
# γ-Aminobutyric Acid and Zeolite as Natural Treatments to Maintain the Fruit Quality, Storability, and Shelf Life in Apricot

Abdullah Alebidi , Alebidi

\*Corresponding authors: mmarzouk1@ksu.edu.sa

DOI: 10.15376/biores.20.3.7330-7357

#### GRAPHICAL ABSTRACT



# y-Aminobutyric Acid and Zeolite as Natural Treatments to Maintain the Fruit Quality, Storability, and Shelf Life in **Apricot**

Abdullah Alebidi , Hayam M. Elmenofy , Mahmoud Abdel-Sattar , Abdullah Alebidi Mahmoud G. Abd El-Gawad, b Hatem R. M. Kotb, Hail Z. Rihan , Hoda Galal , e and Abdel-Moety Salama (D,f

The global trend promotes using natural and eco-friendly materials to improve fruit quality and storability. This study was carried out to examine the impact of pre-harvest spraying of y-aminobutyric acid (GABA) at 1.0 and 2.0 mmol/L, and post-harvest zeolite dipping (3% and 6% levels), on the quality of apricot fruits stored at 0±1 °C and 90-95% relative humidity. The results indicated that different levels of GABA and zeolite treatments significantly reduced the respiration rate, decay percentage, and fruit weight loss of stored apricots. Moreover, all experimental treatments notably slowed down the changes in fruit firmness, total soluble solid content, total sugars, total acidity, total phenols, and ascorbic acid, compared to the control. Applying GABA and zeolite evidently decreased the activities of pectin methylesterase and polyphenol oxidase enzymes. On the other hand, they increased the peroxidase activity compared to the control treatment for both seasons. Moreover, the application of zeolite and GABA at a concentration of 6% and 2 mmol/L, respectively, are recommended to enhance the storability and extend the shelf life of 'Canino' apricot fruits and preserve their quality. This study contributes to the Sustainable Development aims by reducing postharvest losses, food waste, and increasing marketability, as well as supporting food security by conserving resources and increasing marketing income.

DOI: 10.15376/biores.20.3.7330-7357

Keywords: Antioxidative capacity; Chemical characteristics; Enzyme activity, Fruit decay; GABA; Preharvest; Postharvest; Physical characteristics; Respiration rate

Contact information: a: Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, the Kingdom of Saudi Arabia; b: Fruit Handling Res. Dept. Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt; c: Deciduous Fruit Department, Horticulture Research Institute- Agriculture Research Center, Giza 12619, Egypt; d: School of Biological and Marine Sciences/Plymouth, University of Plymouth PL4 8AA/UK; e: Pomology, Environmental Studies and Research Institute, University of Sadat City, Menofia Governorate, Sadat City 32897, Egypt; f: Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; \*Corresponding authors: mmarzouk1@ksu.edu.sa

## INTRODUCTION

Apricot (Prunus armeniaca L.) is one of the popular diploid stone fruit trees (Rodríguez-Robles et al. 2024). Apricots originated in China and Central Asia belonging to the Rosaceae family and have been cultivated in China since 2000 BC (Yuan et al. 2007). The apricot is a significant fruit crop that gradually made its way into the Mediterranean where it shows impressive resilience to varied environmental circumstances (Milošević and Milošević 2023). The plants thrive in humid areas in northern Egypt (RodríguezRobles et al. 2024), and the 'Canino' cultivar of apricots holds particular importance in the newly reclaimed fields of Egypt. Apricots are categorized as climacteric fruits with relatively high respiration rates and short postharvest life (Muzzaffar et al. 2018). Apricot fruit has a crucial role in disease prevention and health maintenance due to its nutritional and functional properties, as it is abundant in nutrients and substances that are biologically active (Al-Soufi et al. 2022).

Excessive softening, rapid deterioration, and high susceptibility to spoilage are the primary factors limiting the postharvest life of apricot fruits (Ali et al. 2020). This results in a restricted market handling period and limits their commercial significance (Opara and Ogra 2024). Consequently, various pre- and post-harvest treatments have been employed to prolong the shelf life of apricot fruits, maintain their quality, and reduce losses during storage or marketing by influencing fruit physiology, ripening, and senescence processes. These treatments include cold storage (Aglar et al. 2017), storage at near-freezing temperatures (Fan et al. 2018), coating (Ghasemnezhad et al. 2010), as well as chemical and natural treatments (Pan et al. 2016; Abd El-Gawad and El-Moghazy 2018; Elmenofy et al. 2021). The use of natural remedies is especially important, not just in nations where there is widespread public concern about chemical inputs, but also because of their vital role in environmental conservation and sustainable agricultural approaches (Abdel-Sattar et al. 2025). The need to focus on sustainable methods to preserve nutritional, textural, and sensory properties in an environmentally friendly manner compared to traditional preservation methods has increased, along with progress in extending the shelf life of food products more sustainably (Malik et al. 2025). Therefore, there is a need to discover natural, non-toxic, readily available, and cost-effective products to extend the shelf life, maintain quality, and preserve the nutritional value of stored fruits. Hence, γ-aminobutyric acid (GABA) has been proposed as a natural treatment by some researchers (Shang et al. 2011; Yu et al. 2014; Solimani-Aghdam et al. 2016a; Badiche-El Hilali et al. 2023; Badiche et al. 2023; Carrión-Antolí et al. 2024; Ruiz-Aracil et al. 2024a; Zhang et al. 2024; Barakat and Aljutaily 2025) and zeolite as natural treatments by de Bruijn et al. (2019) and Kim et al. (2022).

γ-Aminobutyric acid (GABA) is a water-soluble non-protein amino acid composed of four carbon atoms and an amino group on the γ-carbon (Dietzen 2018). It is ubiquitously present in bacteria, plants, and animals. Although the GABA content in plant tissue is typically low, ranging between 0.03 and 2 µmol/g of fresh weight (Ramos-Ruiz et al. 2018), it has been identified to impart anti-stress properties. GABA can rapidly accumulate in plants when exposed to adverse biotic and abiotic conditions such as heat, chilling, salinity, drought, ultraviolet radiation, low oxygen levels, and infections (Yang et al. 2011; Wang et al. 2014). Additionally, GABA has been associated with various physiological functions, including pH modulation, plant development, and nitrogen storage (Yu et al. 2015; Barakat and Aljutaily 2025). Consequently, GABA has found widespread application in horticultural crops to mitigate chilling injury and oxidative damage, as well as to enhance resistance against pathogens (Shang et al. 2011; Yu et al. 2014; Badiche-El Hilali et al. 2023). The application of GABA distinctly suppressed respiratory rate and decreased titratable acidity, and ethylene release in Golden Delicious apples (Li et al. 2021), furthermore enhancing resistance to pathogens decay in pear fruit (*Pyrus pyrifolia* Nakai. cultivar "Shuijing") by increasing enzyme activity, including  $\beta$ -1,3-glucanase, peroxidase, phenylalanine ammonia-lyase, chitinase, and polyphenol oxidase compared to the control (Yu et al. 2014). Moreover, the application of GABA preserved the quality of peach fruits during cold storage, maintaining firmness, and enhancing antioxidant capacity by

increasing levels of ascorbic acid, total phenols, and flavonoids, as well as improving DPPH scavenging ability (Solimani-Aghdam et al. 2018a).

Zeolites are crystalline aluminosilicates with a tetrahedral structure composed of SiO4 and AlO4 units, linked by sharing all their oxygen atoms (Constantinescu-Aruxandei et al. 2020). It is one of the safest natural silicate minerals, characterized by its high adsorption and ion exchange capacities (Wang and Peng 2010). Zeolites have a large surface area and cation exchange capacity, allowing them to act as ethylene scavengers and reduce ethylene production (de Bruijn et al. 2019; Kumar et al. 2024). By adsorbing ethylene gas, zeolites can slow down the ripening process, delay the respiration peak, and consequently extend the shelf life of stored fruits (Alonso-Salinas et al. 2024). The Food and Drug Administration in the USA has approved zeolites for use as food-contact polymers. Additionally, in 2005, the European Food Safety Agency authorized the use of two zeolites containing Ag ions on surfaces that come into contact with food (Llorens et al. 2012). Thus, zeolites offer a promising and natural approach to extending the shelf life of fruits.

The goal of this work was to study sustainable methods to preserve nutritional, textural, and sensory properties in an environmentally friendly manner and thereby to improve fruit quality and storability. According to the literature search, this is the first thorough study to examine the impact of two natural and eco-friendly alternative materials on various quality parameters of 'Canino' apricot fruits during cold storage. These alternatives included preharvest spraying with  $\gamma$ -aminobutyric acid (GABA) at two concentrations (1.0 and 2.0 mmol/L) and postharvest dipping with zeolite at 3% and 6% levels. Hence, this methodology provides new insights into the precise approach to preand post-harvest usages of zeolite and  $\gamma$ -aminobutyric acid and their effects on fruit quality and storage ability.

## **EXPERIMENTAL**

# **Experimental Site and Plant Materials**

This experiment was performed using 10-year-old apricot cv. 'Canino' (*Prunus armeniaca* L.) grafted onto a local apricot rootstock during the 2022 and 2023 seasons in a private orchard at the El-Nubaria region of the El-Behira governorate in Egypt. The trees were grown in sandy soil with a spacing of  $3.5 \times 4$  m and subjected to standard agricultural procedures. It received irrigation and fertilization using a fertigation system. Twenty similar trees, with the same vigor, good health, and no infections, were chosen for this investigation, which consisted of five treatments. One tree was selected as a unit of replication, for a total of four replicates per treatment.

# **Experimental Designated Treatments**

The experiment was divided into three groups: the first one, a total of eight trees were sprayed by GABA (Loba Chemie Pvt. Ltd., India) at concentrations of 1.0 mmol/L and 2.0 mmol/L (four trees for each concentration). The second group, a total of four trees (the control), was sprayed with water. The third group, a total of eight trees, received only postharvest treatments. In both experimental seasons, Apricot cv. 'Canino' fruits were harvested in the second week of June once they had reached the maturity stage, which is characterized by a yellowish-green color, as described by Dragovic-Uzelac *et al.* (2007). The fruits were promptly taken to the laboratory and meticulously sorted to a uniform size,

eliminating any substandard fruits, such as those that were damaged or had other imperfections. The fruits from each treatment were subjected to a two-minute immersion in a water solution containing 0.01% sodium hypochlorite, then dried at room temperature. The fruits of the third group were then submerged for 2 min in a solution of natural zeolite, particle size of <50  $\mu$ m (Biotraxx, Purple Oak Ltd., Germany) at 3% or 6% concentrations containing polysorbate 80 (Tween-80) at a concentration of 0.05% (v/v). However, fruits from group one and two submerged in solution containing the polysorbate 80 at a concentration of 0.05% (v/v) only. Then, all fruits were allowed to dry at ambient temperature for about half an hour. Subsequently, all treated fruits were stored in cold storage at 0±1 °C and 90% to 95% RH for 30 days, as presented in the flowchart (Fig. 1), to evaluate their effect on fruit quality during storage.

