolysis or degradation of the polymer matrix (Ma et al. 2023;
Qian et al. 2024). These changes in turn affect the mechanical properties and durability of
the materials. It is therefore vital to monitor humidity levels in environments where
composites are exposed to varying moisture conditions, such as in construction or marine
applications. The integration of humidity sensors within the manufacturing process
enables manufacturers to develop a more profound understanding of the environmental
factors that influence composite performance (Ogunleye et al. 2024). This, in turn,
facilitates informed decisions regarding material selection and the implementation of
effective maintenance practices.

Environmental sensors

Environmental sensors are designed to detect exposure to various external factors,
including chemicals, extreme temperatures, and UV radiation. These sensors assess how
such conditions influence the longevity and reliability of polymer composites. For
example, exposure to harsh chemicals can lead to chemical degradation, while UV
radiation can cause surface damage over time (Butt et al. 2022). Continuous monitoring
of these environmental parameters enables manufacturers to gain insights into the
material’s behavior and performance under real-world conditions. This information is
invaluable in the development of more resilient materials and the improvement of the
overall lifecycle management of polymer composites, ultimately enhancing product
reliability, and safety in demanding applications. Each type of IoT sensor contributes
uniquely to the comprehensive monitoring and management of polymer composites,
ensuring that these materials meet the rigorous demands of various industrial applications
(Gangwar and Pathak 2021; Vasoya 2023).

Vibration sensors

Vibration sensors are crucial for real-time monitoring of composites to evaluate
the dynamic loads and vibrations that the material encounters. Accelerometers and
piezoelectric sensors are the two primary types of vibration sensors used in composite
materials (Ogunleye et al. 2024). Accelerometers measure the acceleration of a material
and convert it into an electrical signal. This provides insights into both the frequency and
magnitude of the vibrations. Piezoelectric sensors utilize the piezoelectric effect to
generate an electrical voltage that is proportional to the mechanical stress applied. This
enables the measurement of vibration and dynamic loads on composite materials. The
primary benefits of using vibration sensors for composites are their ability to monitor in
real-time and their precision. They deliver real-time information on dynamic loads and
vibrations, allowing for the early detection of potential issues and enhancing predictive
maintenance. For example, Chen et al. (2016) investigated the application of IoT sensors
to cement bonded natural fiber composites, allowing for the real-time data collection and
communication. It enables buildings to adapt to changing conditions and efficiently
utilize data resources for self-optimization (Mishra and Tyagi 2022). In another study,
Dinesh et al. (2023a,b) developed a self-sensing cement composite that includes carbon
fibers, which can be used for structural health monitoring. This innovation demonstrates
the potential of using sensor-embedded fiber concrete for infrastructure monitoring.

Real-Time Monitoring
The integration of IoT sensors into polymer composites offers a range of
significant benefits that enhance material performance, safety, and efficiency across
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various applications (Karuppiah et al. 2022; Nithyanandhan et al. 2022). The most
prevalent applications of the real-time monitoring system are illustrated in Fig. 2.

Real time
Monitoring
Predictive g MEEES Lifecycle Data-Driven
- esign and :
Maintenance Management Insights
Development

Fig. 2. Various IoT sensors for real-time monitoring in polymer composites

Predictive maintenance

Continuous monitoring through IoT sensors enables the early detection of
potential failures in polymer composites. This proactive approach is crucial in industries
such as aerospace and automotive, where material integrity is paramount for safety
(Ranasinghe et al. 2022). By identifying signs of wear or stress before they lead to
catastrophic failures, manufacturers can schedule maintenance more effectively,
minimizing downtime and reducing the risk of accidents.

Enhanced design and development

Real-time data feedback from IoT sensors aids engineers and researchers in
refining material formulations and processing techniques. This allows for more precise
tailoring of material properties to meet specific application needs, leading to the
development of high-performance composites that can better withstand the demands of
their intended use (Vasoya 2023; Parekh and Mitchell 2024). For instance, real-time
insights can inform adjustments in the mixing ratios of polymers and additives,
optimizing the final product’s mechanical and thermal properties.

