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Climate change is a serious global challenge with rising greenhouse gas 
emissions driving the need for effective carbon sequestration strategies. 
Carbon sequestration plants, such as fast-growing tree species, bioenergy 
plants, agroforestry systems, and blue carbon ecosystems, play a critical 
role in capturing and storing atmospheric carbon dioxide. Despite 
increasing interest, there is a lack of integrated reviews that connect plant-
based sequestration mechanisms with emerging technologies and policy 
instruments such as carbon credits. This review explores the mechanisms 
of carbon sequestration in plants, emphasizing the contributions through 
aboveground and belowground biomass accumulation, soil carbon 
retention, and microbial interactions. Key plant species, including 
Eucalyptus, Paulownia, bamboo, and mangroves, have demonstrated 
high sequestration potential and are discussed. This article aims to 
synthesize current knowledge while identifying opportunities for enhancing 
carbon sequestration through biotechnology and policy. This review also 
highlights emerging biotechnological advancements, such as genetic 
modifications, to improve carbon uptake efficiency and growing potential 
of blue carbon ecosystems. Emerging digital tools such as AI-based 
monitoring and blockchain supported carbon credit tracking are discussed 
as complementary systems to improve data transparency, verification and 
trust in carbon markets. By aligning scientific innovation with policy and 
social engagement, carbon credit can serve as a key element for climate 
mitigation strategies. 
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INTRODUCTION 
 

Climate change is one of the world’s biggest issues that is driven primarily by the 

accumulation of high amounts of greenhouse gases in the atmosphere, leading to rising 

global temperature and sea water levels, changes in weather patterns, and environmental 

degradation (Nunes 2023). The increment of carbon dioxide (CO2) levels in the atmosphere 

is mainly caused by human activities, particularly deforestation, industrial emissions, and 

burning of fossil fuels (Petrov et al. 2023). Climate change directly threatens biodiversity, 

human livelihood, and food security. Effective strategy for climate mitigation including 

carbon sequestration, which is the process of capturing and storing atmospheric CO2 by 
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plants, is being explored as a sustainable and natural way to reduce CO2 (Anwar et al. 

2018). 

Carbon credit is a concept that has been introduced to incentivize carbon 

sequestration and reduce emissions as a part of global climate policies (van der Gaast et al. 

2018). It also promotes sustainable land management practices that can enhance 

biodiversity and ecosystem services (Anderson et al. 2017). They are integral to various 

climate mitigation strategies, including REDD+ (Reducing Emissions from Deforestation 

and Forest Degradation), which incentivizes countries to reduce emissions from 

deforestation and forest degradation by providing financial rewards for verified reductions 

in emissions (West et al. 2020). Carbon credits represent a tradable permit that allows an 

entity to emit a specific amount of CO2 with the requirement that emissions are offset via 

carbon sequestration projects (Gupta 2024). This system enables countries and industries 

to neutralize the carbon footprint by investing in eco-friendly projects such as reforestation, 

afforestation, and nature conservation. Currently the carbon market is expanding across the 

globe, and the role of high-carbon sequestering plants is being recognized for the ability to 

provide long-term solutions for carbon storage (Fan et al. 2022). Malaysia's carbon credit 

market is still in its early stages, with efforts centered on establishing a well-structured 

trading platform through the Bursa Carbon Exchange (BCX). Initiated by Bursa Malaysia, 

BCX functions as a voluntary carbon market (VCM), allowing businesses to trade carbon 

credits to offset their greenhouse gas (GHG) emissions. 

Carbon sequestration by plants is conducted through the process of photosynthesis 

in which plants absorb CO2, release oxygen, and convert into biomass (Prasad et al. 2021). 

The CO2 absorbed by plants is stored in plant tissues, roots, and soils, which significantly 

can reduce overall CO2 concentration in the atmosphere (Basile-Doelsch et al. 2020). 

Forests, agroforestry systems, aquatic plants, and mangroves have been found to 

demonstrate high potential in capturing and storing carbon. Furthermore, perennial plants 

and deep-rooted species contribute to enhancement of soil organic carbon content and long-

term carbon-retention (Peixoto et al. 2022). Recent studies have highlighted that a 

substantial portion of sequestered carbon exists in the form of stable soil organic matter, 

such as humic substances, which can persist for centuries and significantly enhance 

belowground carbon storage (Basile-Doelsch et al. 2020; Garcia et al. 2022). 

Carbon credits are market-based instruments that represent the removal or 

reduction of one metric ton of CO2 or its equivalent in other greenhouse gases (Awazi et 

al. 2025). Carbon credits are designed to incentive efforts to reduce emissions or enhance 

carbon sequestration by assigning a financial value to each ton of CO2 mitigated (Salma et 

al. 2024). Entities such as companies, governments, or individuals can purchase carbon 

credits to offset their own emissions, thereby supporting climate mitigation projects like 

reforestation, renewable energy, and soil carbon enhancement (Senadheera et al. 2019). 

These credits can be traded in voluntary or compliance carbon markets, depending on 

regulatory frameworks. By placing a tangible economic value on carbon reduction, the 

carbon credit system aims to mobilize investment into environmental sustainability 

(Michaelowa et al. 2019). 

Today, carbon credit has gained interest to overcome climate change, and carbon 

sequestration projects, such as reforestation and afforestation, have been promoted in many 

countries. Despite the popularity of carbon credit projects, several issues including 

sustainability, permanence, and economic viability have raised concerns (Hou et al. 2019; 

Grim et al. 2020; Cho et al. 2025). Moreover, the competition for land between carbon 

credit plantations and agricultural land causes ethical and practical concerns (Regan et al. 



 

PEER-REVIEWED REVIEW ARTICLE    bioresources.cnr.ncsu.edu 

 

 

Haida et al. (2025). “Carbon credit, climate mitigation,” BioResources 20(3), 8256-8287.  8258 

2020). According to Pan et al. (2022), the methodologies for measuring the amount of 

carbon sequestered in carbon offset projects are still lacking standardization, making it hard 

to ensure transparency and accountability. Hence, to consider carbon credit projects as a 

reliable strategy for climate mitigation, these issues need to be addressed.  

