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Extreme Gradient Boosting Model to Predict
Antioxidant Activity of Extract from Ainsliaea
acerifolia
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A machine learning (ML)-based framework was developed for predicting
and optimizing the antioxidant activity of Ainsliaea acerifolia water extracts.
while the response surface methodology (RSM) is deficient in modeling
nonlinear interactions. In this study, three machine learning (ML)
algorithms, Extreme Gradient Boosting (XGB), Random Forest (RF), and
Support Vector Machine (SVM), were evaluated using extraction variables
(temperature, time, and solvent-to-solid ratio) along with flavonoid and
polyphenol content as input features. Among the models evaluated, the
XGB model showed the most advanced antioxidant prediction capabilities,
as evidenced by its R? of 0.9835 and RMSE of 2.52 on the test data set.
The biological significance of the features was explored using SHAP
analysis, revealing flavonoid content and extraction temperature as key
contributors. A graphical user interface (GUI) was developed to facilitate
real-time prediction, enhancing accessibility for researchers and industrial
users. This approach improves operational efficiency by optimizing
extraction conditions, predicting antioxidant activity from data including
flavonoids and polyphenols, and reducing reagent usage. This study
highlights the potential of ML as a sustainable alternative for natural
product optimization and lays the groundwork for future research that
integrates bioactivity prediction with formulation design.
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INTRODUCTION

Antioxidant activity has been defined as the activity of removing reactive
oxygen species (ROS) produced by the metabolic processes of the body (Ifeanyi 2018).
Production of ROS during normal metabolism has been implicated in electron transport,
gene expression, and antimicrobial activity (Pham-Huy et al. 2008). However, ROS can
be increased through UV stress and food intake (Golovynska et al. 2023) Exposure to
excessive ROS has been implicated as a cause of chronic diseases and conditions. These
include inflammation, diabetes, and cancer (Wang ef al. 2021). In this context, many
synthetic antioxidants have been developed, such as butylated hydroxytoluene (BHT)
and butylated hydroxyanisole (BHA), but their use has been increasingly restricted due
to controversies about their safety (Mizobuchi et al. 2022). In addition, increasing
consumer awareness of antioxidant safety and a growing preference for natural products
has motivated research to identify sources of natural antioxidants.

Ainsliaea acerifolia, a perennial herb belonging to the Compositae family, is
distributed in the mountainous regions of Korea (Jung et al. 2000). The extract of A.
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acerifolia was found to contain abundant polyphenols, including major secondary
metabolites such as quinic acid derivatives, sesquiterpene lactones, and lignans (Choi
et al. 2006). These polyphenols were found to possess various biological activities,
including antioxidant activity (Park 2010). In addition, various polar compounds, such
as polyphenols, were complexly mixed in the extracts (Macias et al. 1999). Therefore,
researchers are focusing on the antioxidant activity of plant extracts rather than
individual compounds (Ed-Dahmani et al. 2024; Kongolo Kalemba et al. 2024)
Therefore, there is reason to propose 4. acerifolia extract as a natural source of
antioxidants. Studying the extraction process is needed to obtain extracts with high
antioxidant activity from 4. acerifolia and to identify the influencing factors.

Water extraction is an environmentally friendly and safe solvent to produce
extracts from plants such as 4. acerifolia (Ptotka-Wasylka et al. 2017). Although many
plant extracts have been obtained using organic solvents, water extraction is highly
attractive from a cost perspective. Additionally, the antioxidant activity of the extract
has been found to be sensitively influenced by extraction conditions, including
extraction temperature and solvent-to-solid ratio (Belwal et al. 2016). High thermal
temperatures in the extraction process could alter the phenolic extractability due to the
destruction of cell walls, but it could also cause partial degradation of phenolic
compounds that affect antioxidant activity (Barreira et al. 2009; Choi et al. 2006).
Generally, a higher solvent ratio resulted in higher total phenolic content and
antioxidant capacity (Cacace and Mazza 2003). However, the solvent-to-solid ratio
varied according to the type of plant, requiring individual assessment (Michiels et al.
2012). To obtain 4. acerifolia extracts with high antioxidant activity, it was essential to
understand the above extraction processes and identify the major influencing factors.

Various methods have been developed to assess the antioxidant capacity of
compounds, with in vitro chemical assays being the most used. Among these, the 2,2'-
azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging assay
has been widely used (Dong ef al. 2015). This test measures the amount of ABTS that
changes from a relatively stable turquoise color to colorless using a spectrophotometer.
However, these methods were influenced by environmental factors, were time
consuming and costly, and the results varied depending on the skill of the experimenter.
Researchers have traditionally used response surface methodology (RSM) to predict
and optimize antioxidant activity. It is essentially a collection of mathematical and
statistical methods useful for experimental design, model development and process
optimization, considering parameter interactions (Khedmati et al. 2017). However,
RSM can only use standardized quadratic equations within the experimental range.
Relationships between data that contain curvature are not always well accommodated
by quadratic equations. To overcome this problem, quadratic models can be
transformed using logarithms or exponential functions. However, transforming
responses or inputs is time-consuming and sometimes it is difficult to know what form
of transformation is best (Bas and Boyac1 2007). Furthermore, if discrete variables are
chosen as part of the experiment, RSM can result in a continuous approximation of the
discrete design, which can lead to significant inaccuracy (Karimifard and Alavi
Moghaddam 2018).

