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Enhancing Polyester Composites with Nano Aristida
hystrix Fibers: Mechanical and Microstructural Insights
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The utilization of natural fibers in polymer composites is increasingly
popular due to their sustainability, cost-effectiveness, and favorable
mechanical properties. This study introduces the novel use of Aristida
hystrix fibers, processed for the first time into nano-sized particles via ball
milling, to enhance dispersion and bonding within a polyester matrix. These
nanoparticles were incorporated into polyester resin at various weight
percentages (0 wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, and 9 wt%), and
composite laminates were fabricated using solvent casting and
compression molding techniques. Mechanical properties were evaluated
through tensile, flexural, and impact strength tests following ASTM
standards. The composite containing 5 wt% nano fiber exhibited the
optimum mechanical performance, with tensile strength of 30.13 MPa,
flexural strength of 43.685 MPa, and impact strength of 1.87 kJ/m2. At
higher fiber loadings, particle agglomeration led to performance reduction.
Water absorption studies indicated that increased nano fiber content
resulted in higher moisture uptake, influencing long-term durability.
Scanning Electron Microscopy (SEM) provided insights into fiber—matrix
interfacial behavior, dispersion quality, and fracture mechanisms. Overall,
this work establishes the first-time development of polyester composites
reinforced with nano Aristida hystrix fibers, demonstrating their potential as
a sustainable and high-performance material for lightweight structural
applications in automotive, aerospace, and marine sectors.
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INTRODUCTION

Natural fibers have garnered significant interest as reinforcing materials in polymer
composites, outpacing synthetic fibers due to their environmental sustainability, economic
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efficiency, widespread availability, recyclability, low density, and high specific strength
and stiffness. Moreover, natural fibers do not inflict considerable wear on processing
machinery, rendering them a compelling option for composite material applications
(Thakur et al. 2010, 2014; Marichelvam et al. 2023). The application of natural fiber-
reinforced composite laminates has proliferated in many sectors, such as construction,
aerospace, automotive, and packaging, because of its lightweight characteristics,
renewability, and biodegradability (Satyanarayana et al. 2007; Malkapuram et al. 2009;
Binoj ef al. 2016). Nonetheless, despite their myriad advantages, natural fibers exhibit
specific limitations, including moisture absorption, low thermal stability, incompatibility
with polymer matrices, poor dimensional stability, and variability in mechanical properties,
which can affect the overall performance of the composites (Rowell et al. 1997,
Athijayamani et al. 2009; de Oliveira Braga ef al. 2017; Junio et al. 2022).

In response to these constraints, many chemical and physical treatment procedures
have been devised. These treatments are essential for altering the fiber surface to diminish
moisture absorption and enhance interfacial adhesion with the polymer matrix. Common
chemical treatments encompass alkali treatment, silane treatment, acetylation, and
benzoylation, which augment fiber-matrix adhesion, hence improving the mechanical
performance of the composite (Bozaci et al. 2013; Sarikanat ef al. 2016; Aruchamy et al.
2025). Physical treatments, including plasma treatment, thermal treatment, and stretching,
can enhance fiber surface roughness, hence augmenting mechanical interlocking between
the fiber and the matrix. Nonetheless, although these treatments are efficacious, the
discovery of novel procedures is essential to further improve the mechanical characteristics
and durability of natural fiber composites.

Recently, the utilization of nano-sized fiber particles as reinforcing agents has
surfaced as a viable approach to address the intrinsic limitations of natural fibers. Material
scientists and engineers have recognized nano fiber particles as promising reinforcements
because of their distinctive properties, which encompass a high surface area-to-volume
ratio, elevated aspect ratio, exceptional strength, high modulus of elasticity, diminished
moisture absorption, and a low coefficient of thermal expansion (Naganuma and Kagawa
2002; John and Anandjiwala 2008; Prasad et al. 2015; Thangavel et al. 2024; Manickaraj
et al. 2025). The remarkable attributes of nano fiber-reinforced composites render them
widely sought after for sophisticated applications in aerospace, automotive, construction,
electrical, and electronic sectors, where superior performance and durability are imperative
(Zhi Rong et al. 2001; Ramesh et al. 2020; Manickaraj et al. 2024b; Mylsamy et al. 2025).