The aim of this review article is to explore the importance of carbon credit in 

combating climate change by understanding the mechanisms of carbon sequestration, 

finding the suitable plant species for carbon credit plantations, and the challenges 

associated with carbon credit programs. The insight from this review article will be able to 

provide a deep understanding of the potential of the carbon credit program as a natural way 

to reduce carbon emissions.  

 

 

CLASSIFICATION OF CARBON SEQUESTRATION PLANTS 
 

Carbon sequestration plants refer to plant species that play a significant role in 

climate change mitigation by absorbing and storing CO2 in soil and biomass (Elbasiouny 

et al. 2022). The growing interest in identifying and utilizing plant species with high 

sequestration potential is due to increasing recognition of carbon credit projects in global 

climate policies (Terrer et al. 2021). High sequestration plant species are integral to carbon 

offset projects to reduce carbon emissions, where organizations and governments invest in 

reforestation, afforestation, and sustainable agricultural practices. The efficiency of the 

plant to absorb CO2 depends on several factors including growth rate, accumulation of 

biomass, root system, and ability to enhance carbon storage. In addition to carbon 

sequestration, plants contribute to conservation of biodiversity, stabilize soil, and improve 

microclimates (Jansson et al. 2021).  

Carbon sequestration plants can be divided into forestry species, agroforestry 

plants, bioenergy crops, and aquatic vegetation. Each category has distinct applications and 

characteristics in carbon sequestration initiatives. Forest species are the backbone of many 

carbon credit programs as the trees can store carbon in woody biomass for a long period 

(Favero et al. 2020). Forests serve as the largest terrestrial carbon sink as forest trees are 

capable of absorbing and storing significant amounts of carbon throughout the tree lifespan. 

Studies have shown that forest ecosystems can sequester substantial amounts of carbon, 

with some estimates suggesting that they account for approximately 68 to 71% of carbon 

sequestration services globally (Lama et al. 2024). Forests are the critical component of 

global carbon sequestration strategies due to the ability of forests to act as long-term carbon 

reservoirs (Funk et al. 2019). In reforestation and afforestation projects, fast-growing 

species, such as Eucalyptus, Paulownia, and bamboo, are widely planted due to rapid 

accumulation of biomass and capability to absorb a high amount of CO2 (Weber et al. 2019; 

Behera et al. 2020; Li et al. 2021a; Ghazzawy et al. 2024). The selection of tree species 

for afforestation and reforestation projects is crucial, as different species exhibit varying 

capacities for carbon storage (Miripanah et al. 2019). 

Agroforestry is the integration of trees, perennial crops, and shrubs into agricultural 

systems that offers dual benefit by producing food with environmental sustainability (Raj 

et al. 2019). This approach could enhance carbon sequestration by improving soil organic 

carbon content and increment of biomass storage (Ghale et al. 2022). This practice not only 

increases biomass carbon storage but also improves soil health and biodiversity (Zheng et 

al. 2023). Moreover, other types of agroforestry techniques that can maximize carbon 

sequestration are alley cropping (crops are planted between wide rows of trees) and 
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silvopasture systems (trees and grazing livestock coexist in the same area) (Jose and 

Dollinger 2019; Varsha et al. 2019). Agroforestry has advantages compared to 

conventional agriculture systems as agroforestry systems reduce greenhouse gas emissions 

associated with intensive farming practices, retains more organic matter in soil, and reduces 

degradation of soil (Gross et al. 2022). The presence of trees in agricultural systems can 

improve microclimates, leading to increased crop yields and further carbon sequestration 

potential (Flude et al. 2022). In addition, soil fertility could be enhanced by covering the 

soil with leguminous trees, such as Gliricidia, Leucaena, and fruit-bearing trees, will 

contribute to long-term carbon storage while providing economic benefits to farmers 

(Alamu et al. 2023). The interaction between trees and crops creates a synergistic effect 

that maximizes carbon capture while providing economic benefits to farmers. 

Bioenergy crops are grown for carbon sequestration, biomass production, and 

biofuel generation. Bioenergy crops also act as alternative sources to fossil fuels (Wu et al. 

2018; Babin et al. 2021). The most popular bioenergy crops grown are Jatropha, 

switchgrass, and miscanthus that have rapid growth rate and high photosynthesis 

efficiency, which allow substantial carbon uptake in a short time (Clifton-Brown et al. 

2019; Moore et al. 2020; Cezario et al. 2023). Bioenergy crops contribute significantly to 

dynamic carbon cycling as carbon absorbed by crops for photosynthesis is released to the 

atmosphere after burning as biofuel. The key difference between fossil fuels and biofuel is 

the fossil fuels adding carbon to the atmosphere as the process releases the carbons that 

have been trapped for a long-time during combustion (Wang and Song 2020). In contrast, 

bioenergy maintains work on a short-term carbon cycle in which the crops absorb CO2 

during photosynthesis and release the same amount of carbon after combustion (Maschler 

et al. 2022). The efficiency of bioenergy crops to absorb carbon and sustainable land-use 

practices are the important elements in enhancing carbon sequestration potential and 

mitigating climate change.  