For each treatment, fruits were immediately and carefully arranged in nine-carton boxes ( $30\times40\times20$  cm), each box holding 2 kg of fruits. The nine boxes were labelled: three for decay assessment, three for weight loss measurement, and the remaining three for evaluating fruit quality characteristics at 10-day intervals during the storage periods. The boxes containing all treatments were stored at  $0\pm1$  °C and a relative humidity (RH) of 90% to 95%.

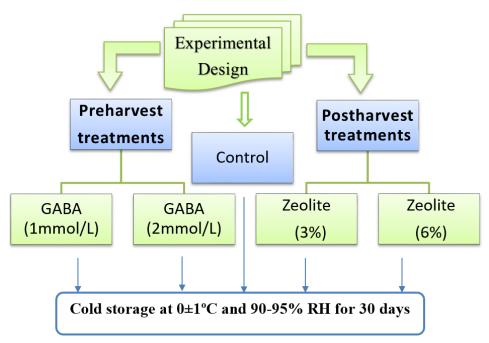



Fig. 1. Flowchart for the experimental design

#### **Measurement of Fruit Characteristics**

The respiration rate was determined as mL CO<sub>2</sub>/kg/h, according to Lurie and Pesis (1992). For each replicate in each treatment, six fruits were weighed and placed in a 2-liter jar at room temperature (23±1 °C). The jar was tightly closed for three hours using a cap and a rubber septum. A syringe was used to obtain air samples from the jar through the cap. These samples were subsequently inserted into a Servomex Inst. to find out how much CO<sub>2</sub> is generated, a Food Pack Gas Analyzer Model 1450C was used. The respiration rate was assessed on the day of harvest and at ten-day intervals during the cold storage period. The assessment of all fruit quality characteristics and enzyme activities was conducted on

the picking day after the fruits were prepared for storage and subsequently every ten days during storage as outlined below.

# Fruit physical characteristics

By calculating the weight loss (%), decay (%), and fruit firmness (Ib/inch²), the physical characteristics of the fruit were assessed. The percentage of disordered fruits, encompassing all ruined fruits due to rot, fungi, bacteria, and pathogens, was assessed, and the decay percentage was determined using the following formula:

Decay (%) = 
$$\frac{\text{Number of decayed fruit}}{\text{Total Number of fruit at beginning of storage}} \times 100$$
 (1)

The weight of the fruits was measured at the beginning of storage and every ten days during the cold storage period. The amount of weight lost was then computed using the following Eq. 2:

Weight loss (%) = 
$$\frac{\text{Weight loss value at the sampling date}}{\text{initial apricot weight}} \times 100$$
 (2)

A random sample of 15 fruits from each group per replication was selected to determine the firmness. The hand Magness Taylor pressure tester (Lutron Electronic, Taipei, Taiwan) with a 6 mm (Ib/inch²), was used to measure the firmness on the two opposed sides of flesh apricot fruit samples.

#### Fruit chemical characteristics

Each apricot fruit was squeezed individually to get its fresh juice to determine the chemical properties of the fruit. The soluble solids content (TSS) was measured in 5 mL of apricot juice filtrate using a digital refractometer (Milwaukee, model MA871, Milano, Italy). Following the AOAC method (2019), 5 mL of juice was titrated with 0.1N sodium hydroxide, and phenolphthalein was used as an indicator to find the total acidity (TA), which was expressed as a percentage of malic acid. The total sugar content was determined in one g of fresh samples using the phenol-sulfuric acid method (Dubois et al. 1956). A titration was conducted to determine the concentration of L- ascorbic acid (vitamin C) in 5.0 g of apricot pericarp using a 2,6 -dichlorophenolindophenol (DCPIP) method (Shang et al. 2011). The concentration was therefore calculated as mg of ascorbic acid per 100 g of fresh weight (mg/ 100 g FW). To determine total phenols (mg/g FW), one gram of fresh apricot samples underwent the Folin-Ciocalteu colorimetric method (Lester et al. 2012). Using a double beam UV/visible spectrophotometer (Libra S80 PC, Biochrome Ltd., Cambridge, UK), the absorbance at 765 nm was used to measure the total phenols. A standard curve derived from p-hydroxybenzoic acid was employed to quantify the concentration of phenols as mg/g fresh weight.

# **Determination of Enzyme Activities**

Peroxidase (POD) and polyphenol oxidase (PPO) activity were estimated for apricot fruits. Fifty grams of fruits were homogenized with 0.1 M sodium phosphate buffer pH 7.0 in ice-cold at 4 °C, then centrifugated at 11200 g for 10 min at 4 °C, the clear supernatant was used for enzyme assay. Peroxidase (POD) activity was estimated according to Abdel-Sattar *et al.* (2023) with some modifications. A reaction mixture comprising 0.5 mL of enzyme extract, 0.2 mL of pyrogallol, 0.1 mL of hydrogen peroxide

(1% v/v), and 2.2 mL of phosphate buffer (0.1 M, pH 6.0) was used. In the blank cuvette, distilled water was used in place of hydrogen peroxide. One unit of POD was defined as producing 1.0 mg of purpurogallin from pyrogallol in 20 s at pH 6.0 and 20 °C. At 420 nm, the purpurogallin's absorbance was measured. With some modifications, the polyphenol oxidase (PPO) activity was measured using Abdel-Sattar et al. (2023) methodology. A reaction mixture comprising 0.2 mL of 0.001 M catechol, 2.3 mL of potassium phosphate buffer (0.1 M, pH 6.8), and 0.1 mL of enzyme extract was used to measure the activity of polyphenol oxidase (PPO). The activity was evaluated spectrophotometrically at 15-s intervals, as variations in absorbance occurred at 495 nm. The amount of enzyme that induced a 0.001 absorbance increase at 495 nm in 1.0 min was defined as one unit of PPO activity. Regarding pectin methylesterase (PME), it was estimated according to Anthon and Barrett (2006), based on 50 g of fruit in an equal amount of the solution of (50% 2 M NaCl and 50% 10 mM phosphate buffer with pH (7.5). The samples were filtrated and then added to 2.5 mL of 0.5% pectin solutions. The pH of the solution was adjusted to 7.5 by adding 0.1M NaOH. The PME activity was measured in umol of hydrophilic ester per 50 g of fresh fruit over one minute (µmol.g<sup>-1</sup> FW.min<sup>-1</sup>).

# Statistical analysis

The design of the experiment was completely randomized (Gomez and Gomez 1984) as a factorial experiment with two factors. The first factor included five treatments, namely GABA at concentrations of 1.0 mmol/L and 2.0 mmol/L, zeolite at concentrations of 3% and 6%, and a control group. The second factor included four storage periods (0, 10, 20, and 30 days of storage). The analysis of variance (ANOVA) and Duncan's multiple range tests at a significance level of  $P \le 0.05$  were performed using SPSS software version 16, 2007 (SPSS, Inc., Chicago, IL, USA).

#### **RESULTS AND DISCUSSION**

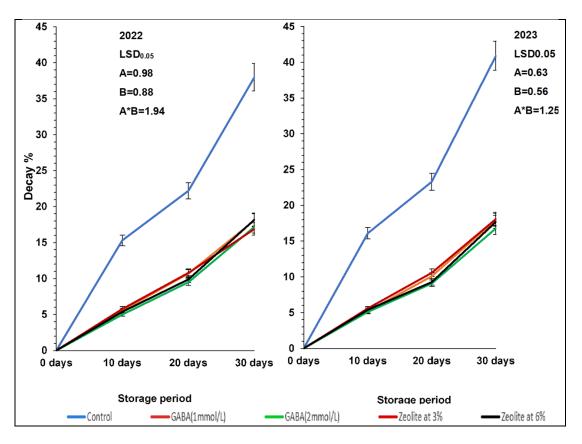
The effect of preharvest  $\gamma$ -aminobutyric acid (GABA) spraying at two concentrations (1.0 and 2.0 mmol/L) and postharvest zeolite immersion at 3% and 6% was investigated for 'Canino' apricots during storage at 0±1 °C and 90% to 95% RH. The data from the 2022 and 2023 seasons indicated that all studied treatments prolonged apricot storage life by up to 30 days. In contrast, untreated fruits (control) exhibited shrinkage and loss of their fresh appearance after only 20 days of storage.

# The Respiration Rate of Stored Apricot Fruits

The respiration rate of fruits significantly impacts their postharvest life. Hence, it is vital to reduce this process to prolong the duration of storage (Valero and Serrano 2010). The data presented in Table 1 revealed that cold storage significantly and sharply decreased the respiration rate of both treated and untreated apricot fruit at the beginning of the storage period. With prolonged storage period, the respiration rate of the fruit increased gradually and reached its highest rate after 30 days of cold storage. All treatments caused a significant decrease in fruit respiration rate, compared to the control, except for GABA at 1.0 mmol/L in the second season. The lowest fruit respiration rates were recorded in the first season with treatments of 6% or 3% zeolite and 2 mmol/L GABA, with no significant differences ( $P \le 0.05$ ). In the second season, the lowest values were observed with zeolite at 6% and GABA at 2 mmol/L, followed by zeolite at 3%.

