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Wood is a widely used natural material in various industries due to its 
availability and versatility. In recent years, nanotechnology has been 
explored as a promising approach to improve wood durability and 
resistance against biological degradation. Studies on wood preservation 
using nanoparticles (NPs) have focused on enhancing wood’s resilience 
to weathering and biological deterioration, as well as increasing its fire 
resistance. Nanosized metals can effectively preserve wood by 
penetrating deeply into it. Applications of nanotechnology may increase 
wood’s resilience to fungus-induced deterioration. This review 
concentrates on the efficacy of NPs in enhancing the qualities of wood 
and wood-derived goods and shielding them from biological degradation, 
including fungal decay and enzymatic breakdown of wood. 
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INTRODUCTION 
  

Many people recognize that wood is a natural organic material that is safe for the 

ecosystem and has contributed to both ecological sustainability and overall well-being. 

Because carbon dioxide is retained in wooden items, boosting the usage of timber and 

products made from wood could help facilitate a more environmentally friendly future by 

lowering the release of carbon dioxide. Wood’s remarkable qualities, including its 

impressive strength-to-weight ratio and appealing appearance, make it a great element for 

construction of buildings, bridges, furnishings, and wood siding for both interior and 

exterior applications. Its outstanding qualities make wood material an adaptable 

substance (Al-Rajhi and Abdelghany 2023; Papadopoulos 2023). 

Researchers studying wood durability have long used the starkly straightforward 

names “white,” “brown,” and “soft” rot to characterize the fungal decay of wood, in 

addition to the less damaging mold and stain fungi. Although the meaning of these 

phrases has become nearly iconic, they are based only on how the damaged timber looks 

(Goodell et al. 2020). 

Wood’s main structural components are cellulose, hemicellulose, and lignin (Fig. 

1). Cellulose gives wood many special material qualities and makes up 40% to 44% of its 

chemical composition. Cellulose is organized in distinct units called elementary fibrils at 
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the nanoscale (Mittal et al. 2018). Lignin, a heteropolymer made up of repeating phenyl 

propane units with a wide variety of linkages between three different monomer forms, 

makes up 18% to 35% of the wood cell wall. Because of the variety of bonding patterns, 

lignin is very resistant to breaking down, and only a few microbes aside from certain 

fungi that break down wood-have been able to do so.  

 
 

Fig. 1. Main structural components of wood (Zhang et al. 2012) 

 

Moreover, wood’s resistance to deterioration is largely due to its higher lignin 

content than other plant materials and the way it is closely bonded with the holocellulose 

components. Hemicellulose constitutes 15% to 32% of the wood composition. 

Additionally, hemicellulose is more prone to degradation, and extreme heat. In fact, 

thermal modification procedures employed in commercial wood protection, can break 

down the various forms of the hemicellulose polymer (Altgen et al. 2020). 

Although wood is one of the most resilient cellulosic materials, a variety of biotic 

and abiotic factors can cause it to deteriorate. It is challenging to fully distinguish 

causative agents because these agents frequently work in tandem. Although many studies 

have focused on the wood degradation by fungi, there has been little concern on the role 

of nanoparticles in suppressing these fungi which destroy wood. Nanoparticles’ 

distinctive physico-chemical characteristics are helping them make their way into the 

market. Nanoparticles (NPs) find extensive applications in the fields of cosmetics, 

coatings, agriculture, textiles, biomedical, personal hygiene products, and environmental 

cleanup (El-Batal et al. 2023; Amin et al. 2024 and 2025). Nanotechnology is being 

explored as a promising approach in the field of wood enhancement, particularly for 

improving dimensional stability and resistance to microbial degradation. The tiny NPs 

may quickly, efficiently, and profoundly enter the wood to change the chemistry of its 

surface and enhance its characteristics, producing a product with exceptional 

performance (Papadopoulos 2023). A major concern in several industries (plastics, 

chemistry, etc.) at the moment is the use of nanomaterials to produce innovative, cost-

effective goods; the forest products sector has also recognized this issue. However, there 

hasn’t been much research done on using NPs to enhance the main technical 

characteristics of wood. On the other hand, there are numerous encouraging findings on 
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the enhancement of mechanical, hydrophobic, combustion, and other characteristics in 

the cases of polymers, textiles, and paper (Zabihi et al. 2018). Nanotechnology has 

emerged as a powerful tool in material science, offering innovative solutions for 

controlling the development of microorganisms (Al-Rajhi et al. 2022; Alghonaim et al. 

