
 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Pandiarajan et al. (2025). “Nano A. hystrix compos.,” BioResources 20(4), 9257-9281.  9257 

 

Enhancing Polyester Composites with Nano Aristida 
hystrix Fibers: Mechanical and Microstructural Insights 
 
Pitchai Pandiarajan,a,*  Padamathur Ganesan Baskaran,b  

Sivasubramanian Palanisamy ,c,* Manickaraj Karuppusamy ,d Kathiresan 

Marimuthu,e Anish Rajan,f Mansour I. Almansour,g Quanjin Ma,h and Saleh A Al-Farraj,g 

 
The utilization of natural fibers in polymer composites is increasingly 
popular due to their sustainability, cost-effectiveness, and favorable 
mechanical properties. This study introduces the novel use of Aristida 
hystrix fibers, processed for the first time into nano-sized particles via ball 
milling, to enhance dispersion and bonding within a polyester matrix. These 
nanoparticles were incorporated into polyester resin at various weight 
percentages (0 wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, and 9 wt%), and 
composite laminates were fabricated using solvent casting and 
compression molding techniques. Mechanical properties were evaluated 
through tensile, flexural, and impact strength tests following ASTM 
standards. The composite containing 5 wt% nano fiber exhibited the 
optimum mechanical performance, with tensile strength of 30.13 MPa, 
flexural strength of 43.685 MPa, and impact strength of 1.87 kJ/m². At 
higher fiber loadings, particle agglomeration led to performance reduction. 
Water absorption studies indicated that increased nano fiber content 
resulted in higher moisture uptake, influencing long-term durability. 
Scanning Electron Microscopy (SEM) provided insights into fiber–matrix 
interfacial behavior, dispersion quality, and fracture mechanisms. Overall, 
this work establishes the first-time development of polyester composites 
reinforced with nano Aristida hystrix fibers, demonstrating their potential as 
a sustainable and high-performance material for lightweight structural 
applications in automotive, aerospace, and marine sectors. 
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INTRODUCTION 
 

Natural fibers have garnered significant interest as reinforcing materials in polymer 

composites, outpacing synthetic fibers due to their environmental sustainability, economic 
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efficiency, widespread availability, recyclability, low density, and high specific strength 

and stiffness. Moreover, natural fibers do not inflict considerable wear on processing 

machinery, rendering them a compelling option for composite material applications 

(Thakur et al. 2010, 2014; Marichelvam et al. 2023). The application of natural fiber-

reinforced composite laminates has proliferated in many sectors, such as construction, 

aerospace, automotive, and packaging, because of its lightweight characteristics, 

renewability, and biodegradability (Satyanarayana et al. 2007; Malkapuram et al. 2009; 

Binoj et al. 2016). Nonetheless, despite their myriad advantages, natural fibers exhibit 

specific limitations, including moisture absorption, low thermal stability, incompatibility 

with polymer matrices, poor dimensional stability, and variability in mechanical properties, 

which can affect the overall performance of the composites (Rowell et al. 1997; 

Athijayamani et al. 2009; de Oliveira Braga et al. 2017; Junio et al. 2022).  

In response to these constraints, many chemical and physical treatment procedures 

have been devised. These treatments are essential for altering the fiber surface to diminish 

moisture absorption and enhance interfacial adhesion with the polymer matrix. Common 

chemical treatments encompass alkali treatment, silane treatment, acetylation, and 

benzoylation, which augment fiber-matrix adhesion, hence improving the mechanical 

performance of the composite (Bozaci et al. 2013; Sarikanat et al. 2016; Aruchamy et al. 

2025). Physical treatments, including plasma treatment, thermal treatment, and stretching, 

can enhance fiber surface roughness, hence augmenting mechanical interlocking between 

the fiber and the matrix. Nonetheless, although these treatments are efficacious, the 

discovery of novel procedures is essential to further improve the mechanical characteristics 

and durability of natural fiber composites.  