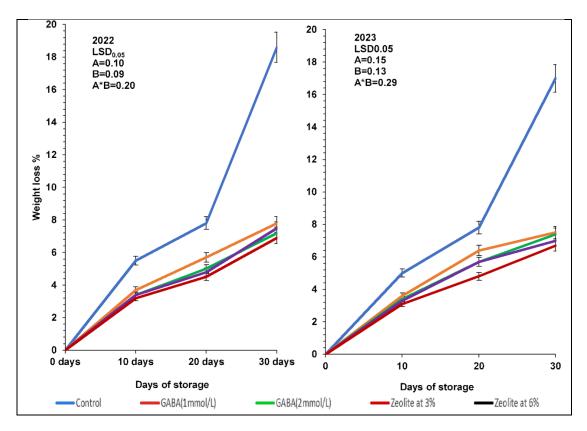
**Table 1.** Impact of Preharvest Treatment of GABA and Postharvest Treatment of Zeolite on Respiration Rate (mL CO<sub>2</sub>/kg/h) of 'Canino' Apricot Fruits\*

|                 |                        |                       | Season 2022      |                       |                        | Season 2023            |                       |           |                       |                       |  |
|-----------------|------------------------|-----------------------|------------------|-----------------------|------------------------|------------------------|-----------------------|-----------|-----------------------|-----------------------|--|
|                 |                        | Sto                   | orage Periods (I | Days)                 |                        | Storage Periods (Days) |                       |           |                       |                       |  |
| Treatments      | 0                      | 10                    | 20               | 30                    | Mean                   | 0                      | 10                    | 20        | 30                    | Mean                  |  |
| Control         | 31.70±0.2              | 3.22±0.02             | 3.85±0.1         | 4.17±0.1              | 10.7±1.2 <sup>a</sup>  | 29.07±0.3              | 3.12±0.1              | 3.58±0.1  | 3.81±0.03             | 9.9±1.22 <sup>a</sup> |  |
| GABA( 1 mmol/L) | 30.52±0.4              | 2.83±0.06             | 3.25±0.2         | 3.76±0.1              | 10.1±1.98 <sup>b</sup> | 29.79±0.2              | 2.83±0.1              | 3.19±0.1  | 3.52±0.05             | 9.8±1.68 <sup>a</sup> |  |
| GABA (2 mmol/L) | 29.60±0.6              | 2.68±0.03             | 2.83±0.1         | 3.49±0.1              | 9.6±1.70°              | 28.60±0.6              | 2.61±0.3              | 2.81±0.03 | 3.33±0.09             | 9.3±1.28 <sup>c</sup> |  |
| Zeolite at 3%   | 29.67±0.3              | 2.79±0.06             | 2.49±0.3         | 3.68±0.1              | 9.7±1.72 <sup>c</sup>  | 29.48±0.1              | 2.70±0.1              | 2.93±0.1  | 3.38±0.07             | 9.6±1.62 <sup>b</sup> |  |
| Zeolite at 6%   | 29.27±0.2              | 2.60±0.03             | 2.41±0.3         | 3.37±0.1              | 9.4±1.63°              | 28.52±0.4              | 2.53±0.1              | 2.69±0.02 | 3.09±0.07             | 9.2±1.31°             |  |
| Mean            | 30.2±0.96 <sup>a</sup> | 2.8±0.22 <sup>d</sup> | 3.0±0.58°        | 3.7±0.28 <sup>b</sup> |                        | 29.1±0.61 <sup>a</sup> | 2.8±0.22 <sup>d</sup> | 3.0±0.33° | 3.4±0.25 <sup>b</sup> |                       |  |
| LSD at 0.05     |                        | Treatments (T)        |                  |                       |                        |                        | Treatmo               | ents (T)  |                       | = 0.18                |  |
|                 |                        | Storage Periods (D)   |                  |                       |                        | Storage Periods (D)    |                       |           |                       | = 0.16                |  |
|                 |                        | Interacti             | on (T×D)         |                       | = 0.42                 |                        | = 0.36                |           |                       |                       |  |


The results from this study were in harmony with previous works, indicating that cold storage is the most efficient and secure approach to prolonging the postharvest senescence of apricots (Nguyen et al. 2016). Zeolite can adsorb gases such as ethylene and oxygen from the storage environment, leading to a reduction in respiration processes (Khosravi et al. 2015; de Bruijn et al. 2019; Hosseinnia et al. 2024). On the other hand, GABA application effectively reduced the respiration rate of peaches and apples by enhancing antioxidant enzymes, inhibiting the degradation of sugars and carbohydrates (Yang et al. 2011; Han, et al. 2018), and decreasing ethylene release (Li et al. 2021). Furthermore, higher levels of GABA are linked to the reduction of oxidative damage to cellular membranes. They can attach to negatively charged molecules in cell membranes, such as phospholipids. This attachment helps stabilize the membrane's two layers and restricts the exchange of gases (Malekzadeh et al. 2014; Zhang et al. 2024). Apricot fruit is a climacteric fruit with a relatively high respiration rate accompanied by high ethylene production during ripening (Elmenofy et al. 2021). In the 2<sup>nd</sup> season, 1 mmol/L of GABA did not significantly reduce the respiration rate, which may be explained by the fact that the lower dose of GABA was insufficient to reduce respiration.

# **Fruit Physical Characteristics**

The impact of preharvest treatment of GABA and postharvest treatment of zeolite on the decay percentage of 'Canino' apricot fruits during cold storage is presented in Fig. 2. According to data collected from both seasons, fruit decay increased with longer storage times in both seasons. The control group had the highest extent of decay (38.02% and 40.93% in 2022 and 2023, respectively), whereas all other treatments had percentages of not more than 18%. In the first season, GABA at a concentration of 2.0 mmol/L was the most efficacious treatment for preventing fruit decay. This was followed by 1.0 mmol/L GABA and zeolite at 6%. Meanwhile, GABA at a concentration of 1.0 or 2.0 mmol/L and zeolite at a concentration of 6% showed equal effectiveness in decreasing deterioration in the second season.


In this regard, prior studies have demonstrated the role of GABA in extending the storage life of fruits and enhancing their resistance against pathogens. Li *et al.* (2021) showed that GABA dipping treatments can improve the firmness of apple fruits and make them more resistant to pathogen invasion. Yu *et al.* (2014) reported that applying GABA to pear fruits stopped *Penicillium expansum* spores (blue mold rot) from germinating and prevented germ tube elongation. It also activated the expression of defense genes and enzymes that combat pathogens. In addition, GABA has a role in enhancing the activity of the phenylalanine ammonialyase enzyme (Wang *et al.* 2014), which removes ammonia from phenylalanine to produce *trans*-cinnamic acid, a precursor for the synthesis of lignins, flavonoids, and coumarins (Davidson 2009). On the other hand, the effect of zeolite on reducing decay could be attributed to its porous structure, which allows it to absorb moisture from the surrounding environment. Thus, it can be beneficial for inhibiting spoilage caused by excess moisture (de Bruijn *et al.* 2019).

The degree of inhibition was highly associated with the concentration of GABA. According to Zhu *et al.* (2022), immersing apples in a solution of GABA at 1.0 mmol/L and 2.0 mmol/L after harvesting decreased the infected zone caused by *P. expansum* infection (blue mold). GABA treatment also induced resistance against *Alternaria alternate* (Yang *et al.* 2017) and *B. cinerea* in tomato fruit (Sun *et al.* 2019).



**Fig. 2.** Impact of preharvest treatment of γ-aminobutyric acid (GABA) and postharvest treatment of zeolite on decay percentage of 'Canino' apricot fruits stored at  $0\pm1$  °C and 90% to 95% RH during the 2022 and 2023 seasons. Error bars represent the standard deviation. LSD  $_{0.05}$  (A= treatments, B= storage period, A\*B= interaction).

Climacteric fruits lose weight by losing water during respiration and transpiration. GABA and zeolite treatments significantly decreased apricot fruit weight loss compared with control in both seasons (Fig. 3). Zeolite at a concentration of 6% had superior efficacy in reducing fruit weight loss, followed by zeolite at 3% and GABA at 2.0 mmol/L. These results could be attributed to the effect of the applied treatments on reducing the respiration rate of stored apricots (Table 2). Higher respiration leads to higher weight loss as each carbon dioxide molecule created from an absorbed oxygen molecule results in the loss of a carbon atom from the fruit, which is then released into the atmosphere (de Bruijn *et al.* 2020).



**Fig. 3.** Impact of preharvest treatment of γ-aminobutyric acid (GABA) and postharvest treatment of zeolite on weight loss % of 'Canino' apricot fruits stored at  $0\pm1$  °C and 90%-95% RH during the 2022 and 2023 seasons. Error bars represent the standard deviation. LSD  $_{0.05}$  (A= treatments, B= storage period, A\*B= interaction).

GABA has also been shown to lower fruit weight loss by preserving fruit hardness (Saeedi et al. 2022), thereby protecting the cell membrane, and slowing down metabolism during storage (Solimani-Aghdam et al. 2016b; Ruiz-Aracil et al. 2024a; Zhang et al. 2024). According to Habibi et al. (2019) and Habibi et al. (2020), the effect of GABA on reducing weight loss in blood oranges depends on its concentration. These results suggest that applying zeolite or GABA could be practical in reducing the weight loss of stored apricots.

In both seasons, fruit weight loss increased significantly with prolonged storage periods compared with the initial time (Fig. 3). Weight loss commonly occurs due to water loss through evaporation, transpiration, respiratory processes, and metabolic activity (Valero and Serrano 2010). Regardless of whether fruits received any treatments or not, researchers noticed a significant increase in the amount of weight loss as the storage period progressed in different fruits, such as apricots (Davarynejad *et al.* 2013), peach (Sohail *et al.* 2015), and plum (Abd El-Gawad *et al.* 2020).

The data from Table 2 showed a notable reduction in fruit firmness as the storage duration was extended. At the end of storage periods, the control group showed the lowest levels of fruit firmness (4.49 and 4.62 lb/inch² in 2002 and 2003, respectively). Fruits treated with zeolite and GABA had higher levels of fruit firmness compared to the control group. Zeolite postharvest treatment at 3% and 6% maintained the maximum firmness for apricots during various storage periods in both seasons.