To overcome the statistical limitations of RSM, researchers have introduced
machine learning (ML) into their studies, which is a field of artificial intelligence that
uses computer algorithms to derive mathematical models capable of making predictions
directly from trainable data. The ML methods are useful for inferring outcomes in
complex non-linear relationships between variables and outcomes (Ryo and Rillig
2017). ML has the potential to predict outcomes from trainable data without the need
to explicitly understand the mechanisms of variable interactions. Through ML,
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experimental results could be predicted from variables, allowing rapid determination of
results and independence from the skill of the experimenter.

Compared to traditional chemical analysis, machine learning offers a
complementary approach that can improve efficiency and reduce the need for extensive
chemical reagents at certain stages of prediction or screening. However, it is not a
replacement for experimental validation, but rather a tool to guide and streamline
empirical studies. Recent studies have compared RSM and ML and reported
improvements in ML for optimizing process variables and predicting output. Yikmis et
al. (2024) showed the highest R? values of 0.99, 0.98, and 0.99 for ML compared to
RSM in predicting TPC content, TAC content, and DPPH antioxidant activity of
extracts of Viburnum opulus L., respectively. Chen et al. (2024) found that ML had an
R? value of 0.97 in predicting the antioxidant activity of Salvia miltiorrhiza extract-
derived constituents. Li et al. (2022) demonstrated the higher performance of ML
compared to RSM in optimizing the ultrasonic extraction of Polygala tenuifolia and
process parameters, It is evident that the utilisation of machine learning (ML) for the
enhancement or forecasting of the antioxidant activity of aqueous 4. acerifolia extracts
remains unreported. The authors’ hypothesis is that ML algorithms can be used to
predict and optimize antioxidant activity.

Among ML models, the extreme gradient boosting (XGB) algorithm employs
gradient boosting techniques with regularization to prevent model overfitting and to
enhance generalization performance. It has been documented that this model exhibits
superior performance in comparison to other machine learning models. Lee and Aan
(2024) introduced the XGB model for predicting antioxidant activity from the
spectroscopic data of fruit juices. They reported an R? value of 0.980, which
outperformed the multiple linear regression model and the random forest model. Nashi
et al. (2025) employed the XGB model to predict antioxidant activity from the
polyphenolic composition of extracts of date palm seeds. This approach yielded an R?
value of 0.92, indicating a high degree of accuracy. In their 2023 study, Fujimoto and
Gotoh (2023) employed the XGB model to predict the antioxidant activity of
compounds with analogous structures derived from plant phenolic compounds. The
XGB model demonstrated consistent prediction accuracy, as evidenced by an RMSE
value of 0.1939.
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Fig. 1. Machine learning process for the prediction and optimization of production of
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extract

The aim of this paper is to apply ML algorithms to predict and optimize the
antioxidant activity of 4. acerifolia water extract (Fig. 1). The water extracts of A.
acerifolia leaves were obtained by varying the temperature, time, and liquid/solid ratio.
The ML model was trained with data that included the polyphenol and flavonoid
content of the extracts along with extraction variables and predicted antioxidant activity.
Three ML algorithms, extreme gradient boosting (XGB), random forest (RF), and
support vector machine (SVM), were used to develop the ML model. The relative
importance and impact of each input variable were investigated. The Shapley Additive
Explanations (SHAP) approach was used to interpret the developed ML model. The ML
model was applied to a graphical user interface, allowing researchers to quickly and
easily predict the antioxidant activity of the extracts. The results obtained from this
study could help in understanding and improving the antioxidant activity of A.
acerifolia.

EXPERIMENTAL

Material

The A. acerifolia seedlings were obtained from a native farm in South Korea
(Yeoju, Gyeonggi-do) and subsequently transplanted into pots with a 5-cm separation
between each seedling. The seedlings were irrigated at an interval of 12 h. Following
the harvesting of the maple, the leaves were collected, thoroughly cleaned to remove
any soil debris, and then subjected to a freeze-drying process. The freeze-dried leaves
were then ground and passed through a 40-mesh wire sieve. Samples were stored at
4 °C in tightly sealed bags until use.

Water extraction of A. acerifolia

Water extraction of A. acerifolia was performed by varying the temperature,
time, and S/L ratio according to the conditions in Table 1. A sample of the powder was
placed in a 300-mL flask with different liquid/solid ratios, capped, and extracted with
an autoclave (ST-65G, JEIO Tech, Korea) under different temperature and time
conditions. The autoclave was set to melting mode. The temperature was raised at a rate
of 4.2 °C /min. The flask was left at room temperature to cool. After the end of the
extraction, it was gravity filtered using Whatman filter paper No. 2 and the extract was
subjected to antioxidant activity assay. All experiments were measured in triplicate.

