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Climate change is a serious global challenge with rising greenhouse gas
emissions driving the need for effective carbon sequestration strategies.
Carbon sequestration plants, such as fast-growing tree species, bioenergy
plants, agroforestry systems, and blue carbon ecosystems, play a critical
role in capturing and storing atmospheric carbon dioxide. Despite
increasing interest, there is a lack of integrated reviews that connect plant-
based sequestration mechanisms with emerging technologies and policy
instruments such as carbon credits. This review explores the mechanisms
of carbon sequestration in plants, emphasizing the contributions through
aboveground and belowground biomass accumulation, soil carbon
retention, and microbial interactions. Key plant species, including
Eucalyptus, Paulownia, bamboo, and mangroves, have demonstrated
high sequestration potential and are discussed. This article aims to
synthesize current knowledge while identifying opportunities for enhancing
carbon sequestration through biotechnology and policy. This review also
highlights emerging biotechnological advancements, such as genetic
modifications, to improve carbon uptake efficiency and growing potential
of blue carbon ecosystems. Emerging digital tools such as Al-based
monitoring and blockchain supported carbon credit tracking are discussed
as complementary systems to improve data transparency, verification and
trust in carbon markets. By aligning scientific innovation with policy and
social engagement, carbon credit can serve as a key element for climate
mitigation strategies.
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INTRODUCTION

Climate change is one of the world’s biggest issues that is driven primarily by the
accumulation of high amounts of greenhouse gases in the atmosphere, leading to rising
global temperature and sea water levels, changes in weather patterns, and environmental
degradation (Nunes 2023). The increment of carbon dioxide (COz) levels in the atmosphere
is mainly caused by human activities, particularly deforestation, industrial emissions, and
burning of fossil fuels (Petrov et al. 2023). Climate change directly threatens biodiversity,
human livelihood, and food security. Effective strategy for climate mitigation including
carbon sequestration, which is the process of capturing and storing atmospheric CO2 by
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plants, is being explored as a sustainable and natural way to reduce CO2 (Anwar et al.
2018).

Carbon credit is a concept that has been introduced to incentivize carbon
sequestration and reduce emissions as a part of global climate policies (van der Gaast et al.
2018). It also promotes sustainable land management practices that can enhance
biodiversity and ecosystem services (Anderson et al. 2017). They are integral to various
climate mitigation strategies, including REDD+ (Reducing Emissions from Deforestation
and Forest Degradation), which incentivizes countries to reduce emissions from
deforestation and forest degradation by providing financial rewards for verified reductions
in emissions (West et al. 2020). Carbon credits represent a tradable permit that allows an
entity to emit a specific amount of CO2 with the requirement that emissions are offset via
carbon sequestration projects (Gupta 2024). This system enables countries and industries
to neutralize the carbon footprint by investing in eco-friendly projects such as reforestation,
afforestation, and nature conservation. Currently the carbon market is expanding across the
globe, and the role of high-carbon sequestering plants is being recognized for the ability to
provide long-term solutions for carbon storage (Fan et al. 2022). Malaysia's carbon credit
market is still in its early stages, with efforts centered on establishing a well-structured
trading platform through the Bursa Carbon Exchange (BCX). Initiated by Bursa Malaysia,
BCX functions as a voluntary carbon market (VCM), allowing businesses to trade carbon
credits to offset their greenhouse gas (GHG) emissions.

Carbon sequestration by plants is conducted through the process of photosynthesis
in which plants absorb COz, release oxygen, and convert into biomass (Prasad et al. 2021).
The COz absorbed by plants is stored in plant tissues, roots, and soils, which significantly
can reduce overall CO2 concentration in the atmosphere (Basile-Doelsch et al. 2020).
Forests, agroforestry systems, aquatic plants, and mangroves have been found to
demonstrate high potential in capturing and storing carbon. Furthermore, perennial plants
and deep-rooted species contribute to enhancement of soil organic carbon content and long-
term carbon-retention (Peixoto et al. 2022). Recent studies have highlighted that a
substantial portion of sequestered carbon exists in the form of stable soil organic matter,
such as humic substances, which can persist for centuries and significantly enhance
belowground carbon storage (Basile-Doelsch ef al. 2020; Garcia et al. 2022).

Carbon credits are market-based instruments that represent the removal or
reduction of one metric ton of CO: or its equivalent in other greenhouse gases (Awazi et
al. 2025). Carbon credits are designed to incentive efforts to reduce emissions or enhance
carbon sequestration by assigning a financial value to each ton of CO2 mitigated (Salma et
al. 2024). Entities such as companies, governments, or individuals can purchase carbon
credits to offset their own emissions, thereby supporting climate mitigation projects like
reforestation, renewable energy, and soil carbon enhancement (Senadheera et al. 2019).
These credits can be traded in voluntary or compliance carbon markets, depending on
regulatory frameworks. By placing a tangible economic value on carbon reduction, the
carbon credit system aims to mobilize investment into environmental sustainability
(Michaelowa et al. 2019).

Today, carbon credit has gained interest to overcome climate change, and carbon
sequestration projects, such as reforestation and afforestation, have been promoted in many
countries. Despite the popularity of carbon credit projects, several issues including
sustainability, permanence, and economic viability have raised concerns (Hou et al. 2019;
Grim et al. 2020; Cho et al. 2025). Moreover, the competition for land between carbon
credit plantations and agricultural land causes ethical and practical concerns (Regan ef al.
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2020). According to Pan et al. (2022), the methodologies for measuring the amount of
carbon sequestered in carbon offset projects are still lacking standardization, making it hard
to ensure transparency and accountability. Hence, to consider carbon credit projects as a
reliable strategy for climate mitigation, these issues need to be addressed.