The extraction of nano fiber particles from raw fibers may be accomplished using
several methods, including chemical vapor deposition, electrodeposition, plasma arcing,
sol-gel synthesis, and high-energy ball milling (Chirayil et al. 2014; Palanisamy et al.
2024). High-energy ball milling has been prominent among these technologies because of
its simplicity, cost-effectiveness, scalability, and capacity to manufacture new materials
with improved mechanical and physical qualities (Wypych and Satyanarayana 2005; Gokul
et al. 2024; Aruchamy et al. 2025). This approach entails the mechanical reduction of raw
fiber particles into nanoscale structures via repetitive impact and attrition pressures,
assuring homogeneous particle size distribution and enhanced dispersion within the
polymer matrix.

This work involves the processing of Aristida hystrix raw fiber into nanofiber
particles via the high-energy ball milling technology. Aristida hystrix, a naturally occurring
fiber, was chosen for its advantageous mechanical qualities, accessibility, and
sustainability.
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Extensive testing was performed in accordance with ASTM standards to assess the
mechanical properties of these composites. Tensile strength, flexural strength, and impact
resistance were evaluated to ascertain the load-bearing capacity and durability of the
composite laminates. Water absorption tests were conducted to evaluate the moisture
uptake characteristics of the composites, a crucial aspect in determining their long-term
durability and environmental resilience. Additionally, scanning electron microscopy
(SEM) was utilized to analyze the distribution of nano fiber particles inside the matrix,
offering insights into fiber-matrix interactions, particle distribution, and possible failure
processes.

The novelty of this research lies in the first-time development and investigation of
polyester composites reinforced with nano Aristida hystrix fiber particles. Composites
were fabricated with 0 to 9 wt% filler loading and evaluated for tensile, flexural, and impact
strength, water absorption, and microstructural behavior (Kalimuthu et al. 2019). Particular
emphasis was placed on identifying the optimum filler concentration that maximizes
mechanical performance without compromising durability (Saba ef al. 2014).

By integrating a novel fiber source (Aristida hystrix) with a nanoscale processing
route, this research contributes to advancing the field of natural fiber composites, offering
a sustainable, lightweight, and high-performance alternative for structural and engineering
applications (Pandiarajan ef al/, 2019).

The major aim of this research is to investigate the efficacy of nano Aristida hystrix
fiber particles as a reinforcing agent in polyester composites and to identify the best fiber
loading that enhances mechanical performance while ensuring durability. The research is
to enhance the existing knowledge on nano fiber-reinforced polymer composites, providing
significant insights into the creation of high-performance and sustainable materials for
structural uses (Syduzzaman et al. 2023).

Industries are increasingly pursuing lightweight and eco-friendly substitutes for
traditional materials, making the incorporation of nano-sized natural fiber reinforcements
into polymer matrices a feasible approach to improving mechanical qualities and overall
performance. This research highlights the significance of unique material processing
methods and sophisticated reinforcing strategies in producing better composite materials
applicable to many engineering fields (Arasu and Manickaraj 2025; Somasundaram et a/,
2025). This inquiry aims to position Aristida hystrix nano fiber-reinforced polyester
composites as a viable option for next-generation composite materials, integrating
sustainability with high-performance engineering solutions.