**Table 2.** Impact of Preharvest Treatment of GABA and Postharvest Treatment of Zeolite on Firmness (lb/inch²) of 'Canino' Apricot Fruits\*

|               |                       |                       | Season 2022                          |                       | Season 2023                |                                                      |                       |           |                       |                            |  |
|---------------|-----------------------|-----------------------|--------------------------------------|-----------------------|----------------------------|------------------------------------------------------|-----------------------|-----------|-----------------------|----------------------------|--|
|               |                       | Stora                 | age Periods (I                       | Days)                 | Storage Periods (Days)     |                                                      |                       |           |                       |                            |  |
| Treatments    | 0                     | 10                    | 20                                   | 30                    | Mean                       | 0                                                    | 10                    | 20        | 30                    | Mean                       |  |
| Control       | 7.5±0.10              | 6.1±0.05              | 5.1±0.10                             | 4.5±0.03              | 5.8±114 <sup>e</sup>       | 7.6±0.06                                             | 6.1±0.10              | 5.3±0.09  | 4.6±0.10              | 5.9±1.33e                  |  |
| GABA(1mmol/L) | 7.6±0.04              | 6.3±0.04              | 5.4±0.06                             | 4.6±0.07              | 6.0±1.12 <sup>d</sup>      | 7.8±0.04                                             | 6.4±0.04              | 5.4±0.06  | 4.7±0.03              | 6.0±1.15 <sup>d</sup>      |  |
| GABA(2mmol/L) | 7.7±0.04              | 6.5±0.04              | 5.4±0.04                             | 4.7±0.06              | 6.1±1.17°                  | 7.8±0.03                                             | 6.4±0.04              | 5.5±0.10  | 4.9±0.10              | 6.1±1.12 <sup>c</sup>      |  |
| Zeolite at 3% | 7.7±0.02              | 7.0±0.10              | 6.6±0.04                             | 5.8±0.50              | 6.8±0.77 <sup>b</sup>      | 7.8±0.02                                             | 6.8±0.10              | 6.3±0.10  | 5.1±0.10              | 6.5±0.99 <sup>b</sup>      |  |
| Zeolite at 6% | 7.9±0.07              | 7.17±0.06             | 6.9±0.10                             | 6.5±0.08              | 7.1±0.53 <sup>a</sup>      | 7.9±0.04                                             | 7.3±0.25              | 6.6±0.04  | 5.7±0.10              | 6.9±0.86ª                  |  |
| Mean          | 7.7±0.13 <sup>a</sup> | 6.6±0.42 <sup>b</sup> | 5.9±0.72°                            | 5.2±0.81 <sup>d</sup> |                            | 7.8±0.10 <sup>a</sup>                                | 6.6±0.45 <sup>b</sup> | 5.8±0.52° | 5.0±0.38 <sup>d</sup> |                            |  |
| LSD at 0.05   |                       | Storage F             | ents (T)<br>Periods (D)<br>ion (T×D) | •                     | = 0.13<br>= 0.12<br>= 0.57 | Treatments (T) Storage Periods (D) Interaction (T×D) |                       |           |                       | = 0.09<br>= 0.08<br>= 0.17 |  |

Loss of firmness is one of the most important problems during the postharvest period. The gradual decrease in fruit firmness is an inherent process of fruit ripening due to biochemical changes, such as the enzymatic hydrolysis of cell walls by pectinase and pectin methylesterase composition (Dharmasenal and Kumari 2006; Zeinalipour and Saadati 2024). Furthermore, the decrease in turgor pressure of cells caused by water loss is an additional factor that decreases firmness during storage (Beaulieu and Gorny 2001). Zeinalipour and Saadati (2024) reported that the preharvest application of cinnamic acid 200 μM + nano zeolite 60 mg/L, cinnamic showed the highest relative water contents compared to the control. As shown in Tables 2 and Fig. 3, zeolite treatments were more effective than other treatments in slowing down respiration rate and fruit weight loss, which may explain why it has a significant effect on reducing firmness loss. This is in addition to its additive effect on slowing down ripening by adsorbing oxygen and ethylene from the surrounding air (Khosravi et al. 2015). These findings are similar to Huwei et al. (2021), who noticed that applying 6% zeolite on grapes before harvest improves the firmness of stored fruits for 60 days. Zeolite helps adsorb moisture and ethylene, reducing the respiration rate and delaying senescence. (de Bruijn et al. 2019), and maintained firmness by lowering water activity and reducing oxidative stress (Alonso-Salinas et al. 2024). GABA treatments enhanced antioxidant enzyme activity, reducing decay and improving storage quality, as well as enhancing chilling tolerance and preventing decay through metabolic regulation (Zhou et al. 2022).

Furthermore, many studies have shown that proper concentrations of postharvest treatments of GABA reduced the loss of firmness in stored fruit, such as mango at 200 μM (Rastegar *et al.* 2020), blood orange at 20 mM and 40 mM (Habibi *et al.* 2019, 2020), and pistachio fruit at 10 mM w/v (Khosravi *et al.* 2015). Yu *et al.* (2014) reported that GABA can increase the stability of the cell wall and improve fruit firmness by inhibiting the activity of the lipoxygenase enzyme and suppressing the process of membrane lipid peroxidation. Also, Aghdam *et al.* (2019) attributed the significance of GABA in preserving the firmness of cornelian cherry fruits to its ability to decrease the activity of cell wall-degrading enzymes, specifically polygalacturonase and pectin methylesterase.

#### Fruit Chemical Characteristics

The impact of preharvest spraying of GABA and zeolite postharvest treatments on TSS and total sugar content (mg/g fresh weight) of 'Canino' apricot fruits during cold storage are shown in Tables 3 and 4, respectively. At harvest time, GABA reduced TSS and total sugar compared to untreated fruit. In the first season, TSS exhibited a decrease from 12 in the control group to 11.8 and 11.6 with GABA treatments at 1.0 and 2 mmol/L, respectively (Table 3). In the second season, TSS decreased from 11.5 to 11.1 and 10.9 with both concentrations of GABA. With the progress of the storage period, the data indicated a gradual rise in TSS and total sugars and these variations were statistically significant at  $P \le 0.05$  when compared to the beginning date. The increase in sugar levels observed during storage might be attributed to the ripening process, which results in the conversion of some carbohydrates, such as starch, into sugars through enzymatic activity (Karemera and Habimana 2014; Ruiz-Aracil et al. 2024a). Using GABA and zeolite treatments was effective in lowering the rise in TSS and total sugar levels. Zeolite at 6% and GABA at 2 mmol/L notably slowed the progressive rise in TSS and total sugar levels over the storage period, compared to the control and lower concentrations of zeolite and GABA (Tables 3 and 4). These effects might be due to the observed effect of GABA and zeolite, especially at higher concentrations, in slowing down the rate of respiration and delaying the ripening process in stored apricots (Ruiz-Aracil *et al.* 2024a; Ruiz-Aracil *et al.* 2024b; Zeinalipour and Saadati 2024).

Concerning total acidity (TA), data in Table 5 indicate that TA contents significantly decreased with prolonging cold storage period as compared with the initial time during both research seasons of the study. These results agree with the fact that organic acids, like malic and citric acids, accumulate in fruits during their early development. As ripening progresses, these acids are metabolized. Some are converted into sugars, contributing to the sweetness, while others are used in cellular respiration (Valero and Serrano 2010; Abd El-Gawad *et al.* 2020).

Data also showed that all treatments slightly inhibited the loss of TA in comparison to the control (Table 5). Compared to other treatments, zeolite at 6% and GABA at 2 mmol/L were more effective in enhancing the retention of TA. These results are in harmony with earlier studies on different fruits. Huwei *et al.* (2021) found that treatment with 6% zeolite on Thompson seedless grapes decreased the loss of TA during cold storage for 60 days. According to Fan *et al.* (2022), GABA treatments at 0.5, 1.0, 1.5, and 2.0 mM inhibited the loss of titratable acidity in Chinese olives stored at 2 °C for 100 days compared to untreated fruits. Compared to the initial date, GABA at 0.1 mM decreased TA by 38%, while it decreased in control by 58%. Additionally, Habibi *et al.* (2019) and Habibi *et al.* (2020) found a concentration-dependent pattern of the same effect in blood orange fruit after dipping with 20- and 40-mM GABA. The effect of zeolite on reducing the degradation of organic acids during storage was previously observed.

**Table 3.** Impact of Preharvest Treatment of GABA and postharvest treatment of Zeolite on TSS% of 'Canino' Apricot Fruits\*

|                   |                        | s                                   | Season 2022            |            |                            | Season 2023                                          |            |                        |                        |                            |  |  |
|-------------------|------------------------|-------------------------------------|------------------------|------------|----------------------------|------------------------------------------------------|------------|------------------------|------------------------|----------------------------|--|--|
|                   |                        | Storag                              | je Periods (I          | Days)      |                            | Storage Periods (Days)                               |            |                        |                        |                            |  |  |
| Treatments        | 0                      | 10                                  | 20                     | 30         | Mean                       | 0                                                    | 10         | 20                     | 30                     | Mean                       |  |  |
| Control           | 12.0±0.06              | 13.5±0.13                           | 14.3±0.13              | 14.8±0.08  | 13.6±0.96ª                 | 11.5±0.05                                            | 13.7±0.23  | 14.2±0.12              | 15.2±0.22              | 13.7±1.05 <sup>a</sup>     |  |  |
| GABA (1.0 mmol/L) | 11.8±0.21              | 13.2±0.13                           | 14.2±0.10              | 14.7±0.08  | 13.5±1.10 <sup>b</sup>     | 11.1±0.10                                            | 13.1±0.08  | 13.7±0.13              | 15.0±0.46              | 13.2±1.45 <sup>b</sup>     |  |  |
| GABA (2.0 mmol/L) | 11.6±0.08              | 12.9±0.10                           | 13.8±0.15              | 14.3±0.04  | 13.1±107°                  | 10.9±0.12                                            | 12.8±0.15  | 13.4±0.13              | 14.6±0.46              | 12.9±1.37°                 |  |  |
| Zeolite at 3%     | 12.0±0.11              | 13.3±0.08                           | 14.1±0.10              | 14.4±0.05  | 13.5±098 <sup>b</sup>      | 11.7±0.39                                            | 13.5±0.13  | 14.1±0.11              | 14.9±0.51              | 13.6±137 <sup>b</sup>      |  |  |
| Zeolite at 6%     | 11.9±0.06              | 12.4±0.13                           | 13.4±0.08              | 14.4±0.13  | 13.0±1.12 <sup>d</sup>     | 11.5±0.31                                            | 12.5±0.08  | 13. 3±0.13             | 14.1±0.11              | 12.9±1.22°                 |  |  |
| Mean              | 11.9±0.21 <sup>d</sup> | 13.1±0.40°                          | 14.0±0.18 <sup>b</sup> | 14.5±0.19ª |                            | 11.3±0.37 <sup>d</sup>                               | 13.1±0.45° | 13.7±0.36 <sup>b</sup> | 14.7±0.47 <sup>a</sup> |                            |  |  |
| LSD at 0.05       |                        | Treatme<br>Storage Pe<br>Interactio | riods (D)              |            | = 0.10<br>= 0.09<br>= 0.21 | Treatments (T) Storage Periods (D) Interaction (T×D) |            |                        |                        | = 0.22<br>= 0.20<br>= 0.44 |  |  |

**Table 4.** Impact of Preharvest Treatment of GABA and Postharvest Treatment of Zeolite on Total Sugars (mg/g FW) of 'Canino' Apricot Fruits\*

