

Carbon Credit: Harnessing Green Solutions for Climate Mitigation

Zainol Haida,^a Norfaryanti Kamaruddin,^a Ruzana Sanusi,^{a,b} Norwahyuni Mohd Yusof,^c and Zaiton Samdin,^{a,d,*}

Climate change is a serious global challenge with rising greenhouse gas emissions driving the need for effective carbon sequestration strategies. Carbon sequestration plants, such as fast-growing tree species, bioenergy plants, agroforestry systems, and blue carbon ecosystems, play a critical role in capturing and storing atmospheric carbon dioxide. Despite increasing interest, there is a lack of integrated reviews that connect plant-based sequestration mechanisms with emerging technologies and policy instruments such as carbon credits. This review explores the mechanisms of carbon sequestration in plants, emphasizing the contributions through aboveground and belowground biomass accumulation, soil carbon retention, and microbial interactions. Key plant species, including *Eucalyptus*, *Paulownia*, bamboo, and mangroves, have demonstrated high sequestration potential and are discussed. This article aims to synthesize current knowledge while identifying opportunities for enhancing carbon sequestration through biotechnology and policy. This review also highlights emerging biotechnological advancements, such as genetic modifications, to improve carbon uptake efficiency and growing potential of blue carbon ecosystems. Emerging digital tools such as AI-based monitoring and blockchain supported carbon credit tracking are discussed as complementary systems to improve data transparency, verification and trust in carbon markets. By aligning scientific innovation with policy and social engagement, carbon credit can serve as a key element for climate mitigation strategies.

DOI: 10.15376/biores.20.3.Haida

Keywords: Carbon credit; Climate mitigation; *Eucalyptus*; Bamboo; *Paulownia*; Carbon sequestration

Contact information: a: Institute of Forestry and Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; b: Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; c: Rimba Ilmu, Universiti Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan, Malaysia; d: School of Business and Economics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia;

*Corresponding author: zaisa@upm.edu.my

INTRODUCTION

Climate change is one of the world's biggest issues that is driven primarily by the accumulation of high amounts of greenhouse gases in the atmosphere, leading to rising global temperature and sea water levels, changes in weather patterns, and environmental degradation (Nunes 2023). The increment of carbon dioxide (CO₂) levels in the atmosphere is mainly caused by human activities, particularly deforestation, industrial emissions, and burning of fossil fuels (Petrov *et al.* 2023). Climate change directly threatens biodiversity, human livelihood, and food security. Effective strategy for climate mitigation including carbon sequestration, which is the process of capturing and storing atmospheric CO₂ by

plants, is being explored as a sustainable and natural way to reduce CO₂ (Anwar *et al.* 2018).

Carbon credit is a concept that has been introduced to incentivize carbon sequestration and reduce emissions as a part of global climate policies (van der Gaast *et al.* 2018). It also promotes sustainable land management practices that can enhance biodiversity and ecosystem services (Anderson *et al.* 2017). They are integral to various climate mitigation strategies, including REDD+ (Reducing Emissions from Deforestation and Forest Degradation), which incentivizes countries to reduce emissions from deforestation and forest degradation by providing financial rewards for verified reductions in emissions (West *et al.* 2020). Carbon credits represent a tradable permit that allows an entity to emit a specific amount of CO₂ with the requirement that emissions are offset *via* carbon sequestration projects (Gupta 2024). This system enables countries and industries to neutralize the carbon footprint by investing in eco-friendly projects such as reforestation, afforestation, and nature conservation. Currently the carbon market is expanding across the globe, and the role of high-carbon sequestering plants is being recognized for the ability to provide long-term solutions for carbon storage (Fan *et al.* 2022). Malaysia's carbon credit market is still in its early stages, with efforts centered on establishing a well-structured trading platform through the Bursa Carbon Exchange (BCX). Initiated by Bursa Malaysia, BCX functions as a voluntary carbon market (VCM), allowing businesses to trade carbon credits to offset their greenhouse gas (GHG) emissions.

Carbon sequestration by plants is conducted through the process of photosynthesis in which plants absorb CO₂, release oxygen, and convert into biomass (Prasad *et al.* 2021). The CO₂ absorbed by plants is stored in plant tissues, roots, and soils, which significantly can reduce overall CO₂ concentration in the atmosphere (Basile-Doelsch *et al.* 2020). Forests, agroforestry systems, aquatic plants, and mangroves have been found to demonstrate high potential in capturing and storing carbon. Furthermore, perennial plants and deep-rooted species contribute to enhancement of soil organic carbon content and long-term carbon-retention (Peixoto *et al.* 2022). Recent studies have highlighted that a substantial portion of sequestered carbon exists in the form of stable soil organic matter, such as humic substances, which can persist for centuries and significantly enhance belowground carbon storage (Basile-Doelsch *et al.* 2020; Garcia *et al.* 2022).

Carbon credits are market-based instruments that represent the removal or reduction of one metric ton of CO₂ or its equivalent in other greenhouse gases (Awazi *et al.* 2025). Carbon credits are designed to incentive efforts to reduce emissions or enhance carbon sequestration by assigning a financial value to each ton of CO₂ mitigated (Salma *et al.* 2024). Entities such as companies, governments, or individuals can purchase carbon credits to offset their own emissions, thereby supporting climate mitigation projects like reforestation, renewable energy, and soil carbon enhancement (Senadheera *et al.* 2019). These credits can be traded in voluntary or compliance carbon markets, depending on regulatory frameworks. By placing a tangible economic value on carbon reduction, the carbon credit system aims to mobilize investment into environmental sustainability (Michaelowa *et al.* 2019).

Today, carbon credit has gained interest to overcome climate change, and carbon sequestration projects, such as reforestation and afforestation, have been promoted in many countries. Despite the popularity of carbon credit projects, several issues including sustainability, permanence, and economic viability have raised concerns (Hou *et al.* 2019; Grim *et al.* 2020; Cho *et al.* 2025). Moreover, the competition for land between carbon credit plantations and agricultural land causes ethical and practical concerns (Regan *et al.*

2020). According to Pan *et al.* (2022), the methodologies for measuring the amount of carbon sequestered in carbon offset projects are still lacking standardization, making it hard to ensure transparency and accountability. Hence, to consider carbon credit projects as a reliable strategy for climate mitigation, these issues need to be addressed.

The aim of this review article is to explore the importance of carbon credit in combating climate change by understanding the mechanisms of carbon sequestration, finding the suitable plant species for carbon credit plantations, and the challenges associated with carbon credit programs. The insight from this review article will be able to provide a deep understanding of the potential of the carbon credit program as a natural way to reduce carbon emissions.

CLASSIFICATION OF CARBON SEQUESTRATION PLANTS

Carbon sequestration plants refer to plant species that play a significant role in climate change mitigation by absorbing and storing CO₂ in soil and biomass (Elbasiouny *et al.* 2022). The growing interest in identifying and utilizing plant species with high sequestration potential is due to increasing recognition of carbon credit projects in global climate policies (Terrer *et al.* 2021). High sequestration plant species are integral to carbon offset projects to reduce carbon emissions, where organizations and governments invest in reforestation, afforestation, and sustainable agricultural practices. The efficiency of the plant to absorb CO₂ depends on several factors including growth rate, accumulation of biomass, root system, and ability to enhance carbon storage. In addition to carbon sequestration, plants contribute to conservation of biodiversity, stabilize soil, and improve microclimates (Jansson *et al.* 2021).

Carbon sequestration plants can be divided into forestry species, agroforestry plants, bioenergy crops, and aquatic vegetation. Each category has distinct applications and characteristics in carbon sequestration initiatives. Forest species are the backbone of many carbon credit programs as the trees can store carbon in woody biomass for a long period (Favero *et al.* 2020). Forests serve as the largest terrestrial carbon sink as forest trees are capable of absorbing and storing significant amounts of carbon throughout the tree lifespan. Studies have shown that forest ecosystems can sequester substantial amounts of carbon, with some estimates suggesting that they account for approximately 68 to 71% of carbon sequestration services globally (Lama *et al.* 2024). Forests are the critical component of global carbon sequestration strategies due to the ability of forests to act as long-term carbon reservoirs (Funk *et al.* 2019). In reforestation and afforestation projects, fast-growing species, such as *Eucalyptus*, *Paulownia*, and bamboo, are widely planted due to rapid accumulation of biomass and capability to absorb a high amount of CO₂ (Weber *et al.* 2019; Behera *et al.* 2020; Li *et al.* 2021a; Ghazzawy *et al.* 2024). The selection of tree species for afforestation and reforestation projects is crucial, as different species exhibit varying capacities for carbon storage (Miripanah *et al.* 2019).

Agroforestry is the integration of trees, perennial crops, and shrubs into agricultural systems that offers dual benefit by producing food with environmental sustainability (Raj *et al.* 2019). This approach could enhance carbon sequestration by improving soil organic carbon content and increment of biomass storage (Ghale *et al.* 2022). This practice not only increases biomass carbon storage but also improves soil health and biodiversity (Zheng *et al.* 2023). Moreover, other types of agroforestry techniques that can maximize carbon sequestration are alley cropping (crops are planted between wide rows of trees) and

silvopasture systems (trees and grazing livestock coexist in the same area) (Jose and Dollinger 2019; Varsha *et al.* 2019). Agroforestry has advantages compared to conventional agriculture systems as agroforestry systems reduce greenhouse gas emissions associated with intensive farming practices, retains more organic matter in soil, and reduces degradation of soil (Gross *et al.* 2022). The presence of trees in agricultural systems can improve microclimates, leading to increased crop yields and further carbon sequestration potential (Flude *et al.* 2022). In addition, soil fertility could be enhanced by covering the soil with leguminous trees, such as *Gliricidia*, *Leucaena*, and fruit-bearing trees, will contribute to long-term carbon storage while providing economic benefits to farmers (Alamu *et al.* 2023). The interaction between trees and crops creates a synergistic effect that maximizes carbon capture while providing economic benefits to farmers.

Bioenergy crops are grown for carbon sequestration, biomass production, and biofuel generation. Bioenergy crops also act as alternative sources to fossil fuels (Wu *et al.* 2018; Babin *et al.* 2021). The most popular bioenergy crops grown are *Jatropha*, switchgrass, and miscanthus that have rapid growth rate and high photosynthesis efficiency, which allow substantial carbon uptake in a short time (Clifton-Brown *et al.* 2019; Moore *et al.* 2020; Cezario *et al.* 2023). Bioenergy crops contribute significantly to dynamic carbon cycling as carbon absorbed by crops for photosynthesis is released to the atmosphere after burning as biofuel. The key difference between fossil fuels and biofuel is the fossil fuels adding carbon to the atmosphere as the process releases the carbons that have been trapped for a long-time during combustion (Wang and Song 2020). In contrast, bioenergy maintains work on a short-term carbon cycle in which the crops absorb CO₂ during photosynthesis and release the same amount of carbon after combustion (Maschler *et al.* 2022). The efficiency of bioenergy crops to absorb carbon and sustainable land-use practices are the important elements in enhancing carbon sequestration potential and mitigating climate change.

Aquatic vegetations are essential carbon sinks in blue carbon sequestration (Himes-Cornell *et al.* 2018; Pham *et al.* 2019). There are several important aquatic vegetations, such as mangroves, salt marshes, and seagrass meadows, that efficiently store carbon in submerged sediments and are unsusceptible to disturbances such as wildfires and deforestation (Huxham *et al.* 2018; Drexler *et al.* 2021; Bao *et al.* 2022). Mangrove ecosystems are potent to sequester carbon, up to four times per unit area compared to terrestrial forests, which make them one of the most effective carbon sinks in the ecosystem (Hamilton and Friess 2018). In addition to carbon sequestration, strong and deep mangrove roots act as a coastal region's stabilizer, prevent soil erosion, and protect against storm surges (Karimi *et al.* 2022). Meanwhile, the accumulation of peat in seagrasses and wetland areas contribute to the carbon sequestration process and results in significant long-term carbon storage (Hao *et al.* 2024). Another valuable blue carbon storage is seagrass meadows which are a flowering plant that is powerful carbon sinks, absorbing and storing CO₂ in the biomass and sediments (Lin *et al.* 2023). The conservation and restoration of aquatic vegetation are critical for enhancing carbon sequestration and providing additional ecosystem services, such as coastal protection and habitat for marine life (Hagger *et al.* 2022).

MECHANISM OF CARBON SEQUESTRATION IN PLANTS

The plant is an important organism that plays a vital role in reducing CO₂ in the atmosphere by absorbing the CO₂ and storing it in plant biomass and soil. The carbon sequestration process occurs through multiple interconnected mechanisms and it is essential to understand the mechanisms to maximize the potential of vegetation in climate mitigation strategies.