Aquatic vegetations are essential carbon sinks in blue carbon sequestration (Himes-

Cornell et al. 2018; Pham et al. 2019). There are several important aquatic vegetations, 

such as mangroves, salt marshes, and seagrass meadows, that efficiently store carbon in 

submerged sediments and are unsusceptible to disturbances such as wildfires and 

deforestation (Huxham et al. 2018; Drexler et al. 2021; Bao et al. 2022). Mangrove 

ecosystems are potent to sequester carbon, up to four times per unit area compared to 

terrestrial forests, which make them one of the most effective carbon sinks in the ecosystem 

(Hamilton and Friess 2018). In addition to carbon sequestration, strong and deep mangrove 

roots act as a coastal region’s stabilizer, prevent soil erosion, and protect against storm 

surges (Karimi et al. 2022). Meanwhile, the accumulation of peat in seagrasses and wetland 

areas contribute to the carbon sequestration process and results in significant long-term 

carbon storage (Hao et al. 2024). Another valuable blue carbon storage is seagrass 

meadows which are a flowering plant that is powerful carbon sinks, absorbing and storing 

CO2 in the biomass and sediments (Lin et al. 2023). The conservation and restoration of 

aquatic vegetation are critical for enhancing carbon sequestration and providing additional 

ecosystem services, such as coastal protection and habitat for marine life (Hagger et al. 

2022). 
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MECHANISM OF CARBON SEQUESTRATION IN PLANTS 
 

The plant is an important organism that plays a vital role in reducing CO2 in the 

atmosphere by absorbing the CO2 and storing it in plant biomass and soil. The carbon 

sequestration process occurs through multiple interconnected mechanisms and it is 

essential to understand the mechanisms to maximize the potential of vegetation in climate 

mitigation strategies.  

One of the key mechanisms of carbon sequestration by plants is through 

accumulation of biomass that can be divided into aboveground and belowground biomass 

storage (Kumar et al. 2021). The aboveground biomass storage occurs in various plant 

organs, such as leaves, branches, stems, and trunks, where carbon can be stored for a long 

time (Eslamdoust and Sohrabi 2018). The largest aboveground carbon reservoirs on earth 

are forests, particularly tropical and temperate forests (Sun and Liu 2020). The fast-

growing forest species, including Eucalyptus and Paulownia, are highly capable in 

absorbing CO2 rapidly and these species are commonly used in afforestation projects 

(Cravino and Brazeiro 2021; Ghazzawy et al. 2024). Meanwhile, trees, such as redwood, 

mahogany, and teak, are capable of accumulating high amounts of carbon (Racelis et al. 

2019; Watt and Kemberley 2022). Additionally, perennial crops like bamboo have fast-

growth patterns and high annual carbon intake that has mainly contributed to biomass 

carbon storage (Devi and Singh 2024). 

An equally important role in carbon sequestration is belowground biomass storage 

that is mainly conducted by the plant roots system. The carbons from the atmosphere are 

absorbed from the leaves, transported to the root systems and stored in the soil (Pausch and 

Kuzyakov 2018). The mangroves, leguminous trees, and prairie grasses are the examples 

of deep-rooted species that contribute to long-term sequestration by stabilizing carbon in 

subsoil layers (Richards et al. 2024). Grassland ecosystems are very effective for carbon 

retention, which can store up to 90% of the belowground biomass (Bai and Cotrufo 2022). 

Unlike forests that can lose carbon through deforestation or harvesting, grasslands retain 

the soil carbon belowground (Fossum et al. 2022). Meanwhile, extensive root systems of 

mangroves and wetland plants can trap organic matters in submerged sediments, 

preventing carbon loss and rapid decomposition (Balieiro et al. 2018).  

In addition to aboveground and belowground biomass storage, soil is the largest 

terrestrial carbon reservoir that can hold more carbon than vegetation and atmosphere 

(Zhou et al. 2023). The decomposition of plant residues, such as fallen leaves, woody 

debris, and decaying roots, will convert into humus, which is a stable residue that can 

persist in soils for centuries and enrich the soil with organic carbon (Samenov et al. 2019). 

The exudation of sugars and organic acids from the roots could promote microbial activity 

and soil aggregates, which directly enhance soil carbon storage (Ma et al. 2022). The 

accumulation of soil organic carbon is enhanced by increased microbial growth and 

biomass turnover, emphasizing the complex interplay between plant and microbial 

processes in the carbon cycle (Prommer et al. 2020). Effective carbon sequestration relies 

on the health of soil microbial communities, as their activity facilitates the decomposition 

of organic matter, releasing vital nutrients that promote plant growth and further carbon 

uptake (Prommer et al. 2020). One of the factors that influence soil carbon accumulation 

is land management practices. Grassland and forests store more aboveground and 

belowground carbon due to agroforestry activity and cover cropping that enhance soil 

carbon retention (Meena et al. 2019; Bai and Cotrufo 2022). In contrast, unsustainable land 
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practices, such as deforestation and excessive tillage, lead to acceleration of carbon loss 

and contribute to greenhouse gas emissions (Hu et al. 2021; Xing and Wang 2024). 

The presence of mycorrhizal fungi and soil microbes are important in facilitating 

long-term carbon storage and stabilizing organic matter (Jeewani et al. 2021; Wu et al. 

2024). The mycorrhizal fungi form a symbiotic interaction with the plant roots by 

transferring carbon into the soil and creating underground networks that will enhance the 

carbon sequestration capacity (Basiru and Hijri 2024). Arbuscular mycorrhizal fungi help 

to transform carbon into soil aggregates are commonly found in crops and grasses 

(Agnihotri et al. 2022). Meanwhile, ectomycorrhizal fungi contribute to long-term carbon 

storage by slowing the decomposition of organic matter and are mainly found in trees such 

as oaks and pines (Zak et al. 2019; Tunlid et al. 2022). The fungal mycelial network 

functions as an underground carbon highway that distributes carbon in the soil and 

improves soil structure (Touseef 2023). The efficiency of microbial carbon in the soil can 

be enhanced by the application of biochar and reduced tillage activity (Liu et al. 2020). 

Additionally, interaction between plant roots, mycorrhizal, and microbes enhances soil 

health and long-term carbon storage, which improves the self-sustaining carbon 

sequestration cycle (Bhattacharyya et al. 2022).  

