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A machine learning (ML)-based framework was developed for predicting 
and optimizing the antioxidant activity of Ainsliaea acerifolia water extracts. 
while the response surface methodology (RSM) is deficient in modeling 
nonlinear interactions. In this study, three machine learning (ML) 
algorithms, Extreme Gradient Boosting (XGB), Random Forest (RF), and 
Support Vector Machine (SVM), were evaluated using extraction variables 
(temperature, time, and solvent-to-solid ratio) along with flavonoid and 
polyphenol content as input features. Among the models evaluated, the 
XGB model showed the most advanced antioxidant prediction capabilities, 
as evidenced by its R² of 0.9835 and RMSE of 2.52 on the test data set. 
The biological significance of the features was explored using SHAP 
analysis, revealing flavonoid content and extraction temperature as key 
contributors. A graphical user interface (GUI) was developed to facilitate 
real-time prediction, enhancing accessibility for researchers and industrial 
users. This approach improves operational efficiency by optimizing 
extraction conditions, predicting antioxidant activity from data including 
flavonoids and polyphenols, and reducing reagent usage. This study 
highlights the potential of ML as a sustainable alternative for natural 
product optimization and lays the groundwork for future research that 
integrates bioactivity prediction with formulation design. 
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INTRODUCTION 
 

Antioxidant activity has been defined as the activity of removing reactive 

oxygen species (ROS) produced by the metabolic processes of the body (Ifeanyi 2018). 

Production of ROS during normal metabolism has been implicated in electron transport, 

gene expression, and antimicrobial activity (Pham-Huy et al. 2008). However, ROS can 

be increased through UV stress and food intake (Golovynska et al. 2023) Exposure to 

excessive ROS has been implicated as a cause of chronic diseases and conditions. These 

include inflammation, diabetes, and cancer (Wang et al. 2021). In this context, many 

synthetic antioxidants have been developed, such as butylated hydroxytoluene (BHT) 

and butylated hydroxyanisole (BHA), but their use has been increasingly restricted due 

to controversies about their safety (Mizobuchi et al. 2022). In addition, increasing 

consumer awareness of antioxidant safety and a growing preference for natural products 

has motivated research to identify sources of natural antioxidants. 

Ainsliaea acerifolia, a perennial herb belonging to the Compositae family, is 

distributed in the mountainous regions of Korea (Jung et al. 2000). The extract of A. 
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acerifolia was found to contain abundant polyphenols, including major secondary 

metabolites such as quinic acid derivatives, sesquiterpene lactones, and lignans (Choi 

et al. 2006). These polyphenols were found to possess various biological activities, 

including antioxidant activity (Park 2010). In addition, various polar compounds, such 

as polyphenols, were complexly mixed in the extracts (Macı́as et al. 1999). Therefore, 

researchers are focusing on the antioxidant activity of plant extracts rather than 

individual compounds (Ed-Dahmani et al. 2024; Kongolo Kalemba et al. 2024) 

Therefore, there is reason to propose A. acerifolia extract as a natural source of 

antioxidants. Studying the extraction process is needed to obtain extracts with high 

antioxidant activity from A. acerifolia and to identify the influencing factors. 

Water extraction is an environmentally friendly and safe solvent to produce 

extracts from plants such as A. acerifolia (Płotka-Wasylka et al. 2017). Although many 

plant extracts have been obtained using organic solvents, water extraction is highly 

attractive from a cost perspective. Additionally, the antioxidant activity of the extract 

has been found to be sensitively influenced by extraction conditions, including 

extraction temperature and solvent-to-solid ratio (Belwal et al. 2016). High thermal 

temperatures in the extraction process could alter the phenolic extractability due to the 

destruction of cell walls, but it could also cause partial degradation of phenolic 

compounds that affect antioxidant activity (Barreira et al. 2009; Choi et al. 2006). 

Generally, a higher solvent ratio resulted in higher total phenolic content and 

antioxidant capacity (Cacace and Mazza 2003). However, the solvent-to-solid ratio 

varied according to the type of plant, requiring individual assessment (Michiels et al. 

2012). To obtain A. acerifolia extracts with high antioxidant activity, it was essential to 

understand the above extraction processes and identify the major influencing factors. 

Various methods have been developed to assess the antioxidant capacity of 

compounds, with in vitro chemical assays being the most used. Among these, the 2,2'-

azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging assay 

has been widely used (Dong et al. 2015). This test measures the amount of ABTS that 

changes from a relatively stable turquoise color to colorless using a spectrophotometer. 

However, these methods were influenced by environmental factors, were time 

consuming and costly, and the results varied depending on the skill of the experimenter. 

Researchers have traditionally used response surface methodology (RSM) to predict 

and optimize antioxidant activity. It is essentially a collection of mathematical and 

statistical methods useful for experimental design, model development and process 

optimization, considering parameter interactions (Khedmati et al. 2017). However, 

RSM can only use standardized quadratic equations within the experimental range. 

Relationships between data that contain curvature are not always well accommodated 

by quadratic equations. To overcome this problem, quadratic models can be 

transformed using logarithms or exponential functions. However, transforming 

responses or inputs is time-consuming and sometimes it is difficult to know what form 

of transformation is best (Baş and Boyacı 2007). Furthermore, if discrete variables are 

chosen as part of the experiment, RSM can result in a continuous approximation of the 

discrete design, which can lead to significant inaccuracy (Karimifard and Alavi 

Moghaddam 2018).  