One of the key mechanisms of carbon sequestration by plants is through accumulation of biomass that can be divided into aboveground and belowground biomass storage (Kumar *et al.* 2021). The aboveground biomass storage occurs in various plant organs, such as leaves, branches, stems, and trunks, where carbon can be stored for a long time (Eslamidoust and Sohrabi 2018). The largest aboveground carbon reservoirs on earth are forests, particularly tropical and temperate forests (Sun and Liu 2020). The fast-growing forest species, including *Eucalyptus* and *Paulownia*, are highly capable in absorbing CO₂ rapidly and these species are commonly used in afforestation projects (Cravino and Brazeiro 2021; Ghazzawy *et al.* 2024). Meanwhile, trees, such as redwood, mahogany, and teak, are capable of accumulating high amounts of carbon (Racelis *et al.* 2019; Watt and Kemberley 2022). Additionally, perennial crops like bamboo have fast-growth patterns and high annual carbon intake that has mainly contributed to biomass carbon storage (Devi and Singh 2024).

An equally important role in carbon sequestration is belowground biomass storage that is mainly conducted by the plant roots system. The carbons from the atmosphere are absorbed from the leaves, transported to the root systems and stored in the soil (Pausch and Kuzyakov 2018). The mangroves, leguminous trees, and prairie grasses are the examples of deep-rooted species that contribute to long-term sequestration by stabilizing carbon in subsoil layers (Richards *et al.* 2024). Grassland ecosystems are very effective for carbon retention, which can store up to 90% of the belowground biomass (Bai and Cotrufo 2022). Unlike forests that can lose carbon through deforestation or harvesting, grasslands retain the soil carbon belowground (Fossum *et al.* 2022). Meanwhile, extensive root systems of mangroves and wetland plants can trap organic matters in submerged sediments, preventing carbon loss and rapid decomposition (Balieiro *et al.* 2018).

In addition to aboveground and belowground biomass storage, soil is the largest terrestrial carbon reservoir that can hold more carbon than vegetation and atmosphere (Zhou *et al.* 2023). The decomposition of plant residues, such as fallen leaves, woody debris, and decaying roots, will convert into humus, which is a stable residue that can persist in soils for centuries and enrich the soil with organic carbon (Samenov *et al.* 2019). The exudation of sugars and organic acids from the roots could promote microbial activity and soil aggregates, which directly enhance soil carbon storage (Ma *et al.* 2022). The accumulation of soil organic carbon is enhanced by increased microbial growth and biomass turnover, emphasizing the complex interplay between plant and microbial processes in the carbon cycle (Prommer *et al.* 2020). Effective carbon sequestration relies on the health of soil microbial communities, as their activity facilitates the decomposition of organic matter, releasing vital nutrients that promote plant growth and further carbon uptake (Prommer *et al.* 2020). One of the factors that influence soil carbon accumulation is land management practices. Grassland and forests store more aboveground and belowground carbon due to agroforestry activity and cover cropping that enhance soil carbon retention (Meena *et al.* 2019; Bai and Cotrufo 2022). In contrast, unsustainable land

practices, such as deforestation and excessive tillage, lead to acceleration of carbon loss and contribute to greenhouse gas emissions (Hu *et al.* 2021; Xing and Wang 2024).

The presence of mycorrhizal fungi and soil microbes are important in facilitating long-term carbon storage and stabilizing organic matter (Jeewani *et al.* 2021; Wu *et al.* 2024). The mycorrhizal fungi form a symbiotic interaction with the plant roots by transferring carbon into the soil and creating underground networks that will enhance the carbon sequestration capacity (Basiru and Hijri 2024). Arbuscular mycorrhizal fungi help to transform carbon into soil aggregates are commonly found in crops and grasses (Agnihotri *et al.* 2022). Meanwhile, ectomycorrhizal fungi contribute to long-term carbon storage by slowing the decomposition of organic matter and are mainly found in trees such as oaks and pines (Zak *et al.* 2019; Tunlid *et al.* 2022). The fungal mycelial network functions as an underground carbon highway that distributes carbon in the soil and improves soil structure (Touseef 2023). The efficiency of microbial carbon in the soil can be enhanced by the application of biochar and reduced tillage activity (Liu *et al.* 2020). Additionally, interaction between plant roots, mycorrhizal, and microbes enhances soil health and long-term carbon storage, which improves the self-sustaining carbon sequestration cycle (Bhattacharyya *et al.* 2022).

CONTRADICTIONS AND CONSENSUS IN CARBON SEQUESTRATION RESEARCH

Understanding the varied outcomes and interpretations from different studies on carbon sequestration is vital. The purpose of this comparative analysis is to find the best strategies and explain why different studies have come to different conclusions. This will improve the scientific basis for policy and practice (Hübner *et al.* 2021). Variations in study designs, geographical focus, species studied, and methodologies significantly impact findings. For instance, Basile-Doelsch *et al.* (2020) focused on keeping soil carbon in temperate forests, while Gupta *et al.* (2017) looked at tropical agroforestry systems. Both groups talk about different ways and rates of carbon sequestration. These differences underscore the need for regionally tailored strategies (Gupta *et al.* 2017; Basile-Doelsch *et al.* 2020). The effectiveness of bioenergy crops in carbon sequestration illustrates a significant area of debate. Despite some discrepancies, there is a consensus regarding the carbon sequestration capabilities of certain fast-growing tree species. The carbon sequestration capacity of trees is influenced by their size and growth rates, leading to differing estimates of carbon storage potential (Channalli *et al.* 2022).

However, a common misconception in interpreting forest carbon data is the assumption that the total carbon stored in the forest directly equates to active carbon sequestration. In reality, processes such as decomposition and oxidation are constantly at play, returning carbon to the atmosphere (Raza *et al.* 2023). A critical question is whether forest management can establish a “new normal” with consistently higher biomass levels sustained over time. For example, intensive breeding programs in the southeastern United States have resulted in tall, mature pine forests that currently exceed the demand for timber (Hausle *et al.* 2023). While these forests represent a temporary carbon sink, their long-term role is uncertain. As the trees reach old age, the replantation of these trees could significantly alter the sequestration trajectory (Xu *et al.* 2024). This illustrates the importance of considering forest life cycles and long-term and land-use planning when evaluating sequestration potential (Deng *et al.* 2022a).

Moreover, sequestration through biomass alone may not result in permanent carbon storage (Dynarski *et al.* 2020). If plant material is not harvested and used in long lasting products such as bioplastics, timbers or construction materials or transformed into stable forms like biochar, the carbon will eventually return to the atmosphere through natural decomposition (Infurna *et al.* 2023; Mutjaba *et al.* 2023; Kumar *et al.* 2025). Therefore, for biomass-based carbon sequestration to be effective, strategies must be adopted to ensure that carbon is retained over the long term, either through soil incorporation, durable product development or energy substitution (Garcia *et al.* 2022; Tripathi *et al.* 2024). This has led to growing interest in circular bioeconomy models where biomass is utilized in ways that lock carbon while providing economic benefits.

Recent technological advancements are beginning to bridge gaps identified in earlier studies. Technologies, such as AI-driven monitoring and blockchain, for verifying carbon credits are proposed by Prawitasari (2024) and Adigun *et al.* (2024) as a means to enhance transparency and reliability in carbon accounting. These innovations are seen as pivotal in reconciling some of the methodological concerns previously highlighted (Prawitasari 2024; Adigun *et al.* 2024). The contradictions and consensus outlined herein underscore a clear need for continued research into the long-term ecological and socio-economic impacts of carbon sequestration. Future studies should particularly focus on biodiversity impacts, ecosystem health, and the socio-economic ramifications of carbon credit projects on local communities (Nunes 2023). The research on carbon sequestration reveals a complex landscape of contradictions and consensus. While there is agreement on the fundamental role of vegetation and effective land management practices in enhancing carbon storage, significant debates persist regarding the effectiveness of different ecosystems, the implications of leakage, variability in sequestration rates, and the challenges of modeling. Addressing these contradictions through further research and improved methodologies will be essential for developing effective carbon management strategies and policies.

IMPORTANCE OF CARBON SEQUESTRATION PLANTS IN CARBON CREDIT PROGRAMS

Carbon sequestration plants play a crucial role in carbon credit programs by providing a mechanism for businesses and individuals to offset their carbon emissions through the purchase of carbon credits generated from the carbon storage capabilities of these plants. Climate change is one of the biggest issues in the world caused by rapid urbanization and a high number of populations that contribute to high CO₂ emission in the atmosphere. In combating climate change, carbon credit serves as a crucial tool in climate change mitigation policies and international agreements between the countries (Nsabiyeze *et al.* 2024). The carbon credit program is a market-driven mechanism designed to assign a monetary value to carbon sequestration and emission to reduce CO₂ concentration in the atmosphere and reduce greenhouse gas emissions (Avwioroko 2023; Jia and Wen 2024). One carbon credit represents one metric ton of CO₂ that has been prevented or removed from entering the atmosphere (Woo *et al.* 2021). Carbon credit programs rely on carbon sequestering plant species that are generated through the project including reforestation, afforestation, agroforestry, and blue carbon ecosystem (Sapkota and White 2020; Di Sacco *et al.* 2021).

The effectiveness of these programs hinges on the ability of various plant species to sequester carbon, as evidenced by studies demonstrating that factors, such as biomass and growth characteristics, significantly influence carbon storage potential (Rindyasturi *et al.* 2018). Forest ecosystems earn carbon credits based on their ability to absorb carbon, which is influenced by how they are managed and their biomass productivity (Jia and He 2023; Joshi and Garkoti 2025). The concept additionality is important, meaning carbon storage must go beyond a set baseline to qualify for credits, encouraging sustainable land management (Randazzo *et al.* 2023). Planting a mix of species in afforestation and reforestation projects can further boost carbon storage and biodiversity, making them more valuable for carbon credits (Schuster *et al.* 2014).

In moving towards net-zero emissions, global frameworks, such as Kyoto Protocol, Paris Agreement, and Reducing Emissions from Deforestation and Forest Degradation (REDD+), play an important role in regulating and promoting the carbon credit program (Espejo *et al.* 2020). In the carbon credit program, several plant species with high carbon sequestration potential have been identified. Moreover, the carbon credit program will also encourage more involvement of private sector participation in investment of reforestation and afforestation projects (Cho *et al.* 2025). The inclusion of plants with carbon sequestration potential in the carbon credit program will enable the developing countries with vast forest areas to earn benefit economically (Di Sacco *et al.* 2021). The carbon credit programs create financial incentives for sustainable land management ensuring ecosystems remain protected while sequestered and reducing CO₂ concentration in the atmosphere (Evans 2018; Blanc *et al.* 2019). In addition to carbon sequestration, plants in carbon species programs also contribute to ecological and socio-economic benefits including enhancing biodiversity, improving soil fertility and soil retention (Zheng *et al.* 2024).

Furthermore, emerging research demonstrates that carbon credit participation is not only environmentally beneficial but also financially strategic. Companies engaging in carbon credit programs can enhance their corporate financial performance, particularly when such participation is embedded within a broader framework of Corporate Social Responsibility (CSR). For example, Martielli *et al.* (2025) conducted an in-depth empirical analysis on the interplay between carbon credits, CSR strategies, and corporate governance. The study revealed that carbon credits serve not only as a tool for environmental accountability but also as a financial asset that positively moderates the relationship between climate mitigation efforts and firm profitability. Specifically, firms with robust CSR frameworks and proactive governance structures were found to benefit more significantly from carbon credit participation, as these elements enhanced both market perception and operational efficiency.

Similarly, a study by Salvi *et al.* (2025) indicated that integrating carbon credits into corporate climate action plans can contribute to improving financial outcomes by aligning environmental objectives with value creation. Carbon credits were shown to enhance transparency in emissions reporting and promote compliance with international standards, which in turn builds corporate legitimacy and market credibility. Moreover, firms engaging in such programs exhibited greater adaptability and resilience to climate-related financial risks. In addition, Salvi *et al.* (2025) emphasized that carbon credit integration is most effective when supported by strategic planning and cross-sectoral collaboration, positioning firms not only as climate leaders but also position themselves as resilient and viable entities, capable of thriving amid shifting regulatory frameworks and growing market demands for sustainability.

Therefore, carbon sequestration plants form the biological backbone of the carbon credit economy, bridging environmental goals with financial incentives. When implemented effectively, carbon credit programs not only contribute to reduce atmospheric CO₂ levels but also stimulate green investment, promote policy innovation, and encourage corporate. Hence, the carbon credit program is not only beneficial in climate change mitigation but also in fostering environmental sustainability, economic development, and social equity (Hariram *et al.* 2023).

CARBON CREDIT MARKETS AND POLICIES

The global carbon credit market has evolved as a key mechanism to mitigate climate change by providing economic incentives for reducing greenhouse gas emissions (Aldy and Halem 2024). The concept of trading carbon credits emerged as part of international climate agreements, enabling countries and industries to meet emission reduction targets through market-based mechanisms (Verma 2023). The development of these markets is largely influenced by global agreements, such as the Kyoto Protocol, Paris Agreement, and REDD+, which establish regulatory frameworks for carbon trading and emissions reduction (Kim *et al.* 2020; Morita and Matsutomo 2023).