Lifecycle management

By continuously monitoring the health of polymer composites throughout their
lifecycle, manufacturers can optimize maintenance schedules and improve resource
efficiency. This holistic view of material performance enables better planning for repairs
or replacements, ultimately extending the lifespan of components and reducing overall
operational costs (Roy et al. 2016; Kabashkin et al. 2024). For example, in construction,
understanding how materials perform over time can inform decisions on maintenance
interventions, preventing premature failures, and ensuring safety.

Data-driven insights

The aggregation of data from multiple sensors allows for advanced analytics and
the development of predictive models. These models can forecast material performance
under various environmental and operational conditions, enabling manufacturers to make
informed decisions about material selection, design modifications, and process
improvements (Krishnamurthi et al. 2020). This data-driven approach not only enhances
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the reliability of polymer composites but also supports continuous innovation in material
science. In summary, the integration of IoT sensors in polymer composites provides a
wealth of benefits that lead to improved safety, enhanced product performance, and
greater efficiency in manufacturing and lifecycle management. This transformative
technology is paving the way for smarter, more resilient materials capable of meeting the
evolving demands of modern industries (Aheleroft et al. 2022).

Environmental Monitoring in Real-time

Environmental sensors are essential for monitoring the conditions surrounding
polymer composites, providing critical insights into factors that can significantly
influence their performance and durability (Palanisamy et al. n.d.; Yang et al. 2017).
Various external conditions, such as humidity, temperature fluctuations, and exposure to
chemicals, can alter the properties of polymer materials. By integrating these sensors into
composite structures, manufacturers can continuously assess the environmental factors
impacting their products (Roy Choudhury 2014; Mamun and Yuce 2020; Chithra et al.
2024). The environmental monitoring is shown in Fig. 3.

-

Humidity Monitoring

Temperature
Monitoring

Chemical Exposure
Detection

Environmental
Monitoring

Timely Interventions

Design and Material
Selection Insights

Fig. 3. Real-time environmental monitoring

Humidity monitoring

One key role of environmental sensors is to measure humidity levels, which are
crucial for understanding moisture absorption in polymer composites. High humidity can
lead to hydrolysis, weakening the polymer matrix and compromising its mechanical
strength. Continuous humidity monitoring enables manufacturers to detect rising
moisture levels and take preventive measures (Barreira-Pinto et al. 2023). This could
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include applying moisture barriers or using desiccants in storage areas to reduce
exposure. By managing humidity effectively, manufacturers can prolong the life of the
composites and ensure consistent performance under varying environmental conditions.

Temperature monitoring

Environmental sensors also track temperature extremes, which can cause thermal
expansion or contraction in polymer composites. These fluctuations can lead to stress
fractures or warping, significantly impacting the material's structural integrity. By
monitoring temperature in real time, manufacturers can identify potential risks associated
with thermal cycling. This information allows for better design choices and the
implementation of thermal protection strategies, such as insulation or temperature control
systems. Ultimately, effective temperature management enhances the reliability and
longevity of composite materials in demanding applications (Cai et al. 2022; Yang et al.
2023).

Chemical exposure detection

Exposure to chemicals is a significant concern in many industries that utilize
polymer composites. Environmental sensors can detect harmful substances or corrosive
agents that may degrade the composite over time. This capability is particularly important
in sectors like construction and manufacturing, where materials may be exposed to
solvents, acids, or other reactive compounds (Al-Okby et al. 2021). By monitoring
chemical exposure continuously, manufacturers can implement protective measures, such
as selecting more resistant materials or applying protective coatings. This proactive
approach minimizes the risk of degradation and ensures that the composites maintain
their intended properties.

Timely interventions

Real-time monitoring facilitated by environmental sensors allows for timely
interventions to address potential issues before they escalate. For example, if sensor data
indicates that humidity levels are rising to a threshold that could lead to degradation,
manufacturers can take proactive measures, such as adjusting ventilation systems or
applying protective coatings, to mitigate potential damage. This not only helps maintain
the integrity of the materials but also extends their lifespan, resulting in cost savings, and
enhanced performance (Alrashdi and Alqazzaz 2024; Bhardwaj and Joshi 2024).