To overcome the statistical limitations of RSM, researchers have introduced 

machine learning (ML) into their studies, which is a field of artificial intelligence that 

uses computer algorithms to derive mathematical models capable of making predictions 

directly from trainable data. The ML methods are useful for inferring outcomes in 

complex non-linear relationships between variables and outcomes (Ryo and Rillig 

2017). ML has the potential to predict outcomes from trainable data without the need 

to explicitly understand the mechanisms of variable interactions. Through ML, 
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experimental results could be predicted from variables, allowing rapid determination of 

results and independence from the skill of the experimenter.  

Compared to traditional chemical analysis, machine learning offers a 

complementary approach that can improve efficiency and reduce the need for extensive 

chemical reagents at certain stages of prediction or screening. However, it is not a 

replacement for experimental validation, but rather a tool to guide and streamline 

empirical studies. Recent studies have compared RSM and ML and reported 

improvements in ML for optimizing process variables and predicting output. Yikmis et 

al. (2024) showed the highest R2 values of 0.99, 0.98, and 0.99 for ML compared to 

RSM in predicting TPC content, TAC content, and DPPH antioxidant activity of 

extracts of Viburnum opulus L., respectively. Chen et al. (2024) found that ML had an 

R2 value of 0.97 in predicting the antioxidant activity of Salvia miltiorrhiza extract-

derived constituents. Li et al. (2022) demonstrated the higher performance of ML 

compared to RSM in optimizing the ultrasonic extraction of Polygala tenuifolia and 

process parameters, It is evident that the utilisation of machine learning (ML) for the 

enhancement or forecasting of the antioxidant activity of aqueous A. acerifolia extracts 

remains unreported. The authors’ hypothesis is that ML algorithms can be used to 

predict and optimize antioxidant activity. 

Among ML models, the extreme gradient boosting (XGB) algorithm employs 

gradient boosting techniques with regularization to prevent model overfitting and to 

enhance generalization performance. It has been documented that this model exhibits 

superior performance in comparison to other machine learning models. Lee and Aan 

(2024) introduced the XGB model for predicting antioxidant activity from the 

spectroscopic data of fruit juices. They reported an R² value of 0.980, which 

outperformed the multiple linear regression model and the random forest model. Nashi 

et al. (2025) employed the XGB model to predict antioxidant activity from the 

polyphenolic composition of extracts of date palm seeds. This approach yielded an R2 

value of 0.92, indicating a high degree of accuracy. In their 2023 study, Fujimoto and 

Gotoh (2023) employed the XGB model to predict the antioxidant activity of 

compounds with analogous structures derived from plant phenolic compounds. The 

XGB model demonstrated consistent prediction accuracy, as evidenced by an RMSE 

value of 0.1939. 

 

 
 

Fig. 1. Machine learning process for the prediction and optimization of production of  
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extract 

The aim of this paper is to apply ML algorithms to predict and optimize the 

antioxidant activity of A. acerifolia water extract (Fig. 1). The water extracts of A. 

acerifolia leaves were obtained by varying the temperature, time, and liquid/solid ratio. 

The ML model was trained with data that included the polyphenol and flavonoid 

content of the extracts along with extraction variables and predicted antioxidant activity. 

Three ML algorithms, extreme gradient boosting (XGB), random forest (RF), and 

support vector machine (SVM), were used to develop the ML model. The relative 

importance and impact of each input variable were investigated. The Shapley Additive 

Explanations (SHAP) approach was used to interpret the developed ML model. The ML 

model was applied to a graphical user interface, allowing researchers to quickly and 

easily predict the antioxidant activity of the extracts. The results obtained from this 

study could help in understanding and improving the antioxidant activity of A. 

acerifolia. 

 

 

EXPERIMENTAL 
 
Material 

The A. acerifolia seedlings were obtained from a native farm in South Korea 

(Yeoju, Gyeonggi-do) and subsequently transplanted into pots with a 5-cm separation 

between each seedling. The seedlings were irrigated at an interval of 12 h. Following 

the harvesting of the maple, the leaves were collected, thoroughly cleaned to remove 

any soil debris, and then subjected to a freeze-drying process. The freeze-dried leaves 

were then ground and passed through a 40-mesh wire sieve. Samples were stored at 

4 °C in tightly sealed bags until use. 

 

Water extraction of A. acerifolia  

Water extraction of A. acerifolia was performed by varying the temperature, 

time, and S/L ratio according to the conditions in Table 1. A sample of the powder was 

placed in a 300-mL flask with different liquid/solid ratios, capped, and extracted with 

an autoclave (ST-65G, JEIO Tech, Korea) under different temperature and time 

conditions. The autoclave was set to melting mode. The temperature was raised at a rate 

of 4.2 °C /min. The flask was left at room temperature to cool. After the end of the 

extraction, it was gravity filtered using Whatman filter paper No. 2 and the extract was 

subjected to antioxidant activity assay. All experiments were measured in triplicate. 