Global Carbon Credit Trading Mechanisms

The Kyoto Protocol was adopted on 11 December 1997 and enforced beginning 16 February 2005, which was the first international treaty to introduce carbon trading mechanisms (Wang *et al.* 2019). It established three market-based mechanisms: Emission Trading System (ETS), Clean Development Mechanism (CDM), and Joint Implementation (JI) (Deng *et al.* 2022b). The ETS, also known as cap-and-trade, allowed industrialized countries to trade excess emission allowances. The CDM enabled developing countries to earn carbon credits by implementing emission reduction projects such as reforestation, renewable energy, and energy efficiency. The JI allowed industrialized nations to invest in emission reduction projects in other developed countries in exchange for credits (Deng *et al.* 2022b; Xu and Zhang 2022). However, the Kyoto Protocol had a lack of participation from major emitters and difficulties in enforcing emission targets (Maamoun 2019).

The Paris Agreement, adopted on December 12, 2015, and enforced on November 4, 2016, introduced Nationally Determined Contributions (NDCs), which require countries to set their own climate targets. This agreement emphasizes voluntary cooperation and market mechanisms through Article 6 that allows countries to trade carbon credits internationally (Mehling *et al.* 2019; Asadnabizadeh and Moe 2024). It encourages both developed and developing countries to participate and to invest in natural solutions like reforestation and blue carbon ecosystems (Oliveira *et al.* 2019; Seddon 2022). REDD+, a UN-backed program, is designed to reduce carbon emissions from deforestation and forest degradation in developing countries. It provides monetary incentives for forest conservation and sustainable land use practices, thereby leveraging forests as carbon sinks and enhancing biodiversity conservation (Sauls 2020; Wainaina *et al.* 2021). Table 1 provides a summary of Kyoto Protocol, Paris Agreement, and REDD+ programs.

Table 1. Evolution of Carbon Credit Programs

	Kyoto Protocol (1997)	Paris Agreement (2015)	REDD+
Objective	<ul style="list-style-type: none"> First legally binding international agreement to reduce greenhouse gas emissions Assigned emission reduction targets to developed countries Introduced market-based mechanisms to achieve emission reduction cost-effectively 	<ul style="list-style-type: none"> Replace the rigid Kyoto targets with a more inclusive, global climate action framework Limit global warming to well below 2 °C, with an aspirational goal of 1.5 °C Increase participation from all countries, including developing nations 	<ul style="list-style-type: none"> Address emissions from deforestation and land use changes (responsible for ~15% of global CO₂ emissions) Provide financial incentives for forest conservation, sustainable management, and reforestation
Mechanisms introduced	<p>Clean Development Mechanism (CDM)</p> <ul style="list-style-type: none"> Developed countries invest in emission reduction projects in developing nations Earn Certificate Emission Reductions, which can be used to meet their reduction targets <p>Joint Implementation (JI)</p> <ul style="list-style-type: none"> Developed nations finance emission reduction projects in other developed nations Earn Emission Reduction Units <p>Emissions Trading (ET)</p> <ul style="list-style-type: none"> Countries with surplus emission allowances can sell to countries exceeding their allowed emissions This created regulated carbon markets such as the EU Emissions Trading System 	<p>Key Market Mechanisms (Article 6)</p> <p>Nationally Determined Contributions (NDCs)</p> <ul style="list-style-type: none"> Each country sets its own emission reduction goals (voluntary but reviewed every 5 years) Allows for bottom-up flexibility but lacks strict enforcement mechanisms <p>Article 6.2 – International Carbon Market Cooperation</p> <ul style="list-style-type: none"> Enables bilateral trading of carbon credits between countries A country exceeding its reduction target can sell credits to another country struggling to meet its goals <p>Article 6.4 – New Global Carbon Market</p> <ul style="list-style-type: none"> Introduces a centralized carbon trading system overseen by the UN. Allows both public and private sectors to participate in emission reduction projects. A replacement for the Clean Development Mechanism (CDM) under Kyoto. 	<p>Phases of REDD+</p> <p>Readiness Phase</p> <ul style="list-style-type: none"> Countries establish governance structures and carbon accounting frameworks Example: Developing monitoring systems for tracking deforestation rates <p>Implementation Phase</p> <ul style="list-style-type: none"> Pilot projects begin, and countries start testing REDD+ strategies Performance-based funding mechanisms are introduced <p>Results-Based Payments</p> <ul style="list-style-type: none"> Countries receive payments based on verified reductions in deforestation rates Funds come from international donors, carbon markets, or private investors Example: A country reducing deforestation gets paid per metric ton of CO₂ avoided.

		Voluntary Carbon Offsetting <ul style="list-style-type: none"> Allows businesses and organizations to purchase carbon credits to offset their emissions 	
Challenges	<ul style="list-style-type: none"> Limited participation from developing nations Verification complexity Market imbalances due to some countries had excess carbon credits, leading to price drops 	<ul style="list-style-type: none"> Risk of double counting: Ensuring emission reductions are not claimed by multiple entities Non-binding nature of NDCs: No strict penalties for missing targets. Market uncertainties: Many rules (especially for Article 6) are still being finalized 	<ul style="list-style-type: none"> Monitoring difficulties: Requires satellite imaging and ground verification Land tenure conflicts: Unclear land ownership can lead to disputes over carbon credit revenues Ensuring permanence: Protecting forests long-term to avoid emissions rebounding
Outcomes	<ul style="list-style-type: none"> Foundation for international carbon markets Stimulated early investments in clean energy and efficient projects However, loopholes and over-crediting issues reduced its long-term effectiveness 	<ul style="list-style-type: none"> Encouraged broader participation from both developed and developing nations Introduced market-based flexibility, making carbon trading more accessible Strengthened the role of corporations and voluntary markets in climate action 	<ul style="list-style-type: none"> Integrated forests into global carbon markets, making them valuable assets Provided economic incentives for developing nations to preserve forests Supported biodiversity conservation and sustainable development

Policy Implications and Economic Viability

The implementation of carbon credit programs varies significantly across different regions, influenced by local economic conditions, regulatory frameworks, and environmental priorities. The EU's Emissions Trading System (ETS) operates on a cap-and-trade principle. To optimize this system, the EU could consider tightening the cap progressively and expanding coverage to more sectors (Beck and Kruse-Andersen 2020). As for the United States, California's cap-and-trade program demonstrates the potential of state-level initiatives. Integrating these programs into a federal framework could standardize measures and enhance market liquidity (Lessmann and Kramer 2024). China's national carbon trading scheme focuses initially on the power generation sector. More stringent verification processes and enhanced transparency could optimize this system (Zhang *et al.* 2023). Many developing countries face challenges such as lack of funding and technical expertise. International cooperation and financial support are crucial to enhance the effectiveness of their programs (Zhao *et al.* 2022).

To improve the economic viability and effectiveness of carbon credit programs, it is essential to strengthen regulatory frameworks, enhance market stability, promote international collaboration, and incentivize innovation. These measures would support

more robust, transparent, and accountable carbon markets, attracting stable investments and promoting sustainable development globally.

PLANTS USED FOR CARBON CREDIT PROGRAMS

The selection of suitable plant species is the key factor to determine the effectiveness of carbon credit programs. Selection of plant species with high growth rate, adaptability in various environments, disease resistance, and high carbon sequestration capacity are the main factors of choosing the suitable plant species for carbon credit plantations (Di Sacco *et al.* 2021). Among the plant species, *Eucalyptus*, bamboo, *Paulownia*, and mangroves have gained attention due to its capability to absorb high amounts of CO₂ and stand out as highly effective species for carbon credit programs such as reforestation, afforestation, and agroforestry projects (Cameron *et al.* 2019; Pan *et al.* 2023; Ghazzawy *et al.* 2024; Luo *et al.* 2024).

***Eucalyptus*: A High-Yield Carbon Sequestration Tree**

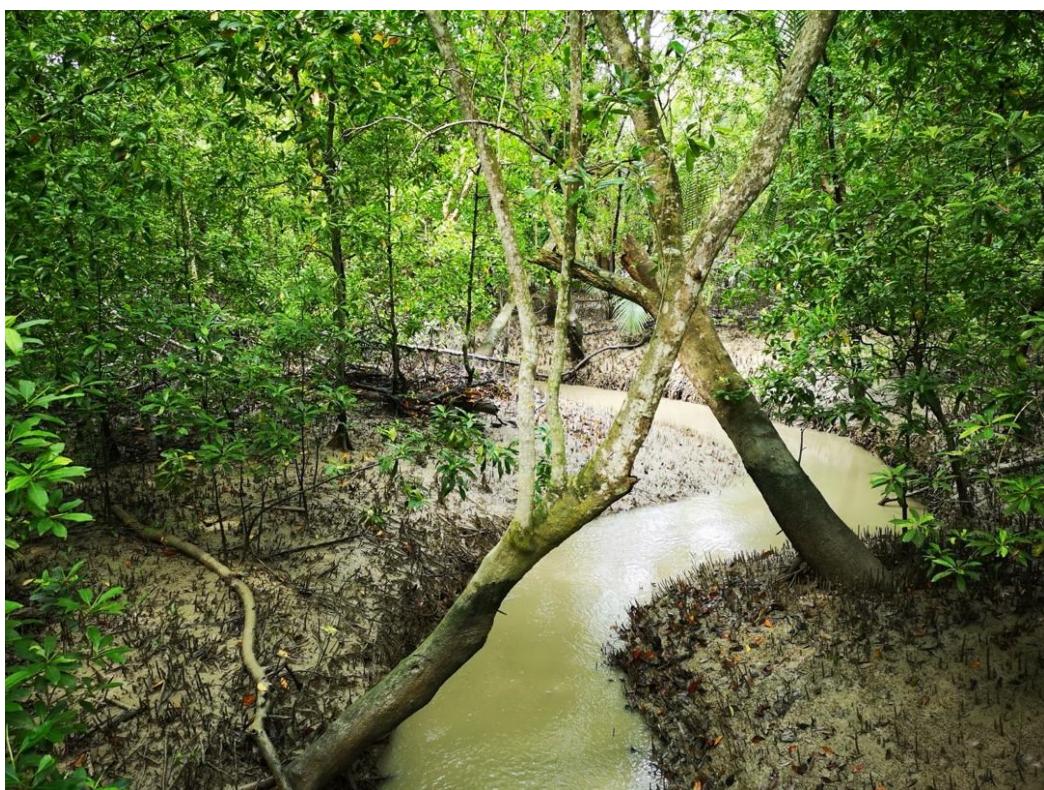
Eucalyptus is a fast-growing tree belonging to the family Myrtaceae with over 700 species (Shala and Gururani 2021). *Eucalyptus* species is widely known for its rapid growth, high quality of timber, high production of biomass, and high capability to sequester CO₂ (Fig. 1) (Behera *et al.* 2020). *Eucalyptus* is native to Australia and currently has been cultivated worldwide particularly in tropical, subtropical, and temperate regions (Queiroz *et al.* 2020). *Eucalyptus* is one of the most frequently used trees in carbon credit plantations that are planted for commercial forest, degraded land restoration, and production of bioenergy production (Tesfaye *et al.* 2020; Morales *et al.* 2023). *Eucalyptus* is an excellent candidate for long-term carbon storage due to its rapid growth and high wood density (Fairman *et al.* 2022). Additionally, *Eucalyptus* has deep root systems that contribute to carbon storage as they facilitate organic matter accumulation and enhance microbial activities in the rhizosphere (Silva *et al.* 2020). Furthermore, *Eucalyptus* trees can be integrated into agroforestry systems as windbreaks, improve soil stability, and provide shade for intercropped agricultural crops (Kaur and Monga 2021; Dissanayaka *et al.* 2024). In addition to carbon sequestration potential, *Eucalyptus* plantations provide economic and ecological benefits, such as paper production, construction, and biofuel industries (Nogueira *et al.* 2021; Tomé *et al.* 2021).