The aim of this review article is to explore the importance of carbon credit in
combating climate change by understanding the mechanisms of carbon sequestration,
finding the suitable plant species for carbon credit plantations, and the challenges
associated with carbon credit programs. The insight from this review article will be able to
provide a deep understanding of the potential of the carbon credit program as a natural way
to reduce carbon emissions.

CLASSIFICATION OF CARBON SEQUESTRATION PLANTS

Carbon sequestration plants refer to plant species that play a significant role in
climate change mitigation by absorbing and storing CO: in soil and biomass (Elbasiouny
et al. 2022). The growing interest in identifying and utilizing plant species with high
sequestration potential is due to increasing recognition of carbon credit projects in global
climate policies (Terrer ef al. 2021). High sequestration plant species are integral to carbon
offset projects to reduce carbon emissions, where organizations and governments invest in
reforestation, afforestation, and sustainable agricultural practices. The efficiency of the
plant to absorb CO2 depends on several factors including growth rate, accumulation of
biomass, root system, and ability to enhance carbon storage. In addition to carbon
sequestration, plants contribute to conservation of biodiversity, stabilize soil, and improve
microclimates (Jansson et al. 2021).

Carbon sequestration plants can be divided into forestry species, agroforestry
plants, bioenergy crops, and aquatic vegetation. Each category has distinct applications and
characteristics in carbon sequestration initiatives. Forest species are the backbone of many
carbon credit programs as the trees can store carbon in woody biomass for a long period
(Favero et al. 2020). Forests serve as the largest terrestrial carbon sink as forest trees are
capable of absorbing and storing significant amounts of carbon throughout the tree lifespan.
Studies have shown that forest ecosystems can sequester substantial amounts of carbon,
with some estimates suggesting that they account for approximately 68 to 71% of carbon
sequestration services globally (Lama et al. 2024). Forests are the critical component of
global carbon sequestration strategies due to the ability of forests to act as long-term carbon
reservoirs (Funk et al. 2019). In reforestation and afforestation projects, fast-growing
species, such as Eucalyptus, Paulownia, and bamboo, are widely planted due to rapid
accumulation of biomass and capability to absorb a high amount of CO2 (Weber et al. 2019;
Behera et al. 2020; Li et al. 2021a; Ghazzawy et al. 2024). The selection of tree species
for afforestation and reforestation projects is crucial, as different species exhibit varying
capacities for carbon storage (Miripanah et al. 2019).

Agroforestry is the integration of trees, perennial crops, and shrubs into agricultural
systems that offers dual benefit by producing food with environmental sustainability (Raj
et al. 2019). This approach could enhance carbon sequestration by improving soil organic
carbon content and increment of biomass storage (Ghale et al. 2022). This practice not only
increases biomass carbon storage but also improves soil health and biodiversity (Zheng et
al. 2023). Moreover, other types of agroforestry techniques that can maximize carbon
sequestration are alley cropping (crops are planted between wide rows of trees) and
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silvopasture systems (trees and grazing livestock coexist in the same area) (Jose and
Dollinger 2019; Varsha et al. 2019). Agroforestry has advantages compared to
conventional agriculture systems as agroforestry systems reduce greenhouse gas emissions
associated with intensive farming practices, retains more organic matter in soil, and reduces
degradation of soil (Gross et al. 2022). The presence of trees in agricultural systems can
improve microclimates, leading to increased crop yields and further carbon sequestration
potential (Flude et al. 2022). In addition, soil fertility could be enhanced by covering the
soil with leguminous trees, such as Gliricidia, Leucaena, and fruit-bearing trees, will
contribute to long-term carbon storage while providing economic benefits to farmers
(Alamu et al. 2023). The interaction between trees and crops creates a synergistic effect
that maximizes carbon capture while providing economic benefits to farmers.

Bioenergy crops are grown for carbon sequestration, biomass production, and
biofuel generation. Bioenergy crops also act as alternative sources to fossil fuels (Wu et al.
2018; Babin et al. 2021). The most popular bioenergy crops grown are Jatropha,
switchgrass, and miscanthus that have rapid growth rate and high photosynthesis
efficiency, which allow substantial carbon uptake in a short time (Clifton-Brown et al.
2019; Moore et al. 2020; Cezario et al. 2023). Bioenergy crops contribute significantly to
dynamic carbon cycling as carbon absorbed by crops for photosynthesis is released to the
atmosphere after burning as biofuel. The key difference between fossil fuels and biofuel is
the fossil fuels adding carbon to the atmosphere as the process releases the carbons that
have been trapped for a long-time during combustion (Wang and Song 2020). In contrast,
bioenergy maintains work on a short-term carbon cycle in which the crops absorb CO2
during photosynthesis and release the same amount of carbon after combustion (Maschler
et al. 2022). The efficiency of bioenergy crops to absorb carbon and sustainable land-use
practices are the important elements in enhancing carbon sequestration potential and
mitigating climate change.