Recently, the utilization of nano-sized fiber particles as reinforcing agents has 

surfaced as a viable approach to address the intrinsic limitations of natural fibers. Material 

scientists and engineers have recognized nano fiber particles as promising reinforcements 

because of their distinctive properties, which encompass a high surface area-to-volume 

ratio, elevated aspect ratio, exceptional strength, high modulus of elasticity, diminished 

moisture absorption, and a low coefficient of thermal expansion (Naganuma and Kagawa 

2002; John and Anandjiwala 2008; Prasad et al. 2015; Thangavel et al. 2024; Manickaraj 

et al. 2025). The remarkable attributes of nano fiber-reinforced composites render them 

widely sought after for sophisticated applications in aerospace, automotive, construction, 

electrical, and electronic sectors, where superior performance and durability are imperative 

(Zhi Rong et al. 2001; Ramesh et al. 2020; Manickaraj et al. 2024b; Mylsamy et al. 2025).  

The extraction of nano fiber particles from raw fibers may be accomplished using 

several methods, including chemical vapor deposition, electrodeposition, plasma arcing, 

sol-gel synthesis, and high-energy ball milling (Chirayil et al. 2014; Palanisamy et al. 

2024). High-energy ball milling has been prominent among these technologies because of 

its simplicity, cost-effectiveness, scalability, and capacity to manufacture new materials 

with improved mechanical and physical qualities (Wypych and Satyanarayana 2005; Gokul 

et al. 2024; Aruchamy et al. 2025). This approach entails the mechanical reduction of raw 

fiber particles into nanoscale structures via repetitive impact and attrition pressures, 

assuring homogeneous particle size distribution and enhanced dispersion within the 

polymer matrix.  

This work involves the processing of Aristida hystrix raw fiber into nanofiber 

particles via the high-energy ball milling technology. Aristida hystrix, a naturally occurring 

fiber, was chosen for its advantageous mechanical qualities, accessibility, and 

sustainability.  



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Pandiarajan et al. (2025). “Nano A. hystrix compos.,” BioResources 20(4), 9257-9281.  9259 

Extensive testing was performed in accordance with ASTM standards to assess the 

mechanical properties of these composites. Tensile strength, flexural strength, and impact 

resistance were evaluated to ascertain the load-bearing capacity and durability of the 

composite laminates. Water absorption tests were conducted to evaluate the moisture 

uptake characteristics of the composites, a crucial aspect in determining their long-term 

durability and environmental resilience. Additionally, scanning electron microscopy 

(SEM) was utilized to analyze the distribution of nano fiber particles inside the matrix, 

offering insights into fiber-matrix interactions, particle distribution, and possible failure 

processes.  

The novelty of this research lies in the first-time development and investigation of 

polyester composites reinforced with nano Aristida hystrix fiber particles. Composites 

were fabricated with 0 to 9 wt% filler loading and evaluated for tensile, flexural, and impact 

strength, water absorption, and microstructural behavior (Kalimuthu et al. 2019). Particular 

emphasis was placed on identifying the optimum filler concentration that maximizes 

mechanical performance without compromising durability (Saba et al. 2014). 

By integrating a novel fiber source (Aristida hystrix) with a nanoscale processing 

route, this research contributes to advancing the field of natural fiber composites, offering 

a sustainable, lightweight, and high-performance alternative for structural and engineering 

applications (Pandiarajan et al, 2019). 

The major aim of this research is to investigate the efficacy of nano Aristida hystrix 

fiber particles as a reinforcing agent in polyester composites and to identify the best fiber 

loading that enhances mechanical performance while ensuring durability. The research is 

to enhance the existing knowledge on nano fiber-reinforced polymer composites, providing 

significant insights into the creation of high-performance and sustainable materials for 

structural uses (Syduzzaman et al. 2023).  

Industries are increasingly pursuing lightweight and eco-friendly substitutes for 

traditional materials, making the incorporation of nano-sized natural fiber reinforcements 

into polymer matrices a feasible approach to improving mechanical qualities and overall 

performance. This research highlights the significance of unique material processing 

methods and sophisticated reinforcing strategies in producing better composite materials 

applicable to many engineering fields (Arasu and Manickaraj 2025; Somasundaram et al, 

2025). This inquiry aims to position Aristida hystrix nano fiber-reinforced polyester 

composites as a viable option for next-generation composite materials, integrating 

sustainability with high-performance engineering solutions. 