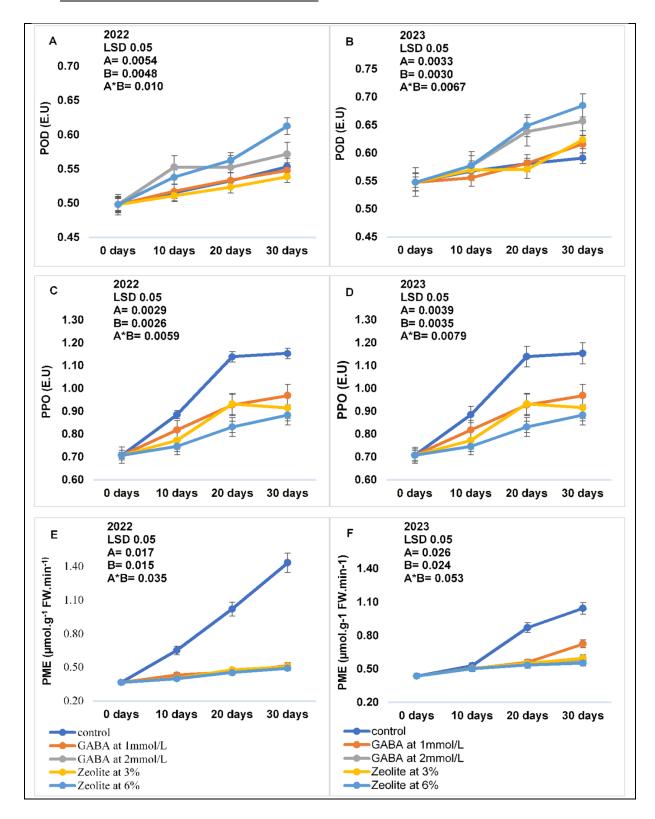
|                   |                       | Se                                  | eason 2022            |           |                            | Season 2023            |           |                                      |           |                            |  |  |
|-------------------|-----------------------|-------------------------------------|-----------------------|-----------|----------------------------|------------------------|-----------|--------------------------------------|-----------|----------------------------|--|--|
|                   |                       | Storage                             | Periods (Day          | ys)       |                            | Storage Periods (Days) |           |                                      |           |                            |  |  |
| Treatments        | 0                     | 10                                  | 20                    | 30        | Mean                       | 0                      | 10        | 20                                   | 30        | Mean                       |  |  |
| Control           | 6.97±0.13             | 8.33±0.10                           | 8.83±0.13             | 9.31±0.04 | 8.3±1.23 <sup>b</sup>      | 7.25±0.10              | 8.77±0.12 | 9.57±0.04                            | 9.87±0.04 | 8.9±0.1.23 <sup>a</sup>    |  |  |
| GABA<br>(1mmol/L) | 6.65±0.10             | 7.62±0.11                           | 8.20±0.11             | 8.80±0.15 | 7.8±0.81°                  | 6.58±0.13              | 8.05±0.07 | 9.28±0.18                            | 9.69±0.04 | 8.4±1.01°                  |  |  |
| GABA<br>(2mmol/L) | 6.55±0.13             | 7.38±0.24                           | 7.99±0.12             | 8.55±0.22 | 7.6±1.0 <sup>d</sup>       | 6.31±0.11              | 7.99±0.12 | 8.90±0.08                            | 9.24±0.10 | 8.1±1.15 <sup>d</sup>      |  |  |
| Zeolite at 3%     | 7.03±0.12             | 8.58±0.14                           | 9.12±0.11             | 9.65±0.08 | 8.6±077ª                   | 7.13±0.08              | 8.39±0.05 | 9.30±0.18                            | 9.62±0.11 | 8.6±0.97 <sup>b</sup>      |  |  |
| Zeolite at 6%     | 6.92±0.11             | 7.01±0.08                           | 7.35±0.08             | 7.80±0.15 | 7.1±0.93 <sup>e</sup>      | 7.00±0.23              | 7.56±0.14 | 8.32±0.10                            | 8.67±0.12 | 7.9±0.56 <sup>e</sup>      |  |  |
| Mean              | 6.8±0.19 <sup>d</sup> | 7.7±0.77°                           | 8.3±0.64 <sup>b</sup> | 8.8±0.66ª |                            | 6.9±0.43 <sup>d</sup>  | 8.2±0.42° | 9.1±0.44 <sup>b</sup>                | 9.4±0.44ª |                            |  |  |
| LSD at 0.05       |                       | Treatme<br>Storage Pe<br>Interactio | riods (D)             | 1         | = 0.13<br>= 0.12<br>= 0.26 |                        | Storage F | ents (T)<br>Periods (D)<br>ion (T×D) |           | = 0.12<br>= 0.11<br>= 0.24 |  |  |

**Table 5.** Impact of Preharvest Treatment of GABA and Postharvest Treatment of Zeolite on Total Acidity% of 'Canino' Apricot Fruits\*

|               |                |                                     | Season 2022  |                        |                               | Season 2023                                          |                       |            |                        |                               |  |  |
|---------------|----------------|-------------------------------------|--------------|------------------------|-------------------------------|------------------------------------------------------|-----------------------|------------|------------------------|-------------------------------|--|--|
|               |                | Stora                               | ge Periods ( | Days)                  |                               | Storage Periods (Days)                               |                       |            |                        |                               |  |  |
| Treatments    | 0 10 20 30 Mea |                                     |              |                        |                               | 0                                                    | 10                    | 20         | 30                     | Mean                          |  |  |
| Control       | 1.12±0.01      | 0.84±0.01                           | 0.74±0.01    | 0.63±0.01              | 0.83±018e                     | 1.13±0.01                                            | 0.82±0.10             | 0.54±0.02  | 0.44±0.02              | 0.73±0.27 <sup>e</sup>        |  |  |
| GABA(1mmol/L) | 1.15±0.01      | 0.90±0.01                           | 0.79±0.01    | 0.69±0.02              | 0.88±0.17 <sup>d</sup>        | 1.15±0.02                                            | 0.88±0.11             | 0.61±0.03  | 0.52±0.01              | 0.79±0.25°                    |  |  |
| GABA(2mmol/L) | 1.17±0.01      | 0.93±0.03                           | 0.84±0.05    | 0.76±0.01              | 0.93±0.16 <sup>b</sup>        | 1.17±0.01                                            | 0.90±0.02             | 0.66±0.02  | 0.57±0.02              | 0.82±0.24 <sup>b</sup>        |  |  |
| Zeolite at 3% | 1.17±0.01      | 0.88±0.03                           | 0.79±0.03    | 0.74±0.03              | 0.90±0.17°                    | 1.16±0.03                                            | 0.85±0.03             | 0.57±0.01  | 0.49±0.02              | 0.76±0.26 <sup>d</sup>        |  |  |
| Zeolite at 6% | 1.19±0.01      | 1.01±0.02                           | 0.86±0.01    | 0.78±0.01              | 0.96±0.16 <sup>a</sup>        | 1.19±0.02                                            | 1.00±0.02             | 0.76±0.03  | 0.64±0.9               | 0.90±0.61ª                    |  |  |
| Mean          | 1.16±0.03ª     | 0.91±0.06 <sup>b</sup>              | 0.81±0.05°   | 0.72±0.05 <sup>d</sup> |                               | 1.16±0.02ª                                           | 0.89±007 <sup>b</sup> | 0.63±0.07° | 0.53±0.08 <sup>d</sup> |                               |  |  |
| LSD at 0.05   |                | Treatme<br>Storage Pe<br>Interactio | riods (D)    |                        | = 0.020<br>= 0.018<br>= 0.040 | Treatments (T) Storage Periods (D) Interaction (T×D) |                       |            |                        | = 0.025<br>= 0.023<br>= 0.050 |  |  |

Phenols and ascorbic acid are the antioxidant compounds that play an essential role in fruit quality preservation, as well as their importance in consumer health. The data exhibited in Tables 6 and 7 indicates that the contents of total phenols and ascorbic acid in the fruit decreased gradually and significantly with the progress of storage in both seasons. The data also indicated that GABA and zeolite treatments slowed down the loss of total phenols (Table 6) and ascorbic acid (Table 7) during cold storage periods compared to the control group. GABA preharvest treatments followed by zeolite (6%) postharvest treatments were more effective in preserving total phenol contents in stored apricots. However, zeolite at (3% and 6%) in the first season and zeolite at 6% in the second season showed the highest values of ascorbic acid than all other treatments. In general, the antioxidant content of harvested fruit declines with ripening and with prolonged storage periods, either at ambient or cold temperatures (Tavarini et al. 2008; Galal 2022). Davarynejad et al. (2013) found that the levels of total phenols in apricots were higher at the beginning of the storage period compared to the end, regardless of the treatment. Davey et al. (2000) attributed the decrease in ascorbic acid levels during cold storage to the conversion of L-ascorbic acid into dehydroascorbic acid in the presence of oxidizing enzymes such as ascorbate peroxidase and ascorbic acid oxidase. Zeinalipour and Saadati (2024) reported that the nano-zeolite is effective as a preharvest application in improving the content of anthocyanins, antioxidants, and vitamin C for strawberry fruits.

# \_bioresources.cnr.ncsu.edu


**Table 6.** Impact of Preharvest Treatment of GABA and postharvest treatment of Zeolite on Total Phenols (mg/g FW) 'Canino' Apricot Fruits\*

|               |                                                      |                        | Season 2022   | 2                     |                               |                                                      |                       | Season 2023 | 3                     |                               |  |
|---------------|------------------------------------------------------|------------------------|---------------|-----------------------|-------------------------------|------------------------------------------------------|-----------------------|-------------|-----------------------|-------------------------------|--|
|               |                                                      | Stora                  | age Periods ( | Days)                 |                               | Storage Periods (Days)                               |                       |             |                       |                               |  |
| Treatments    | 0                                                    | 10                     | 20            | 30                    | Mean                          | 0                                                    | 10                    | 20          | 30                    | Mean                          |  |
| Control       | 0.475±0.08                                           | 0.390±0.01             | 0.357±0.01    | 0.195±0.02            | 0.354±0.1e                    | 0.407±0.01                                           | 0.298±0.01            | 0.253±0.01  | 0.168±0.01            | 0.282±0.1e                    |  |
| GABA(1mmol/L) | 0.486±0.01                                           | 0.413±0.02             | 0.380±0.02    | 0.218±0.04            | 0.374±0.1 <sup>b</sup>        | 0.464±0.02                                           | 0.326±0.02            | 0.261±0.02  | 0.191±0.02            | 0.310±0.1°                    |  |
| GABA(2mmol/L) | 0.496±0.03                                           | 0.423±0.01             | 0.399±0.01    | 0.221±0.01            | 0.384±0.1a                    | 0.498±0.03                                           | 0.343±0.01            | 0.283±0.02  | 0.208±0.02            | 0.333±0.1ª                    |  |
| Zeolite at 3% | 0.479±0.04                                           | 0.398±0.01             | 0.365±0.02    | 0.209±0.01            | 0.362±0.1d                    | 0.457±0.01                                           | 0.311±0.02            | 0.259±0.01  | 0.177±0.01            | 0.301±0.1 <sup>d</sup>        |  |
| Zeolite at 6% | 0.481±0.01                                           | 0.410±0.03             | 0.386±0.01    | 0.208±0.03            | 0.371±0.1°                    | 0.463±0.02                                           | 0.334±0.03            | 0.276±0.01  | 0.198±0.02            | 0.318±0.1 <sup>b</sup>        |  |
| Mean          | 0.48±0.01 <sup>a</sup>                               | 0.41±0.01 <sup>b</sup> | 0.38±0.0°     | 0.21±0.0 <sup>d</sup> |                               | 0.46±0.0 <sup>a</sup>                                | 0.32±0.0 <sup>b</sup> | 0.27±0.0°   | 0.19±0.0 <sup>d</sup> |                               |  |
| LSD at 0.05   | Treatments (T) Storage Periods (D) Interaction (T×D) |                        |               |                       | = 0.004<br>= 0.003<br>= 0.007 | Treatments (T) Storage Periods (D) Interaction (T×D) |                       |             |                       | = 0.015<br>= 0.014<br>= 0.030 |  |