 

Table 1. Conditions for Water Extraction of Ainsliaea acerifolia 

Variable Symbol Conditions 

Temperature (°C) Temp 80 90 100 

Time (min) Time 60 90 120 

Liquid/Solid ratio L/S 10 20 30 

 

Determination of total polyphenol content 

Total polyphenol content (TPC) was measured using a slightly modified 

version of a standardized protocol (Singleton and Rossi 1965). Briefly, a mixture 

containing 100 μL of A. acerifolia extract and 100 μL of Folin-Ciocalteu colorimetric 

reagent solution was incubated with 100 μL of 2% Na2CO3 (sodium carbonate) solution 

for 30 min at room temperature conditions. The resulting assay mixture was measured 

calorimetrically at 750 nm using a UV spectrophotometer (SpectraMax 190, Molecular 

Devices LLC, San Jose, CA, USA). A calibration curve was generated using gallic acid 
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as a control standard. The TPC was obtained from a standard curve with gallic acid as 

the standard and expressed as mg gallic acid equivalent (GAE) per g of sample. 

 

Determination of total flavonoid content 

Total flavonoid content (TFC) was determined following a standardized 

protocol (Lee et al. 2017). The A. acerifolia extract (100 μL) were combined with 100 

μL of 2% aluminum chloride solution and the mixture was allowed to react at room 

temperature for 10 min. The mixture was measuring absorbance at 430 nm using a UV-

spectrophotometer (SpectraMax 190, Molecular Devices LLC, San Jose, CA, USA). 

The TFC was calculated from a standard curve with quercetin as the standard and 

expressed as mg quercetin equivalent (QE) per g of sample. 

 

ABTS radical scavenging assay 

The antioxidant capacity of the extracts, assessed by the ABTS (2,2′-

azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay, was 

evaluated according to the method described by Ha et al. (2024). The ABTS working 

solution was prepared by combining equal volumes of 7.4 mM ABTS and 2.6 mM 

potassium peroxydisulfate solutions, which were then allowed to react for 24 h in the 

dark at room temperature. The solution was then diluted with ethanol to an absorbance 

of 0.7 ± 0.02 at 735 nm. A total of 190 µL of the prepared ABTS solution was mixed 

with 10 µL of A. acerifolia extract and incubated for 6 min at room temperature. 

Absorbance at 735 nm was recorded using a UV spectrophotometer (SpectraMax 190, 

Molecular Devices LLC, San Jose, CA, USA) with 98% ethanol as a control. 

 

Two-factor interaction model  

The statistical software Design-Expert (version 13, State-Ease Inc., 

Minneapolis, MN, USA) was used to construct a two-factor interaction (2FI) model. In 

the analysis, extraction process variables, polyphenols, and flavonoids were included 

as influencing factors, while ABTS antioxidant activity was considered as the response 

variable. The significance of these variables within the model was assessed using an 

analysis of variance (ANOVA). An equation reflecting the contribution of the effectors 

was derived to estimate the ABTS antioxidant activity. 

 

Machine learning model 

The authors used 81 data points to train and evaluate the machine learning 

model.  

Training and test data were randomly split 8:2. The test data was used to evaluate the 

model without being involved in training the model. This ensures that we get objective 

predictions rather than predictions from overfitted models. The coefficient of 

determination (R2) and root mean squared error (RMSE) was then used to assess the 

performance of the model (Renaud and Victoria-Feser 2010). R² is a metric that 

indicates the extent to which a prediction accurately represents the true value. It 

provides a standardized measure of fit when comparing multiple models trained on the 

same dataset. RMSE, conversely, offers an interpretive approach to model prediction 

accuracy by providing the mean size of the prediction error in the same units as the 

outcome variable. The utilization of these two metrics in regression problems is 

pervasive, as they offer a complementary array of information. The R2 and RMSE were 

calculated according to Eqs. 1 and 2, 

Coefficient of determination(R2) = 1 −
∑ (𝑦𝑛−𝑦𝑛̂)2𝑁

𝑛=1

∑ (𝑦𝑛−𝑦)2𝑁
𝑛=1

     (1) 

where N is the number of observations, 𝑦𝑛 is the actual value corresponding to the n-
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th data point, 𝑦𝑛̂ is the predicted value for the n-th data point, and 𝑦 is the average 

value for the N observations. Equation 2 is as follows, 

Root Mean Squared Error(RMSE) = 1 − √
1

𝑛
∑ (𝑦𝑛 − 𝑦𝑛̂)2𝑁

𝑛=1    (2) 

where N is the number of observations, 𝑦𝑛 is the actual value corresponding to the n-

th data point, and 𝑦𝑛̂ is the predicted value for the n-th data point. 

 

Feature selection 

Feature selection was performed based on domain knowledge and existing 

experimental results related to the antioxidant activity of A. acerifolia extracts. Five 

variables were selected as input variables: extraction temperature, extraction time, 

solvent/solids ratio, total flavonoid content, and total polyphenol content. The withering 

variable has been reported in several studies to have a significant effect on the 

antioxidant activity properties of plant extracts (Abeysinghe et al. 2021; Antony and 

Farid 2022; Camel 2000; Pan et al. 2000). In this work, the SHAP (SHapley Additive 

exPlanations) value to evaluate the importance of variables in the optimized model. 