EXPERIMENTAL

Fiber Materials

The fiber used in this study was derived from the leaf of the Aristida hystrix plant,
as shown in Fig. 1A. The raw fiber was sourced from Vellakulam village, located in the
Virudhunagar district of Tamil Nadu, India. The selection of this fiber was based on its

availability, sustainability, and potential reinforcement properties (Ravichandran et al,
2025).
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Fig. 1. A. Aristida hystrix plant fiber; B. Extracted and dried macro fiber

Matrix Material

This research employed unsaturated polyester resin as the matrix material. The
resin, procured from GVR Traders in Madurai, exhibited a density of 1258 kg/m? and a
viscosity of 500 cps at 25 °C. The curing process was facilitated with Methyl Ethyl Ketone
Peroxide (MEKP) as the catalyst and acetone as the accelerator. Unsaturated polyester
was selected due to its superior mechanical performance, ease of processing, and
compatibility with natural fiber reinforcements (Karuppusamy et al. 2025).

Methods

The methodology of this study consists of three key steps: extraction of macro
fiber from Aristida hystrix plant leaves, synthesis of nano fiber particles from macro fiber,
and preparation of nano fiber-reinforced polyester composite laminates. These processes
are detailed below (Manickaraj ef al. 2025a).

Extraction of Macro Fiber

Macro fibers were manually harvested from the leaves of the Aristida hystrix plant
(Fig. 1B). The fibers were carefully isolated to maintain strand integrity and then naturally
dried at ambient temperature for four days to minimize moisture content. Proper drying
was crucial for improving fiber—matrix adhesion during composite fabrication. The dried
fibers were subsequently stored under controlled conditions to prevent reabsorption of
moisture (Gurusamy et al. 2025).

Preparation of Nano Fiber Particles

The dried macro fibers were processed into nano-sized particles using a high-
energy ball milling technique (Model: PM 100, Retsch, Germany). Ball milling was
selected for its efficiency in reducing fiber size, achieving uniform distribution, and
enhancing fiber—matrix interfacial bonding (Karuppusamy et al. 2025a). The process
operated through the combined effects of impact and friction generated by tungsten
carbide balls colliding with the chamber walls, as shown in Fig. 2A. The reverse rotation
of the supporting disc further intensified the crushing effect, reducing the fibers to
nanoscale particles. Milling parameters such as speed, time (10 h), and ball-to-fiber ratio
were optimized to obtain nano-sized particles without compromising the intrinsic
mechanical properties of the fiber. The resultant nano Aristida hystrix fiber (AHF)
particles are shown in Fig. 2B.
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Rotation of the grinding ball

Fig. 2. A. Working principle of ball; B. Nano fiber particles after 10 h of milling process

Fabrication of Nano AHF/Polyester Composites

Nano fiber particles were integrated into polyester resin at different weight
percentages (0%, 1%, 3%, 5%, 7%, and 9%) to produce composite laminates using solvent
casting and compression molding. These approaches guarantee consistent fiber
distribution and flawless laminates. The nano Aristida hystrix fiber (AHF) particles were
initially combined with acetone, serving as an accelerator, and subsequently incorporated
into the polyester matrix. The mixture was sustained at 65 to 75 °C and agitated constantly
with a mechanical stirrer for uniform dispersion. The mixture was thereafter put into a
steel mold measuring 260 x 220 x 3 mm? and distributed uniformly. The mold underwent
compression at 12 MPa, and the resin was let to cure for 30 h at ambient temperature. The
fabricated composite plates are seen in Fig. 3 (A through F). The composites were
subjected to mechanical testing, including evaluations of tensile, flexural, and impact
strength, in accordance with ASTM standards. Water absorption experiments were
performed to evaluate moisture resistance, while SEM analysis investigated fiber
dispersion and interfacial adhesion (Manickaraj et al. 2025b). The prepared composites
are shown in Fig. 3.
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Fig. 3. Composite plates: A. 0%; B. 1%; C. 3%; D. 5%; E. 7%; F. 9%

Mechanical Testing of Composite Laminates

The prepared composite laminates underwent various mechanical testing to
investigate their mechanical properties as per ASTM standards. The testing methods were
explained below.