Table 1. Conditions for Water Extraction of Ainsliaea acerifolia

Variable Symbol Conditions
Temperature (°C) Temp 80 90 100
Time (min) Time 60 90 120
Liquid/Solid ratio L/S 10 20 30

Determination of total polyphenol content

Total polyphenol content (TPC) was measured using a slightly modified
version of a standardized protocol (Singleton and Rossi 1965). Briefly, a mixture
containing 100 pL of 4. acerifolia extract and 100 pL of Folin-Ciocalteu colorimetric
reagent solution was incubated with 100 puL of 2% Na2CO3 (sodium carbonate) solution
for 30 min at room temperature conditions. The resulting assay mixture was measured
calorimetrically at 750 nm using a UV spectrophotometer (SpectraMax 190, Molecular
Devices LLC, San Jose, CA, USA). A calibration curve was generated using gallic acid
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as a control standard. The TPC was obtained from a standard curve with gallic acid as
the standard and expressed as mg gallic acid equivalent (GAE) per g of sample.

Determination of total flavonoid content

Total flavonoid content (TFC) was determined following a standardized
protocol (Lee et al. 2017). The A. acerifolia extract (100 uL) were combined with 100
uL of 2% aluminum chloride solution and the mixture was allowed to react at room
temperature for 10 min. The mixture was measuring absorbance at 430 nm using a UV-
spectrophotometer (SpectraMax 190, Molecular Devices LLC, San Jose, CA, USA).
The TFC was calculated from a standard curve with quercetin as the standard and
expressed as mg quercetin equivalent (QE) per g of sample.

ABTS radical scavenging assay

The antioxidant capacity of the extracts, assessed by the ABTS (2,2'-
azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay, was
evaluated according to the method described by Ha et al. (2024). The ABTS working
solution was prepared by combining equal volumes of 7.4 mM ABTS and 2.6 mM
potassium peroxydisulfate solutions, which were then allowed to react for 24 h in the
dark at room temperature. The solution was then diluted with ethanol to an absorbance
of 0.7 £ 0.02 at 735 nm. A total of 190 uL of the prepared ABTS solution was mixed
with 10 pL of A. acerifolia extract and incubated for 6 min at room temperature.
Absorbance at 735 nm was recorded using a UV spectrophotometer (SpectraMax 190,
Molecular Devices LLC, San Jose, CA, USA) with 98% ethanol as a control.

Two-factor interaction model

The statistical software Design-Expert (version 13, State-Ease Inc.,
Minneapolis, MN, USA) was used to construct a two-factor interaction (2FI) model. In
the analysis, extraction process variables, polyphenols, and flavonoids were included
as influencing factors, while ABTS antioxidant activity was considered as the response
variable. The significance of these variables within the model was assessed using an
analysis of variance (ANOVA). An equation reflecting the contribution of the effectors
was derived to estimate the ABTS antioxidant activity.

Machine learning model

The authors used 81 data points to train and evaluate the machine learning
model.
Training and test data were randomly split 8:2. The test data was used to evaluate the
model without being involved in training the model. This ensures that we get objective
predictions rather than predictions from overfitted models. The coefficient of
determination (R?) and root mean squared error (RMSE) was then used to assess the
performance of the model (Renaud and Victoria-Feser 2010). R? is a metric that
indicates the extent to which a prediction accurately represents the true value. It
provides a standardized measure of fit when comparing multiple models trained on the
same dataset. RMSE, conversely, offers an interpretive approach to model prediction
accuracy by providing the mean size of the prediction error in the same units as the
outcome variable. The utilization of these two metrics in regression problems is
pervasive, as they offer a complementary array of information. The R? and RMSE were
calculated according to Egs. 1 and 2,

IN=1(Vn—Tn)?
Sl o 1
Zg=1(3’n_3/)2 ( )

where N is the number of observations, y,, is the actual value corresponding to the n-

Coefficient of determination(R?) = 1 —
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th data point, y, is the predicted value for the n-th data point, and y is the average
value for the N observations. Equation 2 is as follows,

Root Mean Squared Error(RMSE) = 1 — \/% N O — V) (2)

where N is the number of observations, y,, is the actual value corresponding to the n-
th data point, and 7, is the predicted value for the n-th data point.

Feature selection

Feature selection was performed based on domain knowledge and existing
experimental results related to the antioxidant activity of A. acerifolia extracts. Five
variables were selected as input variables: extraction temperature, extraction time,
solvent/solids ratio, total flavonoid content, and total polyphenol content. The withering
variable has been reported in several studies to have a significant effect on the
antioxidant activity properties of plant extracts (Abeysinghe ef al. 2021; Antony and
Farid 2022; Camel 2000; Pan et al. 2000). In this work, the SHAP (SHapley Additive
exPlanations) value to evaluate the importance of variables in the optimized model.
SHAP value leverages game theory concepts to provide insight into how much each
feature contributes to model predictions. This technique provides a better understanding
of the model behavior that gives features their importance (Li ef al. 2024).