 
 
CONTRADICTIONS AND CONSENSUS IN CARBON SEQUESTRATION 
RESEARCH 
 

Understanding the varied outcomes and interpretations from different studies on 

carbon sequestration is vital. The purpose of this comparative analysis is to find the best 

strategies and explain why different studies have come to different conclusions. This will 

improve the scientific basis for policy and practice (Hübner et al. 2021). Variations in study 

designs, geographical focus, species studied, and methodologies significantly impact 

findings. For instance, Basile-Doelsch et al. (2020) focused on keeping soil carbon in 

temperate forests, while Gupta et al. (2017) looked at tropical agroforestry systems. Both 

groups talk about different ways and rates of carbon sequestration. These differences 

underscore the need for regionally tailored strategies (Gupta et al. 2017; Basile-Doelsch et 

al. 2020). The effectiveness of bioenergy crops in carbon sequestration illustrates a 

significant area of debate. Despite some discrepancies, there is a consensus regarding the 

carbon sequestration capabilities of certain fast-growing tree species. The carbon 

sequestration capacity of trees is influenced by their size and growth rates, leading to 

differing estimates of carbon storage potential (Channalli et al. 2022).  

However, a common misconception in interpreting forest carbon data is the 

assumption that the total carbon stored in the forest directly equates to active carbon 

sequestration. In reality, processes such as decomposition and oxidation are constantly at 

play, returning carbon to the atmosphere (Raza et al. 2023). A critical question is whether 

forest management can establish a “new normal” with consistently higher biomass levels 

sustained over time. For example, intensive breeding programs in the southeastern United 

States have resulted in tall, mature pine forests that currently exceed the demand for timber 

(Hausle et al. 2023). While these forests represent a temporary carbon sink, their long-term 

role is uncertain. As the trees reach old age, the replantation of these trees could 

significantly alter the sequestration trajectory (Xu et al. 2024). This illustrates the 

importance of considering forest life cycles and long-term and land-use planning when 

evaluating sequestration potential (Deng et al. 2022a).  
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Moreover, sequestration through biomass alone may not result in permanent carbon 

storage (Dynarski et al. 2020). If plant material is not harvested and used in long lasting 

products such as bioplastics, timbers or construction materials or transformed into stable 

forms like biochar, the carbon will eventually return to the atmosphere through natural 

decomposition (Infurna  et al. 2023; Mutjaba et al. 2023; Kumar et al. 2025). Therefore, 

for biomass-based carbon sequestration to be effective, strategies must be adopted to ensure 

that carbon is retained over the long term, either through soil incorporation, durable product 

development or energy substitution (Garcia et al. 2022; Tripathi et al. 2024). This has led 

to growing interest in circular bioeconomy models where biomass is utilized in ways that 

lock carbon while providing economic benefits.   

Recent technological advancements are beginning to bridge gaps identified in 

earlier studies. Technologies, such as AI-driven monitoring and blockchain, for verifying 

carbon credits are proposed by Prawitasari (2024) and Adigun et al. (2024) as a means to 

enhance transparency and reliability in carbon accounting. These innovations are seen as 

pivotal in reconciling some of the methodological concerns previously highlighted 

(Prawitasari 2024; Adigun et al. 2024). The contradictions and consensus outlined herein 

underscore a clear need for continued research into the long-term ecological and socio-

economic impacts of carbon sequestration. Future studies should particularly focus on 

biodiversity impacts, ecosystem health, and the socio-economic ramifications of carbon 

credit projects on local communities (Nunes 2023). The research on carbon sequestration 

reveals a complex landscape of contradictions and consensus. While there is agreement on 

the fundamental role of vegetation and effective land management practices in enhancing 

carbon storage, significant debates persist regarding the effectiveness of different 

ecosystems, the implications of leakage, variability in sequestration rates, and the 

challenges of modeling. Addressing these contradictions through further research and 

improved methodologies will be essential for developing effective carbon management 

strategies and policies.  

 

 

IMPORTANCE OF CARBON SEQUESTRATION PLANTS IN CARBON 
CREDIT PROGRAMS 
 

Carbon sequestration plants play a crucial role in carbon credit programs by 

providing a mechanism for businesses and individuals to offset their carbon emissions 

through the purchase of carbon credits generated from the carbon storage capabilities of 

these plants. Climate change is one of the biggest issues in the world caused by rapid 

urbanization and a high number of populations that contribute to high CO2 emission in the 

atmosphere. In combating climate change, carbon credit serves as a crucial tool in climate 

change mitigation policies and international agreements between the countries (Nsabiyeze 

et al. 2024). The carbon credit program is a market-driven mechanism designed to assign 

a monetary value to carbon sequestration and emission to reduce CO2 concentration in the 

atmosphere and reduce greenhouse gas emissions (Avwioroko 2023; Jia and Wen 2024). 

One carbon credit represents one metric ton of CO2 that has been prevented or removed 

from entering the atmosphere (Woo et al. 2021). Carbon credit programs rely on carbon 

sequestering plant species that are generated through the project including reforestation, 

afforestation, agroforestry, and blue carbon ecosystem (Sapkota and White 2020; Di Sacco 

et al. 2021).  
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The effectiveness of these programs hinges on the ability of various plant species 

to sequester carbon, as evidenced by studies demonstrating that factors, such as biomass 

and growth characteristics, significantly influence carbon storage potential (Rindyasturi et 

al. 2018). Forest ecosystems earn carbon credits based on their ability to absorb carbon, 

which is influenced by how they are managed and their biomass productivity (Jia and He 

2023; Joshi and Garkoti 2025). The concept additionality is important, meaning carbon 

storage must go beyond a set baseline to qualify for credits, encouraging sustainable land 

management (Randazzo et al. 2023). Planting a mix of species in afforestation and 

reforestation projects can further boost carbon storage and biodiversity, making them more 

valuable for carbon credits (Schuster et al. 2014). 