Aquatic vegetations are essential carbon sinks in blue carbon sequestration (Himes-
Cornell ef al. 2018; Pham et al. 2019). There are several important aquatic vegetations,
such as mangroves, salt marshes, and seagrass meadows, that efficiently store carbon in
submerged sediments and are unsusceptible to disturbances such as wildfires and
deforestation (Huxham et al. 2018; Drexler et al. 2021; Bao et al. 2022). Mangrove
ecosystems are potent to sequester carbon, up to four times per unit area compared to
terrestrial forests, which make them one of the most effective carbon sinks in the ecosystem
(Hamilton and Friess 2018). In addition to carbon sequestration, strong and deep mangrove
roots act as a coastal region’s stabilizer, prevent soil erosion, and protect against storm
surges (Karimi ef al. 2022). Meanwhile, the accumulation of peat in seagrasses and wetland
areas contribute to the carbon sequestration process and results in significant long-term
carbon storage (Hao et al. 2024). Another valuable blue carbon storage is seagrass
meadows which are a flowering plant that is powerful carbon sinks, absorbing and storing
CO:z2 in the biomass and sediments (Lin ez a/. 2023). The conservation and restoration of
aquatic vegetation are critical for enhancing carbon sequestration and providing additional
ecosystem services, such as coastal protection and habitat for marine life (Hagger et al.
2022).
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MECHANISM OF CARBON SEQUESTRATION IN PLANTS

The plant is an important organism that plays a vital role in reducing CO: in the
atmosphere by absorbing the CO2 and storing it in plant biomass and soil. The carbon
sequestration process occurs through multiple interconnected mechanisms and it is
essential to understand the mechanisms to maximize the potential of vegetation in climate
mitigation strategies.

One of the key mechanisms of carbon sequestration by plants is through
accumulation of biomass that can be divided into aboveground and belowground biomass
storage (Kumar et al. 2021). The aboveground biomass storage occurs in various plant
organs, such as leaves, branches, stems, and trunks, where carbon can be stored for a long
time (Eslamdoust and Sohrabi 2018). The largest aboveground carbon reservoirs on earth
are forests, particularly tropical and temperate forests (Sun and Liu 2020). The fast-
growing forest species, including Eucalyptus and Paulownia, are highly capable in
absorbing CO: rapidly and these species are commonly used in afforestation projects
(Cravino and Brazeiro 2021; Ghazzawy et al. 2024). Meanwhile, trees, such as redwood,
mahogany, and teak, are capable of accumulating high amounts of carbon (Racelis et al.
2019; Watt and Kemberley 2022). Additionally, perennial crops like bamboo have fast-
growth patterns and high annual carbon intake that has mainly contributed to biomass
carbon storage (Devi and Singh 2024).

An equally important role in carbon sequestration is belowground biomass storage
that is mainly conducted by the plant roots system. The carbons from the atmosphere are
absorbed from the leaves, transported to the root systems and stored in the soil (Pausch and
Kuzyakov 2018). The mangroves, leguminous trees, and prairie grasses are the examples
of deep-rooted species that contribute to long-term sequestration by stabilizing carbon in
subsoil layers (Richards et al. 2024). Grassland ecosystems are very effective for carbon
retention, which can store up to 90% of the belowground biomass (Bai and Cotrufo 2022).
Unlike forests that can lose carbon through deforestation or harvesting, grasslands retain
the soil carbon belowground (Fossum et al. 2022). Meanwhile, extensive root systems of
mangroves and wetland plants can trap organic matters in submerged sediments,
preventing carbon loss and rapid decomposition (Balieiro ef al. 2018).

In addition to aboveground and belowground biomass storage, soil is the largest
terrestrial carbon reservoir that can hold more carbon than vegetation and atmosphere
(Zhou et al. 2023). The decomposition of plant residues, such as fallen leaves, woody
debris, and decaying roots, will convert into humus, which is a stable residue that can
persist in soils for centuries and enrich the soil with organic carbon (Samenov et al. 2019).
The exudation of sugars and organic acids from the roots could promote microbial activity
and soil aggregates, which directly enhance soil carbon storage (Ma et al. 2022). The
accumulation of soil organic carbon is enhanced by increased microbial growth and
biomass turnover, emphasizing the complex interplay between plant and microbial
processes in the carbon cycle (Prommer ef al. 2020). Effective carbon sequestration relies
on the health of soil microbial communities, as their activity facilitates the decomposition
of organic matter, releasing vital nutrients that promote plant growth and further carbon
uptake (Prommer ef al. 2020). One of the factors that influence soil carbon accumulation
is land management practices. Grassland and forests store more aboveground and
belowground carbon due to agroforestry activity and cover cropping that enhance soil
carbon retention (Meena et al. 2019; Bai and Cotrufo 2022). In contrast, unsustainable land
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practices, such as deforestation and excessive tillage, lead to acceleration of carbon loss
and contribute to greenhouse gas emissions (Hu ef al. 2021; Xing and Wang 2024).

The presence of mycorrhizal fungi and soil microbes are important in facilitating
long-term carbon storage and stabilizing organic matter (Jeewani et al. 2021; Wu et al.
2024). The mycorrhizal fungi form a symbiotic interaction with the plant roots by
transferring carbon into the soil and creating underground networks that will enhance the
carbon sequestration capacity (Basiru and Hijri 2024). Arbuscular mycorrhizal fungi help
to transform carbon into soil aggregates are commonly found in crops and grasses
(Agnihotri et al. 2022). Meanwhile, ectomycorrhizal fungi contribute to long-term carbon
storage by slowing the decomposition of organic matter and are mainly found in trees such
as oaks and pines (Zak et al. 2019; Tunlid et al. 2022). The fungal mycelial network
functions as an underground carbon highway that distributes carbon in the soil and
improves soil structure (Touseef 2023). The efficiency of microbial carbon in the soil can
be enhanced by the application of biochar and reduced tillage activity (Liu et al. 2020).
Additionally, interaction between plant roots, mycorrhizal, and microbes enhances soil
health and long-term carbon storage, which improves the self-sustaining carbon
sequestration cycle (Bhattacharyya ef al. 2022).