Design and material selection insights

Furthermore, the insights gained from environmental monitoring can inform the
design and selection of materials that are better suited for specific applications.
Understanding how different environmental conditions affect material behavior enables
engineers to make informed decisions regarding composite formulations. By selecting
polymers that exhibit greater resistance to humidity, temperature fluctuations, or
chemical exposure, manufacturers can enhance the durability and reliability of their
products (Kangishwar et al. 2023). This knowledge ultimately leads to more robust
designs that can withstand the rigors of real-world applications. In summary,
environmental sensors play a pivotal role in monitoring the conditions affecting polymer
composites. Through humidity, temperature, and chemical exposure monitoring,
manufacturers can ensure material integrity and make informed decisions that enhance
the performance and longevity of their products (Liang 2021; Pajic et al. 2024).
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loT-Enabled Polymer Composites: Technologies and Applications

The integration of Internet of Things (IoT) technologies into polymer composites
represents a significant leap in materials science and engineering. [oT sensors embedded
within composites enable real-time monitoring of critical parameters, offering
unprecedented insights into their performance and behavior under various environmental
and mechanical conditions (Davim 2017).

Technologies in polymer composites

Modern IoT sensors are miniaturized devices capable of detecting a variety of
parameters such as temperature, strain, stress, humidity, vibration, and environmental
exposure. These sensors can be embedded directly into polymer matrices or surface-
mounted, enabling seamless data collection without compromising material integrity. The
choice of sensors depends on the targeted application and the operational environment.
For example, fiber optic sensors are commonly used for strain monitoring due to their
high sensitivity and durability, while capacitive and resistive sensors are employed for
moisture and temperature sensing (Solanki ef al. 2019).

Wireless technologies, such as Bluetooth Low Energy (BLE), ZigBee,
LoRaWAN, and emerging 5G networks, facilitate the transmission of collected data to
cloud-based platforms for further analysis. These protocols are selected based on required
data rates, range, power consumption, and environmental constraints. For instance, BLE
and ZigBee are favored in localized environments due to their low energy consumption
and moderate range, while LoORaWAN and cellular networks are suitable for long-range
data transmission in infrastructure and remote monitoring applications (Davim 2024a).

Current industrial applications

The integration of Internet of Things (IoT) technologies into polymer composites
has gained considerable traction across various industrial sectors, enabling enhanced
performance monitoring, predictive maintenance, and improved safety (Davim 2025b).

Aerospace

In aerospace, loT-enabled polymer composites are extensively used for structural
health monitoring of critical airframe components such as wings, fuselage sections, and
control surfaces. Embedded sensors continuously track parameters including strain,
temperature, and vibration, enabling early detection of issues such as micro-cracks,
delamination, or impact damage. This real-time monitoring helps prevent catastrophic
failures, reduces maintenance costs, and extends the service life of aircraft components.
The data collected also supports the development of digital twins, virtual replicas of
physical structures, that allow engineers to simulate various flight scenarios and predict
material behavior under different stress conditions.

Automotive

Within the automotive industry, IoT sensors integrated into polymer composites
monitor body panels, chassis components, and under-the-hood parts exposed to harsh
mechanical and thermal conditions. These sensors enable continuous assessment of
fatigue, wear, and thermal cycling effects on composite materials. This leads to enhanced
vehicle safety, better quality control during manufacturing, and proactive maintenance
scheduling. Moreover, the data generated facilitates optimization of composite design for
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weight reduction and fuel efficiency, aligning with industry trends toward electrification
and sustainability.

Infrastructure and Civil Engineering

IoT-enabled composites are increasingly utilized in infrastructure applications,
including bridges, pipelines, and wind turbine blades. Sensors embedded within these
structures monitor stress accumulation, corrosion, temperature fluctuations, and
environmental exposure in real time. Early detection of structural fatigue or
environmental degradation allows timely repairs, reducing the risk of catastrophic
failures and costly downtime. This continuous health monitoring supports asset
management strategies, improving the longevity and safety of critical infrastructure while
reducing maintenance expenditures.

Energy Sector

In renewable energy systems, polymer composites equipped with IoT sensors are
deployed in wind turbine blades and solar panel components. These sensors monitor
operational parameters such as strain, temperature, and vibration to optimize performance
and facilitate predictive maintenance. Continuous condition monitoring helps identify
potential failures before they occur, enhancing reliability and reducing operational costs.
Data-driven insights also support design improvements to increase energy capture
efficiency and material durability, contributing to the overall sustainability of energy
infrastructure.