In moving towards net-zero emissions, global frameworks, such as Kyoto Protocol, 

Paris Agreement, and Reducing Emissions from Deforestation and Forest Degradation 

(REDD+), play an important role in regulating and promoting the carbon credit program 

(Espejo et al. 2020). In the carbon credit program, several plant species with high carbon 

sequestration potential have been identified. Moreover, the carbon credit program will also 

encourage more involvement of private sector participation in investment of reforestation 

and afforestation projects (Cho et al. 2025). The inclusion of plants with carbon 

sequestration potential in the carbon credit program will enable the developing countries 

with vast forest areas to earn benefit economically (Di Sacco et al. 2021). The carbon credit 

programs create financial incentives for sustainable land management ensuring ecosystems 

remain protected while sequestered and reducing CO2 concentration in the atmosphere 

(Evans 2018; Blanc et al. 2019). In addition to carbon sequestration, plants in carbon 

species programs also contribute to ecological and socio-economic benefits including 

enhancing biodiversity, improving soil fertility and soil retention (Zheng et al. 2024).  

Furthermore, emerging research demonstrates that carbon credit participation is not 

only environmentally beneficial but also financially strategic. Companies engaging in 

carbon credit programs can enhance their corporate financial performance, particularly 

when such participation is embedded within a broader framework of Corporate Social 

Responsibility (CSR). For example, Martielli et al. (2025) conducted an in-depth empirical 

analysis on the interplay between carbon credits, CSR strategies, and corporate 

governance. The study revealed that carbon credits serve not only as a tool for 

environmental accountability but also as a financial asset that positively moderates the 

relationship between climate mitigation efforts and firm profitability. Specifically, firms 

with robust CSR frameworks and proactive governance structures were found to benefit 

more significantly from carbon credit participation, as these elements enhanced both 

market perception and operational efficiency. 

Similarly, a study by Salvi et al. (2025) indicated that integrating carbon credits 

into corporate climate action plans can contribute to improving financial outcomes by 

aligning environmental objectives with value creation. Carbon credits were shown to 

enhance transparency in emissions reporting and promote compliance with international 

standards, which in turn builds corporate legitimacy and market credibility. Moreover, 

firms engaging in such programs exhibited greater adaptability and resilience to climate-

related financial risks. In addition, Salvi et al. (2025) emphasized that carbon credit 

integration is most effective when supported by strategic planning and cross-sectoral 

collaboration, positioning firms not only as climate leaders but also position themselves as 

resilient and viable entities, capable of thriving amid shifting regulatory frameworks and 

growing market demands for sustainability.  
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Therefore, carbon sequestration plants form the biological backbone of the carbon 

credit economy, bridging environmental goals with financial incentives. When 

implemented effectively, carbon credit programs not only contribute to reduce atmospheric 

CO2 levels but also stimulate green investment, promote policy innovation, and encourage 

corporate. Hence, the carbon credit program is not only beneficial in climate change 

mitigation but also in fostering environmental sustainability, economic development, and 

social equity (Hariram et al. 2023).  

 

 

CARBON CREDIT MARKETS AND POLICIES 
 

The global carbon credit market has evolved as a key mechanism to mitigate 

climate change by providing economic incentives for reducing greenhouse gas emissions 

(Aldy and Halem 2024). The concept of trading carbon credits emerged as part of 

international climate agreements, enabling countries and industries to meet emission 

reduction targets through market-based mechanisms (Verma 2023). The development of 

these markets is largely influenced by global agreements, such as the Kyoto Protocol, Paris 

Agreement, and REDD+, which establish regulatory frameworks for carbon trading and 

emissions reduction (Kim et al. 2020; Morita and Matsutomo 2023). 

 

Global Carbon Credit Trading Mechanisms 
The Kyoto Protocol was adopted on 11 December 1997 and enforced beginning 16 

February 2005, which was the first international treaty to introduce carbon trading 

mechanisms (Wang et al. 2019). It established three market-based mechanisms: Emission 

Trading System (ETS), Clean Development Mechanism (CDM), and Joint Implementation 

(JI) (Deng et al. 2022b). The ETS, also known as cap-and-trade, allowed industrialized 

countries to trade excess emission allowances. The CDM enabled developing countries to 

earn carbon credits by implementing emission reduction projects such as reforestation, 

renewable energy, and energy efficiency. The JI allowed industrialized nations to invest in 

emission reduction projects in other developed countries in exchange for credits (Deng et 

al. 2022b; Xu and Zhang 2022). However, the Kyoto Protocol had a lack of participation 

from major emitters and difficulties in enforcing emission targets (Maamoun 2019).  

The Paris Agreement, adopted on December 12, 2015, and enforced on November 

4, 2016, introduced Nationally Determined Contributions (NDCs), which require countries 

to set their own climate targets. This agreement emphasizes voluntary cooperation and 

market mechanisms through Article 6 that allows countries to trade carbon credits 

internationally (Mehling et al. 2019; Asadnabizadeh and Moe 2024). It encourages both 

developed and developing countries to participate and to invest in natural solutions like 

reforestation and blue carbon ecosystems (Oliveira et al. 2019; Seddon 2022). REDD+, a 

UN-backed program, is designed to reduce carbon emissions from deforestation and forest 

degradation in developing countries. It provides monetary incentives for forest 

conservation and sustainable land use practices, thereby leveraging forests as carbon sinks 

and enhancing biodiversity conservation (Sauls 2020; Wainaina et al. 2021). Table 1 

provides a summary of Kyoto Protocol, Paris Agreement, and REDD+ programs.  
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Table 1. Evolution of Carbon Credit Programs 

 Kyoto Protocol 
(1997) 

Paris Agreement 
(2015) 

REDD+ 

Objective • First legally binding 
international agreement to 
reduce greenhouse gas 
emissions 

• Assigned emission reduction 
targets to developed 
countries 

• Introduced market-based 
mechanisms to achieve 
emission reduction cost-
effectively 

• Replace the rigid Kyoto 
targets with a more 
inclusive, global climate 
action framework 

• Limit global warming to 
well below 2 °C, with an 
aspirational goal of 1.5 °C 

• Increase participation 
from all countries, 
including developing 
nations 

• Address emissions 
from deforestation 
and land use 
changes 
(responsible for 
~15% of global CO₂ 
emissions) 