 

 

EXPERIMENTAL 
 
Fiber Materials 

The fiber used in this study was derived from the leaf of the Aristida hystrix plant, 

as shown in Fig. 1A. The raw fiber was sourced from Vellakulam village, located in the 

Virudhunagar district of Tamil Nadu, India. The selection of this fiber was based on its 

availability, sustainability, and potential reinforcement properties (Ravichandran et al, 

2025). 
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Fig. 1. A. Aristida hystrix plant fiber; B. Extracted and dried macro fiber 
 

Matrix Material 
This research employed unsaturated polyester resin as the matrix material. The 

resin, procured from GVR Traders in Madurai, exhibited a density of 1258 kg/m³ and a 

viscosity of 500 cps at 25 °C. The curing process was facilitated with Methyl Ethyl Ketone 

Peroxide (MEKP) as the catalyst and acetone as the accelerator. Unsaturated polyester 

was selected due to its superior mechanical performance, ease of processing, and 

compatibility with natural fiber reinforcements (Karuppusamy et al. 2025). 

 
Methods 

The methodology of this study consists of three key steps: extraction of macro 

fiber from Aristida hystrix plant leaves, synthesis of nano fiber particles from macro fiber, 

and preparation of nano fiber-reinforced polyester composite laminates. These processes 

are detailed below (Manickaraj et al. 2025a). 

 

Extraction of Macro Fiber 
Macro fibers were manually harvested from the leaves of the Aristida hystrix plant 

(Fig. 1B). The fibers were carefully isolated to maintain strand integrity and then naturally 

dried at ambient temperature for four days to minimize moisture content. Proper drying 

was crucial for improving fiber–matrix adhesion during composite fabrication. The dried 

fibers were subsequently stored under controlled conditions to prevent reabsorption of 

moisture (Gurusamy et al. 2025). 

 

Preparation of Nano Fiber Particles 

The dried macro fibers were processed into nano-sized particles using a high-

energy ball milling technique (Model: PM 100, Retsch, Germany). Ball milling was 

selected for its efficiency in reducing fiber size, achieving uniform distribution, and 

enhancing fiber–matrix interfacial bonding (Karuppusamy et al. 2025a). The process 

operated through the combined effects of impact and friction generated by tungsten 

carbide balls colliding with the chamber walls, as shown in Fig. 2A. The reverse rotation 

of the supporting disc further intensified the crushing effect, reducing the fibers to 

nanoscale particles. Milling parameters such as speed, time (10 h), and ball-to-fiber ratio 

were optimized to obtain nano-sized particles without compromising the intrinsic 

mechanical properties of the fiber. The resultant nano Aristida hystrix fiber (AHF) 

particles are shown in Fig. 2B. 
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Fig. 2. A. Working principle of ball; B. Nano fiber particles after 10 h of milling process 

 

Fabrication of Nano AHF/Polyester Composites 
Nano fiber particles were integrated into polyester resin at different weight 

percentages (0%, 1%, 3%, 5%, 7%, and 9%) to produce composite laminates using solvent 

casting and compression molding. These approaches guarantee consistent fiber 

distribution and flawless laminates. The nano Aristida hystrix fiber (AHF) particles were 

initially combined with acetone, serving as an accelerator, and subsequently incorporated 

into the polyester matrix. The mixture was sustained at 65 to 75 °C and agitated constantly 

with a mechanical stirrer for uniform dispersion. The mixture was thereafter put into a 

steel mold measuring 260 × 220 × 3 mm³ and distributed uniformly. The mold underwent 

compression at 12 MPa, and the resin was let to cure for 30 h at ambient temperature. The 

fabricated composite plates are seen in Fig. 3 (A through F). The composites were 

subjected to mechanical testing, including evaluations of tensile, flexural, and impact 

strength, in accordance with ASTM standards. Water absorption experiments were 

performed to evaluate moisture resistance, while SEM analysis investigated fiber 

dispersion and interfacial adhesion (Manickaraj et al. 2025b). The prepared composites 

are shown in Fig. 3.  

