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Wood is a widely used natural material in various industries due to its
availability and versatility. In recent years, nanotechnology has been
explored as a promising approach to improve wood durability and
resistance against biological degradation. Studies on wood preservation
using nanoparticles (NPs) have focused on enhancing wood’s resilience
to weathering and biological deterioration, as well as increasing its fire
resistance. Nanosized metals can effectively preserve wood by
penetrating deeply into it. Applications of nanotechnology may increase
wood’s resilience to fungus-induced deterioration. This review
concentrates on the efficacy of NPs in enhancing the qualities of wood
and wood-derived goods and shielding them from biological degradation,
including fungal decay and enzymatic breakdown of wood.
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INTRODUCTION

Many people recognize that wood is a natural organic material that is safe for the
ecosystem and has contributed to both ecological sustainability and overall well-being.
Because carbon dioxide is retained in wooden items, boosting the usage of timber and
products made from wood could help facilitate a more environmentally friendly future by
lowering the release of carbon dioxide. Wood’s remarkable qualities, including its
impressive strength-to-weight ratio and appealing appearance, make it a great element for
construction of buildings, bridges, furnishings, and wood siding for both interior and
exterior applications. Its outstanding qualities make wood material an adaptable
substance (Al-Rajhi and Abdelghany 2023; Papadopoulos 2023).

Researchers studying wood durability have long used the starkly straightforward
names “white,” “brown,” and “soft” rot to characterize the fungal decay of wood, in
addition to the less damaging mold and stain fungi. Although the meaning of these
phrases has become nearly iconic, they are based only on how the damaged timber looks
(Goodell et al. 2020).

Wood’s main structural components are cellulose, hemicellulose, and lignin (Fig.
1). Cellulose gives wood many special material qualities and makes up 40% to 44% of its
chemical composition. Cellulose is organized in distinct units called elementary fibrils at
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the nanoscale (Mittal ef al. 2018). Lignin, a heteropolymer made up of repeating phenyl
propane units with a wide variety of linkages between three different monomer forms,
makes up 18% to 35% of the wood cell wall. Because of the variety of bonding patterns,
lignin is very resistant to breaking down, and only a few microbes aside from certain
fungi that break down wood-have been able to do so.
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Fig. 1. Main structural components of wood (Zhang et al. 2012)

Moreover, wood’s resistance to deterioration is largely due to its higher lignin
content than other plant materials and the way it is closely bonded with the holocellulose
components. Hemicellulose constitutes 15% to 32% of the wood composition.
Additionally, hemicellulose is more prone to degradation, and extreme heat. In fact,
thermal modification procedures employed in commercial wood protection, can break
down the various forms of the hemicellulose polymer (Altgen et al. 2020).

Although wood is one of the most resilient cellulosic materials, a variety of biotic
and abiotic factors can cause it to deteriorate. It is challenging to fully distinguish
causative agents because these agents frequently work in tandem. Although many studies
have focused on the wood degradation by fungi, there has been little concern on the role
of nanoparticles in suppressing these fungi which destroy wood. Nanoparticles’
distinctive physico-chemical characteristics are helping them make their way into the
market. Nanoparticles (NPs) find extensive applications in the fields of cosmetics,
coatings, agriculture, textiles, biomedical, personal hygiene products, and environmental
cleanup (El-Batal ef al. 2023; Amin et al. 2024 and 2025). Nanotechnology is being
explored as a promising approach in the field of wood enhancement, particularly for
improving dimensional stability and resistance to microbial degradation. The tiny NPs
may quickly, efficiently, and profoundly enter the wood to change the chemistry of its
surface and enhance its characteristics, producing a product with exceptional
performance (Papadopoulos 2023). A major concern in several industries (plastics,
chemistry, etc.) at the moment is the use of nanomaterials to produce innovative, cost-
effective goods; the forest products sector has also recognized this issue. However, there
hasn’t been much research done on using NPs to enhance the main technical
characteristics of wood. On the other hand, there are numerous encouraging findings on
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the enhancement of mechanical, hydrophobic, combustion, and other characteristics in
the cases of polymers, textiles, and paper (Zabihi et al. 2018). Nanotechnology has
emerged as a powerful tool in material science, offering innovative solutions for
controlling the development of microorganisms (Al-Rajhi et al. 2022; Alghonaim et al.
2024; Al-Rajhi et al. 2024a). This review will consider the vital role of NPs in improving
the properties of wood and products made from wood, protecting them from weathering
and other degrading factors, and preventing fungal enzymes from destroying wood.