Extreme gradient boosting model

Extreme gradient boosting is one of the gradient boosting-based supervised
learning algorithms that support preventing overfitting and parallel processing.
Gradient boosting is an algorithm that sequentially adds new learning models with
weights in the direction of minimizing the learning error of several weak decision tree
(Zhang and Haghani 2015). A new learning model is created at every step instead of
modifying the existing learning models. The model’s error is reduced using gradient
descent. The XGB applies a penalty to the loss function to prevent overfitting to the
training data. Furthermore, the drawback of consuming significant learning resources
due to the sequential data learning characteristic of the gradient model was resolved
through parallel processing (Chen ef al. 2015).
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Fig. 2. Schematic diagram of the XGB model
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Random forest model

Random forest (RF) is one of the supervised learning algorithms used for
various classification and regression problems (Biau and Scornet 2016). The RF
integrates several DT to form an ensemble regressor and predicts the outcome by
averaging the output values of each DT. If the number of DT is sufficient, RF reduces
the overall variance and prediction error by averaging uncorrelated trees, thus not
causing model to overfit. RF having the characteristics of bagging, can maintain
accuracy even if some data are missing.

Support vector machine model

The SVM was one of the algorithms used for various classification and
regression problems (Suthaharan 2016). A major advantage of SVM is the adoption of
the structural risk minimization principle, proven superior to the empirical risk
minimization principle used in conventional neural network structures. Therefore,
SVM is generally less vulnerable to overfitting issues. It also demonstrates robustness
against outliers, performing well in predictions for data with values that differ from the
general pattern.

Random sample consensus model

The Random Sample Consensus (RANSAC) algorithm is a regression
algorithm used when dealing with data with many outliers. This is because the
algorithm can effectively identify and discard data containing outliers to obtain an
accurate model. The RANSAC algorithm uses a heuristic approach and is effective at
finding a satisfactory model with limited data and in a relatively short time.

Optimize hyper parameters

The RandomizedSearchCV method from the scikit-learn library was applied
for the random search to find the optimal hyperparameters. The randomized search
combines K-fold CVs to determine the given parameter values. After randomly
exploring the parameter combinations of the fitting, the optimal parameter combination
is returned (Bergstra and Bengio 2012). In this study, k is set to 5 and RMSE is chosen
as the loss function. The optimal parameter combination corresponded to the lowest
RMSE value. The search range of different hyperparameters and the optimal
hyperparameter combination for all models are summarized in Table 2.

Table 2. The Optimized Hyper Parameters in Models Built in this Study

Algorithm Hyper-parameter Range of Parameters Optimized Value
c 0.1t0 100 57.49
SVM eplsilon 0.91 to 0.5 0.23
kernel liner, rbf rbf
gamma scale, atuo, 0.01, 0.1, 1 0.01
n_estimators 50 to 500 435
max_depth None, 10, 20, 30, 40 30
RF min_sample_split 2,5,10 5
min_sample_leaf 1,2,4 1
max_features None, sqrt, log2 Sqrt
XGB n_est-imators 50 to 500 297
leaening_rate 0.01t00.2 0.19
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max_depth 3t013 10
subsample 04t00.6 0.65
gamma 0t0 0.3 0.29
min_sample 0.2t0 0.6 0.78
RANSAC residual_threshold 1,5,10 10.0
max_trails 100 to 1000 600

Optimization extract process

The water extraction process of A. acerifolia was optimized to find the
conditions with maximum ABTS antioxidant activity. The factors that were
investigated included extraction temperature, extraction time, solvent-to-solid ratio,
total polyphenol content, and total flavonoid content. Among the optimized machine
learning (ML) models, the model with the highest R? value was selected. The
GridSearchCV method from the scikit-learn library was applied for the grid search to
ascertain the optimal extract condition. The visualization was implemented using Plotly
(6.0.1), incorporating axis labels, color bars, and contour labels to effectively convey
the optimal extraction condition.

Graphical user interface

A graphical user interface (GUI) was implemented using the PyQtS library
(version 5.15.10) in Python (version 3.10.14), taking advantage of the optimized
structure of the XGB model (Meier 2019). This interface displays the status of the
application on the monitor and allows user interaction via mouse and keyboard.
Through adjusting conditions via buttons, users can efficiently obtain and validate
accurate predictions generated by the trained model. Therefore, the authors applied the
XGB model to the GUI for the purpose of predicting antioxidant activity. Kumar et al.
(2022) adopted a GUI to display the results of machine learning models and reduce the
repetition of code execution. The GUI improves accessibility for researchers by
providing visualization and insights into model performance and simplifying code
execution for predictive applications.

RESULTS AND DISCUSSION

Collection of the Dataset
The input variables and predictors are shown in Table S1. Extracts were
collected from A. acerifolia using the water extraction method.