 

Rotation of the grinding ball 
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Fig. 3. Composite plates: A. 0%; B. 1%; C. 3%; D. 5%; E. 7%; F. 9% 
 

Mechanical Testing of Composite Laminates 
The prepared composite laminates underwent various mechanical testing to 

investigate their mechanical properties as per ASTM standards. The testing methods were 

explained below. 

 

Tensile Test (ASTM D638-14 2022) 
The tensile properties, including tensile strength, tensile modulus, and elongation 

at break, for the different weight percentages of composite plates were assessed using the 

KALPAK, KIC-2, 100 C universal testing machine. The ASTM D638-14 (2022) type-I 

method is employed for conducting tensile testing (Farah et al. 2016; Gurusamy et al. 

2024; Manickaraj et al. 2024a). The measurements of the specimens are 165 x 13 x 3 

mm³. Fig 4A illustrates the testing specimens. The specimen was secured within the 

tensile testing machine, featuring a gauge length of 50 mm, as illustrated in Fig. 4B. The 

test involves applying a tensile load to the specimen until fracture occurs, conducted at a 

cross-head speed of 2mm/min. Three samples were analyzed to ensure precise outcomes.  
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Fig. 4. A. Tensile testing samples; B. Tensile testing machine 

 

Flexural Test (ASTM D790 2017) 
The flexural characteristics of nano-reinforced Aristida hystrix were evaluated by 

the three-point bending test technique, adhering to ASTM D790-17 (2017), with the use 

of a universal testing machine (Dasari et al. 2009; Kapil Dev et al. 2022). The specimen 

measurements for this test are 127 x 12.7 x 3.2 mm³. The specimen is positioned 

horizontally on two supports of the testing apparatus, with a gauge length of 63 mm, as 

seen in Fig. 5A. The crosshead speed is uniformly established at 2 mm/min.  

 

 

Fig. 5. A. Flexural testing samples; B. Impact testing machine 
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Impact Test (ASTM D256 2023) 
The impact test was conducted using the Izod impact setup within the impact 

testing apparatus, as illustrated in Fig. 5B. The ASTM D256-23 (2023) standard is utilized 

for conducting impact testing (Zhang et al. 2015; Melkamu et al. 2019). The dimensions 

of the testing specimen were 65 x 13 x 3 mm³, and featured a notch cut at a 45° angle to 

a depth of 2.6 mm. The impact pendulum struck the notched specimen until it fractured, 

allowing for the measurement of the energy absorbed by the material.  

 

Morphological Study 
The fracture surfaces of Nano AHF composites were analyzed using a scanning 

electron microscope (VEGA TESCAN, Brno, Czech Republic). To improve imaging 

quality, the samples were sputter-coated with gold, allowing clear visualization of fiber 

dispersion and matrix bonding at various loadings. 

 

Water Absorption Test (ASTM D570 2022) 
The research examined the water absorption properties of Nano AH fiber 

reinforced composite laminates, performed in compliance with ASTM Standard D570-

22. The dimensions of the sample size are 20 x 20 x 2mm³, as seen in Fig. 6. The samples 

were subjected to an oven at 50 °C for 1 h to remove moisture content. The specimens 

were immersed in distilled water at room temperature for 24 h. After immersion in water, 

the specimens were promptly removed and weighed at regular intervals of every 2 h. To 

ascertain the volume of water absorbed by the specimens, they were dried using absorbent 

paper and then reweighed using an accurate four-digit scale. The percentage of water 

absorption is calculated using the following formulae, 

Moisture absorption (%) =
𝑊𝑠2 − 𝑊𝑠1

𝑊𝑠1
𝑥 100 

where Ws1 is the weight (g) of the samples before immersion in water and Ws2 is the 

weight (g) of the samples after immersion in water. 

 

 

 
Fig. 6. Water absorption test samples 
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RESULTS AND DISCUSSION 
Mechanical Properties 

The mechanical properties, including tensile strength, tensile modulus, percentage 

of elongation, flexural strength and modulus, impact strength, and water absorption test, of 

AH nano fiber reinforced composite laminates were evaluated according to ASTM 

standards. The morphological investigation was conducted to examine the fiber matrix 

interaction of the fractured composite samples during the tensile test. The fractured 

specimens are shown in Fig. 7 (A through C) and findings and discussions are presented 

below. 