CONTRADICTIONS AND CONSENSUS IN CARBON SEQUESTRATION
RESEARCH

Understanding the varied outcomes and interpretations from different studies on
carbon sequestration is vital. The purpose of this comparative analysis is to find the best
strategies and explain why different studies have come to different conclusions. This will
improve the scientific basis for policy and practice (Hiibner ef al. 2021). Variations in study
designs, geographical focus, species studied, and methodologies significantly impact
findings. For instance, Basile-Doelsch et al. (2020) focused on keeping soil carbon in
temperate forests, while Gupta et al. (2017) looked at tropical agroforestry systems. Both
groups talk about different ways and rates of carbon sequestration. These differences
underscore the need for regionally tailored strategies (Gupta et al. 2017; Basile-Doelsch et
al. 2020). The effectiveness of bioenergy crops in carbon sequestration illustrates a
significant area of debate. Despite some discrepancies, there is a consensus regarding the
carbon sequestration capabilities of certain fast-growing tree species. The carbon
sequestration capacity of trees is influenced by their size and growth rates, leading to
differing estimates of carbon storage potential (Channalli ef al. 2022).

However, a common misconception in interpreting forest carbon data is the
assumption that the total carbon stored in the forest directly equates to active carbon
sequestration. In reality, processes such as decomposition and oxidation are constantly at
play, returning carbon to the atmosphere (Raza et al. 2023). A critical question is whether
forest management can establish a “new normal” with consistently higher biomass levels
sustained over time. For example, intensive breeding programs in the southeastern United
States have resulted in tall, mature pine forests that currently exceed the demand for timber
(Hausle et al. 2023). While these forests represent a temporary carbon sink, their long-term
role is uncertain. As the trees reach old age, the replantation of these trees could
significantly alter the sequestration trajectory (Xu et al. 2024). This illustrates the
importance of considering forest life cycles and long-term and land-use planning when
evaluating sequestration potential (Deng et al. 2022a).
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Moreover, sequestration through biomass alone may not result in permanent carbon
storage (Dynarski ef al. 2020). If plant material is not harvested and used in long lasting
products such as bioplastics, timbers or construction materials or transformed into stable
forms like biochar, the carbon will eventually return to the atmosphere through natural
decomposition (Infurna et al. 2023; Mutjaba et al. 2023; Kumar et al. 2025). Therefore,
for biomass-based carbon sequestration to be effective, strategies must be adopted to ensure
that carbon is retained over the long term, either through soil incorporation, durable product
development or energy substitution (Garcia et al. 2022; Tripathi et al. 2024). This has led
to growing interest in circular bioeconomy models where biomass is utilized in ways that
lock carbon while providing economic benefits.

Recent technological advancements are beginning to bridge gaps identified in
earlier studies. Technologies, such as Al-driven monitoring and blockchain, for verifying
carbon credits are proposed by Prawitasari (2024) and Adigun et al. (2024) as a means to
enhance transparency and reliability in carbon accounting. These innovations are seen as
pivotal in reconciling some of the methodological concerns previously highlighted
(Prawitasari 2024; Adigun ef al. 2024). The contradictions and consensus outlined herein
underscore a clear need for continued research into the long-term ecological and socio-
economic impacts of carbon sequestration. Future studies should particularly focus on
biodiversity impacts, ecosystem health, and the socio-economic ramifications of carbon
credit projects on local communities (Nunes 2023). The research on carbon sequestration
reveals a complex landscape of contradictions and consensus. While there is agreement on
the fundamental role of vegetation and effective land management practices in enhancing
carbon storage, significant debates persist regarding the effectiveness of different
ecosystems, the implications of leakage, variability in sequestration rates, and the
challenges of modeling. Addressing these contradictions through further research and
improved methodologies will be essential for developing effective carbon management
strategies and policies.

IMPORTANCE OF CARBON SEQUESTRATION PLANTS IN CARBON
CREDIT PROGRAMS

Carbon sequestration plants play a crucial role in carbon credit programs by
providing a mechanism for businesses and individuals to offset their carbon emissions
through the purchase of carbon credits generated from the carbon storage capabilities of
these plants. Climate change is one of the biggest issues in the world caused by rapid
urbanization and a high number of populations that contribute to high CO2 emission in the
atmosphere. In combating climate change, carbon credit serves as a crucial tool in climate
change mitigation policies and international agreements between the countries (Nsabiyeze
et al. 2024). The carbon credit program is a market-driven mechanism designed to assign
a monetary value to carbon sequestration and emission to reduce CO2 concentration in the
atmosphere and reduce greenhouse gas emissions (Avwioroko 2023; Jia and Wen 2024).
One carbon credit represents one metric ton of COz that has been prevented or removed
from entering the atmosphere (Woo et al. 2021). Carbon credit programs rely on carbon
sequestering plant species that are generated through the project including reforestation,
afforestation, agroforestry, and blue carbon ecosystem (Sapkota and White 2020; Di Sacco
etal 2021).
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The effectiveness of these programs hinges on the ability of various plant species
to sequester carbon, as evidenced by studies demonstrating that factors, such as biomass
and growth characteristics, significantly influence carbon storage potential (Rindyasturi et
al. 2018). Forest ecosystems earn carbon credits based on their ability to absorb carbon,
which is influenced by how they are managed and their biomass productivity (Jia and He
2023; Joshi and Garkoti 2025). The concept additionality is important, meaning carbon
storage must go beyond a set baseline to qualify for credits, encouraging sustainable land
management (Randazzo ef al. 2023). Planting a mix of species in afforestation and
reforestation projects can further boost carbon storage and biodiversity, making them more
valuable for carbon credits (Schuster ef al. 2014).