Tensile Test (ASTM D638-14 2022)

The tensile properties, including tensile strength, tensile modulus, and elongation
at break, for the different weight percentages of composite plates were assessed using the
KALPAK, KIC-2, 100 C universal testing machine. The ASTM D638-14 (2022) type-I
method is employed for conducting tensile testing (Farah et al. 2016; Gurusamy et al.
2024; Manickaraj et al. 2024a). The measurements of the specimens are 165 x 13 x 3
mm?. Fig 4A illustrates the testing specimens. The specimen was secured within the
tensile testing machine, featuring a gauge length of 50 mm, as illustrated in Fig. 4B. The
test involves applying a tensile load to the specimen until fracture occurs, conducted at a
cross-head speed of 2mm/min. Three samples were analyzed to ensure precise outcomes.
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Fig. 4. A. Tensile testing samples; B. Tensile testing machine

Flexural Test (ASTM D790 2017)

The flexural characteristics of nano-reinforced Aristida hystrix were evaluated by
the three-point bending test technique, adhering to ASTM D790-17 (2017), with the use
of a universal testing machine (Dasari et al. 2009; Kapil Dev et al. 2022). The specimen
measurements for this test are 127 x 12.7 x 3.2 mm?. The specimen is positioned
horizontally on two supports of the testing apparatus, with a gauge length of 63 mm, as
seen in Fig. SA. The crosshead speed is uniformly established at 2 mm/min.

Fig. 5. A. Flexural testing samples; B. Impact testing machine
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Impact Test (ASTM D256 2023)

The impact test was conducted using the Izod impact setup within the impact
testing apparatus, as illustrated in Fig. 5B. The ASTM D256-23 (2023) standard is utilized
for conducting impact testing (Zhang et al. 2015; Melkamu et al. 2019). The dimensions
of the testing specimen were 65 x 13 x 3 mm?, and featured a notch cut at a 45° angle to
a depth of 2.6 mm. The impact pendulum struck the notched specimen until it fractured,
allowing for the measurement of the energy absorbed by the material.

Morphological Study

The fracture surfaces of Nano AHF composites were analyzed using a scanning
electron microscope (VEGA TESCAN, Brno, Czech Republic). To improve imaging
quality, the samples were sputter-coated with gold, allowing clear visualization of fiber
dispersion and matrix bonding at various loadings.

Water Absorption Test (ASTM D570 2022)

The research examined the water absorption properties of Nano AH fiber
reinforced composite laminates, performed in compliance with ASTM Standard D570-
22. The dimensions of the sample size are 20 x 20 x 2mm?, as seen in Fig. 6. The samples
were subjected to an oven at 50 °C for 1 h to remove moisture content. The specimens
were immersed in distilled water at room temperature for 24 h. After immersion in water,
the specimens were promptly removed and weighed at regular intervals of every 2 h. To
ascertain the volume of water absorbed by the specimens, they were dried using absorbent
paper and then reweighed using an accurate four-digit scale. The percentage of water
absorption is calculated using the following formulae,

Ws2 — Ws1

Moisture absorption (%) = sl ¥ 100

where Wsl is the weight (g) of the samples before immersion in water and Ws2 is the
weight (g) of the samples after immersion in water.

Fig. 6. Water absorption test samples
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RESULTS AND DISCUSSION
Mechanical Properties

The mechanical properties, including tensile strength, tensile modulus, percentage
of elongation, flexural strength and modulus, impact strength, and water absorption test, of
AH nano fiber reinforced composite laminates were evaluated according to ASTM
standards. The morphological investigation was conducted to examine the fiber matrix
interaction of the fractured composite samples during the tensile test. The fractured
specimens are shown in Fig. 7 (A through C) and findings and discussions are presented
below.