 

 
Fig. 7. Fractured Specimens: A-Tensile; B- Flexural; C- İmpact 
 

Tensile Properties 
The tensile behavior of polyester composites reinforced with different weight 

percentages of Aristida hystrix (AH) nano fiber particles (0, 1, 3, 5, 7, and 9 wt%) was 

investigated to determine tensile strength, tensile modulus, and elongation. All specimens 

fractured within the gauge length during testing (Fig. 7A). The interfacial adhesion 

between nano fiber particles and the polyester matrix plays a decisive role in governing 

tensile performance (Raja et al. 2021; Palanisamy et al. 2023). 
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Influence on Tensile Strength 
The pure polyester laminate exhibited a tensile strength of 13.01 MPa. With 

incremental nano fiber loading, tensile strength steadily increased, reaching a maximum of 

30.13 MPa at 5 wt% (Fig. 8A), corresponding to a 2.315-fold improvement over the neat 

matrix (Kathirselvam et al. 2019; Raju et al. 2021). This enhancement can be attributed to 

the uniform dispersion of nanoparticles at moderate loading, which facilitated effective 

stress transfer and reduced matrix-dominated failures (Cai et al. 2021). SEM analysis of 

the fractured surfaces revealed well-dispersed nano fibers embedded within the resin at 5 

wt%, supporting the presence of strong interfacial adhesion and crack-bridging 

phenomena. 

Beyond this threshold, the tensile strength declined to 29.28 MPa and 13.25 MPa 

at 7 wt% and 9 wt%, respectively. The reduction correlates with SEM observations of 

nanoparticle clustering and void formation, which created localized stress concentrations 

that acted as crack initiation sites. Thus, the results demonstrate that the optimum tensile 

strength arises from a balance between uniform dispersion and interfacial adhesion, which 

is disrupted at higher loadings due to agglomeration. 
 

Influence on Tensile Modulus and Elongation 
The tensile modulus exhibited a similar increasing trend up to 5 wt% fiber content 

before declining with higher loadings (Fig. 8B). The improved stiffness at 5 wt% is 

consistent with uniform nanoparticle reinforcement within the polyester matrix, which 

effectively restricted polymer chain mobility (Nayak et al. 2016; Jenish et al. 2022). 

However, excessive fiber loading led to particle agglomeration and poor stress distribution, 

lowering modulus values. Elongation decreased progressively with increasing fiber 

loading, indicating that nano fiber reinforcement reduced ductility by restricting polymer 

chain deformation. At 5 wt%, the matrix retained a favorable balance of stiffness and 

limited strain capacity, consistent with SEM observations of crack resistance without 

excessive brittleness (Athith et al. 2018; Karuppiah et al. 2020, 2022). 
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Fig. 8. Effect of fiber loading with respect to: A. Tensile Strength; B. Tensile modulus and % of 
elongation 
 

A 

B 
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Flexural Properties 
Flexural strength and modulus were determined using a three-point bending test, 

where all specimens fractured within the span length, confirming the test reliability (Fig. 

7B). The neat polyester composite exhibited a flexural strength of 28.025 MPa, 

highlighting the inherent brittleness and limited load-bearing ability of the unreinforced 

resin. Upon addition of Aristida hystrix nano fibers, a clear improvement in flexural 

behavior was observed up to an optimum loading. At 1 wt% and 3 wt% reinforcement, 

flexural strength increased steadily, reflecting the positive contribution of fibers to crack 

resistance and bending load distribution (Joseph et al. 2002; Ramesh et al. 2020; 

Sethuraman et al. 2020). The highest flexural strength of 43.685 MPa was achieved at 5 

wt%, corresponding to a ~56% enhancement compared with the neat polyester resin (Fig. 

9A). This significant improvement is attributed to the establishment of a strong interfacial 

bond between the fibers and matrix, which promoted effective stress transfer, reduced 

localized strain accumulation, and enhanced the composite’s overall bending resistance. 