Fig. 1. A eucalyptus plantation showing uniform tree spacing and canopy structure, which has an important role in timber production, carbon sequestration, and ecosystem restoration

Bamboo: The Fast-Growing Carbon Sink

Bamboo is a fast-growing perennial woody grass that belongs to the family Poaceae, subfamily Bambusoideae, which comprises over 120 genera and 1600 species (Ramasubramanian *et al.* 2023). Bamboo is predominantly found in tropical and subtropical regions with major bamboo forests in China and India (Tewari *et al.* 2019; Dlamini *et al.* 2022). Bamboo is a unique type of grass that is highly efficient for carbon sequestration due to its rapid growth rate, continuous regenerative ability, and high production of biomass (Fig. 2) (Adu-Poku *et al.* 2023; Pang *et al.* 2025). Moreover, bamboo plants have dense root systems that allow bamboo to store large amounts of CO₂, improve soil fertility, and prevent soil erosion (Emamyerdian *et al.* 2020). In carbon credit plantations, notable bamboo species from the genus *Phyllostachys* spp. and *Bambusa* spp. have been widely planted due to its capability in absorbing high amounts of CO₂, high soil carbon storage, and extensive root networks (Pan *et al.* 2025). Beyond its role in carbon sequestration, bamboo byproducts have been extensively utilized for paper production, construction, furniture, textiles, and bioenergy, making bamboo a valuable resource for sustainable industries (Guan *et al.* 2019; Rocky and Thompson 2020; Xu *et al.* 2022; Liang *et al.* 2023). In addition, biochar produced from bamboo biomass is applied to enhance soil fertility, increase soil carbon storage capacity, further amplifying its role in mitigation of climate change (Odega *et al.* 2023; Chaturvedi *et al.* 2024). Bamboo also is widely planted in land restoration or agroforestry projects to improve the degraded soil (Singh *et al.* 2020).

Fig. 2. A bamboo plantation with mature clumps and scattered culms, illustrating its dense growth pattern and potential for sustainable biomass production


Paulownia: The Oxygen Tree with High Productivity of Biomass

Paulownia is a fast-growing deciduous tree genus belonging to the family Paulowniaceae. Native to China, *Paulownia* species are cultivated worldwide and renowned for their various ecological, economic, and environmental benefits (Costea *et al.* 2021; Sławińska *et al.* 2023). *Paulownia* is referred to as the “oxygen tree” that has exceptional photosynthetic efficiency and rapid growth rate (Adach *et al.* 2020). The *Paulownia* tree is capable of absorbing double the amount of CO₂ compared to other plant species, making it suitable for carbon credit plantations (Ghazzawy *et al.* 2024). The large size of leaves contributes to high absorption of CO₂ and efficient photosynthesis capacity (Ghazzawy *et al.* 2024). *Paulownia* tree also has lightweight yet strong wood that has been utilized in multiple industries, such as construction, furniture, and bioenergy (Rodríguez-Seoane *et al.* 2020; Barbu *et al.* 2023; Huber *et al.* 2023). In addition, *Paulownia* trees can grow in poor and degraded soil. This species is useful in plantings because it enhances soil fertility and soil organic matter content (Woźniak *et al.* 2022). The deep root systems of *Paulownia* trees contribute to nitrogen fixation and groundwater conservation (Ren *et al.* 2024). *Paulownia* trees are increasingly being promoted in carbon credit plantations for reforestation and afforestation projects (Ghazzawy *et al.* 2024).

Mangroves: Blue Carbon Ecosystems for Coastal Carbon Storage

Mangroves are a group of salt-tolerant trees and shrubs that grow in coastal intertidal zones, particularly in subtropical and tropical regions (Quadros *et al.* 2021). The most common mangrove genera including *Rhizophora* spp., *Avicennia* spp., and *Sonneratia* spp., which can be grown in saline and waterlogged environments and among

the most powerful plants in blue carbon ecosystems (Ngernsaengsaruay *et al.* 2024; Twomey and Lovelock 2025). Blue carbon ecosystems are capable of sequestering four times more carbon per unit area than terrestrial forests (Hamilton and Friess 2018). Mangrove forests can store carbon in aboveground biomass and carbon also remains trapped for centuries in thick layers of sediment beneath (Sasmito *et al.* 2020; Murdiyarso *et al.* 2021). Mangrove forests have multiple roles in ecosystems, such as absorbing CO₂ and protecting coastal areas from erosion, surges, and storms (Fig. 3) (Kearney *et al.* 2019; Temmerman *et al.* 2023). The anaerobic conditions in mangroves sediments slow down the process of organic matter decomposition that led to long-term carbon sequestration (Kida and Fujikate 2020). Currently, restoration and conservation of mangroves forests have become a key focus of carbon credit projects under blue carbon initiatives and REDD+ (Sidik *et al.* 2023).

Fig. 3. A mangrove forest with tidal waterways, showcasing the dense vegetation and intricate root systems that help prevent coastal erosion

LIMITATION OF CARBON CREDIT PLANTATIONS

As carbon credit plantations offer a promising solution for climate change mitigation, they also face several limitations that can affect the success of this program (Pan *et al.* 2022; Shrestha *et al.* 2022). It is important to address these limitations to ensure carbon credit plantations achieve the objectives in contributing to environmental and socio-economic benefits. One of the main challenges is land-use conflict with agricultural land (Froese and Schilli 2019). To carry out large-scale reforestation and afforestation projects for carbon credit, large land areas are needed, which can lead to conflict between land use

for forest expansion and production of agriculture (van der Voorn *et al.* 2020; Li *et al.* 2021b). In many developing countries, especially in rural areas, land is mainly used for agriculture production for livestock grazing and subsistence farming and conversion of land to carbon credit plantation will threaten local economies and food security (Keenan *et al.* 2023).

Moreover, carbon leakage is another problem related to carbon credit plantations; Carbon leakage refers to the unintended displacement or release of carbon emissions outside of the designation carbon credit plantations area due to deforestation or shift in land use (Nielsen *et al.* 2021; Jakob 2021). In addition, carbon permanence, which refers to duration of sequestered carbon stored in biomass and soil is another major issue of carbon credit plantations (Regan *et al.* 2020). The stored carbon in the biomass and soil can be released into the atmosphere as forests and plantations are vulnerable to natural disasters such as drought and wildfires (Nunes *et al.* 2020; Psistaki *et al.* 2024). Furthermore, conversion of plantations into different land uses, abandoned or harvested, can cause the stored carbon to be partially or fully released into the atmosphere (Olorunfemi *et al.* 2022).

The carbon credit market can effectively function with the carbon sequestration in the plantations being measured, verified, and reported accurately. This process is complex and resource-intensive (Haya *et al.* 2020; Woo *et al.* 2021). It is hard to develop reliable methods for measurement of CO₂ sequestered as every plant species has variation of growth rates and CO₂ absorption potential (Nayak *et al.* 2019; Smith *et al.* 2020). The conventional monitoring methods, including biomass assessments and on-ground measurements, are time-consuming, labor intensive, and extensive fieldwork (Chave *et al.* 2019; Ma *et al.* 2024). Hence, introduction of current technologies, such as satellite imaging and remote sensing, have improved the scalability of carbon monitoring. However, quantification of underground carbon is still limited (Vaudour *et al.* 2022).

FUTURE PROSPECTS IN CARBON CREDIT PLANTATIONS

In moving towards revolutionizing carbon credit programs, carbon sequestration efficiency and monitoring accuracy could be achieved by implementing artificial intelligence, biotechnology, and remote sensing applications. Biotechnology *via* genetic application can be adapted for modifying the plant genetics to produce plants with higher growth rate, resilience, and carbon absorption potential (Cheng *et al.* 2019; Barati *et al.* 2021). In addition, advancement of synthetic biology field and clustered regularly interspaced short palindromic repeats (CRISPR) are extensively being explored to produce plants with higher adaptability to climate change and high carbon absorption capability (Massel *et al.* 2021; Zahed *et al.* 2021). Furthermore, advancement of remote sensing and artificial intelligence technologies has led to improvement of accuracy in the carbon sequestration monitoring process (Chen *et al.* 2019; Liu *et al.* 2021). In estimation of biomass and detection of deforestation trends, machine learning models, satellite imagery, light detection and ranging (LiDAR) scans, and drones are widely being used for accurate data collection (Abbas *et al.* 2020; de Almeida *et al.* 2025). Carbon credit integrity, such as carbon transactions transparency and preventing fraudulent claims, are further strengthened by using blockchain technology (Boumaiza and Maher 2024; Tsai 2025).

CONCLUSIONS

Carbon sequestration plants are vital for climate mitigation, sequestering CO₂, restoring ecosystems and supporting sustainable economies. Plant species, such as *Eucalyptus*, bamboo, *Paulownia*, and mangroves, contribute significantly through biomass accumulation and soil carbon storage. Meanwhile, agroforestry, bioenergy crops, and blue carbon ecosystems enhance sequestration efforts. However, challenges, such as land-use conflicts, carbon leakage, and verification difficulties hinder large-scale application. High costs and limited market access further restrict participation. This article contributes to the literature by offering an integrated classification of sequestration plant types across ecological systems, while bridging scientific, economic and policy considerations. Importantly, it emphasizes the need for converting plant biomass into long-lasting carbon pools such as lumber, biochar and soil organic matter. This moves beyond the conventional focus on biomass accumulation and highlights the necessity for permanence in carbon storage to meaningfully counteract fossil fuel emissions. In addition, this review also identifies a critical knowledge gap such as the lack of emphasis on biomass utilization pathways in carbon credit frameworks. It recommends that future strategies must incorporate ongoing biomass management programs that link sequestration with product-based carbon locking. Furthermore, it calls for stronger policies, advancement monitoring, and financial incentives to promote sustainable carbon credit projects. A holistic approach integrating scientific innovation, policy frameworks and market mechanisms are crucial. Strengthening verification, fostering public-private collaboration and expanding blue carbon markets will maximize the impact of carbon credit projects. Through prioritizing sustainability and equity, carbon credit plantations can be an effective climate action and a resilient future.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support given by The Ministry of Higher Education Malaysia (MOHE) under the Higher Institution Centre of Excellence (800-3/8/HICoEF2/2023/5210002) at the Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia.

REFERENCES CITED

Abbas, S., Wong, M. S., Wu, J., Shahzad, N., and Muhammad Irteza, S. (2020). “Approaches of satellite remote sensing for the assessment of above-ground biomass across tropical forests: Pan-tropical to national scales,” *Remote Sens.* 12(20), Article Number 3351. DOI: 10.3390/rs12203351

Adach, W., Żuchowski, J., Moniuszko-Szajwaj, B., Szumacher-Strabel, M., Stochmal, A., Olas, B., and Cieslak, A. (2020). “Comparative phytochemical, antioxidant, and hemostatic studies of extract and four fractions from paulownia clone *in vitro* 112 leaves in human plasma,” *Molecules* 25(19), Article Number 4371. DOI: 10.3390/molecules25194371

Adigun, O. A., Falola, B. O., Esebre, S. D., Wada, I., and Tunde, A. (2024). “Enhancing carbon markets with fintech innovations: The role of artificial intelligence and

blockchain," *World J. Adv. Res. Rev.* 23(2), 579-586. DOI: 10.30574/wjarr.2024.23.2.2387

Adu-Poku, A., Obeng, G. Y., Mensah, E., Kwaku, M., Acheampong, E. N., Duah-Gyamfi, A., and Adu-Bredu, S. (2023). "Assessment of aboveground, belowground, and total biomass carbon storage potential of *Bambusa vulgaris* in a tropical moist forest in Ghana, West Africa," *Renew. Energy Environ. Sustain.* 8, Article Number 3. DOI: 10.1051/rees/2023001

Agnihotri, R., Sharma, M. P., Prakash, A., Ramesh, A., Bhattacharjya, S., Patra, A. K., Manna, M. C., Kurganova, I., and Kuzyakov, Y. (2022). "Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls," *Sci. Total Environ.* 806, Article ID 150571. DOI: 10.1016/j.scitotenv.2021.150571

Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., and Chikoye, D. (2023). "*Gliricidia sepium* (Jacq.) Walp applications for enhancing soil fertility and crop nutritional qualities: A review," *Forests* 14(3), Article Number 635. DOI: 10.3390/f14030635

Aldy, J. E., and Halem, Z. M. (2024). "The evolving role of greenhouse gas emission offsets in combating climate change," *Rev Environ Econ Policy* 18(2), 212-233. DOI: 10.1086/730982

Anderson, C. M., Field, C. B., and Mach, K. J. (2017). "Forest offsets partner climate-change mitigation with conservation," *Front. Ecol. Environ.* 15(7), 359-365. DOI: 10.1002/fee.1515

Anwar, M. N., Fayyaz, A., Sohail, N. F., Khokhar, M. F., Baqar, M., Khan, W. D., Rasool, K., Rehan, M., and Nizami, A. S. (2018). "CO₂ capture and storage: A way forward for sustainable environment," *J. Environ. Manag.* 226, 131-144.