In moving towards net-zero emissions, global frameworks, such as Kyoto Protocol,
Paris Agreement, and Reducing Emissions from Deforestation and Forest Degradation
(REDD+), play an important role in regulating and promoting the carbon credit program
(Espejo et al. 2020). In the carbon credit program, several plant species with high carbon
sequestration potential have been identified. Moreover, the carbon credit program will also
encourage more involvement of private sector participation in investment of reforestation
and afforestation projects (Cho et al. 2025). The inclusion of plants with carbon
sequestration potential in the carbon credit program will enable the developing countries
with vast forest areas to earn benefit economically (Di Sacco et al. 2021). The carbon credit
programs create financial incentives for sustainable land management ensuring ecosystems
remain protected while sequestered and reducing CO2 concentration in the atmosphere
(Evans 2018; Blanc et al. 2019). In addition to carbon sequestration, plants in carbon
species programs also contribute to ecological and socio-economic benefits including
enhancing biodiversity, improving soil fertility and soil retention (Zheng et al. 2024).

Furthermore, emerging research demonstrates that carbon credit participation is not
only environmentally beneficial but also financially strategic. Companies engaging in
carbon credit programs can enhance their corporate financial performance, particularly
when such participation is embedded within a broader framework of Corporate Social
Responsibility (CSR). For example, Martielli ef al. (2025) conducted an in-depth empirical
analysis on the interplay between carbon credits, CSR strategies, and corporate
governance. The study revealed that carbon credits serve not only as a tool for
environmental accountability but also as a financial asset that positively moderates the
relationship between climate mitigation efforts and firm profitability. Specifically, firms
with robust CSR frameworks and proactive governance structures were found to benefit
more significantly from carbon credit participation, as these elements enhanced both
market perception and operational efficiency.

Similarly, a study by Salvi et al. (2025) indicated that integrating carbon credits
into corporate climate action plans can contribute to improving financial outcomes by
aligning environmental objectives with value creation. Carbon credits were shown to
enhance transparency in emissions reporting and promote compliance with international
standards, which in turn builds corporate legitimacy and market credibility. Moreover,
firms engaging in such programs exhibited greater adaptability and resilience to climate-
related financial risks. In addition, Salvi et al. (2025) emphasized that carbon credit
integration is most effective when supported by strategic planning and cross-sectoral
collaboration, positioning firms not only as climate leaders but also position themselves as
resilient and viable entities, capable of thriving amid shifting regulatory frameworks and
growing market demands for sustainability.
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Therefore, carbon sequestration plants form the biological backbone of the carbon
credit economy, bridging environmental goals with financial incentives. When
implemented effectively, carbon credit programs not only contribute to reduce atmospheric
COz levels but also stimulate green investment, promote policy innovation, and encourage
corporate. Hence, the carbon credit program is not only beneficial in climate change
mitigation but also in fostering environmental sustainability, economic development, and
social equity (Hariram et al. 2023).

CARBON CREDIT MARKETS AND POLICIES

The global carbon credit market has evolved as a key mechanism to mitigate
climate change by providing economic incentives for reducing greenhouse gas emissions
(Aldy and Halem 2024). The concept of trading carbon credits emerged as part of
international climate agreements, enabling countries and industries to meet emission
reduction targets through market-based mechanisms (Verma 2023). The development of
these markets is largely influenced by global agreements, such as the Kyoto Protocol, Paris
Agreement, and REDD+, which establish regulatory frameworks for carbon trading and
emissions reduction (Kim et al. 2020; Morita and Matsutomo 2023).

Global Carbon Credit Trading Mechanisms

The Kyoto Protocol was adopted on 11 December 1997 and enforced beginning 16
February 2005, which was the first international treaty to introduce carbon trading
mechanisms (Wang et al. 2019). It established three market-based mechanisms: Emission
Trading System (ETS), Clean Development Mechanism (CDM), and Joint Implementation
(JI) (Deng et al. 2022b). The ETS, also known as cap-and-trade, allowed industrialized
countries to trade excess emission allowances. The CDM enabled developing countries to
earn carbon credits by implementing emission reduction projects such as reforestation,
renewable energy, and energy efficiency. The JI allowed industrialized nations to invest in
emission reduction projects in other developed countries in exchange for credits (Deng et
al. 2022b; Xu and Zhang 2022). However, the Kyoto Protocol had a lack of participation
from major emitters and difficulties in enforcing emission targets (Maamoun 2019).

The Paris Agreement, adopted on December 12, 2015, and enforced on November
4,2016, introduced Nationally Determined Contributions (NDCs), which require countries
to set their own climate targets. This agreement emphasizes voluntary cooperation and
market mechanisms through Article 6 that allows countries to trade carbon credits
internationally (Mehling ef al. 2019; Asadnabizadeh and Moe 2024). It encourages both
developed and developing countries to participate and to invest in natural solutions like
reforestation and blue carbon ecosystems (Oliveira et al. 2019; Seddon 2022). REDD+, a
UN-backed program, is designed to reduce carbon emissions from deforestation and forest
degradation in developing countries. It provides monetary incentives for forest
conservation and sustainable land use practices, thereby leveraging forests as carbon sinks
and enhancing biodiversity conservation (Sauls 2020; Wainaina et al. 2021). Table 1
provides a summary of Kyoto Protocol, Paris Agreement, and REDD+ programs.
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Table 1. Evolution of Carbon Credit Programs
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Kyoto Protocol
(1997)

Paris Agreement
(2015)

REDD+

Objective

o First legally binding
international agreement to
reduce greenhouse gas
emissions

¢ Assigned emission reduction
targets to developed
countries

¢ Introduced market-based
mechanisms to achieve
emission reduction cost-
effectively

¢ Replace the rigid Kyoto
targets with a more
inclusive, global climate
action framework