SEM micrographs supported this interpretation by revealing a well-bonded interface at 5 

wt%, with fewer interfacial gaps and reduced microvoids. Evidence of fiber pull-out, crack 

pinning, and crack deflection was noted, all of which contributed to energy dissipation and 

delayed catastrophic failure during bending. These mechanisms indicate that, at optimum 

fiber dispersion, the reinforcement not only strengthens but also toughens the matrix. 

However, with further increases in loading to 7 wt% and 9 wt%, flexural strength dropped 

to 42.884 MPa and 38.344 MPa, respectively. The decline is mainly attributed to 

nanoparticle agglomeration and inadequate resin wetting, which created weak points 

within the microstructure. Such agglomerates acted as stress raisers under bending loads, 

leading to localized stress concentration, premature crack initiation, and compromised 

load-bearing efficiency.  

The flexural modulus (Fig. 9B).  results exhibited a similar trend, reflecting the 

balance between stiffness and dispersion quality. The neat resin recorded a modulus of 

1284.311 MPa, which improved consistently with fiber addition, reaching 1798.715 MPa 

at 5 wt%. This increase in stiffness confirms that the presence of well-dispersed nano fibers 

restricts polymer chain mobility and enhances the rigidity of the composite system. 

However, further fiber addition caused a slight reduction in modulus, with values dropping 

to 1782.349 MPa and 1658.714 MPa at 7 wt% and 9 wt%, respectively (Ogunleye et al. 

2022; Salama et al. 2022). This reduction can be linked to fiber clustering and poor resin 

continuity, which limits the effective stress distribution and disrupts the homogeneous 

stiffness of the composite. Overall, these findings confirm that optimum flexural properties 

are achieved at 5 wt% reinforcement, where efficient fiber–matrix bonding and uniform 

dispersion are attained. Beyond this threshold, the benefits of reinforcement are 

counteracted by microstructural irregularities, demonstrating the importance of controlling 

fiber loading to balance strength, stiffness, and processing uniformity. 
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Fig. 9. Effect of fiber loading with respect A. flexural strength and B. flexural modulus 

 
Impact Strength 

The Charpy impact test (Fig. 7C) was employed to evaluate the energy absorption 

capacity of the composites under sudden loading conditions, thereby providing critical 

insights into their toughness, crack initiation resistance, and ability to dissipate dynamic 

stresses (Liang 2002; Faruk et al. 2014; Prasad et al. 2023). The neat polyester composite 

exhibited a relatively low impact strength of 1.45 KJ/m², which is characteristic of the 

A 

B 
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inherently brittle behavior of unreinforced thermoset resins, where crack propagation 

occurs with minimal energy absorption. Upon the incorporation of Aristida hystrix nano 

fibers, a progressive enhancement in impact performance was observed. At 1 wt% fiber 

loading, the impact strength improved to 1.57 KJ/m², indicating that even a small amount 

of reinforcement was sufficient to introduce localized toughening mechanisms such as 

crack pinning and limited fiber bridging. At 3 wt% loading, the impact strength further 

increased to 1.79 KJ/m², demonstrating the increasing role of fiber–matrix interaction in 

arresting crack propagation and dissipating impact energy. The maximum performance 

was achieved at 5 wt% fiber loading, with an impact strength of 1.87 KJ/m² (Fig. 10), 

corresponding to an enhancement of nearly 29% compared to neat polyester. This notable 

improvement is attributed to the homogeneous dispersion of nano fibers, which provided 

multiple crack-bridging sites and facilitated deflection of crack paths. Such mechanisms 

not only prolonged the crack propagation route but also required higher energy input for 

fracture, thereby significantly improving the overall toughness of the composite (Ikubanni 

et al. 2017; Padmanabhan et al. 2024). SEM observations further corroborated this 

explanation, revealing a well-integrated morphology at 5 wt% fiber loading. The 

micrographs displayed reduced voids, effective resin wetting, and uniform fiber 

distribution, all of which are essential for achieving strong interfacial adhesion and efficient 

stress transfer. The microstructural integrity at this loading created a synergistic effect 

between the resin and fibers, where the matrix restricted fiber pull-out while the fibers 

acted as barriers to crack advancement. This synergy effectively enhanced energy 

absorption under sudden loading, explaining the peak performance at this concentration. 