Asadnabizadeh, M., and Moe, E. (2024). "A review of global carbon markets from Kyoto to Paris and beyond: The persistent failure of implementation," *Front. Environ. Sci.* 12, Article ID 1368105. DOI: 10.3389/fenvs.2024.1368105

Avwioroko, A. (2023). "The integration of smart grid technology with carbon credit trading systems: Benefits, challenges, and future directions," *Eng. Sci. Technol. J.* 4(2), 33-45. DOI: 10.51594/estj.v4i2.1287

Awazi, N. P., Alemagi, D., and Ambebe, T. F. (2025). "Promoting the carbon market in agroforestry systems: The role of global, national and sectoral initiatives," *Discover Forests* 1(1), 1-22. DOI: 10.1007/s44415-025-00013-4

Babin, A., Vaneckhaute, C., and Iliuta, M. C. (2021). "Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review," *Biomass. Bioenerg.* 146, Article ID 105968. DOI: 10.1016/j.biombioe.2021.105968

Bai, Y., and Cotrufo, M. F. (2022). "Grassland soil carbon sequestration: Current understanding, challenges, and solutions," *Science* 377(6606), 603-608. DOI: 10.1126/science.abe2380

Balieiro, F. D. C., Costa, C. A., Oliveira, R. B. D., Oliveira, R. D., Donagemma, G. K., Andrade, A. G. D., and Copeche, C. L. (2018). "Carbon stocks in mined area reclaimed by leguminous trees and sludge," *Rev. Árvore* 41(6), Article ID e410610. DOI: 10.1590/1806-90882017000600010

Bao, Q., Liu, Z., Zhao, M., Hu, Y., Li, D., Han, C., Zeng, C., Chen, B., Wei, Y., Ma, S., et al. (2022). "Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process," *Sci. Total Environ.* 813, Article ID 151917. DOI: 10.1016/j.scitotenv.2021.151917

Barati, B., Zeng, K., Baeyens, J., Wang, S., Addy, M., Gan, S. Y., and Abomohra, A. E. F. (2021). "Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration," *Biomass. Bioenerg.* 145, Article ID 105927. DOI: 10.1016/j.biombioe.2020.105927

Barbu, M. C., Radauer, H., Petutschnigg, A., Tudor, E. M., and Kathriner, M. (2023). "Lightweight solid wood panels made of *Paulownia* plantation wood," *App. Sci.* 13(20), Article ID 11234. DOI: 10.3390/app132011234

Basile-Doelsch, I., Balesdent, J., and Pellerin, S. (2020). "Reviews and syntheses: The mechanisms underlying carbon storage in soil," *Biogeosciences* 17(21), 5223-5242. DOI: 10.5194/bg-17-5223-2020

Basiru, S., and Hijri, M. (2024). "Trade-off between soil organic carbon sequestration and plant nutrient uptake in arbuscular mycorrhizal symbiosis," *Fungal Biol. Rev.* 49, Article ID 100381. DOI: 10.1016/j.fbr.2024.100381

Beck, U., and Kruse-Andersen, P. K. (2020). "Endogenizing the cap in a cap-and-trade system: Assessing the agreement on EU ETS phase 4," *Environ. Resour. Econ.* 77(4), 781-811.

Behera, L., Ray, L. I., Ranjan Nayak, M., and Mehta, A. (2020). "Carbon sequestration potential of *Eucalyptus* spp.: A review," *E-Planet* 18(1), 79-84.

Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M., and Parra-Saldívar, R. (2022). "Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics," *Sci. Total Environ.* 815, Article ID 152928. DOI: 10.1016/j.scitotenv.2022.152928

Blanc, S., Accastello, C., Bianchi, E., Lingua, F., Vacchiano, G., Mosso, A., and Brun, F. (2019). "An integrated approach to assess carbon credit from improved forest management," *J. Sustain. For.* 38(1), 31-45. DOI: 10.1080/10549811.2018.1494002

Boumaiza, A., and Maher, K. (2024). "Leveraging blockchain technology to enhance transparency and efficiency in carbon trading markets," *Int. J. Electr. Power Energy Syst.* 162, Article ID 110225. DOI: 10.1016/j.ijepes.2024.110225

Cameron, C., Hutley, L. B., and Friess, D. A. (2019). "Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves," *Sci. Total Environ.* 665, 419-431. DOI: 10.1016/j.scitotenv.2019.02.104

Cezario, L. F. C., Júnior, A. F. D., da Silva, Á. M., Santos, O. N. A., Ucella-Filho, J. G. M., de Paula Protásio, T., Profeti, D., Saloni, D., and Rousset, P. (2023). "Irrigation in *Jatropha curcas* L. cultivation and its effect on biomass for bioenergy generation," *J. Clean. Prod.* 429, Article ID 139527. DOI: 10.1016/j.jclepro.2023.139527

Channalli, P. S., Salunke, R. S., Jadhav, V. S., Patil, P. L., and Dolli, S. (2022). "An assessment of seasonal variation of carbon emission and carbon sequestration in rural areas of Belagavi District, Karnataka," *Int. J. Plant Soil Sci.* 34(24), 827-844.

Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A. K., and Verma, S. (2024). "Bamboo for producing charcoal and biochar for versatile applications," *Biomass Convers. Biorefin.* 14(14), 15159-15185. DOI: 10.1007/s13399-022-03715-3

Chave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, D., Armston, J., Baker, T. R., Coomes, D., Disney, M., and Duncanson, L. (2019). "Ground data are essential for biomass remote sensing missions," *Surv. Geophys.* 40, 863-880. DOI: 10.1007/s10712-019-09528-w

Chen, Y., Guerschman, J. P., Cheng, Z., and Guo, L. (2019). "Remote sensing for vegetation monitoring in carbon capture storage regions: A review," *Appl. Energy* 240, 312-326. DOI: 10.1016/j.apenergy.2019.02.027

Cheng, J., Zhu, Y., Zhang, Z., and Yang, W. (2019). "Modification and improvement of microalgae strains for strengthening CO₂ fixation from coal-fired flue gas in power plants," *Bioresource Technol.* 291, Article ID 121850. DOI: 10.1016/j.biortech.2019.121850

Cho, S., Baral, S., and Burlakoti, D. (2025). "Afforestation/reforestation and avoided conversion carbon projects in the United States," *Forests* 16(1), Article Number 115. DOI: 10.3390/f16010115

Clifton-Brown, J., Schwarz, K. U., Awty-Carroll, D., Iurato, A., Meyer, H., Greef, J., Gwyn, J., Mos, M., Ashman, C., Hayes, C., *et al.* (2019). "Breeding strategies to improve *Miscanthus* as a sustainable source of biomass for bioenergy and biorenewable products," *Agronomy* 9(11), Article Number 673. DOI: 10.3390/agronomy9110673

Costea, M., Danci, M., Ciulca, S., and Sumalan, R. (2021). "Genus *Paulownia*: Versatile wood species with multiple uses-A review," *Life Sci. Sustain. Dev.* 2(1), 32-40.

Cravino, A., and Brazeiro, A. (2021). "Grassland afforestation in South America: Local scale impacts of eucalyptus plantations on Uruguayan mammals," *Forest Ecol. Manag.* 484, Article ID 118937. DOI: 10.1016/j.foreco.2021.118937

de Almeida, D. R., Vedovato, L. B., Fuza, M., Molin, P., Cassol, H., Resende, A. F., Krainovic, P. M., de Almeida, C. T., Amaral, C., Haneda, L., *et al.* (2025). "Remote sensing approaches to monitor tropical forest restoration: Current methods and future possibilities," *J. Appl. Ecol.* 62(2), 188-206. DOI: 10.1111/1365-2664.14830

Deng, W., Xiang, W., Ouyang, S., Hu, Y., Chen, L., Zeng, Y., Deng, X., Zhao, Z., and Forrester, D. I. (2022a). "Spatially explicit optimization of the forest management tradeoff between timber production and carbon sequestration," *Ecol. Indic.* 142, Article ID 109193. DOI: 10.1016/j.ecolind.2022.109193

Deng, H., Su, Y., Liao, Z., and Wu, J. (2022b). "Proposal of implementation framework of cooperative approaches and sustainable development mechanism," *Sustainability* 14(2), Article Number 655. DOI: 10.3390/su14020655

Devi, A. S., and Singh, K. S. (2021). "Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India," *Sci. Rep.* 11(1), Article Number 837. DOI: 10.1038/s41598-020-80887-w

Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H., Breman, E., Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., and Shaw, K. (2021). "Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits," *Glob. Change Biol.* 27(7), 1328-1348. DOI: 10.1111/gcb.15498

Dissanayaka, D. M. N. S., Uduman, S. S., and Atapattu, A. J. (2024). "Synergies between tree crops and ecosystems in tropical agroforestry," *Agroforestry* 49-87.

Dlamini, L. C., Fakudze, S., Makombe, G. G., Muse, S., and Zhu, J. (2022). "Bamboo as a valuable resource and its utilization in historical and modern-day China," *BioResources* 17(1), 1926-1938. DOI: 10.15376/biores.17.1.Dlamini

Drexler, J. Z., Khanna, S., and Lacy, J. R. (2021). "Carbon storage and sediment trapping by *Egeria densa* Planch., a globally invasive, freshwater macrophyte," *Sci. Total Environ.* 755, Article ID 142602.

Dynarski, K. A., Bossio, D. A., and Scow, K. M. (2020). "Dynamic stability of soil carbon: reassessing the "permanence" of soil carbon sequestration," *Front. Environ. Sci.* 8, 514701. DOI: 10.3389/fenvs.2020.514701

Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., and Mandzhieva, S. (2022). "Plant nutrition under climate change and soil carbon sequestration," *Sustainability* 14(2), Article Number 914. DOI: 10.3390/su14020914

Emamverdian, A., Ding, Y., Ranaei, F., and Ahmad, Z. (2020). "Application of bamboo plants in nine aspects," *Sci. World J.* 2020(1), Article ID 7284203. DOI: 10.1155/2020/7284203

Eslamdoust, J., and Sohrabi, H. (2018). "Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantations in the South Caspian Sea," *J. For. Res.* 29, 449-457. DOI: 10.1007/s11676-017-0469-5

Espejo, A. B., Becerra-Leal, M. C., and Aguilar-Amuchastegui, N. (2020). "Comparing the environmental integrity of emission reductions from REDD programs with renewable energy projects," *Forests* 11(12), Article Number 1360. DOI: 10.3390/f11121360

Evans, M. C. (2018). "Effective incentives for reforestation: Lessons from Australia's carbon farming policies," *Curr. Opin. Environ. Sustain.* 32, 38-45.

Fairman, T. A., Nitschke, C. R., and Bennett, L. T. (2022). "Carbon stocks and stability are diminished by short-interval wildfires in fire-tolerant eucalypt forests," *For. Ecol. Manag.* 505, Article ID 119919. DOI: 10.1016/j.foreco.2021.119919

Fan, L., Wang, J., Han, D., Gao, J., and Yao, Y. (2022). "Research on promoting carbon sequestration of urban green space distribution characteristics and planting design models in Xi'an," *Sustainability* 15(1), Article Number 572. DOI: 10.3390/su15010572

Favero, A., Daigneault, A., and Sohngen, B. (2020). "Forests: Carbon sequestration, biomass energy, or both?," *Sci. Adv.* 6(13), Article ID eaay6792.

Flude, C., Ficht, A., Sandoval, F., and Lyons, E. (2022). "Development of an urban turfgrass and tree carbon calculator for northern temperate climates," *Sustainability* 14(19), Article ID 12423. DOI: 10.3390/su141912423

Fossum, C., Estera-Molina, K. Y., Yuan, M., Herman, D. J., Chu-Jacoby, I., Nico, P. S., Morrison, K. D., Pett-Ridge, J., and Firestone, M. K. (2022). "Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland," *Soil Biol. Biochem.* 165, Article ID 108519. DOI: 10.1101/2021.08.23.457405

Froese, R., and Schilling, J. (2019). "The nexus of climate change, land use, and conflicts," *Curr. Clim. Change Rep.* 5, 24-35. DOI: 10.1007/s40641-019-00122-1

Funk, J. M., Aguilar-Amuchastegui, N., Baldwin-Cantello, W., Busch, J., Chuvasov, E., Evans, T., Griffin, B., Harris, N., Ferreira, M. N., Petersen, K., and Phillips, O. (2019). "Securing the climate benefits of stable forests," *Clim. Policy* 19(7), 845-860. DOI: 10.1080/14693062.2019.1598838

Garcia, B., Alves, O., Rijo, B., Lourinho, G., and Nobre, C. (2022). "Biochar: Production, applications, and market prospects in Portugal," *Environments* 9(8), 95. DOI: 10.3390/environments9080095

Ghale, B., Mitra, E., Sodhi, H. S., Verma, A. K., and Kumar, S. (2022). "Carbon sequestration potential of agroforestry systems and its potential in climate change mitigation," *Water Air Soil Pollut.* 233(7), Article Number 228.