Targeted Material
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Fig. 4. Real time monitoring innovation in product development

Innovation in Product Development
The integration of IoT sensors in polymer composites is driving significant
innovation in product development (Moinudeen et al. 2017). By providing real-time
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feedback on material performance during actual use, these sensors enable researchers and
engineers to gain valuable insights that can inform design improvements and the creation
of advanced materials (Manickaraj et al. 2024c; Mohankumar et al. 2024). This
capability fosters a more agile approach to product development, allowing for rapid
iterations, and enhancements based on empirical data. Figure 4 shows real-time
monitoring in the innovation of product development.

Real-time performance feedback

Real-time performance feedback from IoT sensors allows manufacturers to
monitor how polymer composites behave under various operational conditions (Al
Mamun and Yuce 2019). For example, sensors can track mechanical properties,
temperature variations, and environmental exposure during the lifecycle of the product.
This continuous stream of data helps identify specific weaknesses or failure points,
allowing engineers to make informed adjustments. By understanding the actual
performance of materials in real-world scenarios, researchers can refine their designs and
formulations to optimize durability and functionality, ensuring that products meet or
exceed industry standards (Manickaraj et al. 2023).

Targeted material modifications

With detailed insights into material behavior, targeted modifications can be
implemented to enhance the performance of polymer composites. If a particular
composite consistently underperforms in specific environmental conditions—such as
high humidity or exposure to chemicals—engineers can analyze sensor data to pinpoint
the root causes of the issue (Jain ef al. 2020). This information can lead to targeted
changes in the composite formulation, such as adjusting the ratios of polymers and
additives or selecting more resistant materials. Such modifications not only improve the
material's performance but also ensure that it meets the unique demands of its intended
application.

Accelerated research and development

The integration of IoT sensors also accelerates the research and development
(R&D) process. By providing instant feedback on material performance, engineers can
quickly evaluate the effectiveness of different formulations and processing techniques.
This rapid prototyping and testing process shortens development cycles, allowing
companies to bring innovative products to market faster (Cooper 2021). The ability to
iterate based on real-time data reduces the reliance on time-consuming traditional testing
methods, enabling a more dynamic and responsive approach to product development.

Customization and tailoring of properties

IoT sensors facilitate the customization of polymer composites to meet specific
application needs. With the ability to monitor performance in real time, manufacturers
can tailor the properties of composites based on their intended use (Gogineni et al. 2022;
Hammad et al. 2023). For instance, in the automotive industry, sensors can help develop
lightweight composites that maintain high strength while improving fuel efficiency.
Similarly, in the medical field, composites can be engineered for biocompatibility and
mechanical properties that suit specific surgical applications. This level of customization
leads to innovative products that are better aligned with the demands of wvarious
industries.
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Sustainable material development

Moreover, the insights gained from IoT-enabled monitoring contribute to the
development of more sustainable materials. By understanding how polymer composites
respond to environmental factors, manufacturers can optimize formulations to reduce
waste and improve recyclability (Palanisamy ef al. 2023; Palaniappan et al. 2024b;
Yousaf et al. 2024). For instance, sensors can help identify the most effective ways to
incorporate recycled materials without compromising performance. This focus on
sustainability not only meets regulatory requirements but also addresses consumer
demand for environmentally friendly products. In conclusion, the integration of IoT
sensors in polymer composites is revolutionizing product development. Through real-
time performance feedback, targeted modifications, accelerated R&D, customization, and
sustainable practices, manufacturers can create advanced materials that meet the evolving
needs of various industries (Davis et al. 2012; Ninduwezuor-Ehiobu et al. 2023). This
innovation not only enhances product quality but also drives competitiveness in the
market, positioning companies for future success.

Data Management and Analytics in loT-Integrated Composites

The real-time data generated by IoT sensors embedded in polymer composites
needs to be effectively managed, transmitted, and analyzed to derive actionable insights.
This section discusses the data lifecycle from acquisition to advanced analytics (Davim
2025a).

Data acquisition, transmission, and cloud-based storage

IoT sensors embedded in composites continuously generate streams of data
capturing the material’s response to operational stresses and environmental conditions.
Data acquisition systems (DAQs) are designed to collect, preprocess, and digitize sensor
signals. Modern DAQs integrate seamlessly with loT networks, supporting wireless data
transmission to edge devices or cloud servers for centralized storage (Davim 2024b).
Cloud-based storage solutions provide scalable and secure repositories for vast amounts
of sensor data. These platforms enable long-term data retention, access control, and
integration with advanced analytics tools. Edge computing is also emerging as a solution
to preprocess data near the source, reducing bandwidth requirements and latency in
critical applications (Pervez et al. 2024).