SHAP value leverages game theory concepts to provide insight into how much each 

feature contributes to model predictions. This technique provides a better understanding 

of the model behavior that gives features their importance (Li et al. 2024). 

 

Extreme gradient boosting model 

Extreme gradient boosting is one of the gradient boosting-based supervised 

learning algorithms that support preventing overfitting and parallel processing. 

Gradient boosting is an algorithm that sequentially adds new learning models with 

weights in the direction of minimizing the learning error of several weak decision tree 

(Zhang and Haghani 2015). A new learning model is created at every step instead of 

modifying the existing learning models. The model’s error is reduced using gradient 

descent. The XGB applies a penalty to the loss function to prevent overfitting to the 

training data. Furthermore, the drawback of consuming significant learning resources 

due to the sequential data learning characteristic of the gradient model was resolved 

through parallel processing (Chen et al. 2015). 

 

 
 
Fig. 2. Schematic diagram of the XGB model 
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Random forest model 

 

Random forest (RF) is one of the supervised learning algorithms used for 

various classification and regression problems (Biau and Scornet 2016). The RF 

integrates several DT to form an ensemble regressor and predicts the outcome by 

averaging the output values of each DT. If the number of DT is sufficient, RF reduces 

the overall variance and prediction error by averaging uncorrelated trees, thus not 

causing model to overfit. RF having the characteristics of bagging, can maintain 

accuracy even if some data are missing. 

 

Support vector machine model 

The SVM was one of the algorithms used for various classification and 

regression problems (Suthaharan 2016). A major advantage of SVM is the adoption of 

the structural risk minimization principle, proven superior to the empirical risk 

minimization principle used in conventional neural network structures. Therefore, 

SVM is generally less vulnerable to overfitting issues. It also demonstrates robustness 

against outliers, performing well in predictions for data with values that differ from the 

general pattern. 

 

Random sample consensus model 

The Random Sample Consensus (RANSAC) algorithm is a regression 

algorithm used when dealing with data with many outliers. This is because the 

algorithm can effectively identify and discard data containing outliers to obtain an 

accurate model. The RANSAC algorithm uses a heuristic approach and is effective at 

finding a satisfactory model with limited data and in a relatively short time. 

 

Optimize hyper parameters 

  The RandomizedSearchCV method from the scikit-learn library was applied 

for the random search to find the optimal hyperparameters. The randomized search 

combines K-fold CVs to determine the given parameter values. After randomly 

exploring the parameter combinations of the fitting, the optimal parameter combination 

is returned (Bergstra and Bengio 2012). In this study, k is set to 5 and RMSE is chosen 

as the loss function. The optimal parameter combination corresponded to the lowest 

RMSE value. The search range of different hyperparameters and the optimal 

hyperparameter combination for all models are summarized in Table 2. 

 

Table 2. The Optimized Hyper Parameters in Models Built in this Study 

Algorithm Hyper-parameter Range of Parameters Optimized Value 

SVM 

c 0.1 to 100 57.49 

eplsilon 0.01 to 0.5 0.23 

kernel liner, rbf rbf 

gamma scale, atuo, 0.01, 0.1, 1 0.01 

RF 

n_estimators 50 to 500 435 

max_depth None, 10, 20, 30, 40 30 

min_sample_split 2, 5, 10 5 

min_sample_leaf 1, 2, 4 1 

max_features None, sqrt, log2 Sqrt 

XGB 
n_estimators 50 to 500 297 

leaening_rate 0.01 to 0.2 0.19 
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max_depth 3 to 13 10 

subsample 0.4 to 0.6 0.65 

gamma 0 to 0.3 0.29 

RANSAC 

min_sample 0.2 to 0.6 0.78 

residual_threshold 1, 5, 10 10.0 

max_trails 100 to 1000 600 

 

Optimization extract process 

The water extraction process of A. acerifolia was optimized to find the 

conditions with maximum ABTS antioxidant activity. The factors that were 

investigated included extraction temperature, extraction time, solvent-to-solid ratio, 

total polyphenol content, and total flavonoid content. Among the optimized machine 

learning (ML) models, the model with the highest R2 value was selected. The 

GridSearchCV method from the scikit-learn library was applied for the grid search to 

ascertain the optimal extract condition. The visualization was implemented using Plotly 

(6.0.1), incorporating axis labels, color bars, and contour labels to effectively convey 

the optimal extraction condition. 

 

Graphical user interface  

A graphical user interface (GUI) was implemented using the PyQt5 library 

(version 5.15.10) in Python (version 3.10.14), taking advantage of the optimized 

structure of the XGB model (Meier 2019). This interface displays the status of the 

application on the monitor and allows user interaction via mouse and keyboard. 

Through adjusting conditions via buttons, users can efficiently obtain and validate 

accurate predictions generated by the trained model. Therefore, the authors applied the 

XGB model to the GUI for the purpose of predicting antioxidant activity. Kumar et al. 

(2022) adopted a GUI to display the results of machine learning models and reduce the 

repetition of code execution. The GUI improves accessibility for researchers by 

providing visualization and insights into model performance and simplifying code 

execution for predictive applications. 

 

 
RESULTS AND DISCUSSION 
 

Collection of the Dataset  
The input variables and predictors are shown in Table S1. Extracts were 

collected from A. acerifolia using the water extraction method.  