However, beyond the optimal threshold, a deterioration in impact strength was 

observed. At 7 wt% and 9 wt% fiber loadings, the values dropped to 1.36 KJ/m² and 1.30 

KJ/m², respectively. This decline can be explained by the agglomeration of fibers at higher 

concentrations, which disrupted uniform stress distribution within the matrix. The fiber 

clusters acted as stress concentrators and micro-defect sites, reducing the efficiency of load 

transfer and providing easy routes for crack initiation. Additionally, excessive fibers 

reduced the availability of resin for proper wetting and encapsulation, thereby weakening 

the fiber–matrix interface. The poor interfacial adhesion facilitated premature crack 

initiation and accelerated crack propagation under impact loading (Vivek and Kanthavel 

2019; Yang et al. 2020). Thus, while the incorporation of Aristida hystrix nano fibers was 

effective in enhancing the impact toughness of polyester composites up to an optimum 

level, exceeding this reinforcement limit resulted in compromised structural integrity. This 

behavior underscores the critical importance of controlling fiber loading and dispersion to 

balance toughness, adhesion, and energy absorption capacity in polymer nanocomposites. 
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Fig. 10. Effect of fiber loading with respect ımpact strength 
 

Water Absorption 
The water absorption behavior of nano Aristida hystrix fiber-reinforced polyester 

composites was systematically examined over a 24-h immersion period (Fig. 11). The 

results revealed a clear correlation between fiber loading and water uptake, with higher 

fiber incorporation consistently leading to increased moisture absorption (Sanjeevi et al. 

2021; Prasad et al. 2023). The neat polyester resin (0 wt% fiber) exhibited the lowest 

absorption value of 0.8%, reflecting the inherent hydrophobicity of the polyester matrix, 

which resists moisture ingress. Upon addition of nano fibers, a gradual increase in water 

uptake was observed. At 1 wt% and 3 wt%, the absorption values rose modestly to 0.86% 

and 0.95%, respectively. This minor rise can be attributed to the limited hydrophilic sites 

introduced by the small fraction of fibers, which slightly enhanced the capillary pathways 

for water diffusion (Gurunathan et al. 2022). 

At higher fiber loadings, however, the effect became much more pronounced. The 

water absorption values reached 1.46% at 5 wt%, 1.78% at 7 wt%, and 2.12% at 9 wt%. 

These increments are primarily due to two key factors: (i) the increased volume fraction of 

hydrophilic cellulose-rich fibers, which readily form hydrogen bonds with water 

molecules, and (ii) the higher probability of microvoid formation at elevated fiber contents, 

which provides additional free pathways for water ingress (Lu et al. 2022). SEM analysis 

further corroborated this, as composites with 7 to 9 wt% loadings exhibited visible fiber 

pull-outs and microcracks, acting as channels for moisture penetration. The observed trend 

highlights the classic strength–durability trade-off encountered in natural fiber-reinforced 

composites. While the inclusion of nano fibers significantly improves mechanical 

performance, it simultaneously elevates water absorption, which could compromise long-

term stability in humid or aqueous service conditions. To ensure long-term performance in 

applications requiring dimensional stability and environmental resistance, moisture 

mitigation strategies become essential Thus, although A. hystrix nano fibers enhanced the 
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overall mechanical characteristics of polyester composites, their hydrophilic nature 

inevitably elevated water absorption, underscoring the importance of optimizing fiber 

surface chemistry and composite design for real-world applications. 

 
Fig. 11. Effect of fibre loading with respect to Water uptake behaviour for 12 h 
 

Scanning Electron Microscopy  
The interfacial behaviour of the fiber-matrix interaction in the fractured surfaces of 

tensile-tested specimens was analysed using scanning electron microscopy (SEM) to 

elucidate the failure mechanisms. Figure 12 (A through F) displays the SEM images of 

composites featuring varying fibre loadings, offering insights into the fracture behaviour 

(Sharma et al. 2021; Palanisamy et al. 2022).  Figure 12(A) illustrates the fractured surface 

of the 0 wt% fibre composite, characterised by a rough and uneven morphology. This 

observation suggests brittle failure, a common trait of pure resin composites. The lack of 

reinforcing fibres leads to reduced energy absorption and sudden fracture when subjected 

to tensile loading (Kathirselvam et al. 2019; Vinod et al. 2021).  