2024; Al-Rajhi et al. 2024a). This review will consider the vital role of NPs in improving 

the properties of wood and products made from wood, protecting them from weathering 

and other degrading factors, and preventing fungal enzymes from destroying wood.  

 

 

MECHANISM OF WOOD DEGRADATION BY FUNGUS 

  

There are three main types of fungal wood rot. Soft rot is a type of superficial 

decay in which little or no lignin degradation occurs along with the enzymatic breakdown 

of cellulose and hemicellulose in the wood’s surface layers. Many Ascomycetes and their 

anamorphs have this trait. White rot is characterized by the quick and widespread 

enzymatic breakdown of all wood components, with the loss of lignin giving rise to the 

distinctive bleaching of the wood. Only a few higher Ascomycete taxa and 

Basidiomycetes have been found to exhibit white  rot degradation thus far (Eichlerová and 

Baldrian 2020). The most resistant component of wood is lignin; hence, the function of 

white-rot fungus in lignocellulose turnover is crucial. In brown rot (Fig. 2), non-

enzymatic oxidation is responsible for the extremely quick cellulose and hemicelluloses 

degradations with little to no lignin degradation (Abd El-Mongy and Abd El-Ghany 

2009; Goodell 2020).  

 

 
 

Fig. 2. Effect of brown rot fungus and enzymes on wood 

 

Soft rot and white rot are known to be caused by certain marine fungi.  Fungi that 

cause wood degradation usually start as mycelial fragments or fungal spores. When 

appropriate conditions are met, spores sprout into fungal hyphae, which are tiny, hair-like 

structures that are elongated, end-to-end growing fungal cells. In many instances, hyphal 

particles that fall onto wood can also start development, which spreads the colonization 

of the wood. Certain species of fungi can create a mat made up of several layers called a 

mycelial mat, as their hyphae develop along the surface of materials. To stretch from one 

fiber to the next and propagate throughout the wood in this way, the tips of the fungal 

hyphae first seek comparatively easy routes through the microstructure of the wood. They 

do this by taking advantage of interconnecting cell wall pits, which are channels that 
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connect wood cells. All fungi that live in wood look for stored products in the 

parenchyma during this early growth phase. This allows the fungus to quickly obtain 

nutrients for energy and to accumulate fungal biomass inside or on top of the wood 

structure (Goodell et al. 2020). The most aggressive biological agents that damage wood 

in service are xylophagous fungi, which cause brown and white rot, and subterranean 

termites which are highly destructive to wood and are among the most serious insect 

pests. These fungi cause structural changes that affect the wood’s natural resistance by 

attacking the polymeric fraction of the cell wall, which includes cellulose, 

hemicelluloses, and lignin, with enzymes. Termites contribute to the structural weakening 

of wood by mechanically chewing and enzymatically digesting lignocellulosic 

components, a process made possible by symbiotic microorganisms living in their 

digestive tract (Scharf 2020). 

According to Gabriel and Švec (2017), most wood-rot fungus are members of the 

Basidiomycetes, and they can be classified as either brown or white rot. Fungi that cause 

brown rot can break down cellulose and hemicelluloses; however, they can only alter 

lignin and cannot substantially break it down. Because of the oxidation of lignin, the 

wood shrinks and the brown rot residues break down into cubic shapes with brown 

staining (Al-Rajhi et al. 2024b). Fungi that cause wood rot are the primary cause of wood 

degradation. They have several enzymes that are employed to undermine living trees’ 

physiological processes and structural integrity. White-rot fungus primarily releases cell 

oxidases for delignification during the wood breakdown process (Fig. 3). Because of its 

strong ligninolytic qualities, quick growth, and simplicity of handling in culture, 

Phanerochaete chrysosporium has emerged as the standard laboratory fungus for 

researching the physiology and chemistry of lignin breakdown (Giri and Sharma 2020). 