Fractured Specimens

A - Tensile Specimens

B - Flexural Specimens

C - lmpact Specimens

Fig. 7. Fractured Specimens: A-Tensile; B- Flexural; C- impact

Tensile Properties

The tensile behavior of polyester composites reinforced with different weight
percentages of Aristida hystrix (AH) nano fiber particles (0, 1, 3, 5, 7, and 9 wt%) was
investigated to determine tensile strength, tensile modulus, and elongation. All specimens
fractured within the gauge length during testing (Fig. 7A). The interfacial adhesion
between nano fiber particles and the polyester matrix plays a decisive role in governing
tensile performance (Raja et al. 2021; Palanisamy et al. 2023).

Pandiarajan et al. (2025). “Nano A. hystrix compos.,” BioResources 20(4), 9257-9281. 9265



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Influence on Tensile Strength

The pure polyester laminate exhibited a tensile strength of 13.01 MPa. With
incremental nano fiber loading, tensile strength steadily increased, reaching a maximum of
30.13 MPa at 5 wt% (Fig. 8A), corresponding to a 2.315-fold improvement over the neat
matrix (Kathirselvam ef al. 2019; Raju et al. 2021). This enhancement can be attributed to
the uniform dispersion of nanoparticles at moderate loading, which facilitated effective
stress transfer and reduced matrix-dominated failures (Cai et al. 2021). SEM analysis of
the fractured surfaces revealed well-dispersed nano fibers embedded within the resin at 5
wt%, supporting the presence of strong interfacial adhesion and crack-bridging
phenomena.

Beyond this threshold, the tensile strength declined to 29.28 MPa and 13.25 MPa
at 7 wt% and 9 wt%, respectively. The reduction correlates with SEM observations of
nanoparticle clustering and void formation, which created localized stress concentrations
that acted as crack initiation sites. Thus, the results demonstrate that the optimum tensile
strength arises from a balance between uniform dispersion and interfacial adhesion, which
is disrupted at higher loadings due to agglomeration.

Influence on Tensile Modulus and Elongation

The tensile modulus exhibited a similar increasing trend up to 5 wt% fiber content
before declining with higher loadings (Fig. 8B). The improved stiffness at 5 wt% is
consistent with uniform nanoparticle reinforcement within the polyester matrix, which
effectively restricted polymer chain mobility (Nayak et al. 2016; Jenish et al. 2022).
However, excessive fiber loading led to particle agglomeration and poor stress distribution,
lowering modulus values. Elongation decreased progressively with increasing fiber
loading, indicating that nano fiber reinforcement reduced ductility by restricting polymer
chain deformation. At 5 wt%, the matrix retained a favorable balance of stiffness and
limited strain capacity, consistent with SEM observations of crack resistance without
excessive brittleness (Athith et al. 2018; Karuppiah et al. 2020, 2022).
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Flexural Properties

Flexural strength and modulus were determined using a three-point bending test,
where all specimens fractured within the span length, confirming the test reliability (Fig.
7B). The neat polyester composite exhibited a flexural strength of 28.025 MPa,
highlighting the inherent brittleness and limited load-bearing ability of the unreinforced
resin. Upon addition of Aristida hystrix nano fibers, a clear improvement in flexural
behavior was observed up to an optimum loading. At 1 wt% and 3 wt% reinforcement,
flexural strength increased steadily, reflecting the positive contribution of fibers to crack
resistance and bending load distribution (Joseph et al. 2002; Ramesh et al. 2020;
Sethuraman et al. 2020). The highest flexural strength of 43.685 MPa was achieved at 5
wt%, corresponding to a ~56% enhancement compared with the neat polyester resin (Fig.
9A). This significant improvement is attributed to the establishment of a strong interfacial
bond between the fibers and matrix, which promoted effective stress transfer, reduced
localized strain accumulation, and enhanced the composite’s overall bending resistance.
SEM micrographs supported this interpretation by revealing a well-bonded interface at 5
wt%, with fewer interfacial gaps and reduced microvoids. Evidence of fiber pull-out, crack
pinning, and crack deflection was noted, all of which contributed to energy dissipation and
delayed catastrophic failure during bending. These mechanisms indicate that, at optimum
fiber dispersion, the reinforcement not only strengthens but also toughens the matrix.
However, with further increases in loading to 7 wt% and 9 wt%, flexural strength dropped
to 42.884 MPa and 38.344 MPa, respectively. The decline is mainly attributed to
nanoparticle agglomeration and inadequate resin wetting, which created weak points
within the microstructure. Such agglomerates acted as stress raisers under bending loads,
leading to localized stress concentration, premature crack initiation, and compromised
load-bearing efficiency.