Analysis of Pearson Correlation

To further explore the linear relationship between antioxidant activity and input
characteristics, the Pearson correlation coefficient matrix is shown in Fig. 3, and only
values with a p-value of 0.05 or less to test the hypothesis are marked with “*”. The
gradient of elemental colors from blue to red in the matrix plot represents the
logarithmic increase of the Pearson correlation coefficient from -1 to 1. For the
antioxidant activity, there was a positive correlation with the flavonoids. Flavonoids are
major secondary metabolites produced by plants and exhibit antioxidant activity
through scavenging reactive oxygen species and antioxidant enzyme activity
(Williamson et al. 2018) This is due to the contribution of the hydroxy group of ring B
in the flavonoid structure to antioxidant activity (Rice-Evans ef al. 1996). Nagarajan et
al. (2020) reported that flavonoid polymers are excellent antioxidants due to the
presence of many water-level hydroxyls in their molecules. Polyphenols showed a
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lower correlation coefficient (0.284) for homeostatic activity compared to flavonoids.
This indicates that when the degree of polymerization of polyphenols exceeded a
threshold, the complexity of the molecule reduced the availability of hydroxyl groups,
which negatively affected their antioxidant activity (Espin and Wichers 2000).
Polyphenols and flavonoids were negatively correlated with temperature, with
correlation coefficients of -0.485 and -0.281, respectively. Elevated extraction
temperatures result in the degradation or loss of some heat-sensitive volatile
phenolic/flavonoid compounds (Xiao et al. 2008).

Pearson Correlation Heatmap

0.000 0.000 -0.122

Time Temperature
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[0.75
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-0.00
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0.420°

Flavonoid Polyphenol S/L ratio

*
- -0.122 -0.098 -0.132 0.284 0.420
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Température Tirlne S/L r'atio Polyplhenol Flavolnoid ABTS
*=significant at P< 0.05, respectively.

Fig. 3. Pearson correlation heatmap of temperature, time, S/L ratio, polyphenol, flavonoid,
and ABTS

Predictive Performance of 2FI Model

To build a prediction model for antioxidant activity, the 2FI model and three
ML algorithms, namely XGB, RF, and SVM, were used. The results of the ANOVA
analysis of the 2FI model and the coefficient analysis values of the variables are shown
in Table 3. The lower the p-value of a factor, the more it influences the 2FI model. The
2FT model for ABTS antioxidant activity (%) to predict the relationship between
independent and dependent variables can be expressed as follows:

ABTS =264.45086 - 1.32937A - 2.36092B - 9.06582C - 36.27082D +
3.39669E + 0.022547AB + 0.053713AC - 0.255629AD + 0.048973AE + 0.012333BC
+0.134263BD - 0.009934BE + 1.2921CD + 0.059328CE + 0.928443DE

where A is the temperature, B is the time, C is the liquid /solid ratio, D is the polyphenol
content, and E is the flavonoid content.

The effect of independent variables on antioxidant activity was tested for
adequacy and goodness of fit by ANOVA.
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Table 3. ANOVA and Coefficients in Coded Factors For Two Factor Interaction
Model

Source sSquurng];, df S'\giz?e F-Value p-Value Cé)setmfigt

Model 18436.47 15 1229.1 9.21 < 0.0001
AY 4.1 1 4.1 0.0307 0.8614 0.5878
B? 226.23 1 226.23 1.7 0.1974 -3.83
cd 886.14 1 886.14 6.64 0.0122 5.67
D4 85.43 1 85.43 0.6404 0.4265 412
E® 1892.31 1 1892.31 14.18 0.0004 14.5
AB 1115.59 1 1115.59 8.36 0.0052 6.76
AC 717.5 1 717.5 5.38 0.0235 5.37
AD 26.99 1 26.99 0.2023 0.6543 -3.27
AE 423.24 1 423.24 3.17 0.0796 -8.83
BC 253.96 1 253.96 1.9 0.1724 3.7
BD 77.71 1 77.71 0.5825 0.4481 5.16
BE 148.69 1 148.69 1.11 0.295 -5.37
CD 1164.55 1 1164.55 8.73 0.0044 16.54
CE 770.94 1 770.94 5.78 0.0191 10.7
DE 1062.89 1 1062.89 7.97 0.0063 21.43

Residual 8671.42 65 133.41

Cor Total 27107.89 80
R? 0.6063

") Temperature (°C)
2 Time (h)

)

)

%) Liquid/Solid ratio (%)

4) Polyphenol content (mgQue/g)
% Flavonoid content (mgGAE/qQ)

Table 3 summarizes the results of goodness of fit, variance, mode adequacy,
and coefficients of determination. Statistical analysis showed that the 2FI model had a
very low p-value (p < 0.0001), which was highly significant. However, the coefficient
of determination (R?) indicated that 60.63% of the variation could be explained by the
fitted model. The independent variables (Flavonoid content, Liquid/Solid ratio) and the
interactions (Temperature-Time, Liquid/Solid ratio- Polyphenol content, Polyphenol
content-Flavonoid content) influence antioxidant activity. The 2FI model had a low
coefficient of determination for predicting the antioxidant activity of A. acerifolia,
suggesting that it is not a suitable method for predicting antioxidant activity.