¢ Limit global warming to
well below 2 °C, with an
aspirational goal of 1.5 °C

¢ Increase participation
from all countries,
including developing
nations

¢ Address emissions
from deforestation
and land use
changes
(responsible for
~15% of global CO,
emissions)

¢ Provide financial
incentives for forest
conservation,
sustainable
management, and
reforestation

Mechanisms
introduced

Clean Development

Mechanism (CDM)

o Developed countries invest
in emission reduction
projects in developing
nations

e Earn Certificate Emission
Reductions, which can be
used to meet their reduction
targets

Joint Implementation (JI)

e Developed nations finance
emission reduction projects
in other developed nations

e Earn Emission Reduction
Units

Emissions Trading (ET)

e Countries with surplus
emission allowances can sell
to countries exceeding their
allowed emissions

e This created regulated
carbon markets such as the
EU Emissions Trading
System

Key Market Mechanisms
(Article 6)

Nationally Determined

Contributions (NDCs)

e Each country sets its own
emission reduction goals
(voluntary but reviewed
every 5 years)

o Allows for bottom-up
flexibility but lacks strict
enforcement mechanisms

Article 6.2 — International

Carbon Market

Cooperation

¢ Enables bilateral trading
of carbon credits between
countries

¢ A country exceeding its
reduction target can sell
credits to another country
struggling to meet its
goals

Article 6.4 — New Global

Carbon Market

e Introduces a centralized
carbon trading system
overseen by the UN.

¢ Allows both public and
private sectors to
participate in emission
reduction projects.

¢ Areplacement for the
Clean Development
Mechanism (CDM) under
Kyoto.

Phases of REDD+

Readiness Phase

e Countries establish
governance
structures and
carbon accounting
frameworks

e Example:
Developing
monitoring systems
for tracking
deforestation rates

Implementation

Phase

e Pilot projects begin,
and countries start
testing REDD+
strategies

¢ Performance-based
funding mechanisms
are introduced

Results-Based

Payments

¢ Countries receive
payments based on
verified reductions in
deforestation rates

e Funds come from
international donors,
carbon markets, or
private investors

e Example: A country
reducing
deforestation gets
paid per metric ton of
CO, avoided.
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Voluntary Carbon

Offsetting

¢ Allows businesses and
organizations to purchase
carbon credits to offset
their emissions

carbon markets

o Stimulated early investments
in clean energy and efficient
projects

e However, loopholes and
over-crediting issues
reduced its long-term
effectiveness

participation from both
developed and developing
nations

e Introduced market-based
flexibility, making carbon
trading more accessible

¢ Strengthened the role of
corporations and
voluntary markets in
climate action

Challenges ¢ Limited participation from ¢ Risk of double counting: e Monitoring
developing nations Ensuring emission difficulties: Requires
« Verification complexity reductions are not satellite imaging and
o Market imbalances due to claimed by multiple ground verification
some countries had excess entities e Land tenure
carbon credits, leading to e Non-binding nature of conflicts: Unclear
price drops NDCs: No strict penalties land ownership can
for missing targets. lead to disputes over
o Market uncertainties: carbon credit
Many rules (especially for revenues
Article 6) are still being ¢ Ensuring
finalized permanence:
Protecting forests
long-term to avoid
emissions
rebounding
Outcomes ¢ Foundation for international | ¢ Encouraged broader e Integrated forests

into global carbon
markets, making
them valuable assets
¢ Provided economic
incentives for
developing nations
to preserve forests
e Supported
biodiversity
conservation and
sustainable
development

Policy Implications and Economic Viability
The implementation of carbon credit programs varies significantly across different

regions,

influenced by local economic conditions, regulatory frameworks,

and

environmental priorities. The EU's Emissions Trading System (ETS) operates on a cap-
and-trade principle. To optimize this system, the EU could consider tightening the cap
progressively and expanding coverage to more sectors (Beck and Kruse-Andersen 2020).
As for the United States, California's cap-and-trade program demonstrates the potential of
state-level initiatives. Integrating these programs into a federal framework could
standardize measures and enhance market liquidity (Lessmann and Kramer 2024). China's
national carbon trading scheme focuses initially on the power generation sector. More
stringent verification processes and enhanced transparency could optimize this system
(Zhang et al. 2023). Many developing countries face challenges such as lack of funding
and technical expertise. International cooperation and financial support are crucial to
enhance the effectiveness of their programs (Zhao et al. 2022).

To improve the economic viability and effectiveness of carbon credit programs, it
is essential to strengthen regulatory frameworks, enhance market stability, promote
international collaboration, and incentivize innovation. These measures would support
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more robust, transparent, and accountable carbon markets, attracting stable investments
and promoting sustainable development globally.

PLANTS USED FOR CARBON CREDIT PROGRAMS

The selection of suitable plant species is the key factor to determine the
effectiveness of carbon credit programs. Selection of plant species with high growth rate,
adaptability in various environments, disease resistance, and high carbon sequestration
capacity are the main factors of choosing the suitable plant species for carbon credit
plantations (Di Sacco et al. 2021). Among the plant species, Eucalyptus, bamboo,
Paulownia, and mangroves have gained attention due to its capability to absorb high
amounts of CO2 and stand out as highly effective species for carbon credit programs such
as reforestation, afforestation, and agroforestry projects (Cameron et al. 2019; Pan et al.
2023; Ghazzawy et al. 2024; Luo et al. 2024).