The flexural modulus (Fig. 9B). results exhibited a similar trend, reflecting the
balance between stiffness and dispersion quality. The neat resin recorded a modulus of
1284.311 MPa, which improved consistently with fiber addition, reaching 1798.715 MPa
at 5 wt%. This increase in stiffness confirms that the presence of well-dispersed nano fibers
restricts polymer chain mobility and enhances the rigidity of the composite system.
However, further fiber addition caused a slight reduction in modulus, with values dropping
to 1782.349 MPa and 1658.714 MPa at 7 wt% and 9 wt%, respectively (Ogunleye et al.
2022; Salama et al. 2022). This reduction can be linked to fiber clustering and poor resin
continuity, which limits the effective stress distribution and disrupts the homogeneous
stiffness of the composite. Overall, these findings confirm that optimum flexural properties
are achieved at 5 wt% reinforcement, where efficient fiber—matrix bonding and uniform
dispersion are attained. Beyond this threshold, the benefits of reinforcement are
counteracted by microstructural irregularities, demonstrating the importance of controlling
fiber loading to balance strength, stiffness, and processing uniformity.
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Impact Strength

The Charpy impact test (Fig. 7C) was employed to evaluate the energy absorption
capacity of the composites under sudden loading conditions, thereby providing critical
insights into their toughness, crack initiation resistance, and ability to dissipate dynamic
stresses (Liang 2002; Faruk et al. 2014; Prasad et al. 2023). The neat polyester composite
exhibited a relatively low impact strength of 1.45 KJ/m?, which is characteristic of the
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inherently brittle behavior of unreinforced thermoset resins, where crack propagation
occurs with minimal energy absorption. Upon the incorporation of Aristida hystrix nano
fibers, a progressive enhancement in impact performance was observed. At 1 wt% fiber
loading, the impact strength improved to 1.57 KJ/m?, indicating that even a small amount
of reinforcement was sufficient to introduce localized toughening mechanisms such as
crack pinning and limited fiber bridging. At 3 wt% loading, the impact strength further
increased to 1.79 KJ/m?, demonstrating the increasing role of fiber—matrix interaction in
arresting crack propagation and dissipating impact energy. The maximum performance
was achieved at 5 wt% fiber loading, with an impact strength of 1.87 KJ/m? (Fig. 10),
corresponding to an enhancement of nearly 29% compared to neat polyester. This notable
improvement is attributed to the homogeneous dispersion of nano fibers, which provided
multiple crack-bridging sites and facilitated deflection of crack paths. Such mechanisms
not only prolonged the crack propagation route but also required higher energy input for
fracture, thereby significantly improving the overall toughness of the composite (Ikubanni
et al. 2017; Padmanabhan et al. 2024). SEM observations further corroborated this
explanation, revealing a well-integrated morphology at 5 wt% fiber loading. The
micrographs displayed reduced voids, effective resin wetting, and uniform fiber
distribution, all of which are essential for achieving strong interfacial adhesion and efficient
stress transfer. The microstructural integrity at this loading created a synergistic effect
between the resin and fibers, where the matrix restricted fiber pull-out while the fibers
acted as barriers to crack advancement. This synergy effectively enhanced energy
absorption under sudden loading, explaining the peak performance at this concentration.
However, beyond the optimal threshold, a deterioration in impact strength was
observed. At 7 wt% and 9 wt% fiber loadings, the values dropped to 1.36 KJ/m? and 1.30
KJ/m?, respectively. This decline can be explained by the agglomeration of fibers at higher
concentrations, which disrupted uniform stress distribution within the matrix. The fiber
clusters acted as stress concentrators and micro-defect sites, reducing the efficiency of load
transfer and providing easy routes for crack initiation. Additionally, excessive fibers
reduced the availability of resin for proper wetting and encapsulation, thereby weakening
the fiber—matrix interface. The poor interfacial adhesion facilitated premature crack
initiation and accelerated crack propagation under impact loading (Vivek and Kanthavel
2019; Yang et al. 2020). Thus, while the incorporation of Aristida hystrix nano fibers was
effective in enhancing the impact toughness of polyester composites up to an optimum
level, exceeding this reinforcement limit resulted in compromised structural integrity. This
behavior underscores the critical importance of controlling fiber loading and dispersion to
balance toughness, adhesion, and energy absorption capacity in polymer nanocomposites.
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Water Absorption