Ghazzawy, H. S., Bakr, A., Mansour, A. T., and Ashour, M. (2024). "Paulownia trees as a sustainable solution for CO₂ mitigation: Assessing progress toward 2050 climate goals," *Front. Environ. Sci.* 12, Article ID 1307840. DOI: 10.3389/fenvs.2024.1307840

Grim, R. G., Huang, Z., Guarnieri, M. T., Ferrell, J. R., Tao, L., and Schaidle, J. A. (2020). "Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO₂ utilization," *Energy Environ. Sci.* 13(2), 472-494. DOI: 10.1039/C9EE02410G

Gross, C. D., Bork, E. W., Carlyle, C. N., and Chang, S. X. (2022). "Agroforestry perennials reduce nitrous oxide emissions and their live and dead trees increase ecosystem carbon storage," *Global Change Biol.* 28(20), 5956-5972. DOI: 10.1111/gcb.16322

Guan, M., An, X., and Liu, H. (2019). "Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp-based tissue paper handsheets," *Cellulose* 26, 2613-2624. DOI: 10.1007/s10570-018-2212-6

Gupta, K. (2024). "Carbon credits and offsetting: Navigating legal frameworks, innovative solutions, and controversies," *Int. J. Multidiscip. Res.* 6(2), 1-12.

Gupta, R. K., Kumar, V., Sharma, K. R., Buttar, T. S., Singh, G., and Mir, G. (2017). "Carbon sequestration potential through agroforestry: A review," *Int. J. Curr. Microbiol. Appl. Sci.* 6(8), 211-220. DOI: 10.20546/ijcmas.2017.608.029

Hamilton, S. E., and Friess, D. A. (2018). "Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012," *Nat. Climate Change* 8(3), 240-244. DOI: 10.1038/s41558-018-0090-4

Hagger, V., Waltham, N. J., and Lovelock, C. E. (2022). "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," *Ecosyst. Serv.* 55, Article ID 101423. DOI: 10.1016/j.ecoser.2022.101423

Hao, Q., Song, Z., Zhang, X., He, D., Guo, L., van Zwieten, L., Yu, C., Wang, Y., Wang, W., Fang, Y., et al. (2024). "Organic blue carbon sequestration in vegetated coastal wetlands: Processes and influencing factors," *Earth-Sci. Rev.* Article ID 104853. DOI: 10.1016/j.earscirev.2024.104853

Hariram, N. P., Mekha, K. B., Suganthan, V., and Sudhakar, K. (2023). "Sustainableism: An integrated socio-economic-environmental model to address sustainable development and sustainability," *Sustainability* 15(13), Article ID 10682. DOI: 10.3390/su151310682

Hausle, J. M., Forrester, J. A., Moorman, C. E., and Martin, M. R. (2023). "Tradeoffs between timber and wildlife habitat quality increase with density in longleaf pine (*Pinus palustris*) plantations," *For. Ecol. Manage.* 550, Article ID 121497. DOI: 10.1016/j.foreco.2023.121497

Haya, B., Cullenward, D., Strong, A. L., Grubert, E., Heilmayr, R., Sivas, D. A., and Wara, M. (2020). "Managing uncertainty in carbon offsets: Insights from California's standardized approach," *Clim. Policy* 20(9), 1112-1126. DOI: 10.1080/14693062.2020.1781035

Himes-Cornell, A., Pendleton, L., and Atiyah, P. (2018). "Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests," *Ecosyst. Serv.* 30, 36-48. DOI: 10.1016/j.ecoser.2018.01.006

Hou, G., Delang, C. O., Lu, X., and Olschewski, R. (2019). "Valuing carbon sequestration to finance afforestation projects in China," *Forests* 10(9), Article Number 754. DOI: 10.3390/f10090754

Hu, X., Næss, J. S., Iordan, C. M., Huang, B., Zhao, W., and Cherubini, F. (2021). "Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation," *Anthropocene* 34, Article ID 100291. DOI: 10.1016/j.ancene.2021.100291

Huber, C., Moog, D., Stingl, R., Pramreiter, M., Stadlmann, A., Baumann, G., Praxmarer, G., Gutmann, R., Eisler, H. and Müller, U. (2023). "Paulownia (*Paulownia elongata* SY Hu)—importance for forestry and a general screening of technological and material properties," *Wood Mater. Sci. Eng.* 18(5), 1663-1675.

Hübner, R., Kühnel, A., Lu, J., Dettmann, H., Wang, W., and Wiesmeier, M. (2021). "Soil carbon sequestration by agroforestry systems in China: A meta-analysis," *Agric. Ecosyst. Environ.* 315, Article ID 107437. DOI: 10.1016/j.agee.2021.107437

Huxham, M., Whitlock, D., Githaiga, M., and Dencer-Brown, A. (2018). "Carbon in the coastal seascape: How interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage," *Curr. For. Res.* 4, 101-110.

Infurna, G., Caruso, G., and Dintcheva, N. T. (2023). "Sustainable materials containing biochar particles: A review," *Polymers* 15(2), 343. DOI: 10.3390/polym15020343

Jakob, M. (2021). "Why carbon leakage matters and what can be done against it," *One Earth* 4(5), 609-614. DOI: 10.1007/s40725-018-0077-4

Jansson, C., Faiola, C., Wingler, A., Zhu, X. G., Kravchenko, A., De Graaff, M. A., Ogden, A. J., Handakumbura, P. P., Werner, C., and Beckles, D. M. (2021). "Crops for carbon farming," *Front. Plant Sci.* 12, Article ID 636709. DOI: 10.3389/fpls.2021.636709

Jeewani, P. H., Luo, Y., Yu, G., Fu, Y., He, X., Van Zwieten, L., Liang, C., Kumar, A., He, Y., Kuzyakov, Y., et al. (2021). "Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions," *Soil Biol. Biochem.* 162, Article ID 108417. DOI: 10.1016/j.soilbio.2021.108417

Jia, Z., and Wen, S. (2024). "Interaction effects of market-based and incentive-driven low-carbon policies on carbon emissions," *Energy Econ.* 137, Article ID 107776. DOI: 10.1016/j.eneco.2024.107776

Jia, N., and He, Z. (2023). "Assessment of the potential capacity of carbon sequestration of forest," *Highlights Sci. Eng. Technol.* 48, 112-118. DOI: 10.54097/hset.v48i.8283

Jose, S., and Dollinger, J. (2019). "Silvopasture: A sustainable livestock production system," *Agrofor. Syst.* 93, 1-9. DOI: 10.1007/s10457-019-00366-8

Joshi, R. K., and Garkoti, S. C. (2025). "Ecosystem carbon storage, allocation and carbon credit values of major forest types in the central Himalaya," *Carbon Res.* 4, 7. DOI: 10.1007/s44246-024-00159-4

Karimi, Z., Abdi, E., Deljouei, A., Cislaghi, A., Shirvany, A., Schwarz, M., and Hales, T. C. (2022). "Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest," *Catena* 216, Article ID 106410. DOI: 10.1016/j.catena.2022.106410

Kaur, A., and Monga, R. (2021). "Eucalyptus trees plantation: A review on suitability and their beneficial role," *Int. J. Bio-res. Stress Manag.* 12(1), 16-25. DOI: 10.23910/1.2021.2174

Kearney, W. S., Fernandes, A., and Fagherazzi, S. (2019). "Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches," *PloS One* 14(5), Article ID e0215977. DOI: 10.1371/journal.pone.0215977

Keenan, R. J., Ford, R. M., and Nitschke, C. R. (2023). "How does conservation land tenure affect economic impacts of wildlife: An analysis of subsistence farmers and herders in Bhutan," *Trees, Forests People* 11, Article ID 100378. DOI: 10.1016/j.tfp.2023.100378

Kida, M., and Fujitake, N. (2020). "Organic carbon stabilization mechanisms in mangrove soils: A review," *Forests* 11(9), Article Number 981. DOI: 10.3390/f11090981

Kim, D. H., Kim, D. H., Kim, H. S., Kim, S. I., and Lee, D. H. (2020). "Determinants of bilateral REDD+ cooperation recipients in Kyoto Protocol regime and their implications in Paris Agreement regime," *Forests* 11(7), Article Number 751. DOI: 10.3390/f11070751

Kumar, T., Ansari, S. A., Sawarkar, R., Agashe, A., Singh, L., and Nidheesh, P. V. (2025). "Bamboo biochar: A multifunctional material for environmental sustainability," *Biomass Convers. Biorefin.* 2025, 1-25. DOI: 10.1007/s13399-025-06608-3

Kumar, A., Tewari, S., Singh, H., Kumar, P., Kumar, N., Bisht, S., Devi, S. and Kaushal, R. (2021). "Biomass accumulation and carbon stock in different agroforestry systems prevalent in the Himalayan foothills, India," *Curr. Sci.* 120(6), 1083-1088. DOI: 10.18520/cs/v120/i6/1083-1088

Lama, S., Zhang, J., and Luan, X. (2024). "Evaluating the conservation status and effectiveness of multi-type protected areas for carbon sequestration in the loess plateau, China," *Atmosphere* 15(7), Article Number 764. DOI: 10.3390/atmos15070764

Lessmann, C., and Kramer, N. (2024). "The effect of cap-and-trade on sectoral emissions: Evidence from California," *Energy Policy* 188, Article ID 114066.

Li, C., Cai, Y., Xiao, L., Gao, X., Shi, Y., Du, H., Zhou, Y. and Zhou, G., (2021a). "Effects of different planting approaches and site conditions on aboveground carbon storage along a 10-year chronosequence after moso bamboo reforestation," *Forest Ecol. Manag.* 482, Article ID 118867. DOI: 10.1016/j.foreco.2020.118867

Li, S., Zhu, C., Lin, Y., Dong, B., Chen, B., Si, B., Li, Y., Deng, X., Gan, M., Zhang, J., et al. (2021b). "Conflicts between agricultural and ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions," *J. Clean. Prod.* 317, Article ID 128453. DOI: 10.1016/j.jclepro.2021.128453

Liang, Z., Neményi, A., Kovács, G. P., and Gyuricza, C. (2023). "Potential use of bamboo resources in energy value-added conversion technology and energy systems," *GCB Bioenergy* 15(8), 936-953. DOI: 10.1111/gcbb.13072

Lin, H. J., Chen, K. Y., Kao, Y. C., Lin, W. J., Lin, C. W., and Ho, C. W. (2023). "Assessing coastal blue carbon sinks in Taiwan," *Mar. Res.* 3(2), 1-17.

Liu, T., Sun, Y., Wang, C., Zhang, Y., Qiu, Z., Gong, W., Lei, S., Tong, X., and Duan, X., (2021). "Unmanned aerial vehicle and artificial intelligence revolutionizing efficient and precision sustainable forest management," *J. Clean. Prod.* 311, Article ID 127546. DOI: 10.1016/j.jclepro.2021.127546

Liu, Z., Wu, X., Liu, W., Bian, R., Ge, T., Zhang, W., Zheng, J., Drosos, M., Liu, X., Zhang, X., et al. (2020). "Greater microbial carbon use efficiency and carbon

sequestration in soils: Amendment of biochar *versus* crop straws," *GCB Bioenergy* 12(12), 1092-1103.

Luo, L., Gao, Y., Regan, C. M., Summers, D. M., Connor, J. D., O'Hehir, J., Meng, L., and Chow, C. W. (2024). "Emissions offset incentives, carbon storage and profit optimization for Australian timber plantations," *For. Policy Econ.* 15 Article ID 103125. DOI: 10.1016/j.forpol.2023.103125

Ma, T., Zhang, C., Ji, L., Zuo, Z., Beckline, M., Hu, Y., Li, X., and Xiao, X. (2024). "Development of forest aboveground biomass estimation, its problems and future solutions: A review," *Ecol. Indic.* 159, Article ID 111653. DOI: 10.1016/j.ecolind.2024.111653

Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T., and Ma, X. (2022). "Root exudates contribute to belowground ecosystem hotspots: A review," *Front. Microbiol.* 13, Article ID 937940. DOI: 10.3389/fmicb.2022.937940

Maamoun, N. (2019). "The Kyoto protocol: Empirical evidence of a hidden success," *J. Environ. Econ. Manag.* 95, 227-256. DOI: 10.1016/j.jeem.2019.04.001

Martielli, F., Battisti, E., Gonzalez-Cruz, T. F., and Salvi, A. (2025). "Carbon credits and financial performance: Exploring the moderating role of CSR strategy and corporate governance practices," *Res. Int. Bus. Finance* 77, 102919. DOI: 10.1016/j.ribaf.2025.102919

Maschler, J., Bialic-Murphy, L., Wan, J., Andresen, L. C., Zohner, C. M., Reich, P. B., Lüscher, A., Schneider, M. K., Müller, C., Moser, G., *et al.* (2022). "Links across ecological scales: Plant biomass responses to elevated CO₂," *Glob. Change Biol.* 28(21), 6115-6134. DOI: 10.1111/gcb.16351

Massel, K., Lam, Y., Wong, A. C., Hickey, L. T., Borrell, A. K., and Godwin, I. D. (2021). "Hotter, drier, CRISPR: The latest edit on climate change," *Theor. Appl. Genet.* 134(6), 1691-1709. DOI: 10.1007/s00122-020-03764-0

Meena, A., Bidalia, A., Hanief, M., Dinakaran, J., and Rao, K. S. (2019). "Assessment of above-and belowground carbon pools in a semi-arid forest ecosystem of Delhi, India," *Ecol. Process.* 8, 1-11. DOI: 10.1186/s13717-019-0163-y

Mehling, M. A., Van Asselt, H., Das, K., Droege, S., and Verkuijl, C. (2019). "Designing border carbon adjustments for enhanced climate action," *Am. J. Int. Law* 113(3), 433-481.