 

 

Fig. 3. Effect of white rot fungus and enzymes on wood 

 

Ligninases, or ligninolytic enzymes, are a class of enzymes that can degrade wood 

lignin (Fig. 3), characterizing the fungi responsible for white wood rot. This type of fungi 

primarily decompose lignin, responsible for the brown coloration of wood, resulting in 

the residual white cellulose, which is the origin of its nomenclature. These fungi derive 

their energy and carbon from lignocellulosic materials. Lignin stands out among these 

due to its intricate structure, which consists of many aromatic rings. Fungi produce a 

number of extracellular oxidative enzymes, primarily lignin peroxidase, manganese 

peroxidase, and laccase, to break down the lignin (Dao et al. 2021). The characteristics of 
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wood-decay fungus are ligninolytic and hydrolytic enzymes, which are involved in non-

specific oxidation and hydrolysis processes. Hydrolytic enzymes are important parts of 

commercial enzymatic cocktails that turn pretreated lignocellulosic materials into plant 

biomass (Al-Rajhi et al. 2023). The hydrolysis of cellulose and hemicelluloses through 

specific combinations of enzymes is fundamental to modern biorefineries. Lignin-

degrading enzymes encompass manganese peroxidases (MnPs), phenol oxidases 

(laccases), lignin peroxidases (LiPs), and versatile peroxidases (VPs). Endoglucanases, 

exoglucanases, and β-glucosidases are enzymes associated with cellulolytic reactions, as 

reported by Andlar et al. (2018). Fungal enzymes may be utilized in various biofuel 

production processes, including the elimination of fermentation inhibitors, cellulose 

saccharification, and the pretreatment of lignocellulosic biomass, as noted by Saldarriaga-

Hernández et al. (2020). 

 

Enhancing Wood’s Insect Resistance Using Nanoparticles 
The development of nanotechnology has contributed to improving the 

characteristics of wood and wood-derived products (Tarmian et al. 2012). Research on 

the use of wood nanotechnology has focused on several areas: 1) modifications to 

mechanical and physical traits; 2) wood’s dimensional stability; 3) wood’s appearance 

(color) and resistance to outdoor conditions; and 4) resistance to microorganism attack. 

According to Taghiyari et al. (2013), silver nanoparticles have improved thermally-

treated physical characteristics and fire resistance of wood protection. 

 

 

Fig. 4. Effect of nanoparticles on wood-degrading fungi   

 

Usage of various metal NPs offers an excellent defense against termites and 

another wood-decaying fungi. Several formulations of silver, copper, zinc, boron, silver, 

titanium, and other commonly studied NPs are effective in previous studies (Fig. 4). In 

addition to laboratory experiments, outdoor tests have demonstrated NPs’ effectiveness in 

protecting wood. They outperformed the traditional wood preservatives employed as 
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controls in certain instances (McIntyre and Freeman 2011).  Wood may become more 

biologically resistant to mold and decomposing fungus. Additionally, it was discovered 

that nano-copper, nano-zinc, and nano-silver offer efficient defense against the 

development of Aspergillus brasiliensis and Penicillium funiculosum (Huang et al. 2015). 

 

Impact of Metal and Inorganic Nanoparticles on Wood-Degrading Fungi, 
and Ligninolytic Enzyme Activity 

NPs are capable of offering sustainable and eco-friendly solutions for the 

conservation of wood. A research investigation by Pietka et al. (2022) discovered that 

silver and copper NPs exhibit antifungal abilities versus the white rot fungus Fomes 

fomentarius, hence protecting Fagus sylvatica wood.  The silver NPs (AgNPs) 

suppressed fungal colony formation at the maximum concentration of 50 ppm, while 

exhibiting no impact on growth at concentrations of 5 ppm and 25 ppm. Silver NPs 

enhanced the rot tolerance of beech wood, but just at its highest concentration levels.  

These results from in vitro tests are consistent with those obtained on beech wood 

specimens, showing that the concentrations of the two NPs used were too low to protect 

the beech wood from decomposition by Xylophagous fungus. It has been demonstrated 

that high concentrations of silver, copper, and zinc oxide NPs can effectively shield 

paulownia, European beech, and Scots pine wood from T. versicolor (Pařil et al. 2017). 