Predictive Performance of Machine Learning Model

Four ML algorithms were used to build the ML models: XGB, SVM, RF, and
RANSAC. The dataset was randomly partitioned into training and testing sets, with a
ratio of 80:20. Independent validation using external datasets was not performed. It is
acknowledged that this may result in a restriction of the generalizability of the model’s
predictive performance, such that it remains consistent under entirely new experimental
conditions. Each model used K-fold validation and RandomizedSearchCV for hyper-
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parameter optimization. The optimized values of the hyper parameters are shown in
Table 2. R? specifies the correlation between the predicted value and the target value. It
is one of the commonly preferred parameters to measure the performance of a model.
A comparison of the target values is shown in Fig. 4 and Fig. 5. The performance of the
trained ML model was evaluated using training and test sets. The RMSE and R? values
of the models on the train and test sets are shown in Table 4. The best performing model
on the training set was the SVM model (R% 0.9656, RMSE: 9.5996), but the best
performing model on the test set was the XGB model (R?: 0.9835, RMSE: 2.5182).
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Fig. 4. Scatter plot of actual versus RF (A) and SVM(B) model predicted values for ABTS
radical scavenging activity

The 2FI model (R?:0.6063), a mathematical model, exhibited a substantially
lower predictive capacity compared to other machine learning models. This finding
suggests that traditional mathematical models are effective in capturing linear
relationships between input variables but are limited in capturing non-linear
relationships. Zhu et al. (2024) and Algahtani et al. (2025) found that the model based
on XGB outperformed the traditional multiple linear regression model and other
machine learning models in predicting the activity of extracts. The findings indicate
that boosting-based machine learning (ML) models demonstrate superior efficacy in
predicting the activity of extracts from variables (Temperature, Time, Liquid /Solid
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ratio, Polyphenol content, and Flavonoid content) when compared to conventional

regression models.

Table 4. R? and RMSE Results for Each Machine Learning Model on the Train

Set and Test Set
Train RMSE Trian R? Test RMSE Test R?
RF 13.2732 0.8741 8.0924 0.8292
SVM 9.5996 0.9656 3.2435 0.9726
XGB 12.8292 0.9992 2.5182 0.9835
RANSAC 18.3341 0.106 16.6802 0.2743
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Fig. 5. Scatter plot of actual versus XGB (A) and RANSAC(B) model predicted values for

ABTS radical scavenging activity

Evaluating Features of Importance in ML Models

The ML-based feature analysis was performed to assess the importance of the
input features. The model was selected based on its prediction performance to generate
feature importance. For antioxidant activity, flavonoids are the most important feature
(~7) (Fig. 6), which is consistent with previous studies that flavonoids are an important
factor influencing antioxidant activity (Abeysinghe et al. 2021). Flavonoids are
renowned for their antioxidant activity, which is attributed to their capacity to stabilize
free radicals by donating hydrogen. Flavonoids are a class of phytonutrients that have
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been shown to possess significant antioxidant properties. Their structural characteristics,
particularly the presence of multiple hydroxy groups on the B ring, facilitate the
donation of hydrogen to free radicals, thereby neutralizing them (Sekher Pannala et al.
2001; Wolfe and Liu 2008). Extraction temperature is the second important feature; the
actual temperature is a factor that can determine the content of both flavonoids and
polyphenols (Antony and Farid 2022). If the temperature of the extraction increases,
the cell matrix opens up and consequently increases the availability of flavonoids for
extraction. In addition, at higher temperatures, solvent viscosity decreases, and
diffusivity increases, which increases extraction efficiency (Camel 2000; Pan et al.
2000). Considering the above features, the most important way to increase antioxidant
activity is to optimize the extraction temperature.

(A) , High
Flavonoid " TR X3 -:.35'-#4 DPPAIPAPAPRPoN P e
Polyphenol . M-nf-p-ﬁh-lu eme o %
Temperature conndadStinatite . g
Time ! el E
S/L ratio AT I R

Low

-10 0 10 20 30
SHAP value (impact on model output)

(A)

I

S/L ratio

Feature importance

Fig. 6. SHAP value (A) and feature importance (B) of each input feature for predicting ABTS
antioxidant activity

Extraction Process Optimization

The XGB model, which demonstrated the highest R? value among the various
machine learning models, was selected to optimize the extraction process. Figure 7
illustrates the multivariate relationships among process variables (Temperature, Time,
S/L Ratio, Polyphenol, and Flavonoid), as well as the model's predicted ABTS radical-
scavenging activity (%). This was achieved by employing parallel coordinates
visualization of 100 randomly sampled grid-search experiments. Each polyline in the
graph represents an individual experimental run, with its color on the “Plasma” scale
corresponding to the predicted ABTS inhibition (10% to 90%). This perspective
underscores the pivotal role that combinations of extraction conditions play in
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determining antioxidant performance. The process variable values that were optimized
with the XGB model are as follows: The experiment yielded the following results:
temperature of 80 degrees Celsius, time of 75 minutes, S/L ratio of 25, polyphenol of
2.0, flavonoid of 39.4, and maximum ABTS antioxidant activity of 84.31%.