The addition of 1 wt% and 3 wt% nano fibre particles, as illustrated in Figs. 12(B) 

and 12(C), results in fractured surfaces that exhibit enhanced smoothness, indicating a 

potential improvement in the ductile behaviour of the composites. The incorporation of 

fibre reinforcement facilitates improved stress distribution, mitigates brittleness, and 

enhances the composite's capacity for plastic deformation prior to failure (Bay and Eryıldız 

2024).  At 5 wt% fibre loading, which demonstrated the highest mechanical performance, 

the SEM image in Fig. 12(D) shows a more uniform fracture surface characterised by 

smooth regions interspersed with minor irregularities. This demonstrates optimal fibre 
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dispersion and robust interfacial adhesion, which efficiently transferred the applied load 

from the fibre to the matrix. The increased elongation at break noted in this composition 

further indicates the enhanced toughness and ductility of the composite (Raju et al. 2021; 

Palanisamy et al. 2022; Shiferaw et al. 2023).  

As the fibre content increased to 7 wt% and 9 wt%, Figs. 12(E) and 12(F) illustrate 

rough and highly fractured surfaces, indicating a return to brittle failure. The high fibre 

content resulted in fibre agglomeration and inadequate interfacial bonding, which caused 

stress concentration points within the composite (Pandit et al. 2017; Bledzki et al. 2021; 

Palanisamy et al. 2021). The tensile properties were compromised, as the fibres could not 

adequately support load-bearing, resulting in early failure. The SEM analysis indicates that 

fibre loading has a significant impact on the fracture behaviour of composites. Moderate 

fibre reinforcement at 5 wt% improves ductility and mechanical strength. However, an 

excessive fibre content of 7 wt% or more negatively affects interfacial bonding, resulting 

in brittleness and diminished performance. 

 

 

Fig. 12. Morphological analysis of tensile tested fractured specimen to: A- 0 wt%; B- 1 wt%; C- 3 
wt%; D- 5 wt%; E- 7 wt%; F- 9 wt% composites 
 

 
CONCLUSIONS 
 

Aristida hystrix (AH) nano fiber-reinforced polyester composites were tested for 

mechanical qualities using ASTM standards.   The investigation showed that composites 

reinforced with 5 wt% nano AH fibres performed better than others. Morphological 
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research confirmed high fiber-matrix adhesion as the enhancer.  

1. Tensile, flexural, and impact strengths of 5 wt% nano fibre composites were 

measured at 30.13 MPa, 43.685 MPa, and 1.87 KJ/m², respectively. The values are 

2.3, 1.5, and 1.29 times higher than pure polyester composites.  Tensile and flexural 

moduli for 5 wt% fibre loading were 1106.442 MPa and 1798.715 MPa, 

respectively, suggesting increased stiffness compared to composites with lower and 

higher fibre concentrations. The 5 wt% composite had a maximum elongation of 

3.2%, balancing strength and ductility.  

2. Nano fibre particles in polyester matrix increased moisture uptake in water 

absorption tests.  This trend shows that nano fibres increase mechanical capabilities 

but also introduce hydrophilic features that must be considered in moisture-resistant 

applications. 

3. SEM revealed fibre dispersion and interfacial bonding. At 5 wt% fibre loading, 

nano fibres were evenly distributed in the matrix, enabling stress transmission.   

Increased fibre content over 5 wt% caused aggregation and poor fiber-matrix 

adherence, reducing mechanical performance. These composites have voids and 

weak surfaces, confirming the negative impact of high fibre content.  

4. Experimental results show that nano-sized Aristida hystrix fibre particles may 

strengthen polymer composites.  Mechanical qualities improve with 5 wt%, making 

them suitable for lightweight, high-performance composites.  Nano natural fibres 

may be used to make sustainable composites for automotive, aerospace, and 

construction applications, according to this research. 
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