Furthermore, titanium dioxide NPs stop Hypocrea lixii and Musor circinelloides from 

colonizing eight distinct wood species (De Filpo et al. 2013). In a study on a composite 

of chitosan and AgNPs in preventing Xylophagous fungal degradation of Populus × 

Euramericana wood was evaluated. When the binary solution at AgNPs 4 ppm and 

chitosan (20 g/L) was compared to the untreated control, the weight loss for white-rot 

fungi decreased from 42.0% to 30.2%, and for brown-rot fungus, it decreased from 

41.9% to 27.2% (Spavento et al. 2023).  Also, Giménez-Bañón  et al. (2023) showed that 

calcium phosphate NPs doped with methyl jasmonate increase cell wall material (CWM) 

and produced a diminution in the amount of cellulose in contrast to an increase in 

hemicellulose.  The metallic silver in this process goes through release of ions as a result 

of oxidation in the presence of water, so the exoenzymatic activity of both brown and 

white rot fungi is greatly impacted by these silver ions in solution. Their particular impact 

is noticeable in the activity of cellulase enzymes generated by decay fungi, as explained 

previously  (Abdel Ghany et al. 2018). Because this chemical reaction transition is 

fundamentally slow, particle size plays a crucial role in preventing fungal development. 

Because of the prolonged, gradual release of silver ions, smaller particle sizes offer better 

protection against these spoiling agents by increasing specific surface area and improving 

oxidation effectiveness. Furthermore, AgNPs, especially those with smaller diameters, 

can cause fungal cells to produce free radicals, which can result in oxidative stress and, 

eventually, cell death. By interfering with proton pumps and the electron transport chain, 

these AgNPs infiltrate cells and cause damage to proteins, lipids, and nucleic acids as 

well as an increase in ROS generation (Pietka et al. 2022). 

When applied to the tropical species (Acacia mangium, Cedrela odorata, and 

Vochysia guatemalensis) of Costa Rica, the AgNPs increased the wood’s resilience. In 

every instance, the woods treated with NPs were categorized as Class A, or highly 

resistant, to white (Trametes versicolor) decay fungi, in contrast to untreated wood, 

which saw weight losses exceeding 20%. Along with greater resistance to fungal assault, 

the AgNPs also reduced the wood’s ability to absorb water from the three species studied 

(Moya et al. 2014). In mini-agar slant and wood block tests, pure nano-copper exhibits 
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wood-protective qualities against Gloeophyllum trabeum and T. versicolor (Weitz et al. 

2011). Nanosilver was successfully encapsulated in a polystyrene-soybean co-polymer by 

Can et al. (2018). The capsules were used to impregnate Scots pine, which was then 

tested against T. versicolor, a fungus that causes white rot. According to the study’s 

findings, polystyrene, nanosilver, and soybean oil all contributed significantly to the 

synergistic impact of enhancing Scots pine’s resistance to decay. 

For the protection of wood, copper is a necessary biocide. Copper by itself, 

however, is insufficient to shield wood against fungi that kill copper-tolerant wood. A 

new type of copper that is based on wood preservatives is copper NPs. When copper NPs 

are used in place of regular copper, wood is more durable against fungi that cause rot. 

Some nanomaterials and wood degrading fungi were organized in Table 1. 

 

Table 1. Nanomaterials and Wood Degrading Fungi  

NPs Function References 

Al2O3 Inhibition white-rot fungus (Trametes versicolor) and brown-
rot fungus (Gloeophyllum trabeum). 

Acosta et al. 
2022 

Se Against the brown-rot Serpula lacrymans 
 

Gablech et al. 
2022 

Silver Antifungal particularly against mildew fungi and 
Inhibit Trametes versicolor of Populus wood 

Huang et al. 
2022  

Zn oxide and/or 
polyethylene 
glycol 6000 

Inhibit brown-rot fungus Rhodonia placenta and the white-rot 
fungus Trametes versicolor of beech wood 

Reinprecht et 
al. 2022 

ZnO NPs, TiO2 
NPs Al2O3, MgO 

NPs 

Physical properties, thermal and fungal resistance of Scots 
pine wood 

Holy et al. 
2022 

CuO NPs Inhibit the proliferation of wood-decaying fungi Trametes 
hirsuta (white rot) and Oligoporus placenta (brown rot). 