• Provide financial 
incentives for forest 
conservation, 
sustainable 
management, and 
reforestation 

Mechanisms 
introduced 

Clean Development 
Mechanism (CDM) 

• Developed countries invest 
in emission reduction 
projects in developing 
nations 

• Earn Certificate Emission 
Reductions, which can be 
used to meet their reduction 
targets 

 
Joint Implementation (JI) 

• Developed nations finance 
emission reduction projects 
in other developed nations 

• Earn Emission Reduction 
Units 

 
Emissions Trading (ET) 

• Countries with surplus 
emission allowances can sell 
to countries exceeding their 
allowed emissions 

• This created regulated 
carbon markets such as the 
EU Emissions Trading 
System 

Key Market Mechanisms 
(Article 6) 
 
Nationally Determined 
Contributions (NDCs) 

• Each country sets its own 
emission reduction goals 
(voluntary but reviewed 
every 5 years) 

• Allows for bottom-up 
flexibility but lacks strict 
enforcement mechanisms 

 
Article 6.2 – International 
Carbon Market 
Cooperation 

• Enables bilateral trading 
of carbon credits between 
countries 

• A country exceeding its 
reduction target can sell 
credits to another country 
struggling to meet its 
goals 

 
Article 6.4 – New Global 
Carbon Market 

• Introduces a centralized 
carbon trading system 
overseen by the UN. 

• Allows both public and 
private sectors to 
participate in emission 
reduction projects. 

• A replacement for the 
Clean Development 
Mechanism (CDM) under 
Kyoto. 

 

Phases of REDD+ 
 
Readiness Phase 

• Countries establish 
governance 
structures and 
carbon accounting 
frameworks 

• Example: 
Developing 
monitoring systems 
for tracking 
deforestation rates 
 

Implementation 
Phase 

• Pilot projects begin, 
and countries start 
testing REDD+ 
strategies 

• Performance-based 
funding mechanisms 
are introduced 

 
Results-Based 
Payments 

• Countries receive 
payments based on 
verified reductions in 
deforestation rates 

• Funds come from 
international donors, 
carbon markets, or 
private investors 

• Example: A country 
reducing 
deforestation gets 
paid per metric ton of 
CO₂ avoided. 
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Voluntary Carbon 
Offsetting 

• Allows businesses and 
organizations to purchase 
carbon credits to offset 
their emissions 

Challenges • Limited participation from 
developing nations 

• Verification complexity 

• Market imbalances due to 
some countries had excess 
carbon credits, leading to 
price drops 

• Risk of double counting: 
Ensuring emission 
reductions are not 
claimed by multiple 
entities 

• Non-binding nature of 
NDCs: No strict penalties 
for missing targets. 

• Market uncertainties: 
Many rules (especially for 
Article 6) are still being 
finalized 

• Monitoring 
difficulties: Requires 
satellite imaging and 
ground verification 

• Land tenure 
conflicts: Unclear 
land ownership can 
lead to disputes over 
carbon credit 
revenues 

• Ensuring 
permanence: 
Protecting forests 
long-term to avoid 
emissions 
rebounding 

Outcomes • Foundation for international 
carbon markets 

• Stimulated early investments 
in clean energy and efficient 
projects 

• However, loopholes and 
over-crediting issues 
reduced its long-term 
effectiveness 

• Encouraged broader 
participation from both 
developed and developing 
nations 

• Introduced market-based 
flexibility, making carbon 
trading more accessible 

• Strengthened the role of 
corporations and 
voluntary markets in 
climate action 

• Integrated forests 
into global carbon 
markets, making 
them valuable assets 

• Provided economic 
incentives for 
developing nations 
to preserve forests 

• Supported 
biodiversity 
conservation and 
sustainable 
development 

 

Policy Implications and Economic Viability 
The implementation of carbon credit programs varies significantly across different 

regions, influenced by local economic conditions, regulatory frameworks, and 

environmental priorities. The EU's Emissions Trading System (ETS) operates on a cap-

and-trade principle. To optimize this system, the EU could consider tightening the cap 

progressively and expanding coverage to more sectors (Beck and Kruse-Andersen 2020). 

As for the United States, California's cap-and-trade program demonstrates the potential of 

state-level initiatives. Integrating these programs into a federal framework could 

standardize measures and enhance market liquidity (Lessmann and Kramer 2024). China's 

national carbon trading scheme focuses initially on the power generation sector. More 

stringent verification processes and enhanced transparency could optimize this system 

(Zhang et al. 2023). Many developing countries face challenges such as lack of funding 

and technical expertise. International cooperation and financial support are crucial to 

enhance the effectiveness of their programs (Zhao et al. 2022). 

To improve the economic viability and effectiveness of carbon credit programs, it 

is essential to strengthen regulatory frameworks, enhance market stability, promote 

international collaboration, and incentivize innovation. These measures would support 
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more robust, transparent, and accountable carbon markets, attracting stable investments 

and promoting sustainable development globally. 

 

 

PLANTS USED FOR CARBON CREDIT PROGRAMS 
 

The selection of suitable plant species is the key factor to determine the 

effectiveness of carbon credit programs. Selection of plant species with high growth rate, 

adaptability in various environments, disease resistance, and high carbon sequestration 

capacity are the main factors of choosing the suitable plant species for carbon credit 

plantations (Di Sacco et al. 2021). Among the plant species, Eucalyptus, bamboo, 

Paulownia, and mangroves have gained attention due to its capability to absorb high 

amounts of CO2 and stand out as highly effective species for carbon credit programs such 

as reforestation, afforestation, and agroforestry projects (Cameron et al. 2019; Pan et al. 

2023; Ghazzawy et al. 2024; Luo et al. 2024).  