Use of machine learning (ML) and digital twins for performance prediction

Machine Learning (ML) algorithms play a pivotal role in extracting insights from
large datasets generated by loT-enabled composites. ML models can identify hidden
patterns and correlations between sensor signals and material degradation or failure
modes, enabling predictive maintenance and early intervention. Supervised learning
approaches such as neural networks and decision trees are commonly used to predict
composite behavior under various scenarios, while unsupervised learning techniques aid
in anomaly detection and clustering of performance data (Rai et al. 2024).

Digital twins—uvirtual replicas of physical composites—are constructed using
real-time sensor data and historical performance records. These digital models simulate
the behavior of composite structures under diverse conditions, enabling rapid design
optimization, failure analysis, and operational troubleshooting. Engineers can test
hypothetical changes or new design configurations within the digital twin environment,
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significantly accelerating the development cycle and enhancing performance reliability
(Song et al. 2019).

Challenges in data security and interoperability

The vast and sensitive data generated by loT-enabled composites necessitate
robust cybersecurity measures to prevent unauthorized access and data breaches.
Encryption protocols, secure authentication mechanisms, and blockchain technologies are
increasingly applied to safeguard data integrity and confidentiality (Zhuang ef al. 2023).

Interoperability remains a challenge due to the diversity of sensors,
communication protocols, and data formats used across different manufacturers and
applications. The development of standardized interfaces and data exchange protocols is
essential to enable seamless integration of IoT systems within existing composite
manufacturing and monitoring infrastructures. Standardization efforts, such as those led
by industry consortia and international organizations, are crucial to ensuring system
compatibility, scalability, and long-term sustainability (Santhosh et al. 2020).

Challenges and Limitations of loT Integration in Polymer Composites

While the integration of Internet of Things (IoT) technologies into polymer
composites offers promising benefits, it also raises several critical challenges and
limitations that warrant careful consideration.

Security and privacy risks

Embedding IoT sensors into composites introduces vulnerabilities that could be
exploited by hackers or unauthorized entities. These security breaches may compromise
sensitive data or even control over structural components, posing risks particularly in
critical sectors such as aerospace and infrastructure (Smith et al. 2021; Kumar and Singh
2023). Ensuring robust cybersecurity measures and encryption protocols is essential to
mitigate these threats.

Increased costs and economic considerations

The addition of sensors, wireless communication modules, and associated data
management infrastructure inevitably increases the production cost of composites. These
expenses are likely to be passed on to end users, potentially limiting the adoption of IoT-
enabled composites in cost-sensitive markets (Johnson and Lee 2022). Additionally,
maintenance and replacement of IoT components add to lifecycle costs.

Questionable immediate benefits for end users

Although IoT integration promises long-term advantages through predictive
maintenance and enhanced performance monitoring, the tangible benefits for owners and
operators may be limited in the short term. For many applications, especially where
failure risks are low or routine maintenance is sufficient, the value proposition may not
justify the added complexity and cost (Garcia et al. 2022).

Electromagnetic interference and system compatibility

IoT devices emit electronic signals that could interfere with other communication
or electronic systems within households or industrial environments. This electromagnetic
interference (EMI) can affect the performance of nearby devices, necessitating rigorous
testing and compliance with EMI standards (Wang et al. 2020).
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In summary, while IoT integration enhances polymer composite capabilities,
these challenges must be addressed through ongoing research and development. A
balanced approach that weighs benefits against costs and risks will be crucial for
widespread acceptance and success.

Potential Overestimation of loT Benefits: The “Echo-Chamber” Effect and
Trend-Driven Hype

The Internet of Things (IoT) has captured significant attention in the realm of
polymer composites due to promises of real-time monitoring, predictive maintenance,
and enhanced performance. However, it 1s essential to recognize the potential
overestimation of IoT’s benefits, driven by the “echo-chamber” effect and the desire to
stay trendy. The echo-chamber effect amplifies positive narratives within closed groups,
often overlooking critical challenges such as sensor durability, power constraints, and
cybersecurity risks. Meanwhile, the urge to align with emerging technologies such as Al
and Industry 4.0 leads researchers and organizations to emphasize IoT’s potential benefits
while downplaying practical limitations. This selective focus creates a distorted
perception of IoT’s readiness and effectiveness, with a risk of inflating expectations
beyond what current evidence supports. Addressing these dynamics is crucial to
maintaining a balanced perspective, ensuring that [oT’s integration into polymer
composites is both evidence-based and realistically assessed.