Eucalyptus: A High-Yield Carbon Sequestration Tree

Eucalyptus 1s a fast-growing tree belonging to the family Myrtaceae with over 700
species (Shala and Gururani 2021). Eucalyptus species is widely known for its rapid
growth, high quality of timber, high production of biomass, and high capability to sequester
CO2 (Fig. 1) (Behera et al. 2020). Eucalyptus is native to Australia and currently has been
cultivated worldwide particularly in tropical, subtropical, and temperate regions (Queiroz
et al. 2020). Eucalyptus is one of the most frequently used trees in carbon credit plantations
that are planted for commercial forest, degraded land restoration, and production of
bioenergy production (Tesfaye et al. 2020; Morales et al. 2023). Eucalyptus is an excellent
candidate for long-term carbon storage due to its rapid growth and high wood density
(Fairman et al. 2022). Additionally, Fucalyptus has deep root systems that contribute to
carbon storage as they facilitate organic matter accumulation and enhance microbial
activities in the rhizosphere (Silva et al. 2020). Furthermore, Eucalyptus trees can be
integrated into agroforestry systems as windbreaks, improve soil stability, and provide
shade for intercropped agricultural crops (Kaur and Monga 2021; Dissanayaka et al. 2024).
In addition to carbon sequestration potential, Fucalyptus plantations provide economic and
ecological benefits, such as paper production, construction, and biofuel industries
(Nogueira et al. 2021; Tomé et al. 2021).
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¢ %

Fig. 1. A eucalyptus plantation showing uniform tree spacing and canopy structure, which has an
important role in timber production, carbon sequestration, and ecosystem restoration

Bamboo: The Fast-Growing Carbon Sink

Bamboo is a fast-growing perennial woody grass that belongs to the family
Poaceae, subfamily Bambusoideae, which comprises over 120 genera and 1600 species
(Ramasubramanian et al. 2023). Bamboo is predominantly found in tropical and
subtropical regions with major bamboo forests in China and India (Tewari et al. 2019;
Dlamini et al. 2022). Bamboo is a unique type of grass that is highly efficient for carbon
sequestration due to its rapid growth rate, continuous regenerative ability, and high
production of biomass (Fig. 2) (Adu-Poku et al. 2023; Pang et al. 2025). Moreover,
bamboo plants have dense root systems that allow bamboo to store large amounts of COx,
improve soil fertility, and prevent soil erosion (Emamyerdian ef al. 2020). In carbon credit
plantations, notable bamboo species from the genus Phyllostachys spp. and Bambusa spp.
have been widely planted due its capability in absorbing high amounts of CO2, high soil
carbon storage, and extensive root networks (Pan et al. 2025). Beyond its role in carbon
sequestration, bamboo byproducts have been extensively utilized for paper production,
construction, furniture, textiles, and bioenergy, making bamboo a valuable resource for
sustainable industries (Guan ef al. 2019; Rocky and Thompson 2020; Xu ef al. 2022; Liang
et al. 2023). In addition, biochar produced from bamboo biomass is applied to enhance soil
fertility, increase soil carbon storage capacity, further amplifying its role in mitigation of
climate change (Odega et al. 2023; Chaturvedi et al. 2024). Bamboo also is widely planted
in land restoration or agroforestry projects to improve the degraded soil (Singh et al. 2020).
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Fig. 2. A bamboo plantation with mature clumps and scattered culms, illustrating its dense growth
pattern and potential for sustainable biomass production

Paulownia: The Oxygen Tree with High Productivity of Biomass

Paulownia is a fast-growing deciduous tree genus belonging to the family
Paulowniaceae. Native to China, Paulownia species are cultivated worldwide and
renowned for their various ecological, economic, and environmental benefits (Costea et al.
2021; Stawinska et al. 2023). Paulownia is referred to as the “oxygen tree” that has
exceptional photosynthetic efficiency and rapid growth rate (Adach ef al. 2020). The
Paulownia tree is capable of absorbing double the amount of CO2 compared to other plant
species, making it suitable for carbon credit plantations (Ghazzawy et al. 2024). The large
size of leaves contributes to high absorption of CO2 and efficient photosynthesis capacity
(Ghazzawy et al. 2024). Paulownia tree also has lightweight yet strong wood that has been
utilized in multiple industries, such as construction, furniture, and bioenergy (Rodriguez-
Seoane et al. 2020; Barbu et al. 2023; Huber et al. 2023). In addition, Paulownia trees can
grow in poor and degraded soil. This species is useful in plantings because it enhances soil
fertility and soil organic matter content (Wozniak et al. 2022). The deep root systems of
Paulownia trees contribute to nitrogen fixation and groundwater conservation (Ren et al.
2024). Paulownia trees are increasingly being promoted in carbon credit plantations for
reforestation and afforestation projects (Ghazzawy et al. 2024).

Mangroves: Blue Carbon Ecosystems for Coastal Carbon Storage
Mangroves are a group of salt-tolerant trees and shrubs that grow in coastal
intertidal zones, particularly in subtropical and tropical regions (Quadros et al. 2021). The
most common mangrove genera including Rhizophora spp., Avicennia spp., and
Sonneratia spp., which can be grown in saline and waterlogged environments and among
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the most powerful plants in blue carbon ecosystems (Ngernsaengsaruay et al. 2024;
Twomey and Lovelock 2025). Blue carbon ecosystems are capable of sequestering four
times more carbon per unit area than terrestrial forests (Hamilton and Friess 2018).
Mangrove forests can store carbon in aboveground biomass and carbon also remains
trapped for centuries in thick layers of sediment beneath (Sasmito et al. 2020; Murdiyarso
et al. 2021). Mangrove forests have multiple roles in ecosystems, such as absorbing CO2
and protecting coastal areas from erosion, surges, and storms (Fig. 3) (Kearney et al. 2019;
Temmerman et al. 2023). The anaerobic conditions in mangroves sediments slow down
the process of organic matter decomposition that led to long-term carbon sequestration
(Kida and Fujikate 2020). Currently, restoration and conservation of mangroves forests
have become a key focus of carbon credit projects under blue carbon initiatives and
REDD+ (Sidik et al. 2023).