Michaelowa, A., Shishlov, I., and Brescia, D. (2019). "Evolution of international carbon markets: Lessons for the Paris Agreement," *Climate Change* 10(6), e613. DOI: 10.1002/wcc.613

Miripanah, Z., Tavakoli, M., Rostaminya, M., and Naderi, M. (2019). "Carbon sequestration *via* afforestation as a sustainable action to mitigate climate change in western Iran," *Nat. Resour. Forum* 43(3), 194-202. DOI: 10.1111/1477-8947.12185

Moore, C. E., Berardi, D. M., Blanc-Betes, E., Dracup, E. C., Egenriether, S., Gomez-Casanovas, N., Hartman, M. D., Hudiburg, T., Kantola, I., Masters, M. D., *et al.* (2020). "The carbon and nitrogen cycle impacts of reverting perennial bioenergy switchgrass to an annual maize crop rotation," *GCB Bioenergy* 12(11), 941-954. DOI: 10.1111/gcbb.12743

Morales, M. M., Tonini, H., Behling, M., and Hoshide, A. K. (2023). "Eucalyptus carbon stock research in an integrated livestock-forestry system in Brazil," *Sustainability* 15(10), Article ID 7750. DOI: 10.3390/su15107750

Morita, K., and Matsumoto, K. I. (2023). "Challenges and lessons learned for REDD+ finance and its governance," *Carbon Balance Manag.* 18(1), Article Number 8. DOI: 10.1186/s13021-023-00228-y

Murdiyarno, D., Sasmito, S. D., Sillanpää, M., MacKenzie, R., and Gaveau, D. (2021). "Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment," *Sci. Rep.* 11(1), Article ID 12325. DOI: 10.1038/s41598-021-91502-x

Nayak, A. K., Rahman, M. M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Islam, M. R., and Pathak, H. (2019). "Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review," *Sci. Total Environ.* 665, 890-912. DOI: 10.1016/j.scitotenv.2019.02.125

Ngernsaengsaruay, C., Chanton, P., Leksungnoen, N., Uthairatsamee, S., and Mianmit, N. (2024). "A taxonomic revision of *Rhizophora* L. (Rhizophoraceae) in Thailand," *Peer J.* 12, Article ID e17460. DOI: 10.7717/peerj.17460

Nielsen, T., Baumert, N., Kander, A., Jiborn, M., and Kulionis, V. (2021). "The risk of carbon leakage in global climate agreements," *Int. Environ. Agreem.- Polit. Law Econ.* 21, 147-163. DOI: 10.1007/s10784-020-09507-2

Nogueira, G. P., McManus, M. C., Leak, D. J., Franco, T. T., de Souza Dias, M. O., and Cavaliero, C. K. N. (2021). "Are *Eucalyptus* harvest residues a truly burden-free biomass source for bioenergy? A deeper look into biorefinery process design and life cycle assessment," *J. Clean. Prod.* 299, Article ID 126956. DOI: 10.1016/j.jclepro.2021.126956

Nsabiyeze, A., Ma, R., Li, J., Luo, H., Zhao, Q., Tomka, J., and Zhang, M. (2024). "Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies," *J. Clean. Prod.* 468, Article ID 142973. DOI: 10.1016/j.jclepro.2024.142973

Nunes, L. J. (2023). "The rising threat of atmospheric CO₂: A review on the causes, impacts, and mitigation strategies," *Environ.* 10(4), Article Number 66. DOI: 10.3390/environments10040066

Nunes, L. J., Meireles, C. I., Pinto Gomes, C. J., and Almeida Ribeiro, N. M. (2020). "Forest contribution to climate change mitigation: Management oriented to carbon capture and storage," *Climate* 8(2), Article Number 21. DOI: 10.3390/cli8020021

Odega, C. A., Ayodele, O. O., O gutuga, S. O., Anguruwa, G. T., Adekunle, A. E., and Fakorede, C. O. (2023). "Potential application and regeneration of bamboo biochar for wastewater treatment: A review," *Adv. Bamboo Sci.* 2, Article ID 100012. DOI: 10.1016/j.bamboo.2022.100012

Oliveira, T. D., Gurgel, A. C., and Tonry, S. (2019). "International market mechanisms under the Paris Agreement: A cooperation between Brazil and Europe," *Energy Policy* 129, 397-409. DOI: 10.1016/j.enpol.2019.01.056

Olorunfemi, I. E., Olufayo, A. A., Fasinmirin, J. T., and Komolafe, A. A. (2022). "Dynamics of land use land cover and its impact on carbon stocks in Sub-Saharan Africa: An overview," *Environ. Dev. Sustain.* 24(1), 40-76. DOI: 10.1007/s10668-021-01484-z

Pan, C., Zhou, G., Shrestha, A. K., Chen, J., Kozak, R., Li, N., Li, J., He, Y., Sheng, C., and Wang, G (2023). "Bamboo as a nature-based solution (NbS) for climate change mitigation: biomass, products, and carbon credits," *Climate* 11(9), Article Number 175. DOI: 10.3390/cli11090175

Pan, C., Shrestha, A., Innes, J. L., Zhou, G., Li, N., Li, J., He, Y., Sheng, C., Niles, J. O., and Wang, G. (2022). "Key challenges and approaches to addressing barriers in forest

carbon offset projects," *J. For. Res.* 33(4), 1109-1122. DOI: 10.1007/s11676-022-01488-z

Pang, L., Tian, C., Yuan, Q., and Deng, W. (2025). "Effects of different restoration years on soil carbon sequestration and water retention capacity in bamboo forest: A case study in Southwest China Karst," *Ecol. Eng.* 210, Article ID 107434.

Pausch, J., and Kuzyakov, Y. (2018). "Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale," *Glob. change Biol.* 24(1), 1-12.

Peixoto, L., Olesen, J. E., Elsgaard, L., Enggrob, K. L., Banfield, C. C., Dippold, M. A., Nicolaisen, M. H., Bak, F., Zang, H., Dresbøll, D. B., and Thorup-Kristensen, K. (2022). "Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers," *Sci. Rep.* 12(1), Article Number 5952. DOI: 10.1038/s41598-022-09737-1

Petrov, M., Nikolaeva, Z., and Dimitrov, A. (2023). "The impact of anthropogenic activity on the global environment," *Sci. Bus. Soc.* 8(2), 59-64.

Pham, T. D., Xia, J., Ha, N. T., Bui, D. T., Le, N. N., and Takeuchi, W. (2019). "A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018," *Sensors* 19(8), Article ID 1933. DOI: 10.3390/s19081933

Prasad, R., Gupta, S. K., Shabnam, N., Oliveira, C. Y. B., Nema, A. K., Ansari, F. A., and Bux, F. (2021). "Role of microalgae in global CO₂ sequestration: Physiological mechanism, recent development, challenges, and future prospective," *Sustainability* 13(23), Article ID 13061. DOI: 10.3390/su132313061

Prawitasari, P. P., Nurmala, M. R., and Kumala, P. D. (2024). "Blockchain technology in the carbon market: Enhancing transparency and trust in emissions trading," *Jurnal Revenue: Jurnal Ilmiah Akuntansi* 5(2), 1495-1521.

Prommer, J., Walker, T. W., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., and Richter, A. (2020). "Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity," *Glob. Change Biol.* 26(2), 669-681. DOI: 10.1111/geb.14777

Psistaki, K., Tsantopoulos, G., and Paschalidou, A. K. (2024). "An overview of the role of forests in climate change mitigation," *Sustainability* 16(14), Article ID 6089. DOI: 10.3390/su16146089

Quadros, A. F., Helfer, V., Nordhaus, I., Reuter, H., and Zimmer, M. (2021). "Functional traits of terrestrial plants in the intertidal: A review on mangrove trees," *Biol. Bull.* 241(2), 123-139. DOI: 10.1086/716510

Queiroz, T. B., Campoe, O. C., Montes, C. R., Alvares, C. A., Cuartas, M. Z., and Guerrini, I. A. (2020). "Temperature thresholds for *Eucalyptus* genotypes growth across tropical and subtropical ranges in South America," *For. Ecol. Manag.* 472, Article ID 118248. DOI: 10.1016/j.foreco.2020.118248

Racelis, E., Racelis, D., and Luna, A. (2019). "Carbon sequestration by large leaf mahogany (*Swietenia macrophylla* King.) plantation in Mount Makiling forest reserve, Philippines: A decade after," *J. Environ. Sci. Manag.* 22(1), 67-76. DOI: 10.47125/jesam/2019_1/08

Raj, A., Jhariya, M. K., Yadav, D. K., Banerjee, A., and Meena, R. S. (2019). "Agroforestry: A holistic approach for agricultural sustainability," *Sustain. Agric. For. Environ. Manag.* 101-131. DOI: 10.1007/978-981-13-6830-1_4

Ramasubramanian, S., Singh, C. R., and Muralikrishna, R. (2023). "Bioprospecting of bamboo: A review," *Asian J. Biotechnol. Bioresour. Technol.* 9(1), 7-19. DOI: 10.9734/ajb2t/2023/v9i1174

Randazzo, N. A., Gordon, D. R., and Hamburg, S. P. (2023). "Improved assessment of baseline and additionality for forest carbon crediting," *Ecol. Appl.* 33(3), Article ID e2817. DOI: 10.1002/eap.2817

Raza, T., Qadir, M. F., Khan, K. S., Eash, N. S., Yousuf, M., Chatterjee, S., Manzoor, R., Rehman, S., and Oetting, J. N., (2023). "Unraveling the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem," *J. Environ. Manage.* 344, Article ID 118529. DOI: 10.1016/j.jenvman.2023.118529

Regan, C. M., Connor, J. D., Summers, D. M., Settre, C., O'Connor, P. J., and Cavagnaro, T. R. (2020). "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," *Land Use Policy* 97, Article ID 104800. DOI: 10.1016/j.landusepol.2020.104800

Ren, H., Ding, W., Lv, C., Luo, Y., Chen, Z., Chen, J., and Sun, X. (2024). "Novel finding of *Paulownia fortunei* endophytic rhizobia in China," *Nordic J. Bot.* 2024(6) Article ID e04304. DOI: 10.1111/njb.04304

Richards, D., Allen, K., Graham, S., Harcourt, N., Kirk, N., Lavorel, S., McNally, S., Polyakov, M., and Whitehead, D. (2024). "Carbon stocks and sequestration from small tree patches in grassland landscapes in Aotearoa-New Zealand," *Clim. Policy* 2024, 1-19. DOI: 10.1080/14693062.2024.2427710

Rocky, B. P., and Thompson, A. J. (2020). "Production and modification of natural bamboo fibers from four bamboo species, and their prospects in textile manufacturing," *Fibers Polymers* 21, 2740-2752. DOI: 10.1007/s12221-020-1208-7

Rodríguez-Seoane, P., Díaz-Reinoso, B., Moure, A., and Domínguez, H. (2020). "Potential of *Paulownia* sp. for biorefinery," *Ind. Crops Prod.* 155, Article ID 112739. DOI: 10.1016/j.indcrop.2020.112739

Salma, A., Fryda, L., and Djelal, H. (2024). "Biochar: A key player in carbon credits and climate mitigation," *Resources* 13(2), 31. DOI: 10.3390/resources13020031

Salvi, A., Martelli, F., Battisti, E., Forlano, C., and Kumar, S. (2025). "Climate change management and companies' financial performance: Exploring the moderating role of carbon credits," *Res. Int. Bus. Finance* 75, 102785. DOI: 10.1016/j.ribaf.2025.102785

Sapkota, Y., and White, J. R. (2020). "Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review," *Sci. Total Environ.* 701, Article ID 134497. DOI: 10.1016/j.scitotenv.2019.134497

Sasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., and Borchard, N. (2020). "Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems," *Catena* 187, Article ID 104414. DOI: 10.1016/j.catena.2019.104414

Sauls, L. A. (2020). "Becoming fundable? Converting climate justice claims into climate finance in Mesoamerica's forests," *Clim. Change* 161(2), 307-325. DOI: 10.1007/s10584-019-02624-1

Schuster, R., Martin, T. G., and Arcese, P. (2014). "Bird community conservation and carbon offsets in Western North America," *PLoS One* 9(6), Article ID e99292. DOI: 10.1371/journal.pone.0099292

Seddon, N. (2022). "Harnessing the potential of nature-based solutions for mitigating and adapting to climate change," *Science* 376(6600), 1410-1416. DOI: 10.1126/science.abn9668