Impact on research and industry
The echo-chamber effect and trend-driven hype can influence various aspects of
research and industry related to loT-enabled polymer composites:

1. Research Priorities: Funding agencies and academic institutions might prioritize
projects aligned with IoT integration, sometimes at the expense of foundational
research addressing core challenges such as sensor reliability, material
compatibility, and data security. This could slow the development of necessary
supporting technologies.

2. Technology Deployment: Industries eager to capitalize on IoT may invest
prematurely in integration efforts that lack robust validation, leading to costly
failures or suboptimal products. Without clear standards and guidelines,
inconsistent implementations can reduce user confidence.

3. User Expectations: End-users, whether manufacturers, engineers, or consumers,
may expect immediate and significant improvements from IoT-enabled
composites. When these expectations are not met due to practical limitations or
delays in technology maturation, dissatisfaction and skepticism can increase.

4. Policy and Regulation: Policymakers and regulators might struggle to keep pace
with the technology, making it difficult to develop effective safety, privacy, and
interoperability standards. An environment dominated by hype can obscure the
need for careful oversight.
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Balancing optimism with realism

Recognizing the potential for overestimation does not imply rejecting the value of
IoT in polymer composites. Instead, it calls for a more balanced, critical approach that
openly discusses both benefits and limitations. A few recommendations to achieve this
balance include:

o Transparent Reporting: Researchers and developers should document and
publish not only successes but also challenges, failures, and lessons learned. This
openness fosters more realistic expectations and helps the community address
problems collectively.

e Critical Review and Meta-Analysis: Systematic reviews and meta-analyses that
objectively evaluate the current state of IoT applications in composites can
provide more nuanced insights, highlighting where IoT truly adds value and
where its impact remains limited.

o Engagement of Diverse Stakeholders: Including perspectives from end-users,
policymakers, cybersecurity experts, and ethicists can enrich discussions and
highlight practical concerns that might otherwise be overlooked in technology-
centric narratives.

e Phased and Evidence-Based Deployment: Encouraging incremental adoption
and rigorous testing in real-world settings ensures that [oT implementations are
proven effective before wide-scale rollouts, reducing the risk of disillusionment.

e Awareness of Sociotechnical Dynamics: Acknowledging that technological
adoption is influenced by social, economic, and cultural factors helps temper the
drive to “jump on the bandwagon” and fosters more thoughtful innovation
strategies.

CONCLUSIONS AND PERSPECTIVES

Integrating IoT sensors and wireless communication technology into polymer
composites enables real-time monitoring and predictive maintenance, representing a
major advancement in materials science and engineering. IoT-enabled polymer
composites incorporate diverse sensors such as temperature, strain, and humidity sensors,
alongside various communication protocols, to capture critical data that improve
performance, quality control, safety, and sustainability. These technologies find wide
application in sectors including aerospace, automotive, infrastructure, and energy, where
continuous monitoring of environmental and mechanical conditions is essential.
Predictive maintenance supported by IoT helps optimize service schedules and reduce
failure risks, but the full benefits depend on establishing standardized methods for
integrating multiple sensor systems and ensuring interoperability through uniform
protocols and interfaces. Additionally, the massive data generated requires sophisticated
data management and analytics techniques. Cloud-based storage, combined with machine
learning and digital twin technologies, enables efficient data processing, performance
prediction, and rapid troubleshooting, empowering manufacturers and engineers to make
data-driven decisions. This leads to optimized composite formulations and manufacturing
processes that reduce waste and improve recyclability. Real-time monitoring of key
parameters supports a better understanding of material behavior, proactive prevention of
deterioration, accelerated product development, and tailored design improvements.
Overall, the integration of IoT technologies, polymer composites, and advanced analytics
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is transforming material development by creating smarter, more resilient, and sustainable
products that meet the evolving demands of modern industries and pave the way for
future innovations.
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