 

Analysis of Pearson Correlation 
To further explore the linear relationship between antioxidant activity and input 

characteristics, the Pearson correlation coefficient matrix is shown in Fig. 3, and only 

values with a p-value of 0.05 or less to test the hypothesis are marked with “*”. The 

gradient of elemental colors from blue to red in the matrix plot represents the 

logarithmic increase of the Pearson correlation coefficient from -1 to 1. For the 

antioxidant activity, there was a positive correlation with the flavonoids. Flavonoids are 

major secondary metabolites produced by plants and exhibit antioxidant activity 

through scavenging reactive oxygen species and antioxidant enzyme activity 

(Williamson et al. 2018) This is due to the contribution of the hydroxy group of ring B 

in the flavonoid structure to antioxidant activity (Rice-Evans et al. 1996). Nagarajan et 

al. (2020) reported that flavonoid polymers are excellent antioxidants due to the 

presence of many water-level hydroxyls in their molecules. Polyphenols showed a 
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lower correlation coefficient (0.284) for homeostatic activity compared to flavonoids. 

This indicates that when the degree of polymerization of polyphenols exceeded a 

threshold, the complexity of the molecule reduced the availability of hydroxyl groups, 

which negatively affected their antioxidant activity (Espín and Wichers 2000). 

Polyphenols and flavonoids were negatively correlated with temperature, with 

correlation coefficients of -0.485 and -0.281, respectively. Elevated extraction 

temperatures result in the degradation or loss of some heat-sensitive volatile 

phenolic/flavonoid compounds (Xiao et al. 2008). 

 

 
Fig. 3. Pearson correlation heatmap of temperature, time, S/L ratio, polyphenol, flavonoid, 
and ABTS 

 

Predictive Performance of 2FI Model 
To build a prediction model for antioxidant activity, the 2FI model and three 

ML algorithms, namely XGB, RF, and SVM, were used. The results of the ANOVA 

analysis of the 2FI model and the coefficient analysis values of the variables are shown 

in Table 3. The lower the p-value of a factor, the more it influences the 2FI model. The 

2FI model for ABTS antioxidant activity (%) to predict the relationship between 

independent and dependent variables can be expressed as follows: 

ABTS = 264.45086 - 1.32937A - 2.36092B - 9.06582C - 36.27082D + 

3.39669E + 0.022547AB + 0.053713AC - 0.255629AD + 0.048973AE + 0.012333BC 

+ 0.134263BD - 0.009934BE + 1.2921CD + 0.059328CE + 0.928443DE  

where A is the temperature, B is the time, C is the liquid /solid ratio, D is the polyphenol 

content, and E is the flavonoid content.  

The effect of independent variables on antioxidant activity was tested for 

adequacy and goodness of fit by ANOVA. 
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Table 3. ANOVA and Coefficients in Coded Factors For Two Factor Interaction 
Model 

Source 
Sum of 

Squares 
df 

Mean 
Square 

F-Value p-Value 
Coefficient 
Estimate 

Model 18436.47 15 1229.1 9.21 < 0.0001  

A1) 4.1 1 4.1 0.0307 0.8614 0.5878 

B2) 226.23 1 226.23 1.7 0.1974 -3.83 

C3) 886.14 1 886.14 6.64 0.0122 5.67 

D4) 85.43 1 85.43 0.6404 0.4265 4.12 

E5) 1892.31 1 1892.31 14.18 0.0004 14.5 

AB 1115.59 1 1115.59 8.36 0.0052 6.76 

AC 717.5 1 717.5 5.38 0.0235 5.37 

AD 26.99 1 26.99 0.2023 0.6543 -3.27 

AE 423.24 1 423.24 3.17 0.0796 -8.83 

BC 253.96 1 253.96 1.9 0.1724 3.7 

BD 77.71 1 77.71 0.5825 0.4481 5.16 

BE 148.69 1 148.69 1.11 0.295 -5.37 

CD 1164.55 1 1164.55 8.73 0.0044 16.54 

CE 770.94 1 770.94 5.78 0.0191 10.7 

DE 1062.89 1 1062.89 7.97 0.0063 21.43 

Residual 8671.42 65 133.41    

Cor Total 27107.89 80     

R2 0.6063      

1) Temperature (°C) 
2) Time (h) 
3) Liquid/Solid ratio (%) 
4) Polyphenol content (mgQue/g) 
5) Flavonoid content (mgGAE/g) 
  

Table 3 summarizes the results of goodness of fit, variance, mode adequacy, 

and coefficients of determination. Statistical analysis showed that the 2FI model had a 

very low p-value (p < 0.0001), which was highly significant. However, the coefficient 

of determination (R2) indicated that 60.63% of the variation could be explained by the 

fitted model. The independent variables (Flavonoid content, Liquid/Solid ratio) and the 

interactions (Temperature-Time, Liquid/Solid ratio- Polyphenol content, Polyphenol 

content-Flavonoid content) influence antioxidant activity. The 2FI model had a low 

coefficient of determination for predicting the antioxidant activity of A. acerifolia, 

suggesting that it is not a suitable method for predicting antioxidant activity.  