The water absorption behavior of nano Aristida hystrix fiber-reinforced polyester
composites was systematically examined over a 24-h immersion period (Fig. 11). The
results revealed a clear correlation between fiber loading and water uptake, with higher
fiber incorporation consistently leading to increased moisture absorption (Sanjeevi et al.
2021; Prasad et al. 2023). The neat polyester resin (0 wt% fiber) exhibited the lowest
absorption value of 0.8%, reflecting the inherent hydrophobicity of the polyester matrix,
which resists moisture ingress. Upon addition of nano fibers, a gradual increase in water
uptake was observed. At 1 wt% and 3 wt%, the absorption values rose modestly to 0.86%
and 0.95%, respectively. This minor rise can be attributed to the limited hydrophilic sites
introduced by the small fraction of fibers, which slightly enhanced the capillary pathways
for water diffusion (Gurunathan ef al. 2022).

At higher fiber loadings, however, the effect became much more pronounced. The
water absorption values reached 1.46% at 5 wt%, 1.78% at 7 wt%, and 2.12% at 9 wt%.
These increments are primarily due to two key factors: (i) the increased volume fraction of
hydrophilic cellulose-rich fibers, which readily form hydrogen bonds with water
molecules, and (i1) the higher probability of microvoid formation at elevated fiber contents,
which provides additional free pathways for water ingress (Lu et al. 2022). SEM analysis
further corroborated this, as composites with 7 to 9 wt% loadings exhibited visible fiber
pull-outs and microcracks, acting as channels for moisture penetration. The observed trend
highlights the classic strength—durability trade-off encountered in natural fiber-reinforced
composites. While the inclusion of nano fibers significantly improves mechanical
performance, it simultaneously elevates water absorption, which could compromise long-
term stability in humid or aqueous service conditions. To ensure long-term performance in
applications requiring dimensional stability and environmental resistance, moisture
mitigation strategies become essential Thus, although A. hystrix nano fibers enhanced the
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overall mechanical characteristics of polyester composites, their hydrophilic nature
inevitably elevated water absorption, underscoring the importance of optimizing fiber
surface chemistry and composite design for real-world applications.

[ Water absorption (%),
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Fig. 11. Effect of fibre loading with respect to Water uptake behaviour for 12 h

Scanning Electron Microscopy

The interfacial behaviour of the fiber-matrix interaction in the fractured surfaces of
tensile-tested specimens was analysed using scanning electron microscopy (SEM) to
elucidate the failure mechanisms. Figure 12 (A through F) displays the SEM images of
composites featuring varying fibre loadings, offering insights into the fracture behaviour
(Sharma et al. 2021; Palanisamy et al. 2022). Figure 12(A) illustrates the fractured surface
of the 0 wt% fibre composite, characterised by a rough and uneven morphology. This
observation suggests brittle failure, a common trait of pure resin composites. The lack of
reinforcing fibres leads to reduced energy absorption and sudden fracture when subjected
to tensile loading (Kathirselvam et al. 2019; Vinod et al. 2021).