 

Eucalyptus: A High-Yield Carbon Sequestration Tree 
Eucalyptus is a fast-growing tree belonging to the family Myrtaceae with over 700 

species (Shala and Gururani 2021). Eucalyptus species is widely known for its rapid 

growth, high quality of timber, high production of biomass, and high capability to sequester 

CO2 (Fig. 1) (Behera et al. 2020). Eucalyptus is native to Australia and currently has been 

cultivated worldwide particularly in tropical, subtropical, and temperate regions (Queiroz 

et al. 2020). Eucalyptus is one of the most frequently used trees in carbon credit plantations 

that are planted for commercial forest, degraded land restoration, and production of 

bioenergy production (Tesfaye et al. 2020; Morales et al. 2023). Eucalyptus is an excellent 

candidate for long-term carbon storage due to its rapid growth and high wood density 

(Fairman et al. 2022). Additionally, Eucalyptus has deep root systems that contribute to 

carbon storage as they facilitate organic matter accumulation and enhance microbial 

activities in the rhizosphere (Silva et al. 2020). Furthermore, Eucalyptus trees can be 

integrated into agroforestry systems as windbreaks, improve soil stability, and provide 

shade for intercropped agricultural crops (Kaur and Monga 2021; Dissanayaka et al. 2024). 

In addition to carbon sequestration potential, Eucalyptus plantations provide economic and 

ecological benefits, such as paper production, construction, and biofuel industries 

(Nogueira et al. 2021; Tomé et al. 2021).  
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Fig. 1. A eucalyptus plantation showing uniform tree spacing and canopy structure, which has an 
important role in timber production, carbon sequestration, and ecosystem restoration  
 

Bamboo: The Fast-Growing Carbon Sink 
Bamboo is a fast-growing perennial woody grass that belongs to the family 

Poaceae, subfamily Bambusoideae, which comprises over 120 genera and 1600 species 

(Ramasubramanian et al. 2023). Bamboo is predominantly found in tropical and 

subtropical regions with major bamboo forests in China and India (Tewari et al. 2019; 

Dlamini et al. 2022). Bamboo is a unique type of grass that is highly efficient for carbon 

sequestration due to its rapid growth rate, continuous regenerative ability, and high 

production of biomass (Fig. 2) (Adu-Poku et al. 2023; Pang et al. 2025). Moreover, 

bamboo plants have dense root systems that allow bamboo to store large amounts of CO2, 

improve soil fertility, and prevent soil erosion (Emamyerdian et al. 2020). In carbon credit 

plantations, notable bamboo species from the genus Phyllostachys spp. and Bambusa spp. 

have been widely planted due its capability in absorbing high amounts of CO2, high soil 

carbon storage, and extensive root networks (Pan et al. 2025). Beyond its role in carbon 

sequestration, bamboo byproducts have been extensively utilized for paper production, 

construction, furniture, textiles, and bioenergy, making bamboo a valuable resource for 

sustainable industries (Guan et al. 2019; Rocky and Thompson 2020; Xu et al. 2022; Liang 

et al. 2023). In addition, biochar produced from bamboo biomass is applied to enhance soil 

fertility, increase soil carbon storage capacity, further amplifying its role in mitigation of 

climate change (Odega et al. 2023; Chaturvedi et al. 2024). Bamboo also is widely planted 

in land restoration or agroforestry projects to improve the degraded soil (Singh et al. 2020).  
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Fig. 2. A bamboo plantation with mature clumps and scattered culms, illustrating its dense growth 
pattern and potential for sustainable biomass production 

 

Paulownia: The Oxygen Tree with High Productivity of Biomass 
Paulownia is a fast-growing deciduous tree genus belonging to the family 

Paulowniaceae. Native to China, Paulownia species are cultivated worldwide and 

renowned for their various ecological, economic, and environmental benefits (Costea et al. 

2021; Sławińska et al. 2023). Paulownia is referred to as the “oxygen tree” that has 

exceptional photosynthetic efficiency and rapid growth rate (Adach et al. 2020). The 

Paulownia tree is capable of absorbing double the amount of CO2 compared to other plant 

species, making it suitable for carbon credit plantations (Ghazzawy et al. 2024). The large 

size of leaves contributes to high absorption of CO2 and efficient photosynthesis capacity 

(Ghazzawy et al. 2024). Paulownia tree also has lightweight yet strong wood that has been 

utilized in multiple industries, such as construction, furniture, and bioenergy (Rodríguez-

Seoane et al. 2020; Barbu et al. 2023; Huber et al. 2023). In addition, Paulownia trees can 

grow in poor and degraded soil. This species is useful in plantings because it enhances soil 

fertility and soil organic matter content (Woźniak et al. 2022). The deep root systems of 

Paulownia trees contribute to nitrogen fixation and groundwater conservation (Ren et al. 

2024). Paulownia trees are increasingly being promoted in carbon credit plantations for 

reforestation and afforestation projects (Ghazzawy et al. 2024). 

 

Mangroves: Blue Carbon Ecosystems for Coastal Carbon Storage 
Mangroves are a group of salt-tolerant trees and shrubs that grow in coastal 

intertidal zones, particularly in subtropical and tropical regions (Quadros et al. 2021). The 

most common mangrove genera including Rhizophora spp., Avicennia spp., and 

Sonneratia spp., which can be grown in saline and waterlogged environments and among 
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the most powerful plants in blue carbon ecosystems (Ngernsaengsaruay et al. 2024; 

Twomey and Lovelock 2025). Blue carbon ecosystems are capable of sequestering four 

times more carbon per unit area than terrestrial forests (Hamilton and Friess 2018). 

Mangrove forests can store carbon in aboveground biomass and carbon also remains 

trapped for centuries in thick layers of sediment beneath (Sasmito et al. 2020; Murdiyarso 

et al. 2021). Mangrove forests have multiple roles in ecosystems, such as absorbing CO2 

and protecting coastal areas from erosion, surges, and storms (Fig. 3) (Kearney et al. 2019; 

Temmerman et al. 2023). The anaerobic conditions in mangroves sediments slow down 

the process of organic matter decomposition that led to long-term carbon sequestration 

(Kida and Fujikate 2020). Currently, restoration and conservation of mangroves forests 

have become a key focus of carbon credit projects under blue carbon initiatives and 

REDD+ (Sidik et al. 2023). 