 

Predictive Performance of Machine Learning Model 
Four ML algorithms were used to build the ML models: XGB, SVM, RF, and 

RANSAC. The dataset was randomly partitioned into training and testing sets, with a 

ratio of 80:20. Independent validation using external datasets was not performed. It is 

acknowledged that this may result in a restriction of the generalizability of the model’s 

predictive performance, such that it remains consistent under entirely new experimental 

conditions. Each model used K-fold validation and RandomizedSearchCV for hyper-
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parameter optimization. The optimized values of the hyper parameters are shown in 

Table 2. R2 specifies the correlation between the predicted value and the target value. It 

is one of the commonly preferred parameters to measure the performance of a model. 

A comparison of the target values is shown in Fig. 4 and Fig. 5. The performance of the 

trained ML model was evaluated using training and test sets. The RMSE and R2 values 

of the models on the train and test sets are shown in Table 4. The best performing model 

on the training set was the SVM model (R2: 0.9656, RMSE: 9.5996), but the best 

performing model on the test set was the XGB model (R2: 0.9835, RMSE: 2.5182).  

 

 
 

Fig. 4. Scatter plot of actual versus RF (A) and SVM(B) model predicted values for ABTS 
radical scavenging activity 

 

The 2FI model (R2:0.6063), a mathematical model, exhibited a substantially 

lower predictive capacity compared to other machine learning models. This finding 

suggests that traditional mathematical models are effective in capturing linear 

relationships between input variables but are limited in capturing non-linear 

relationships. Zhu et al. (2024) and Alqahtani et al. (2025) found that the model based 

on XGB outperformed the traditional multiple linear regression model and other 

machine learning models in predicting the activity of extracts. The findings indicate 

that boosting-based machine learning (ML) models demonstrate superior efficacy in 

predicting the activity of extracts from variables (Temperature, Time, Liquid /Solid 

(A) 

(B) 
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ratio, Polyphenol content, and Flavonoid content) when compared to conventional 

regression models. 

 

Table 4. R2 and RMSE Results for Each Machine Learning Model on the Train 
Set and Test Set 

 Train RMSE Trian R2 Test RMSE Test R2 

RF 13.2732 0.8741 8.0924 0.8292 

SVM 9.5996 0.9656 3.2435 0.9726 

XGB 12.8292 0.9992 2.5182 0.9835 

RANSAC 18.3341 0.106 16.6802 0.2743 

 

 
 

Fig. 5. Scatter plot of actual versus XGB (A) and RANSAC(B) model predicted values for 
ABTS radical scavenging activity 
 

Evaluating Features of Importance in ML Models 
The ML-based feature analysis was performed to assess the importance of the 

input features. The model was selected based on its prediction performance to generate 

feature importance. For antioxidant activity, flavonoids are the most important feature 

(~7) (Fig. 6), which is consistent with previous studies that flavonoids are an important 

factor influencing antioxidant activity (Abeysinghe et al. 2021). Flavonoids are 

renowned for their antioxidant activity, which is attributed to their capacity to stabilize 

free radicals by donating hydrogen. Flavonoids are a class of phytonutrients that have 

(A) 

(B) 
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been shown to possess significant antioxidant properties. Their structural characteristics, 

particularly the presence of multiple hydroxy groups on the B ring, facilitate the 

donation of hydrogen to free radicals, thereby neutralizing them (Sekher Pannala et al. 

2001; Wolfe and Liu 2008). Extraction temperature is the second important feature; the 

actual temperature is a factor that can determine the content of both flavonoids and 

polyphenols (Antony and Farid 2022). If the temperature of the extraction increases, 

the cell matrix opens up and consequently increases the availability of flavonoids for 

extraction. In addition, at higher temperatures, solvent viscosity decreases, and 

diffusivity increases, which increases extraction efficiency (Camel 2000; Pan et al. 

2000). Considering the above features, the most important way to increase antioxidant 

activity is to optimize the extraction temperature. 

 

 
 

Fig. 6. SHAP value (A) and feature importance (B) of each input feature for predicting ABTS 
antioxidant activity 

 

Extraction Process Optimization 
 The XGB model, which demonstrated the highest R2 value among the various 

machine learning models, was selected to optimize the extraction process. Figure 7 

illustrates the multivariate relationships among process variables (Temperature, Time, 

S/L Ratio, Polyphenol, and Flavonoid), as well as the model's predicted ABTS radical-

scavenging activity (%). This was achieved by employing parallel coordinates 

visualization of 100 randomly sampled grid-search experiments. Each polyline in the 

graph represents an individual experimental run, with its color on the “Plasma” scale 

corresponding to the predicted ABTS inhibition (10% to 90%). This perspective 

underscores the pivotal role that combinations of extraction conditions play in 

(A) 

(A) 
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determining antioxidant performance. The process variable values that were optimized 

with the XGB model are as follows: The experiment yielded the following results: 

temperature of 80 degrees Celsius, time of 75 minutes, S/L ratio of 25, polyphenol of 

2.0, flavonoid of 39.4, and maximum ABTS antioxidant activity of 84.31%. 