Senadheera, D. L., Wahala, W. M. P. S. B., and Weragoda, S. (2019). "Livelihood and ecosystem benefits of carbon credits through rainforests: A case study of Hiniduma Bio-link, Sri Lanka," *Ecosyst. Serv.* 37, 100933. DOI: 10.1016/j.ecoser.2019.100933

Shala, A. Y., and Gururani, M. A. (2021). "Phytochemical properties and diverse beneficial roles of *Eucalyptus globulus* Labill.: A review," *Horticulturae* 7(11), Article Number 450. DOI: 10.3390/horticulturae7110450

Shrestha, A., Eshpeter, S., Li, N., Li, J., Nile, J. O., and Wang, G. (2022). "Inclusion of forestry offsets in emission trading schemes: Insights from global experts," *J. For. Res.* 33(1), 279-287. DOI: 10.1007/s11676-021-01329-5

Sidik, F., Lawrence, A., Wagey, T., Zamzani, F., and Lovelock, C. E. (2023). "Blue carbon: A new paradigm of mangrove conservation and management in Indonesia," *Mar. Policy*, 147, Article ID 105388. DOI: 10.1016/j.marpol.2022.105388

Silva, V. E., Nogueira, T. A. R., Abreu-Junior, C. H., He, Z., Buzetti, S., Laclau, J. P., Teixeira Filho, M. C. M., Grilli, E., Murgia, I., and Capra, G. F. (2020). "Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian *Eucalyptus* plantations," *For. Ecol. Manag.* 455, Article ID 117673. DOI: 10.1016/j.foreco.2019.117673

Singh, L., Sridharan, S., Thul, S. T., Kokate, P., Kumar, P., Kumar, S., and Kumar, R. (2020). "Eco-rejuvenation of degraded land by microbe assisted bamboo plantation," *Ind. Crops Prod.* 155, Article ID 112795. DOI: 10.1016/j.indcrop.2020.112795

Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Van Egmond, F., McNeill, S., Kuhnert, M., and Arias-Navarro, C. (2020). "How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal," *Glob. Change Biol.* 26(1), 219-241. DOI: 10.1111/gcb.14815

Sławińska, N., Zajac, J., and Olas, B. (2023). "Paulownia organs as interesting new sources of bioactive compounds," *Int. J. Mol. Sci.* 24(2), Article ID 1676. DOI: 10.3390/ijms24021676

Sun, W., and Liu, X. (2020). "Review on carbon storage estimation of forest ecosystem and applications in China," *For. Ecosyst.* 7, 1-14. DOI: 10.1186/s40663-019-0210-2

Temmerman, S., Horstman, E. M., Krauss, K. W., Mullarney, J. C., Pelckmans, I., and Schoutens, K. (2023). "Marshes and mangroves as nature-based coastal storm buffers," *Ann. Rev. Mar. Sci.* 15(1), 95-118. DOI: 10.1146/annurev-marine-040422-092951

Terrer, C., Phillips, R. P., Hungate, B.A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., and Reich, P. B. (2021). "A trade-off between plant and soil carbon storage under elevated CO₂," *Nature* 591(7851), 599-603. DOI: 10.1038/s41586-021-03306-8

Tesfaye, M. A., Gardi, O., Anbessa, T. B., and Blaser, J. (2020). "Aboveground biomass, growth and yield for some selected introduced tree species, namely *Cupressus lusitanica*, *Eucalyptus saligna*, and *Pinus patula* in Central Highlands of Ethiopia," *J. Ecol. Environ.* 44, 1-18. DOI: 10.1186/s41610-019-0146-z

Tewari, S., Negi, H., and Kaushal, R. (2019). "Status of bamboo in India," *Int. J. Econ. Plants* 6(1), 30-39. DOI: 10.23910/IJEP/2019.6.1.0288

Tomé, M., Almeida, M. H., Barreiro, S., Branco, M. R., Deus, E., Pinto, G., Silva, J. S., Soares, P., and Rodríguez-Soalleiro, R. (2021). "Opportunities and challenges of *Eucalyptus* plantations in Europe: The Iberian Peninsula experience," *Eur. J. For. Res.* 140(3), 489-510. DOI: 10.1007/s10342-021-01358-z

Touseef, M. (2023). "Exploring the Complex underground social networks between plants and mycorrhizal fungi known as the wood wide web," *Plant Sci Arch* 8(1), 5. DOI: 10.51470/PSA.2023.8.1.05

Tsai, Y. C. (2025). "Enhancing transparency and fraud detection in carbon credit markets through blockchain-based visualization techniques," *Electronics* 14(1), Article Number 157. DOI: 10.3390/electronics14010157

Tripathi, J., Causer, T., Ciolkosz, D. E., DeVallance, D. B., Białowiec, A., and Nunes, L. J. (2024). "Non-energetic application of carbon-rich torrefied biomass in the bioeconomy: A review," *Biofuels* 15(4), 389-405. DOI: 10.1080/17597269.2023.2250974

Tunlid, A., Floudas, D., Op De Beeck, M., Wang, T., and Persson, P. (2022). "Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization," *Front. For. Glob. Change* 5, Article ID 934409. DOI: 10.3389/ffgc.2022.934409

Twomey, A. J., and Lovelock, C. E. (2025). "Variation in mangrove geometric traits among genera and climate zones," *Estuaries and Coasts* 48(2), Article Number 55. DOI: 10.1007/s12237-025-01487-3

Varsha, K. M., Raj, A. K., Kurien, E. K., Bastin, B., Kunhamu, T. K., and Pradeep, K. P. (2019). "High density silvopasture systems for quality forage production and carbon sequestration in humid tropics of Southern India," *Agrofor. Syst.* 93, 185-198. DOI: 10.1007/s10457-016-0059-0

van der Gaast, W., Sikkema, R., and Vohrer, M. (2018). "The contribution of forest carbon credit projects to addressing the climate change challenge," *Clim. Policy* 18(1), 42-48. DOI: 10.1080/14693062.2016.1242056

van der Voorn, T., Svenfelt, Å., Björnberg, K. E., Fauré, E., and Milestad, R. (2020). "Envisioning carbon-free land use futures for Sweden: A scenario study on conflicts and synergies between environmental policy goals," *Reg. Environ. Change* 20, 1-10. DOI: 10.1007/s10113-020-01618-5

Vaudour, E., Gholizadeh, A., Castaldi, F., Saberioon, M., Borůvka, L., Urbina-Salazar, D., Fouad, Y., Arrouays, D., Richer-de-Forges, A. C., Biney, J., et al. (2022). "Satellite imagery to map topsoil organic carbon content over cultivated areas: An overview," *Remote Sens.* 14(12), Article ID 2917. DOI: 10.3390/rs14122917

Verma, M. (2023). "Navigating the world of carbon credits: Strategies for emissions reduction and market participation," *Int. J. Trend Sci. Res. Dev.* 7, 259-264.

Wainaina, P., Minang, P. A., Nzyoka, J., Duguma, L., Temu, E., and Manda, L. (2021). "Incentives for landscape restoration: Lessons from Shinyanga, Tanzania," *J. Environ. Manag.* 280, Article ID 111831. DOI: 10.1016/j.jenvman.2020.111831

Wang, X., and Song, C. (2020). "Carbon capture from flue gas and the atmosphere: A perspective," *Front. Energy Res.* 8, Article ID 560849. DOI: 10.3389/fenrg.2020.560849

Wang, C. H., Ko, M. H., and Chen, W. J. (2019). "Effects of Kyoto protocol on CO₂ emissions: A five-country rolling regression analysis," *Sustainability* 11(3), Article ID 744. DOI: 10.3390/su11030744

Watt, M. S., and Kimberley, M. O. (2022). "Spatial comparisons of carbon sequestration for redwood and radiata pine within New Zealand," *For. Ecol. Manag.* 513, Article ID 120190. DOI: 10.1016/j.foreco.2022.120190

Weber, R., Gessler, A., and Hoch, G. (2019). "High carbon storage in carbon-limited trees," *New Phytol.* 222(1), 171-182. DOI: 10.1111/nph.15599

West, T. A., Börner, J., Sills, E. O., and Kontoleon, A. (2020). "Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon," *Proc. Natl. Acad. Sci.* 117(39), 24188-24194. DOI: 10.1073/pnas.2004334117

Woo, J., Fatima, R., Kibert, C. J., Newman, R. E., Tian, Y., and Srinivasan, R. S. (2021). "Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: A review of the literature," *Build. Environ.* 205, Article ID 108199. DOI: 10.1016/j.buildenv.2021.108199

Woźniak, M., Gałiązka, A., Siebielec, G., and Frąc, M. (2022). "Can the biological activity of abandoned soils be changed by the growth of *Paulownia elongata* × *Paulownia fortunei*?—Preliminary study on a young tree plantation," *Agriculture* 12(2), Article ID 128. DOI: 10.3390/agriculture12020128

Wu, S., Fu, W., Rillig, M. C., Chen, B., Zhu, Y. G., and Huang, L. (2024). "Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi—an updated conceptual framework," *New Phytol.* 242(4), 1417-1425. DOI: 10.1111/nph.19178

Wu, Y., Zhao, F., Liu, S., Wang, L., Qiu, L., Alexandrov, G., and Jothiprakash, V. (2018). "Bioenergy production and environmental impacts," *Geosci. Lett.* 5(1), 1-9. DOI: 10.1186/s40562-018-0114-y

Xing, Y., and Wang, X. (2024). "Impact of agricultural activities on climate change: A review of greenhouse gas emission patterns in field crop systems," *Plants* 13(16), Article ID 2285. DOI: 10.3390/plants13162285

Xu, C., Wu, X., Tian, Y., Shi, L., Qi, Y., Zhang, J., and Liu, H. (2024). "Short lifespan and 'prime period' of carbon sequestration call for multi-ages in dryland tree plantations," *For. Ecosyst.* 11, Article ID 100224. DOI: 10.1016/j.fecs.2024.100224

Xu, J., and Zhang, Y. (2022). "Has the international climate regime promoted climate justice? Evidence from clean development mechanism projects in China," *Clim. Policy* 22(2), 222-235. DOI: 10.1080/14693062.2021.2008294

Xu, P., Zhu, J., Li, H., Wei, Y., Xiong, Z., and Xu, X. (2022). "Are bamboo construction materials environmentally friendly? A life cycle environmental impact analysis," *Environ. Impact Assess. Rev.* 96, Article ID 106853. DOI: 10.1016/j.eiar.2022.106853

Zahed, M. A., Movahed, E., Khodayari, A., Zanganeh, S., and Badamaki, M. (2021). "Biotechnology for carbon capture and fixation: Critical review and future directions," *J. Environ. Manage.* 293, Article ID 112830. DOI: 10.1016/j.jenvman.2021.112830

Zak, D. R., Pellitier, P. T., Argiroff, W., Castillo, B., James, T. Y., Nave, L. E., Averill, C., Beidler, K. V., Bhatnagar, J., Blesh, J., et al. (2019). "Exploring the role of ectomycorrhizal fungi in soil carbon dynamics," *New Phytol.* 223(1), 33-39. DOI: 10.1111/nph.15679

Zhang, T. Y., Feng, T. T., and Cui, M. L. (2023). "Smart contract design and process optimization of carbon trading based on blockchain: The case of China's electric power sector," *J. Clean. Prod.* 397, Article ID 136509. DOI: 10.1016/j.jclepro.2023.136509

Zhao, L., Chau, K. Y., Tran, T. K., Sadiq, M., Xuyen, N. T. M., and Phan, T. T. H. (2022). "Enhancing green economic recovery through green bonds financing and energy efficiency investments," *Econ. Anal. Policy* 76, 488-501. DOI: 10.1016/j.eap.2022.08.019

Zheng, W., Guo, X., Zhou, P., Tang, L., Lai, J., Dai, Y., Yan, W., and Wu, J. (2024). “Vegetation restoration enhancing soil carbon sequestration in karst rocky desertification ecosystems: A meta-analysis,” *J. Environ. Manage.* 370, Article ID 122530. DOI: 10.1016/j.jenvman.2024.122530

Zheng, X., Yang, F., Mamtimin, A., Huo, X., Gao, J., Ji, C., Abdukade, S., Li, C., Sun, Y., Wang, W., *et al.* (2023). “Farmland carbon and water exchange and its response to environmental factors in arid northwest China,” *Land* 12(11), Article ID 1988. DOI: 10.3390/land12111988

Zhou, S., Lin, J., Wang, P., Zhu, P., and Zhu, B. (2023). “Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon,” *Plant Soil* 488(1), 71-82. DOI: 10.1007/s11104-021-05288-y

Article submitted: March 11, 2025; Peer review completed: June 7, 2025; Revisions accepted: June 20, 2025; Published: June 27, 2025.
DOI: 10.15376/biores.20.3.Haida