Fig. 3. A mangrove forest with tidal waterways, showcasing the dense vegetation and intricate
root systems that help prevent coastal erosion

LIMITATION OF CARBON CREDIT PLANTATIONS

As carbon credit plantations offer a promising solution for climate change
mitigation, they also face several limitations that can affect the success of this program
(Pan et al. 2022; Shrestha et al. 2022). It is important to address these limitations to ensure
carbon credit plantations achieve the objectives in contributing to environmental and socio-
economic benefits. One of the main challenges is land-use conflict with agricultural land
(Froese and Schilli 2019). To carry out large-scale reforestation and afforestation projects
for carbon credit, large land areas are needed, which can lead to conflict between land use
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for forest expansion and production of agriculture (van der Voorn et al. 2020; Li et al.
2021b). In many developing countries, especially in rural areas, land is mainly used for
agriculture production for livestock grazing and subsistence farming and conversion of
land to carbon credit plantation will threaten local economies and food security (Keenan et
al. 2023).

Moreover, carbon leakage is another problem related to carbon credit plantations;
Carbon leakage refers to the unintended displacement or release of carbon emissions
outside of the designation carbon credit plantations area due to deforestation or shift in land
use (Nielsen ef al. 2021; Jakob 2021). In addition, carbon permanence, which refers to
duration of sequestered carbon stored in biomass and soil is another major issue of carbon
credit plantations (Regan et al. 2020). The stored carbon in the biomass and soil can be
released into the atmosphere as forests and plantations are vulnerable to natural disasters
such as drought and wildfires (Nunes et al. 2020; Psistaki et al. 2024). Furthermore,
conversion of plantations into different land uses, abandoned or harvested, can cause the
stored carbon to be partially or fully released into the atmosphere (Olorunfemi et al. 2022).

The carbon credit market can effectively function with the carbon sequestration in
the plantations being measured, verified, and reported accurately. This process is complex
and resource-intensive (Haya ef al. 2020; Woo et al. 2021). It is hard to develop reliable
methods for measurement of CO: sequestered as every plant species has variation of
growth rates and CO:z absorption potential (Nayak et al. 2019; Smith et al. 2020). The
conventional monitoring methods, including biomass assessments and on-ground
measurements, are time-consuming, labor intensive, and extensive fieldwork (Chave et al.
2019; Ma et al. 2024). Hence, introduction of current technologies, such as satellite
imaging and remote sensing, have improved the scalability of carbon monitoring.
However, quantification of underground carbon is still limited (Vaudour ef al. 2022).

FUTURE PROSPECTS IN CARBON CREDIT PLANTATIONS

In moving towards revolutionizing carbon credit programs, carbon sequestration
efficiency and monitoring accuracy could be achieved by implementing artificial
intelligence, biotechnology, and remote sensing applications. Biotechnology via genetic
application can be adapted for modifying the plant genetics to produce plants with higher
growth rate, resilience, and carbon absorption potential (Cheng et al. 2019; Barati et al.
2021). In addition, advancement of synthetic biology field and clustered regularly
interspaced short palindromic repeats (CRISPR) are extensively being explored to produce
plants with higher adaptability to climate change and high carbon absorption capability
(Massel ef al. 2021; Zahed et al. 2021). Furthermore, advancement of remote sensing and
artificial intelligence technologies has led to improvement of accuracy in the carbon
sequestration monitoring process (Chen et al. 2019; Liu et al. 2021). In estimation of
biomass and detection of deforestation trends, machine learning models, satellite imagery,
light detection and ranging (LiDAR) scans, and drones are widely being used for accurate
data collection (Abbas ef al. 2020; de Almeida et al. 2025). Carbon credit integrity, such
as carbon transactions transparency and preventing fraudulent claims, are further
strengthened by using blockchain technology (Boumaiza and Maher 2024; Tsai 2025).
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CONCLUSIONS

Carbon sequestration plants are vital for climate mitigation, sequestering COz,
restoring ecosystems and supporting sustainable economies. Plant species, such as
Eucalyptus, bamboo, Paulownia, and mangroves, contribute significantly through biomass
accumulation and soil carbon storage. Meanwhile, agroforestry, bioenergy crops, and blue
carbon ecosystems enhance sequestration efforts. However, challenges, such as land-use
conflicts, carbon leakage, and verification difficulties hinder large-scale application. High
costs and limited market access further restrict participation. This article contributes to the
literature by offering an integrated classification of sequestration plant types across
ecological systems, while bridging scientific, economic and policy considerations.
Importantly, it emphasizes the need for converting plant biomass into long-lasting carbon
pools such as lumber, biochar and soil organic matter. This moves beyond the conventional
focus on biomass accumulation and highlights the necessity for permanence in carbon
storage to meaningfully counteract fossil fuel emissions. In addition, this review also
identifies a critical knowledge gap such as the lack of emphasis on biomass utilization
pathways in carbon credit frameworks. It recommends that future strategies must
incorporate ongoing biomass management programs that link sequestration with product-
based carbon locking. Furthermore, it calls for stronger policies, advancement monitoring,
and financial incentives to promote sustainable carbon credit projects. A holistic approach
integrating scientific innovation, policy frameworks and market mechanisms are crucial.
Strengthening verification, fostering public-private collaboration and expanding blue
carbon markets will maximize the impact of carbon credit projects. Through prioritizing
sustainability and equity, carbon credit plantations can be an effective climate action and a
resilient future.
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