 
Fig. 7. Parallel coordinates mapping of experimental runs: correlating Temperature, Time, S/L 
ratio, Polyphenol/Flavonoid contents with predicted ABTS activity 
 

Comparison of 2FI and ML Results 
Data on the antioxidant activity of A. acerifolia extract were used to optimize 

and predict results using the XGB model. This model was trained to learn from the 

antioxidant properties of the extract and the interactions between extraction temperature, 

time, liquid/solid ratio, polyphenols, and flavonoids. Among the machine learning 

models evaluated, XGB showed superior performance compared to the two-factor 

interaction (2FI) model, achieving higher prediction accuracy. The improved 

performance of XGB can be attributed to its advanced data processing capabilities. 

While 2FI models are commonly used for numerical optimization of individual 

variables, they are limited to quadratic regression, which limits their predictive power. 

In contrast, XGB models effectively capture and learn the non-linear interactions 

between process variables within each tree, making them highly adaptable to different 

applications. Figure 7 shows a comparison of the predicted antioxidant activity of maple 

aroma extract using 2FI and ML. The R2 values of the RSM (2FI) model and the ML 

(XGB) model are 0.60 and 0.98, respectively. Therefore, it can be concluded that XGB 

efficiently optimized and predicted the antioxidant activity of the extract as a function 

of temperature, time, and solvent concentration. Kunjiappan et al. (2024) compared the 

use of 2FI and machine learning models to predict the bioactivity of Vitis vinifera 

extracts and reported that the machine learning model achieved higher prediction 

accuracy Kabilan et al. used RSM to find the optimal conditions for extracts of 

Boerhavia diffusa Linn and combined it with machine learning to predict bioactivity, 

showing high reliability (0.957).  

While the present study achieved a high degree of success in accurately 

predicting the antioxidant activity of A. acerifolia extracts using XGB model, it is 

important to note that its limitations are primarily associated with its exclusive reliance 

on a particular plant species (A. acerifolia) and a single antioxidant activity assay. 

Consequently, the study's generalizability to other plant materials or antioxidant activity 

mechanisms may be constrained. Moreover, the XGB model is constrained by the 

absence of additional external validation through independent datasets. 
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Fig. 8. Scatter plot of residuals of predicted data (2FI, SVR, RF, XGB, RANSAC) against 
actual data for ABTS antioxidant activity 
 

Development of a Graphical User Interface 
To predict the antioxidant activity of an extract, the authors developed a user-

friendly graphical user interface (GUI). Figure 8 shows the schematic of the GUI. In 

the GUI, users can predict the antioxidant activity of an extract by entering the 

extraction temperature, time, liquid/solid ratio, and extraction factors of polyphenols 

and flavonoids. The GUI efficiently generated predictions in less than 0.4 s. Leveraging 

the high predictive accuracy of the XGB model, the system provides reliable results. 

This framework increases the efficiency of analysis and decision making for both 

researchers and industry professionals.  

In preliminary experiments, the GUI-integrated antioxidant activity model 

demonstrated a strong prediction probability of 0.98. In addition, the performance of 

the model was further evaluated using an external dataset. At the following link the GUI 

program can be downloaded (Antioxidant prediction.zip).  

The XGB-based prediction model proposed in this study has the potential to 

enhance the efficiency of developing antioxidant functional materials by deriving 

optimal extraction conditions without the necessity of repeated experiments. 

Furthermore, it can be utilized to forecast the antioxidant activity of extracts through 

the implementation of measurement methods such as DPPH and FRAP.  Also, the GUI 

has the capacity to simulate and predict an array of extraction conditions in real time 

within R&D environments. This capability enhances the efficiency and precision of 

decision-making processes. 

 

https://1drv.ms/u/c/e59555f01454956b/Ebkl7LG3AWFChQaxakGF9vQBspdIpu3xUubQ03iV6C-H-w?e=mAkQ9T
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Fig. 9. Schematic representation of the GUI from the ABTS antioxidant activity prediction 
model 

 

 

CONCLUSIONS 
 
1. Based on the analysis and results presented, the study successfully developed a 

predictive model for antioxidant activity using various machine learning 

techniques. The extraction of antioxidant compounds from A. acerifolia was 

thoroughly analyzed, with a particular focus on the relationship between input 

variables and antioxidant activity.  

2. The study highlighted the significant positive correlation between flavonoid 

content and antioxidant activity, emphasizing the role of extraction temperature 

on flavonoid preservation. The XGB model emerged as the most effective 

predictive tool, surpassing both the 2FI model and other machine learning 

algorithms such as RF and SVM in terms of prediction accuracy. The XGB 

model’s ability to handle nonlinear relationships and its high R² value of 0.9805 

demonstrate its robustness in predicting antioxidant activity.  

3. This is particularly important for optimizing extraction processes and enhancing 

the quality of the extracts. Moreover, the development of a user-friendly graphical 

user interface (GUI) based on the XGB model allows for rapid and accurate 

predictions of antioxidant activity.  