MECHANISM OF WOOD DEGRADATION BY FUNGUS

There are three main types of fungal wood rot. Soft rot is a type of superficial
decay in which little or no lignin degradation occurs along with the enzymatic breakdown
of cellulose and hemicellulose in the wood’s surface layers. Many Ascomycetes and their
anamorphs have this trait. White rot is characterized by the quick and widespread
enzymatic breakdown of all wood components, with the loss of lignin giving rise to the
distinctive bleaching of the wood. Only a few higher Ascomycete taxa and
Basidiomycetes have been found to exhibit white rot degradation thus far (Eichlerova and
Baldrian 2020). The most resistant component of wood is lignin; hence, the function of
white-rot fungus in lignocellulose turnover is crucial. In brown rot (Fig. 2), non-
enzymatic oxidation is responsible for the extremely quick cellulose and hemicelluloses
degradations with little to no lignin degradation (Abd El-Mongy and Abd El-Ghany
2009; Goodell 2020).
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Fig. 2. Effect of brown rot fungus and enzymes on wood

Soft rot and white rot are known to be caused by certain marine fungi. Fungi that
cause wood degradation usually start as mycelial fragments or fungal spores. When
appropriate conditions are met, spores sprout into fungal hyphae, which are tiny, hair-like
structures that are elongated, end-to-end growing fungal cells. In many instances, hyphal
particles that fall onto wood can also start development, which spreads the colonization
of the wood. Certain species of fungi can create a mat made up of several layers called a
mycelial mat, as their hyphae develop along the surface of materials. To stretch from one
fiber to the next and propagate throughout the wood in this way, the tips of the fungal
hyphae first seek comparatively easy routes through the microstructure of the wood. They
do this by taking advantage of interconnecting cell wall pits, which are channels that
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connect wood cells. All fungi that live in wood look for stored products in the
parenchyma during this early growth phase. This allows the fungus to quickly obtain
nutrients for energy and to accumulate fungal biomass inside or on top of the wood
structure (Goodell ef al. 2020). The most aggressive biological agents that damage wood
in service are xylophagous fungi, which cause brown and white rot, and subterranean
termites which are highly destructive to wood and are among the most serious insect
pests. These fungi cause structural changes that affect the wood’s natural resistance by
attacking the polymeric fraction of the cell wall, which includes cellulose,
hemicelluloses, and lignin, with enzymes. Termites contribute to the structural weakening
of wood by mechanically chewing and enzymatically digesting lignocellulosic
components, a process made possible by symbiotic microorganisms living in their
digestive tract (Scharf 2020).

According to Gabriel and Svec (2017), most wood-rot fungus are members of the
Basidiomycetes, and they can be classified as either brown or white rot. Fungi that cause
brown rot can break down cellulose and hemicelluloses; however, they can only alter
lignin and cannot substantially break it down. Because of the oxidation of lignin, the
wood shrinks and the brown rot residues break down into cubic shapes with brown
staining (Al-Rajhi et al. 2024b). Fungi that cause wood rot are the primary cause of wood
degradation. They have several enzymes that are employed to undermine living trees’
physiological processes and structural integrity. White-rot fungus primarily releases cell
oxidases for delignification during the wood breakdown process (Fig. 3). Because of its
strong ligninolytic qualities, quick growth, and simplicity of handling in culture,
Phanerochaete chrysosporium has emerged as the standard laboratory fungus for
researching the physiology and chemistry of lignin breakdown (Giri and Sharma 2020).