# \_bioresources.cnr.ncsu.edu

**Table 7.** Impact of Preharvest Treatment of GABA and Postharvest Treatment of Zeolite on Ascorbic Acid (mg/100 g FW) of 'Canino' Apricot Fruits\*

|                |                         |                                     | Season 2022   | 2                    |                            | Season 2023            |                            |            |                       |                        |  |  |  |
|----------------|-------------------------|-------------------------------------|---------------|----------------------|----------------------------|------------------------|----------------------------|------------|-----------------------|------------------------|--|--|--|
|                |                         | Stora                               | ige Periods ( | Days)                |                            | Storage Periods (Days) |                            |            |                       |                        |  |  |  |
| Treatments     | 0                       | 10                                  | 20            | 30                   | Mean                       | 0                      | 10                         | 20         | 30                    | Mean                   |  |  |  |
| Control        | 14.81±0.11              | 10.98±0.47                          | 10.13±0.10    | 7.35±0.38            | 10.61±0.1e                 | 15.66±0.08             | 10.80±0.16                 | 10.55±0.08 | 7.87±0.10             | 11.04±0.1 <sup>d</sup> |  |  |  |
| GABA (1mmol/L) | 14.87±0.17              | 11.75±0.08                          | 10.80±0.19    | 9.14±0.02            | 11.61±0.1 <sup>b</sup>     | 15.45±0.08             | 11.99±0.11                 | 11.03±0.09 | 9.13±0.11             | 11.90±0.1°             |  |  |  |
| GABA (2mmol/L) | 15.18±0.21              | 12.13±0.01                          | 11.13±0.11    | 9.45±0.08            | 11.97±0.1ª                 | 15.65±0.08             | 12.21±0.04                 | 11.24±0.10 | 9.62±0.13             | 12.18±0.1 <sup>b</sup> |  |  |  |
| Zeolite at 3%  | 14.90±0.11              | 12.12±0.01                          | 11.25±0.08    | 9.87±0.32            | 12.03±0.1 <sup>d</sup>     | 15.73±0.21             | 12.20±0.16                 | 11.25±0.08 | 9.48±0.13             | 12.17±0.1 <sup>b</sup> |  |  |  |
| Zeolite at 6%  | 15.00±0.19              | 12.35±0.08                          | 11.34±0.01    | 9.85±0.38            | 12.21±0.1°                 | 15.75±0.08             | 12.35±0.08                 | 11.52±0.13 | 9.90±0.10             | 12.38±0.1ª             |  |  |  |
| Mean           | 14.83±0.01 <sup>a</sup> | 11.87±0.01 <sup>b</sup>             | 10.93±0.0°    | 9.1±0.0 <sup>d</sup> |                            | 15.51±0.0 <sup>a</sup> | 11.91±0.0 <sup>b</sup>     | 11.12±0.0° | 9.20±0.0 <sup>d</sup> |                        |  |  |  |
| LSD at 0.05    |                         | Treatmo<br>Storage P<br>Interaction | eriods (D)    |                      | = 0.18<br>= 0.16<br>= 0.35 |                        | = 0.11<br>= 0.09<br>= 0.22 |            |                       |                        |  |  |  |



**Fig. 4.** Impact of preharvest treatment of GABA and postharvest treatment of zeolite on enzyme activity of peroxidase (POD) (A and B), polyphenol oxidase (PPO) (C and D) and pectin methyl esterase (PME) (E and F) of "Canino" Apricot fruits stored at 0±1 °C and 90% to 95% RH during the 2022 and 2023 seasons respectively. Error bars represent the standard deviation. LSD <sub>0.05</sub> (A= treatments, B= storage period, A\*B= interaction).

Similar findings were reported before that zeolite and GABA treatments increased the antioxidant capacity of treated fruit. Zeolite treatments increased total antioxidant activity including superoxide dismutase, ascorbate peroxidase, phenolics, flavonoids, and carotenoids of grapes for 60 days of storage (Huwei *et al.* 2021). GABA raised the levels of ascorbic acid, total phenol, and flavonoids in peaches (Solimani-Aghdam *et al.* 2016a). Also, Rastegar *et al.* (2020) revealed that the use of GABA postharvest treatments effectively preserved the levels of ascorbic acid, phenols, and flavonoids in mangoes during the storage period at a temperature of 15 °C.

# **Enzymes Activities**

The POD and PPO are key enzymes for supporting plant growth, development, and defense through physiological and structural roles. The activities of enzymes were significantly affected by treatments (Figs. 4, A and B). The application of high concentrations of zeolite and GABA induced the highest POD for both seasons. POD is an antioxidant enzyme that prevents the harmful effects of free radicals by eliminating these molecules, which maintain the integrity of the cell membrane (Zhang et al. 2023). On the other hand, the PPO activity was significantly higher by control treatment compared to Zeolite and GABA treatments. However, the data exhibited in Figs. 4 (C and D), indicates that the activity of PPO enzyme increased gradually for all treatments. PPO is responsible for the browning of the peel and flesh of fruit and vegetables. So, the decrease of PPO activity is useful for preventing fruit browning and deterioration (Abdel-Sattar et al. 2023). Data in the present study is in harmony with research done by Khaliq et al. (2023), on papaya fruits, who found that the GABA application decreased the activity of PPO as well as chilling injury. Moreover, the treatments were effective in decreasing the activity of PME for both seasons (Figs. 4, E, and F). However, the maximum activity of PME was recorded in the control treatment, while the lowest was noticed for the treatments of higher concentrations of zeolite and GABA. PME is one of the pectin solubilization enzymes group that increase during the ripening processes of fruits and vegetables (Kaur et al. 2012) and accompanies the fruit softening and shortening of the fruit shelf life (Guzmán et al. 2012). The treatments of the present study suppressed the activity of PME compared the control. GABA and Zeolite treatments delay fruit ripening and extend its shelf life (Aghdam et al. 2012; Allegro et al. 2024). Additionally, they provide a different approach to preserving the nutritional value and aesthetic appeal of fruit during the postharvest phase.

# **CONCLUSIONS**

In this research, the efficacy of pre-harvest spraying with  $\gamma$ -aminobutyric acid (GABA) and postharvest dipping in zeolite was examined to prolong the storage ability and preserve the quality of 'Canino' apricot fruits.

- 1. Application of either 2 mmol/L GABA or 6% zeolite significantly reduced the rate of respiration, weight loss, and fruit decay during cold storage at 0±1 °C and 90% to 95% RH.
- 2. Additionally, 2 mmol/L GABA or 6% zeolite effectively mitigated fruit deterioration by enhancing fruit firmness, positively influencing total soluble solids and sugar levels,

- and maintaining higher levels of total acidity, total phenols, and vitamin C throughout the cold storage period compared to the control group.
- 3. Furthermore, the treatments increased peroxidase (POD) and decreased polyphenol oxidase (PPO), and pectin methyl esterase (PME) enzymes' activities compared to the control, which could help in prolonging the apricot postharvest life. However, further investigations are needed to examine more concentrations and the combined effects of both treatments on the quality and storability of apricot fruits.

# **ACKNOWLEDGMENTS**

This research was funded by the Ongoing Research Funding Program, (ORF-2025-707), King Saud University, Riyadh, Saudi Arabia.

#### Conflicts of Interest

The authors declare that there are no conflicts of interest related to this article.

# **Data Availability Statement**

All the necessary records are included in the document.

## **REFERENCES CITED**

- Abd El-Gawad, M. G., and El-Moghazy, T. F. A. (2018). "Extracting some essential oils and studying their effects on extending storage life and improving quality of "Florida Prince" peach fruits," *Middle East J.* 7, 1545-1560.
- Abd El-Gawad, M. G., Kotb, H. R. M., and Zeinab, A. Z. (2020). "Improving coloration, quality and storability of "Kelsey" plum fruits by some pre-harvest applications," *Egypt J. Agric. Res.* 98, 169-185.
- Abdel-Sattar, M., Al-Obeed, R. S., Lisek, A., and Eshra, D. H. (2023). "Enhancing Anna apples' productivity, physico-chemical properties, and marketability using sprays of naphthalene acetic acid and inhibitors of ethylene for alleviating abiotic stresses," *Horticulturae* 9, and 755. DOI: 10.3390/horticulturae9070755
- Abdel-Sattar, M., Mostafa, L. Y., Ali, S. H., Rihan, H. Z., and Eshra, D. H. (2025). "CPPU and ethylene inhibitors as an environmentally friendly strategy for improving fruit retention, yield, and quality in avocado," *Horticulturae* 11, and 180. DOI: 10.3390/horticulturae11020180
- Aghdam, M. S., Flaherty, E. J., and Shelp, B. J. (2022). "γ -Aminobutyrate improves the postharvest marketability of horticultural commodities: advances and prospects," *Front. Plant Sci.* 3, article 884572. DOI: 10.3389/fpls.2022.884572
- Aghdam, M. S., Kakavand, F., Rabiei, V., Zaare-Nahandi, F., and Razavi, F. (2019). "γ-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation," *Sci. Hortic.* 246, 812-817. DOI: 10.1016/j.scienta.2018.11.064
- Aglar, E., Ozturk, B., Guler, S. K., Karakaya, O., Uzun, S., and Saracoglu, O. (2017). "Effect of modified atmosphere packaging and 'Parka' treatments on fruit quality