4. This tool simplifies the decision-making process for researchers and industry 

professionals, offering a practical application of the study's findings. In 

conclusion, the study provides a comprehensive framework for predicting and 

optimizing antioxidant activity in plant extracts, with the XGB model playing a 

central role in advancing the analytical capabilities in this domain. Future research 

could expand on this work by exploring additional variables and refining the 

model further to enhance its applicability across different types of plant extracts. 
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APPENDIX 

Table S1. Classifying Training and Test Data for Model Training 

No. Class 
Temperature 

(°C) 
Time 
(min) 

Liquid/Solid 
Ratio 

Polyphenol 
(mgQE/g) 

Flavonoid 
(mgGAE/g) 

ABTS 
(%) 

1 Train 80 120 20 1.13 30.68 16.09 

2 Train 90 120 30 1.87 9.28 28.98 

3 Train 90 60 30 0.92 9.49 12.8 

4 Train 100 60 30 1.65 17.35 46.1 

5 Train 80 120 20 1.37 30.92 16.1 

6 Train 100 60 10 1.09 28.56 40.01 

7 Train 90 90 20 1.5 25.42 13.48 

8 Train 80 90 20 1.72 43.3 76.99 

9 Train 90 120 20 1.28 17.55 44.28 

10 Train 100 60 30 1.93 17.63 48.61 

11 Train 90 60 20 2.21 27.8 18.12 

12 Train 80 60 20 1.13 26.37 49.54 

13 Train 100 120 20 1.10 11.28 42.28 

14 Train 80 60 20 1.85 27.09 50.36 

15 Train 90 120 30 1.09 8.5 16.72 

16 Train 90 120 10 0.80 9.75 45.8 

17 Train 100 60 10 0.77 28.24 39.76 

18 Train 90 60 30 0.89 9.46 11.45 

19 Train 80 60 10 1.50 19.14 45.75 

20 Train 90 90 30 1.58 11.85 16.84 

21 Train 80 90 10 2.55 40.66 61.22 

22 Train 100 90 30 0.36 25.50 34.70 

23 Train 90 60 30 0.95 9.52 14.15 

24 Train 90 120 10 0.70 9.65 39.88 

25 Train 90 90 20 1.70 25.62 20.62 

26 Train 80 90 30 2.61 36.01 79.29 

27 Train 80 120 30 1.85 17.32 16.10 

28 Train 90 60 20 1.57 27.16 17.6 

29 Train 80 60 30 1.62 22.19 45.84 

30 Train 100 60 30 1.37 17.07 43.59 

31 Train 80 90 30 2.01 35.41 73.47 

32 Train 80 120 10 1.05 27.60 15.10 

33 Train 100 90 20 0.86 35.40 39.07 

34 Train 80 60 30 1.43 22.00 42.70 

35 Train 90 120 20 1.80 18.07 58.78 

36 Train 100 120 20 1.46 11.64 43.44 
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37 Train 100 120 10 1.00 20.30 35.13 

38 Train 80 60 20 1.49 26.73 49.95 

39 Train 90 60 10 2.30 12.61 19.22 

40 Train 80 120 30 0.57 16.04 16.08 

41 Train 100 90 10 1.12 8.43 34.45 

42 Train 80 120 10 1.11 27.66 20.66 

43 Train 100 60 20 0.78 18.72 42.76 

44 Train 80 90 10 1.71 39.82 61.2 

45 Train 100 120 30 0.75 34.57 40.57 

46 Train 90 120 10 0.75 9.70 42.84 

47 Train 90 90 30 1.66 11.93 19.91 

48 Train 100 90 10 1.68 8.99 34.77 

49 Train 100 90 10 1.40 8.71 34.61 

50 Train 90 120 20 0.76 17.03 29.78 

51 Train 90 60 20 0.93 26.52 17.08 

52 Train 90 90 10 0.75 12.76 64.53 

53 Train 100 90 20 0.90 35.44 40.12 

54 Train 90 90 10 0.82 12.83 68.33 

55 Train 100 60 10 1.41 28.88 40.26 

56 Train 80 120 10 1.08 27.63 17.88 

57 Train 100 120 10 1.44 20.74 38.33 

58 Train 100 120 20 1.28 11.46 42.86 

59 Train 90 90 10 0.89 12.90 72.13 

60 Train 100 90 20 0.82 35.36 38.02 

61 Train 80 90 20 2.92 44.50 78.59 

62 Train 80 60 10 1.39 19.03 43.80 

63 Train 100 60 20 0.37 18.31 38.49 

64 Train 90 90 20 1.90 25.82 27.76 

65 Test 90 120 30 1.48 8.89 22.85 

66 Test 100 90 30 0.62 25.76 35.60 

67 Test 100 120 30 0.83 34.65 40.68 

68 Test 100 90 30 0.88 26.02 36.50 

69 Test 90 60 10 2.25 12.56 18.17 

70 Test 80 120 20 0.89 30.44 16.08 

71 Test 80 60 30 1.81 22.38 48.98 

72 Test 100 60 20 1.19 19.13 47.03 

73 Test 90 60 10 2.20 12.51 17.12 

74 Test 80 120 30 1.21 16.68 16.09 

75 Test 90 90 30 1.50 11.77 13.77 

76 Test 80 90 20 2.32 43.90 77.79 
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77 Test 100 120 10 1.22 20.52 36.73 

78 Test 80 60 10 1.61 19.25 47.70 

79 Test 80 90 30 2.31 35.71 76.38 

80 Test 80 90 10 2.13 40.24 61.21 

81 Test 100 120 30 0.67 34.49 40.46 

 

 

  