 

 
 
Fig. 3. A mangrove forest with tidal waterways, showcasing the dense vegetation and intricate 
root systems that help prevent coastal erosion 

 

 

LIMITATION OF CARBON CREDIT PLANTATIONS 
 

As carbon credit plantations offer a promising solution for climate change 

mitigation, they also face several limitations that can affect the success of this program 

(Pan et al. 2022; Shrestha et al. 2022). It is important to address these limitations to ensure 

carbon credit plantations achieve the objectives in contributing to environmental and socio-

economic benefits. One of the main challenges is land-use conflict with agricultural land 

(Froese and Schilli 2019). To carry out large-scale reforestation and afforestation projects 

for carbon credit, large land areas are needed, which can lead to conflict between land use 
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for forest expansion and production of agriculture (van der Voorn et al. 2020; Li et al. 

2021b). In many developing countries, especially in rural areas, land is mainly used for 

agriculture production for livestock grazing and subsistence farming and conversion of 

land to carbon credit plantation will threaten local economies and food security (Keenan et 

al. 2023).  

Moreover, carbon leakage is another problem related to carbon credit plantations; 

Carbon leakage refers to the unintended displacement or release of carbon emissions 

outside of the designation carbon credit plantations area due to deforestation or shift in land 

use (Nielsen et al. 2021; Jakob 2021). In addition, carbon permanence, which refers to 

duration of sequestered carbon stored in biomass and soil is another major issue of carbon 

credit plantations (Regan et al. 2020). The stored carbon in the biomass and soil can be 

released into the atmosphere as forests and plantations are vulnerable to natural disasters 

such as drought and wildfires (Nunes et al. 2020; Psistaki et al. 2024). Furthermore, 

conversion of plantations into different land uses, abandoned or harvested, can cause the 

stored carbon to be partially or fully released into the atmosphere (Olorunfemi et al. 2022).  

The carbon credit market can effectively function with the carbon sequestration in 

the plantations being measured, verified, and reported accurately. This process is complex 

and resource-intensive (Haya et al. 2020; Woo et al. 2021). It is hard to develop reliable 

methods for measurement of CO2 sequestered as every plant species has variation of 

growth rates and CO2 absorption potential (Nayak et al. 2019; Smith et al. 2020). The 

conventional monitoring methods, including biomass assessments and on-ground 

measurements, are time-consuming, labor intensive, and extensive fieldwork (Chave et al. 

2019; Ma et al. 2024). Hence, introduction of current technologies, such as satellite 

imaging and remote sensing, have improved the scalability of carbon monitoring. 

However, quantification of underground carbon is still limited (Vaudour et al. 2022).  

 

 

FUTURE PROSPECTS IN CARBON CREDIT PLANTATIONS 
 

In moving towards revolutionizing carbon credit programs, carbon sequestration 

efficiency and monitoring accuracy could be achieved by implementing artificial 

intelligence, biotechnology, and remote sensing applications. Biotechnology via genetic 

application can be adapted for modifying the plant genetics to produce plants with higher 

growth rate, resilience, and carbon absorption potential (Cheng et al. 2019; Barati et al. 

2021). In addition, advancement of synthetic biology field and clustered regularly 

interspaced short palindromic repeats (CRISPR) are extensively being explored to produce 

plants with higher adaptability to climate change and high carbon absorption capability 

(Massel et al. 2021; Zahed et al. 2021). Furthermore, advancement of remote sensing and 

artificial intelligence technologies has led to improvement of accuracy in the carbon 

sequestration monitoring process (Chen et al. 2019; Liu et al. 2021). In estimation of 

biomass and detection of deforestation trends, machine learning models, satellite imagery, 

light detection and ranging (LiDAR) scans, and drones are widely being used for accurate 

data collection (Abbas et al. 2020; de Almeida et al. 2025). Carbon credit integrity, such 

as carbon transactions transparency and preventing fraudulent claims, are further 

strengthened by using blockchain technology (Boumaiza and Maher 2024; Tsai 2025).  
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CONCLUSIONS 
 

Carbon sequestration plants are vital for climate mitigation, sequestering CO2, 

restoring ecosystems and supporting sustainable economies. Plant species, such as 

Eucalyptus, bamboo, Paulownia, and mangroves, contribute significantly through biomass 

accumulation and soil carbon storage. Meanwhile, agroforestry, bioenergy crops, and blue 

carbon ecosystems enhance sequestration efforts. However, challenges, such as land-use 

conflicts, carbon leakage, and verification difficulties hinder large-scale application. High 

costs and limited market access further restrict participation. This article contributes to the 

literature by offering an integrated classification of sequestration plant types across 

ecological systems, while bridging scientific, economic and policy considerations. 

Importantly, it emphasizes the need for converting plant biomass into long-lasting carbon 

pools such as lumber, biochar and soil organic matter. This moves beyond the conventional 

focus on biomass accumulation and highlights the necessity for permanence in carbon 

storage to meaningfully counteract fossil fuel emissions. In addition, this review also 

identifies a critical knowledge gap such as the lack of emphasis on biomass utilization 

pathways in carbon credit frameworks. It recommends that future strategies must 

incorporate ongoing biomass management programs that link sequestration with product-

based carbon locking. Furthermore, it calls for stronger policies, advancement monitoring, 

and financial incentives to promote sustainable carbon credit projects. A holistic approach 

integrating scientific innovation, policy frameworks and market mechanisms are crucial. 

Strengthening verification, fostering public-private collaboration and expanding blue 

carbon markets will maximize the impact of carbon credit projects. Through prioritizing 

sustainability and equity, carbon credit plantations can be an effective climate action and a 

resilient future.  
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