- characteristics of sweet cherry fruits (*Prunus avium* L. '0900 Ziraat') during cold storage and shelf life," *Sci Hort.* 22 (19), 162-168. DOI: 10.1016/j.scienta.2017.05.024
- Ali, S., Anjum, M. A., Nawaz, A., Naz, S., Ejaz, S., Sardar, H., and Saddiq, B. (2020). "Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits," *Int. J. Biol. Macromol.* 163, 2439-2447. DOI: 10.1016/j.ijbiomac.2020.09.179
- Allegro, G., Valentini, G., Sangiorgio, D., Pastore, C., and Filippetti, I. (2024). "Zeolite application and irrigation during ripening reduced berry sunburn damage and yield loss in cv. Sangiovese (*Vitis vinifera* L.)," *Front. Plant Sci.* 15, article 1427366. DOI: 10.3389/fpls.2024.1427366
- Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., and Acosta-Motos J. R. (2024). "Strategies to delay ethylene-mediated ripening in climacteric fruits: implications for shelf life extension and postharvest quality," *Horticulturae* 10, article 840. DOI:10.3390/horticulturae10080840
- Al-Soufi, M. H., Alshwyeh, H. A., Alqahtani, H., Al-Zuwaid, S. K., Al-Ahmed, F. O., Al-Abdulaziz, F. T., Raed, D., Hellal, K., Mohd Nani, N. H., and Zubaidi, S. N., Nurul Syahidah Mio Asni, N. S., Hamizah, H. S., Kamal, N., Al-Muzafar, H., and Mediani, A. (2022). "A review with updated perspectives on nutritional and therapeutic benefits of apricot and the industrial application of its underutilized parts," *Molecules* 27, article 5016. DOI:10.3390/molecules27155016
- Anthon, G. E., and Barrett, D.M. (2006). "Characterization of the temperature activation of pectin methylesterase in green beans and tomatoes," *J. Agri. Food Chem.* 54(1), 204-211. DOI:10.1021/jf051877q
- AOAC (2019). *Official Methods of Analysis*, 21<sup>st</sup> Ed., Association of Official Analytical Chemists. Washington DC, USA.
- Badiche, F., Valverde, J. M., Martínez-Romero, D., Castillo, S., Serrano, M., and Valero, D. (2023). "Preharvest use of γ-aminobutyric acid (GABA) as an innovative treatment to enhance yield and quality in lemon fruit," *Horticulturae* 9, article 93. DOI:10.3390/horticulturae9010093
- Badiche-El Hilali, F., Valverde, J. M., Díaz-Mula, H., Serrano, M., Valero, D., and Castillo, S. (2023). "Potential preharvest application of γ-aminobutyric acid (GABA) on improving quality of 'Verna' lemon at harvest and during storage," *Agriculture* 13, article 1397. DOI:10.3390/agriculture13071397
- Barakat, H., and Aljutaily, T. (2025). "Role of γ-aminobutyric acid (GABA) as an inhibitory neurotransmitter in diabetes management: Mechanisms and therapeutic implications," *Biomolecules*15, article 399. DOI:10.3390/biom15030399
- Beaulieu, J. C., and Gorny, J. R. (2001). "Fresh-cut fruits," in: *The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks*, K. C. Gross, M. E, Saltveit, and C. Y. Wang (eds.), USDA: Washington DC, pp. 1-49.
- Carrión-Antolí, A., Badiche-El Hilali, F., Lorente-Mento, J. M., Díaz-Mula, H. M., Serrano, M., and Valero, D. (2024). "Antioxidant systems and quality in sweet cherries are improved by preharvest GABA treatments leading to delay postharvest senescence," *Int. J. Mol. Sci.* 25, article 260. DOI:10.3390/ijms25010260
- Constantinescu-Aruxandei, D., Lupu, C., and Oancea, F. (2020). "Siliceous natural nanomaterials as biorationals—plant protectants and plant health strengtheners," *Agronomy* 10, 1791-1799. DOI:10.3390/agronomy10111791

- Davarynejad, G., Zarei, M., Ardakani, E., and Nasrabadi, M. E. (2013). "Influence of putrescine application on storability, postharvest quality and antioxidant activity of two Iranian apricot (*Prunus armeniaca*, L.) cultivars," *Not. Sci. Biol.* 5, 212-219.
- Davey, M. W., Montagn, M. V., Inze, D., Sanmartin, M., Kanallis, A., Smirnoff, N., Benzie, I. J., Strain, J., Favell, D., and Fletcher, D. (2000). "Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing," *J. Sci. Food Agric.* 80, 825-860. DOI:10.1002/(SICI)1097-0010(20000515)80:7%3C825::AID-JSFA598%3E3.0.CO;2-6SDL
- Davidson, V. L. (2009). "Protein-derived cofactors," *Comprehensive Natural Products II*, 675-710.
- de Bruijn, J., Gómez, A., Loyola, C., Melín, P., Solar, V., Abreu, N., Azzolina-Jury, F., and Valdés, H. (2020). "Use of a copper- and zinc-modified natural zeolite to improve ethylene removal and postharvest quality of tomato fruit," *Crystals* 10, article 471. DOI:10.3390/cryst10060471
- de Bruijn, J., Gomez, A., Melin, P., Loyola, C., Solar, V., and Valdes, H. (2019). "Effect of doping natural zeolite with copper and zinc cations on ethylene removal and postharvest tomato fruit quality," *Chem. Eng. Trans.* 75, 265-270. DOI:10.3303/CET1975045
- Dharmasenal, D. A., and Kumari, A. H. (2006). "Suitability of charcoal-cement passive evaporative cooler for banana ripening," *J. Agric. Sci.* 1, 1-10. DOI: 10.4038/jas.v1i1.8089
- Dietzen, D. J. (2018). "13 Amino acids, peptides, and proteins," in: *Principles and Applications of Molecular Diagnostics*, pp. 345-380. DOI:10.1016/B978-0-12-816061-9.00013-8
- Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., and Boras, M. (2007). "The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region," *Food Chem.* 102, 966-975. DOI: 10.1016/j.foodchem.2006.04.001
- Dubois, M., Smith, F., Gilles, K. A., Hammilton, J. K., and Robers, P. A. (1956). "Colorimetric method to determination of sugars and related substances," *Anal. Chem.* 28, 350-356. DOI:10.1021/ac60111a017
- Elmenofy, H. M., Okba, S. K., Salama, A. M., and Alam-Eldein, S. M. (2021). "Yield, fruit quality, and storability of 'canino' apricot in response to aminoethoxyvinyl-glycine, salicylic acid, and chitosan," *Plants* 10, article 1838. DOI: 10.3390/plants10091838
- Fan, X., Xi, Y., Zhao, H., Liu, B., Cao, J., and Jiang, W. (2018). "Improving fresh apricot (*Prunus armeniaca L.*) quality and antioxidant capacity by storage at near freezing temperature," *Sci. Hort.* 231, article 15. DOI:10.1016/j.scienta.2017.12.015
- Fan, Z., Lin, B., Lin, H., Lin, M., Chen, J., and Lin, Y. (2022). "γ-Aminobutyric acid treatment reduces chilling injury and improves quality maintenance of cold-stored Chinese olive fruit," *Food Chem.* 13, article 100208. DOI: 10.1016/j.fochx.2022.100208
- Galal, H. (2022). "Impact of post-harvest treatments on the antioxidant content of fruits and vegetables," *E.J.O.H.* 49, 25-33. DOI: 10.21608/ejoh.2021.96104.1184
- Ghasemnezhad, M., Shiri, M. A., and Sanavi, M. (2010). "Effect of chitosan coatings on some quality indices of apricot (*Prunus armeniaca* L.) during cold storage," *Caspian J. Env. Sci.* 8, 25-33.

- Gomez, K. A., and Gomez, A. A. (1984). *Statistical Procedure for Agricultural Research*, 2<sup>nd</sup> Ed, John Wiley & Sons, New York.
- Guzmán, M., Sánchez, A., Salas, M. C., del Moral, F., and Valenzuela, J. L. (2012). "Relationship between pectin-methyl esterase activity and softening in 'Raf' tomato fruit," *Acta Hortic.* 934, 1291-1296. DOI: 10.17660/ActaHortic.2012.934.175
- Habibi, F., Ramezanian, A., Guill'en, F., Serrano, M., and Valero, D. (2020). "Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage," *Food Chem.* 306, article 125634. DOI: 10.1016/j.foodchem.2019.125634
- Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guill'en, F., Serrano, M., and Valero, D. (2019). "Postharvest treatments with γ-aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage," *J. Sci. Food Agric.* 99, 6408-6417. DOI: 10.1002/jsfa.9920
- Han, S. K., Liu, H., Han, Y., He, Y., Nan, Y., Qu, W., and Rao, J. (2018). "Exogenous γ-aminobutyric acid treatment that contributes to regulation of malate metabolism and ethylene synthesis in apple fruit during storage," *J. Agric. Food Chem.* 66, 13473-13482.
- Hosseinnia, M., Alaee, R., Tabarzadi, P., Masoumi, A., Farrokhzad, H., and Poorkhalil, A. (2024). "Zeolite-based polymer composite films for vegetables and fruits packaging: A review," *J Vinyl Addit Technol.* 30(2), 363-382. DOI: 10.1002/vnl.22067
- Huwei, S., Asghari, M., Zahedipour-Sheshglani, P., and Alizadeh, M. (2021). "Modeling and optimizing the changes in physical and biochemical properties of table grapes in response to natural zeolite treatment," *L.W.T.* 141, article 110854. DOI: 10.1016/j.lwt.2021.110854
- Karemera, N. J., and Habimana, U. (2014). "Effect of pre-harvest calcium chloride on post harvest behavior of mango fruits (*Mangifera Indica*, L.) cv. Alphonso," *Univ. J. of Agric. Res.* 2, 119-125. DOI: 10.13189/ujar.2014.020307
- Kaur, K., Dhillon, W. S., and Mahajan, B. V. C. (2012). "Changes in pectin methyl esterase activity with different packaging materials and stages of fruit harvesting during cold storage of pear cv. Punjab beauty," *J. Food Sci. Technol.* 51(10), 2867-2871. DOI:10.1007/s13197-012-0773-1
- Khaliq, G., Ali, S., Ejaz, S., Abdi, G., Faqir, Y., Ma, J., Siddiqui, M. W., and Ali, A. (2023). "γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit," *Front. Plant Sci.* 14, article 1233477. DOI:10.3389/fpls.2023.1233477
- Khosravi, F., Khosravi, M., and Pourseyedi, E. (2015). "Effect of nano zeolite and potassium permanganate on shelf life and quality of cut apple," *Inter. J. Lifesci.* 9, 55-60. https://www.cabidigitallibrary.org/doi/full/10.5555/20153209098
- Kim J. Y., Choi J. Y., Kim J. S., and Moon, K. D. (2022). "Effects of zeolite-based functional paper packaging on the quality of the kawanakajima white peach during storage," *Korean J. Food Preserv.* 29(4), 577-589. DOI: 10.11002/kjfp.2022.29.4.577
- Kumar, P., Deshmukh, R. K., Tripathi, S., and Gaikwad, K. K. (2024). "Review: Clay-based ethylene scavengers for sustainable active packaging applications," *J. Mater Sci.* 59, 18338-18356. DOI: 10.1007/s10853-024-10258-7
- Lester, G. E., Lewers, K. S., Medina, M. B., and Saftner, R. A. (2012). "Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin-Ciocalteu: Assay