The addition of 1 wt% and 3 wt% nano fibre particles, as illustrated in Figs. 12(B)
and 12(C), results in fractured surfaces that exhibit enhanced smoothness, indicating a
potential improvement in the ductile behaviour of the composites. The incorporation of
fibre reinforcement facilitates improved stress distribution, mitigates brittleness, and
enhances the composite's capacity for plastic deformation prior to failure (Bay and Eryildiz
2024). At 5 wt% fibre loading, which demonstrated the highest mechanical performance,
the SEM image in Fig. 12(D) shows a more uniform fracture surface characterised by
smooth regions interspersed with minor irregularities. This demonstrates optimal fibre
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dispersion and robust interfacial adhesion, which efficiently transferred the applied load
from the fibre to the matrix. The increased elongation at break noted in this composition
further indicates the enhanced toughness and ductility of the composite (Raju et al. 2021;
Palanisamy et al. 2022; Shiferaw et al. 2023).

As the fibre content increased to 7 wt% and 9 wt%, Figs. 12(E) and 12(F) illustrate
rough and highly fractured surfaces, indicating a return to brittle failure. The high fibre
content resulted in fibre agglomeration and inadequate interfacial bonding, which caused
stress concentration points within the composite (Pandit et al. 2017; Bledzki et al. 2021;
Palanisamy ef al. 2021). The tensile properties were compromised, as the fibres could not
adequately support load-bearing, resulting in early failure. The SEM analysis indicates that
fibre loading has a significant impact on the fracture behaviour of composites. Moderate
fibre reinforcement at 5 wt% improves ductility and mechanical strength. However, an
excessive fibre content of 7 wt% or more negatively affects interfacial bonding, resulting
in brittleness and diminished performance.

A
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Fig. 12. Morphological analysis of tensile tested fractured specimen to: A- 0 wt%; B- 1 wt%; C- 3
wt%; D- 5 wt%; E- 7 wt%; F- 9 wt% composites

CONCLUSIONS

Aristida hystrix (AH) nano fiber-reinforced polyester composites were tested for
mechanical qualities using ASTM standards. The investigation showed that composites
reinforced with 5 wt% nano AH fibres performed better than others. Morphological
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research confirmed high fiber-matrix adhesion as the enhancer.

1. Tensile, flexural, and impact strengths of 5 wt% nano fibre composites were
measured at 30.13 MPa, 43.685 MPa, and 1.87 KJ/m?, respectively. The values are
2.3, 1.5, and 1.29 times higher than pure polyester composites. Tensile and flexural
moduli for 5 wt% fibre loading were 1106.442 MPa and 1798.715 MPa,
respectively, suggesting increased stiffness compared to composites with lower and
higher fibre concentrations. The 5 wt% composite had a maximum elongation of
3.2%, balancing strength and ductility.

2. Nano fibre particles in polyester matrix increased moisture uptake in water
absorption tests. This trend shows that nano fibres increase mechanical capabilities
but also introduce hydrophilic features that must be considered in moisture-resistant
applications.

3. SEM revealed fibre dispersion and interfacial bonding. At 5 wt% fibre loading,
nano fibres were evenly distributed in the matrix, enabling stress transmission.
Increased fibre content over 5 wt% caused aggregation and poor fiber-matrix
adherence, reducing mechanical performance. These composites have voids and
weak surfaces, confirming the negative impact of high fibre content.

4. Experimental results show that nano-sized Aristida hystrix fibre particles may
strengthen polymer composites. Mechanical qualities improve with 5 wt%, making
them suitable for lightweight, high-performance composites. Nano natural fibres
may be used to make sustainable composites for automotive, aerospace, and
construction applications, according to this research.
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