Temperature, °C Time, min S/L ratio Polyphenol. mg GAE/mL Flavonoid, mg QE/mL Predicted ABTS, %
100 2 4 50 90

100 S 104 40+ 4 50 90 00%
AN

Fig. 7. Parallel coordinates mapping of experimental runs: correlating Temperature, Time, S/L
ratio, Polyphenol/Flavonoid contents with predicted ABTS activity

Comparison of 2Fl and ML Results

Data on the antioxidant activity of A. acerifolia extract were used to optimize
and predict results using the XGB model. This model was trained to learn from the
antioxidant properties of the extract and the interactions between extraction temperature,
time, liquid/solid ratio, polyphenols, and flavonoids. Among the machine learning
models evaluated, XGB showed superior performance compared to the two-factor
interaction (2FI) model, achieving higher prediction accuracy. The improved
performance of XGB can be attributed to its advanced data processing capabilities.
While 2FI models are commonly used for numerical optimization of individual
variables, they are limited to quadratic regression, which limits their predictive power.
In contrast, XGB models effectively capture and learn the non-linear interactions
between process variables within each tree, making them highly adaptable to different
applications. Figure 7 shows a comparison of the predicted antioxidant activity of maple
aroma extract using 2FI and ML. The R? values of the RSM (2FI) model and the ML
(XGB) model are 0.60 and 0.98, respectively. Therefore, it can be concluded that XGB
efficiently optimized and predicted the antioxidant activity of the extract as a function
of temperature, time, and solvent concentration. Kunjiappan et al. (2024) compared the
use of 2FI and machine learning models to predict the bioactivity of Vitis vinifera
extracts and reported that the machine learning model achieved higher prediction
accuracy Kabilan er al. used RSM to find the optimal conditions for extracts of
Boerhavia diffusa Linn and combined it with machine learning to predict bioactivity,
showing high reliability (0.957).

While the present study achieved a high degree of success in accurately
predicting the antioxidant activity of A. acerifolia extracts using XGB model, it is
important to note that its limitations are primarily associated with its exclusive reliance
on a particular plant species (4. acerifolia) and a single antioxidant activity assay.
Consequently, the study's generalizability to other plant materials or antioxidant activity
mechanisms may be constrained. Moreover, the XGB model is constrained by the
absence of additional external validation through independent datasets.
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Fig. 8. Scatter plot of residuals of predicted data (2FI, SVR, RF, XGB, RANSAC) against
actual data for ABTS antioxidant activity

Development of a Graphical User Interface

To predict the antioxidant activity of an extract, the authors developed a user-
friendly graphical user interface (GUI). Figure 8 shows the schematic of the GUI. In
the GUI, users can predict the antioxidant activity of an extract by entering the
extraction temperature, time, liquid/solid ratio, and extraction factors of polyphenols
and flavonoids. The GUI efficiently generated predictions in less than 0.4 s. Leveraging
the high predictive accuracy of the XGB model, the system provides reliable results.
This framework increases the efficiency of analysis and decision making for both
researchers and industry professionals.

In preliminary experiments, the GUI-integrated antioxidant activity model
demonstrated a strong prediction probability of 0.98. In addition, the performance of
the model was further evaluated using an external dataset. At the following link the GUI
program can be downloaded (Antioxidant prediction.zip).

The XGB-based prediction model proposed in this study has the potential to
enhance the efficiency of developing antioxidant functional materials by deriving
optimal extraction conditions without the necessity of repeated experiments.
Furthermore, it can be utilized to forecast the antioxidant activity of extracts through
the implementation of measurement methods such as DPPH and FRAP.  Also, the GUI
has the capacity to simulate and predict an array of extraction conditions in real time
within R&D environments. This capability enhances the efficiency and precision of
decision-making processes.
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CLUSIONS

Based on the analysis and results presented, the study successfully developed a
predictive model for antioxidant activity using various machine learning
techniques. The extraction of antioxidant compounds from A. acerifolia was
thoroughly analyzed, with a particular focus on the relationship between input
variables and antioxidant activity.

The study highlighted the significant positive correlation between flavonoid
content and antioxidant activity, emphasizing the role of extraction temperature
on flavonoid preservation. The XGB model emerged as the most effective
predictive tool, surpassing both the 2FI model and other machine learning
algorithms such as RF and SVM in terms of prediction accuracy. The XGB
model’s ability to handle nonlinear relationships and its high R? value of 0.9805
demonstrate its robustness in predicting antioxidant activity.

This is particularly important for optimizing extraction processes and enhancing
the quality of the extracts. Moreover, the development of a user-friendly graphical
user interface (GUI) based on the XGB model allows for rapid and accurate
predictions of antioxidant activity.