H "
Manganese peroxidase (MnP; —
/ {Téé, '1%5‘"1' Lignin peroxidase (LiP) Lignin breakdown

o A mmmm)  Lignin oxidation
Cellulose Laccase g
™ - Cellulase mmmm) Cellulose breakdown to glucose
’"‘5/ - hemicellulase mEE)  Hemicellulose breakdown

Lignin

Oy
Hemicellulose

Whiterot fungi

Fig. 3. Effect of white rot fungus and enzymes on wood

Ligninases, or ligninolytic enzymes, are a class of enzymes that can degrade wood
lignin (Fig. 3), characterizing the fungi responsible for white wood rot. This type of fungi
primarily decompose lignin, responsible for the brown coloration of wood, resulting in
the residual white cellulose, which is the origin of its nomenclature. These fungi derive
their energy and carbon from lignocellulosic materials. Lignin stands out among these
due to its intricate structure, which consists of many aromatic rings. Fungi produce a
number of extracellular oxidative enzymes, primarily lignin peroxidase, manganese
peroxidase, and laccase, to break down the lignin (Dao ef al. 2021). The characteristics of
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wood-decay fungus are ligninolytic and hydrolytic enzymes, which are involved in non-
specific oxidation and hydrolysis processes. Hydrolytic enzymes are important parts of
commercial enzymatic cocktails that turn pretreated lignocellulosic materials into plant
biomass (Al-Rajhi et al. 2023). The hydrolysis of cellulose and hemicelluloses through
specific combinations of enzymes is fundamental to modern biorefineries. Lignin-
degrading enzymes encompass manganese peroxidases (MnPs), phenol oxidases
(laccases), lignin peroxidases (LiPs), and versatile peroxidases (VPs). Endoglucanases,
exoglucanases, and B-glucosidases are enzymes associated with cellulolytic reactions, as
reported by Andlar et al. (2018). Fungal enzymes may be utilized in various biofuel
production processes, including the elimination of fermentation inhibitors, cellulose
saccharification, and the pretreatment of lignocellulosic biomass, as noted by Saldarriaga-
Hernandez et al. (2020).

Enhancing Wood’s Insect Resistance Using Nanoparticles

The development of nanotechnology has contributed to improving the
characteristics of wood and wood-derived products (Tarmian et al. 2012). Research on
the use of wood nanotechnology has focused on several areas: 1) modifications to
mechanical and physical traits; 2) wood’s dimensional stability; 3) wood’s appearance
(color) and resistance to outdoor conditions; and 4) resistance to microorganism attack.
According to Taghiyari et al. (2013), silver nanoparticles have improved thermally-
treated physical characteristics and fire resistance of wood protection.

Fig. 4. Effect of nanoparticles on wood-degrading fungi

Usage of various metal NPs offers an excellent defense against termites and
another wood-decaying fungi. Several formulations of silver, copper, zinc, boron, silver,
titanium, and other commonly studied NPs are effective in previous studies (Fig. 4). In
addition to laboratory experiments, outdoor tests have demonstrated NPs’ effectiveness in
protecting wood. They outperformed the traditional wood preservatives employed as
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controls in certain instances (McIntyre and Freeman 2011). Wood may become more
biologically resistant to mold and decomposing fungus. Additionally, it was discovered
that nano-copper, nano-zinc, and nano-silver offer efficient defense against the
development of Aspergillus brasiliensis and Penicillium funiculosum (Huang et al. 2015).

Impact of Metal and Inorganic Nanoparticles on Wood-Degrading Fungi,
and Ligninolytic Enzyme Activity