- interference by ascorbic acid," *J. Food Compos. Anal.* 27, 102-107. DOI: 10.1016/j.jfca.2012.05.003
- Li, C., Zhu, J., Sun, L., Cheng, Y., Hou, J., Fan, Y., and Ge, Y. (2021). "Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism," *Plant Physiol. Biochem.* 169, 92-101. DOI: 10.1016/j.plaphy.2021.11.008
- Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., and Fernandez, A. (2012). "Metallic-based micro and nanocomposites in food contact materials and active food packaging," *Trends Food Sci. Technol.* 24, 19-29. DOI:10.1016/j.tifs.2011.10.001
- Lurie, S., and Pesis, E. (1992). "Effect of acetaldehyde and anaerobiosis as post-harvest treatment on the quality of peaches and nectarines," *Postharvest Biol. Technol.* 1, 317-326. DOI: 10.1016/0925-5214(92)90034-M
- Malekzadeh, P., Khara, J., and Heidari, R. (2014). "Alleviating effects of exogenous Gamma amino butyric acid on tomato seedling under chilling stress," *Physiol. Mol. Biol. Plants* 20, 133-137. DOI:10.1007/s12298-013-0203-5
- Malik, M., Dewan, A., Sethi, P., Khatkar, B. S., and Luthra, A. (2025). "Food and dairy product shelf-life extension," in: Engineering Solutions for Sustainable Food and Dairy Production, Springer Nature Switzerland AG, pp. 403-462.
- Milošević, T., and Milošević, N. (2023). "Behavior of apricot (*Prunus armeniaca* L.) under climate change," in: *Cultivation for Climate Change Resilience*, Vol. 2, 1st Edition, CRC Press, 2023. DOI: 10.1201/9781003351153
- Muzzaffar, S., Bhat, M. M., Wani, T. A., Wani, I. A., and Masoodi, F. A. (2018). "Postharvest biology and technology of apricot," in: *Postharvest Biology and Technology of Temperate Fruits*, Springer, pp. 201-222. DOI: 10.1007/978-3-319-76843-4
- Nguyen, L. P. L., Hitka, G., Zsom, T., and Kókai, Z. (2016). "Application of 1-MCP on apricots at different temperatures and days after harvest," *Acta Aliment. Hung.* 45, 542-550. DOI:10.1556/066.2016.45.4.11
- Opara, U. L., and Ogra, I. O. (2024). "An introduction to postharvest handling technology of fresh fruits and vegetables," in: *Sustainable Postharvest Technologies for Fruits and Vegetables*, 1st Edition, CRC Press. DOI: 10.1201/9781003370376
- Pan, H., Wang, R., Li, L., Wang, J., Cao, J., and Jiang, W. (2016). "Manipulation of ripening progress of different plum cultivars during shelf life by post-storage treatments with ethylene and 1-methylcyclopropene," *Sci. Hort.* 198, 176-182. DOI:10.1016/j.scienta.2015.11.007
- Ramos-Ruiz, R., Poirot, E., and Flores-Mosquera, M. (2018). "GABA, a non-protein amino acid ubiquitous in food matrices," *Cogent Food and Agriculture* 4, article 1534323. DOI: 10.1080/23311932.2018.1534323
- Rastegar, S., Khankahdani, H. H., and Rahimzadeh, M. (2020). "Effect of γ-aminobutyric acid on the antioxidant system and biochemical changes of mango fruit during storage," *J. Food Meas. Charact.* 14, 778-789. DOI:10.1007/s11694-019-00326-x
- Rodríguez-Robles, L., Devin, S. R., Ye, X., Sagbas, H. I., Mahdavi, S. M. E., Wettberg, E. B.-v., Feng, J., Rubio, M., and Martínez-Gómez, P. (2024b). "Prunus movement across the silk road: An integrated evolutionary and breeding analysis," *Horticulturae* 10, article 1381. DOI:10.3390/horticulturae10121381
- Ruiz-Aracil, M. C., Guillén, F., Castillo, S., Martínez-Romero, D., and Valverde, J. M. (2024a). "The application of 1-MCP in combination with GABA reduces chilling

- injury and extends the shelf life in tomato (Cv. Conquista)," *Agriculture* 14, article 2040. DOI:10.3390/agriculture14112040
- Ruiz-Aracil, M. C., Valverde, J. M., Ilea, M. I. M., Valero, D., Castillo, S., and Guillén, F. (2024b). "Innovative postharvest management for hass avocado at the preclimacteric stage: A combined technology with GABA and 1-MCP," *Foods* 13, article 2485. DOI:10.3390/foods13162485
- Saeedi, M., Mirdehghan, S. H., Nazoori, F., Esmaeilizadeh, M., and Saba, M. K. (2022). "Impact of calcium and γ-aminobutyric acid (GABA) on qualitative attributes and shelf life characteristics of fresh in-hull pistachio during cold storage," *Postharvest Biol. Technol.* 187, article 111863. DOI:10.1016/j.postharvbio.2022.111863
- Shang, H.T., Cao, S. F., Yang, Z. F., Cai, Y. T., and Zheng, Y. H. (2011). "Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage," *J. Agric. Food Chem.* 59, 1264-1268. DOI: 10.1021/jf104424z
- Sohail, M., Ayub, M., Khalil, S. A., Zeb, A., Ullah, F., Afridi, S. R., and Ullah, R. (2015). "Effect of calcium chloride treatment on postharvest quality of peach fruit during cold storage," *Int. Food Res. J.* 22, 2225-2229.
- Solimani-Aghdam, M. S., Razavi, F., and Karamneghad, F. (2016a). "Maintaining the postharvest nutritional quality of peach fruits by γ-aminobutyric acid," *Iran. J. Plant Physiol.* 5, 1457-1463.
- Solimani-Aghdam, M. S., Naderi, R., Sarcheshmeh, M. A. A., and Babalar, M. (2016b). "Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments," *Postharvest Biol. Techno.* 110, 70-76. DOI: 10.1016/j.scienta.2016.02.025
- Sun, C., Jin, L. F., Cai, Y. T., Huang, Y. N., Zheng, X. D., and Yu, T. (2019). "L-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids," *Food Chem.* 93, 263-270. DOI:10.1016/j.foodchem.2019.04.113
- Tavarini, S., Degl'Innocenti, E., Remorini, D., Massai, R., and Guidi, L. (2008). "Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit," *Food Chem.* 107(1), 282-288. DO I:10.1016/j.foodchem.2007.08.015
- Valero, D., and Serrano, M. (2010). "Postharvest biology and technology for preserving fruit quality. CRC Press-publishing, Taylor & Francis, London, New York.
- Wang, S., and Peng, Y. (2010). "Natural zeolites as effective adsorbents in water and wastewater treatment," *Chem. Eng. J.* 156(1), 11-24. DOI: 10.1016/j.cej.2009.10.029
- Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., and Du, R. (2014). "Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel," *Sci. Hort.* 168, 132-137. DOI:10.1016/j.scienta.2014.01.022
- Yang, A. P., Cao, S. F., Yang, Z. F., Cai, Y. T., and Zheng, Y. H. (2011). "γ-Aminobutyric acid treatment reduces chilling injury and activates the defense response of peach fruit," *Food Chem.* 129, 1619-1622. DOI: 10.1016/j.foodchem.2011.06.018
- Yang, J., Sun, C., Zhang, Y., Fu, D., Zheng, X., and Yu, T. (2017). "Induced resistance in tomato fruit by gamma-aminobutyric acid for the control of Alternaria rot caused by *Alternaria alternata*," *Food Chem.* 221, 1014-1020. DOI: 10.1016/j.foodchem.2016.11.061

- Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., and Yu, T. (2014). "γ-Aminobutyric acid induces resistance against *Penicillium expansum* by priming of defense responses in pear fruit. *Food Chem.* 159, 29-37. DOI: 10.1016/j.foodchem.2014.03.011
- Yuan, Z., Chen, X., He, T., Feng, J., Feng, T., and Zhang, C. (2007). "Population genetic structure in apricot (*Prunus armeniaca* L.) cultivars revealed by fluorescent-AFLP markers in Southern Xinjiang, China," *J. Genet. Genom.* 34, 1037-1047.
- Zeinalipour, N., and Saadati, S. (2024). "Physiological and biochemical response of strawberry cv. Diamond to nano zeolite soil application and cinnamic acid foliar application," *Sci. Rep.* 14, 28908. DOI: 10.1038/s41598-024-76419-5
- Zhang, H., Pu, J., Liu, H., Wang, M., Du, Y., Tang, X., Luo, X., Wang, Y., and Deng, Q. (2023). "Effects of L-cysteine and γ-aminobutyric acid treatment on postharvest quality and antioxidant activity of loquat fruit during storage," *Int. J. Mol. Sci.* 24, article 10541. DOI:10.3390/ijms241310541
- Zhang, Y., Lin, B., Tang, G., Chen, Y., Deng, M., Lin, Y., Li, M., He, W., Wang, Y., Zhang, Y., Luo, Y., Chen, Q., Wang, X., and Tang, H. (2024). "Application of γ-aminobutyric acid improves the postharvest marketability of strawberry by maintaining fruit quality and enhancing antioxidant system," *Food Chem.* 21, article 101252. DOI: 10.1016/j.fochx.2024.101252
- Zhou, C., Dong, W., Jin, S., Liu, Q., Shi, L., Cao, S., Li, S., Chen, W., Yang, Z., (2022). "γ-Aminobutyric acid treatment induced chilling tolerance in postharvest peach fruit by upregulating ascorbic acid and glutathione contents at the molecular level," *Front. Plant Sci.* 13, 1-11. DOI: 10.3389/fpls.2022.1059979
- Zhu, J., Li, C., Fan, Y., Qu, L., Huang, R., Liu, J., Zhang, C., and Ge, Y. (2022). "γ-Aminobutyric acid regulates mitochondrial energy metabolism and organic acids metabolism in apples during postharvest ripening," *Postharvest Biol. Technol.* 186, article 111846. DOI:10.1016/j.postharvbio.2022.111846

Article submitted: March 21, 2025; Peer review completed: June 29, 2025; Revised version received: July 4, 2025; Accepted: July 8, 2024; Published: July 18, 2025. DOI: 10.15376/biores.20.3.7330-7357