This tool simplifies the decision-making process for researchers and industry
professionals, offering a practical application of the study's findings. In
conclusion, the study provides a comprehensive framework for predicting and
optimizing antioxidant activity in plant extracts, with the XGB model playing a
central role in advancing the analytical capabilities in this domain. Future research
could expand on this work by exploring additional variables and refining the
model further to enhance its applicability across different types of plant extracts.
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Table S1. Classifying Training and Test Data for Model Training

No. | Class Temperature Tir_ne Liquid/_SoIid Polyphenol Flavonoid ABTS
(°C) (min) Ratio (mgQE/g) (mgGAE/g) (%)
1 Train 80 120 20 1.13 30.68 16.09
2 Train 90 120 30 1.87 9.28 28.98
3 Train 90 60 30 0.92 9.49 12.8
4 Train 100 60 30 1.65 17.35 46.1
5 Train 80 120 20 1.37 30.92 16.1
6 Train 100 60 10 1.09 28.56 40.01
7 Train 90 90 20 1.5 25.42 13.48
8 Train 80 90 20 1.72 43.3 76.99
9 Train 90 120 20 1.28 17.55 44.28
10 | Train 100 60 30 1.93 17.63 48.61
11 | Train 90 60 20 2.21 27.8 18.12
12 | Train 80 60 20 1.13 26.37 49.54
13 | Train 100 120 20 1.10 11.28 42.28
14 | Train 80 60 20 1.85 27.09 50.36
15 | Train 90 120 30 1.09 8.5 16.72
16 | Train 90 120 10 0.80 9.75 45.8
17 | Train 100 60 10 0.77 28.24 39.76
18 | Train 90 60 30 0.89 9.46 11.45
19 | Train 80 60 10 1.50 19.14 45.75
20 | Train 90 90 30 1.58 11.85 16.84
21 | Train 80 90 10 2.55 40.66 61.22
22 | Train 100 90 30 0.36 25.50 34.70
23 | Train 90 60 30 0.95 9.52 14.15
24 | Train 90 120 10 0.70 9.65 39.88
25 | Train 90 90 20 1.70 25.62 20.62
26 | Train 80 90 30 2.61 36.01 79.29
27 | Train 80 120 30 1.85 17.32 16.10
28 | Train 90 60 20 1.57 27.16 17.6
29 | Train 80 60 30 1.62 22.19 45.84
30 | Train 100 60 30 1.37 17.07 43.59
31 | Train 80 90 30 2.01 35.41 73.47
32 | Train 80 120 10 1.05 27.60 15.10
33 | Train 100 90 20 0.86 35.40 39.07
34 | Train 80 60 30 1.43 22.00 42.70
35 | Train 90 120 20 1.80 18.07 58.78
36 | Train 100 120 20 1.46 11.64 43.44
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37 Train 100 120 10 1.00 20.30 35.13
38 | Train 80 60 20 1.49 26.73 49.95
39 | Train 90 60 10 2.30 12.61 19.22
40 Train 80 120 30 0.57 16.04 16.08
41 Train 100 90 10 1.12 8.43 34.45
42 Train 80 120 10 1.11 27.66 20.66
43 Train 100 60 20 0.78 18.72 42.76
44 Train 80 90 10 1.71 39.82 61.2
45 | Train 100 120 30 0.75 34.57 40.57
46 Train 90 120 10 0.75 9.70 42.84
47 Train 90 90 30 1.66 11.93 19.91
48 | Train 100 90 10 1.68 8.99 34.77
49 | Train 100 90 10 1.40 8.71 34.61
50 Train 90 120 20 0.76 17.03 29.78
51 Train 90 60 20 0.93 26.52 17.08
52 Train 90 90 10 0.75 12.76 64.53
53 Train 100 90 20 0.90 35.44 40.12
54 Train 90 90 10 0.82 12.83 68.33
55 | Train 100 60 10 1.41 28.88 40.26
56 Train 80 120 10 1.08 27.63 17.88
57 Train 100 120 10 1.44 20.74 38.33
58 Train 100 120 20 1.28 11.46 42.86
59 | Train 90 90 10 0.89 12.90 7213
60 | Train 100 90 20 0.82 35.36 38.02
61 Train 80 90 20 2.92 44.50 78.59
62 | Train 80 60 10 1.39 19.03 43.80
63 | Train 100 60 20 0.37 18.31 38.49
64 Train 90 90 20 1.90 25.82 27.76
65 Test 90 120 30 1.48 8.89 22.85
66 Test 100 90 30 0.62 25.76 35.60
67 Test 100 120 30 0.83 34.65 40.68
68 Test 100 90 30 0.88 26.02 36.50
69 Test 90 60 10 2.25 12.56 18.17
70 Test 80 120 20 0.89 30.44 16.08
71 Test 80 60 30 1.81 22.38 48.98
72 Test 100 60 20 1.19 19.13 47.03
73 Test 90 60 10 2.20 12.51 17.12
74 Test 80 120 30 1.21 16.68 16.09
75 Test 90 90 30 1.50 11.77 13.77
76 Test 80 90 20 2.32 43.90 77.79
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77 Test 100 120 10 1.22 20.52 36.73
78 Test 80 60 10 1.61 19.25 47.70
79 Test 80 90 30 2.31 35.71 76.38
80 Test 80 90 10 213 40.24 61.21
81 Test 100 120 30 0.67 34.49 40.46
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