NPs are capable of offering sustainable and eco-friendly solutions for the
conservation of wood. A research investigation by Pietka et al. (2022) discovered that
silver and copper NPs exhibit antifungal abilities versus the white rot fungus Fomes
fomentarius, hence protecting Fagus sylvatica wood. The silver NPs (AgNPs)
suppressed fungal colony formation at the maximum concentration of 50 ppm, while
exhibiting no impact on growth at concentrations of 5 ppm and 25 ppm. Silver NPs
enhanced the rot tolerance of beech wood, but just at its highest concentration levels.
These results from in vitro tests are consistent with those obtained on beech wood
specimens, showing that the concentrations of the two NPs used were too low to protect
the beech wood from decomposition by Xylophagous fungus. It has been demonstrated
that high concentrations of silver, copper, and zinc oxide NPs can effectively shield
paulownia, European beech, and Scots pine wood from 7. versicolor (Paftil et al. 2017).
Furthermore, titanium dioxide NPs stop Hypocrea lixii and Musor circinelloides from
colonizing eight distinct wood species (De Filpo ef al. 2013). In a study on a composite
of chitosan and AgNPs in preventing Xylophagous fungal degradation of Populus %
Euramericana wood was evaluated. When the binary solution at AgNPs 4 ppm and
chitosan (20 g/L) was compared to the untreated control, the weight loss for white-rot
fungi decreased from 42.0% to 30.2%, and for brown-rot fungus, it decreased from
41.9% to 27.2% (Spavento et al. 2023). Also, Giménez-Banon et al. (2023) showed that
calcium phosphate NPs doped with methyl jasmonate increase cell wall material (CWM)
and produced a diminution in the amount of cellulose in contrast to an increase in
hemicellulose. The metallic silver in this process goes through release of ions as a result
of oxidation in the presence of water, so the exoenzymatic activity of both brown and
white rot fungi is greatly impacted by these silver ions in solution. Their particular impact
is noticeable in the activity of cellulase enzymes generated by decay fungi, as explained
previously (Abdel Ghany et al. 2018). Because this chemical reaction transition is
fundamentally slow, particle size plays a crucial role in preventing fungal development.
Because of the prolonged, gradual release of silver ions, smaller particle sizes offer better
protection against these spoiling agents by increasing specific surface area and improving
oxidation effectiveness. Furthermore, AgNPs, especially those with smaller diameters,
can cause fungal cells to produce free radicals, which can result in oxidative stress and,
eventually, cell death. By interfering with proton pumps and the electron transport chain,
these AgNPs infiltrate cells and cause damage to proteins, lipids, and nucleic acids as
well as an increase in ROS generation (Pietka et al. 2022).

When applied to the tropical species (Acacia mangium, Cedrela odorata, and
Vochysia guatemalensis) of Costa Rica, the AgNPs increased the wood’s resilience. In
every instance, the woods treated with NPs were categorized as Class A, or highly
resistant, to white (Trametes versicolor) decay fungi, in contrast to untreated wood,
which saw weight losses exceeding 20%. Along with greater resistance to fungal assault,
the AgNPs also reduced the wood’s ability to absorb water from the three species studied
(Moya et al. 2014). In mini-agar slant and wood block tests, pure nano-copper exhibits
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wood-protective qualities against Gloeophyllum trabeum and T. versicolor (Weitz et al.
2011). Nanosilver was successfully encapsulated in a polystyrene-soybean co-polymer by
Can et al. (2018). The capsules were used to impregnate Scots pine, which was then
tested against 7. versicolor, a fungus that causes white rot. According to the study’s
findings, polystyrene, nanosilver, and soybean oil all contributed significantly to the
synergistic impact of enhancing Scots pine’s resistance to decay.

For the protection of wood, copper is a necessary biocide. Copper by itself,
however, is insufficient to shield wood against fungi that kill copper-tolerant wood. A
new type of copper that is based on wood preservatives is copper NPs. When copper NPs
are used in place of regular copper, wood is more durable against fungi that cause rot.
Some nanomaterials and wood degrading fungi were organized in Table 1.