Shiny et al. 
2022 

Zinc-oxide, zinc 
borate, copper, 

titanium, cerium, 
and boron) 

Suppressing wood– degrading fungi Terzi et al. 
2019 

ZnO-PVAc Inhibition Trametes hirsute and Oligoporus placentus of 
Populus deltoides wood 

Nagraik and 
Shukla 2025 

Organosilica NPs 
and carbon 

quantum dots 

Inhibition Brown rot fungus (Gloeophyllum trabeum) Wang et al. 
2023 

Magnesium and 
calcium fluorides 

NPs 

Inhibition White rot fungus: T. versicolor Brown rot fungus: 
R. placenta. Termite species- C. formosanus 

Usmani et al. 
2022 

TiO2 Inhibition brown rot fungus (Postia placenta and Mucor 
circinelloides) and white-rot (Hypocrea lixii) 

Zanatta et al. 
2022  

 

Influence of Metal Nanoparticles on Ligninolytic and Cellulolytic Enzymes 
in Wood-Degrading Fungi 

Wood’s cell walls are crucial components for its structural integrity. In contrast to 

the lumen, which is a space, the cell wall itself has a fairly regular structure throughout 

species, cell types, and even between hardwoods and softwoods (Schmitt et al. 2021). 

The primary wall, secondary wall, and middle lamella are the three principal areas that 

make up the cell wall. The three main components of the cell wall in each area are 

cellulose microfibrils (which have distinct distributions and organization), 

hemicelluloses, and a matrix or encrusting substance, usually lignin in secondary walls 
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and pectin in primary walls (Dong et al. 2022). The complicated and resistant lignin 

polymer is broken down by ligninolytic enzymes. Because of their extreme versatility, 

this set of enzymes is used in many different sectors. The growing importance of enzyme 

biotechnology has significantly increased the demand for these enzymes in recent years. 

However, producing enzymes and metabolites from microbial sources remains costly, 

making the use of low-cost raw materials essential to lowering production expenses 

(Fasim et al. 2021).  

Three oxidative enzymes are primarily included in the term “lignin-degrading 

enzymes,” namely laccase, manganese peroxidase (MnPase), and lignin peroxidase 

(LiPase). Because of their prospective uses in a variety of biotechnological fields, these 

enzymes have become more and more in demand in recent years. Lignin-degrading 

enzymes are widely used in pollution control, especially for treating industrial effluents 

containing harmful substances such as dyes, phenols, and other xenobiotics. Numerous 

studies have investigated their role in the decolorization of textile dyes and the 

degradation of both phenolic and non-phenolic aromatic compounds (Jasińska et al. 

2024). The effectiveness of five distinct NPs zinc oxide, zinc borate, silver, copper, and 

copper borate  in protecting beech and pine sapwood against Coniophora puteana and 

Coriolus versicolor was investigated by Bak and Németh (2018). The treatments with 

borate NPs were the most successful. Only the copper, silver, and zinc oxide NPs, 

however, demonstrated a significant level of leaching resistance. As a result, only the 

zinc oxide at the highest concentration studied (5% m/m) effectively protected both of the 

fungus under investigation following leaching. At larger concentrations, the copper NPs 

also demonstrated promise as an efficacious treatment.  

 
CONCLUSIONS 
  
1. Recent studies have demonstrated that nanotechnology, and especially the use of 

metallic NPs such as silver, copper, and zinc oxide, holds promising potential for 

enhancing wood durability and resistance to biological agents such as fungi and 

termites. Certain NPs have also shown effectiveness in modifying the chemical 

composition of wood and improving its physical properties, such as reducing water 

absorption. However, further applied research is needed to understand long-term 

effects, optimize dosages, and ensure environmental safety. Based on the discussions 

presented in this article, nanoscience is emerging as an innovative and effective 

approach for improving wood preservation and performance, provided it is supported 

by additional scientific and experimental evidence. 

2. Nanotechnology offers promising potential for enhancing wood preservation through 

the use of metal-based NPs. While current studies demonstrate their antifungal and 

insecticidal properties, further research is needed to better understand their 

penetration behavior and long-term efficacy in wood matrices. Future investigations 

should focus on optimizing NPs concentration, delivery methods, and evaluating their 

impact under real world environmental conditions. 
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