Table 1. Nanomaterials and Wood Degrading Fungi

NPs Function References
Al203 Inhibition white-rot fungus (Trametes versicolor) and brown- | Acosta et al.
rot fungus (Gloeophyllum trabeum). 2022
Se Against the brown-rot Serpula lacrymans Gablech et al.
2022
Silver Antifungal particularly against mildew fungi and Huang et al.
Inhibit Trametes versicolor of Populus wood 2022
Zn oxide and/or | Inhibit brown-rot fungus Rhodonia placenta and the white-rot | Reinprecht et
polyethylene fungus Trametes versicolor of beech wood al. 2022
glycol 6000
ZnO NPs, TiO2 Physical properties, thermal and fungal resistance of Scots Holy et al.
NPs Al203, MgO pine wood 2022
NPs
CuO NPs Inhibit the proliferation of wood-decaying fungi Trametes Shiny et al.
hirsuta (white rot) and Oligoporus placenta (brown rot). 2022
Zinc-oxide, zinc Suppressing wood— degrading fungi Terzi et al.
borate, copper, 2019
titanium, cerium,
and boron)
ZnO-PVAc Inhibition Trametes hirsute and Oligoporus placentus of Nagraik and
Populus deltoides wood Shukla 2025
Organosilica NPs Inhibition Brown rot fungus (Gloeophyllum trabeum) Wang et al.
and carbon 2023
quantum dots
Magnesium and Inhibition White rot fungus: T. versicolor Brown rot fungus: Usmani et al.
calcium fluorides R. placenta. Termite species- C. formosanus 2022
NPs
TiO2 Inhibition brown rot fungus (Postia placenta and Mucor Zanatta et al.
circinelloides) and white-rot (Hypocrea lixii) 2022

Influence of Metal Nanoparticles on Ligninolytic and Cellulolytic Enzymes
in Wood-Degrading Fungi

Wood’s cell walls are crucial components for its structural integrity. In contrast to
the lumen, which is a space, the cell wall itself has a fairly regular structure throughout
species, cell types, and even between hardwoods and softwoods (Schmitt et al. 2021).
The primary wall, secondary wall, and middle lamella are the three principal areas that
make up the cell wall. The three main components of the cell wall in each area are
cellulose microfibrils (which have distinct distributions and organization),
hemicelluloses, and a matrix or encrusting substance, usually lignin in secondary walls
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and pectin in primary walls (Dong et al. 2022). The complicated and resistant lignin
polymer is broken down by ligninolytic enzymes. Because of their extreme versatility,
this set of enzymes is used in many different sectors. The growing importance of enzyme
biotechnology has significantly increased the demand for these enzymes in recent years.
However, producing enzymes and metabolites from microbial sources remains costly,
making the use of low-cost raw materials essential to lowering production expenses
(Fasim et al. 2021).

Three oxidative enzymes are primarily included in the term “lignin-degrading
enzymes,” namely laccase, manganese peroxidase (MnPase), and lignin peroxidase
(LiPase). Because of their prospective uses in a variety of biotechnological fields, these
enzymes have become more and more in demand in recent years. Lignin-degrading
enzymes are widely used in pollution control, especially for treating industrial effluents
containing harmful substances such as dyes, phenols, and other xenobiotics. Numerous
studies have investigated their role in the decolorization of textile dyes and the
degradation of both phenolic and non-phenolic aromatic compounds (Jasinska et al.
2024). The effectiveness of five distinct NPs zinc oxide, zinc borate, silver, copper, and
copper borate in protecting beech and pine sapwood against Coniophora puteana and
Coriolus versicolor was investigated by Bak and Németh (2018). The treatments with
borate NPs were the most successful. Only the copper, silver, and zinc oxide NPs,
however, demonstrated a significant level of leaching resistance. As a result, only the
zinc oxide at the highest concentration studied (5% m/m) effectively protected both of the
fungus under investigation following leaching. At larger concentrations, the copper NPs
also demonstrated promise as an efficacious treatment.

CONCLUSIONS

1. Recent studies have demonstrated that nanotechnology, and especially the use of
metallic NPs such as silver, copper, and zinc oxide, holds promising potential for
enhancing wood durability and resistance to biological agents such as fungi and
termites. Certain NPs have also shown effectiveness in modifying the chemical
composition of wood and improving its physical properties, such as reducing water
absorption. However, further applied research is needed to understand long-term
effects, optimize dosages, and ensure environmental safety. Based on the discussions
presented in this article, nanoscience is emerging as an innovative and effective
approach for improving wood preservation and performance, provided it is supported
by additional scientific and experimental evidence.

2. Nanotechnology offers promising potential for enhancing wood preservation through
the use of metal-based NPs. While current studies demonstrate their antifungal and
insecticidal properties, further research is needed to better understand their
penetration behavior and long-term efficacy in wood matrices. Future investigations
should focus on optimizing NPs concentration, delivery methods, and evaluating their
impact under real world environmental conditions.
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