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Thin-Layer Drying Models and Artificial Neural Network
for Wood Fiber in a Near-Infrared Dryer
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The purpose of this study was to fit and compare semi-empirical thin-layer
drying models and an artificial neural network (ANN) model to describe the
drying kinetics of wood fiber in a near-infrared (NIR) dryer. The drying
kinetics of wood fiber were evaluated using 18 semi-empirical models at
three temperatures (105, 120, and 135 °C), utilizing a halogen moisture
analyzer. The ANN model was designed with temperature and time as
input factors and moisture content as the output variable. The findings
revealed that the drying process was mainly controlled by a diffusion
mechanism, and all the process occurred in two falling drying rate periods.
The fitness of drying curves on semi-theoretical models based on
statistical parameters, including RMSE, SSE, and R? showed that there
was not much difference between equations with a maximum of two
constant parameters and equations with more than two constant
parameters. Therefore, using a simple model can help to reduce the time
of the analysis and is beneficial to avoid using complex drying models.
Also, the results showed that at higher drying temperatures (120 to 135
°C), both ANN and the best-performing semi-empirical models (Page and
Henderson—Pabis) produced comparable accuracy, whereas at lower
temperature (105 °C), ANN performed better due to its flexibility.
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INTRODUCTION

During drying, hornification occurs within the cell wall, where pore structures tend
to shrink and partially close as moisture is removed. This phenomenon reduces the
accessibility of bound water and alters diffusion dynamics (Sjostrand et al. 2023). As a
result, researchers and industry owners have considered strategies to recognize and manage
the drying process of wood and cellulose fiber. Modeling the drying process of cellulose
fiber is one technique to identify and manage the drying process. Several investigations
have been carried out to simulate and examine the drying kinetic of wood and cellulosic
fibers based on Fick’s law of diffusion (Dincer 1998; Wang et al. 2007a; Remond et al.
2005; Salin 2008; Fernando et al. 2018; Autengruber et al. 2020; Chanpet et al. 2020).
Recently, several studies have shown that the theoretical models do not adequately describe
the fundamental aspects of the experimental wood drying process. Remond et al. (2005)
indicated that when softwoods dry, a thin and dry shell without free water develops quickly
in the substrate near the wood surface, slowing the drying process and releasing free water
from the substrates. These substrates are still saturated with free water. It has been shown
by Wiberg and Moren (1999) that at the beginning of the drying process with high moisture
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content, the moisture in the central part of sapwood decreases very rapidly without any
moisture gradients. The diffusion phenomenon cannot describe the moisture migration
process gradient-free.

Also, dynamic changes in the pore size of wood cell wall occur during drying
process. So, when surface moisture evaporates quickly, the surface of the fibers also dries
quickly, resulting in the highest wood shrinkage. Moreover, the diameter of pores in the
wood cell wall will be decreased. Consequently, moisture cannot be transferred from the
lower layers near the surface to the fiber’s surface (Li and Zhao 2020). Some researchers
believe that some of the interactions and relationships between water and wood during the
drying process at the microstructural scale are still unknown (Penttila et al. 2021; Zitting
et al. 2021). As a result, mathematical modeling of the drying process of wood and
cellulose fiber seems to be complex (Sander et al. 2010). Due to shrinkage and deformation
in the cell walls of wood fibers during the drying process, the accuracy of the presented
mathematical models is questioned.

The drying process of lignocellulosic materials, agricultural products, and food has
been modeled using various semi-empirical and experimental models (Verma et al. 1985;
Babalis ef al. 2006; Demir ef al. 2007; Doymaz 2007; Gan and Pe 2014). These models are
typically not mechanistically derived mathematical models; instead, they are formulated
using simplified analytical expressions that are fitted to experimental data. Fick’s second
law and its variants, as well as Newton’s law of cooling, are often used as a basis for
constructing such semi-empirical relations. Because these models are developed directly
from laboratory observations, they are generally less complex and more accessible than
fully mechanistic mathematical models (Wang and Singh 1978; Hii et al. 2009; Kumar et
al. 2012). Also, these empirical models have shown a strong capacity to estimate and
forecast the drying kinetics of various materials (Ertekin and Firat 2017; Midili et al. 2002).
Modeling the thin-layer drying of materials is mainly based on describing the moisture
ratio (MR) versus time () data by using suitable mathematical model or models (Ademiluyi
et al. 2008; Kaleta et al. 2013). Thin-layer drying means to dry as one layer of sample
particles or slices. It is assumed that there is the same air velocity and temperature
throughout this thin layer (Vega et al. 2007; Lee and Kim 2009; Kaur and Singh 2014).
The drying kinetics of bacterial cellulose (Jatmiko et al. 2017), cotton fibers (Ghazanfari
et al. 2006), and unbleached kraft pulp sheets (Kong et al. 2022) have all been investigated
using thin-layer drying models, with promising findings.

The use of artificial neural networks (ANNSs) is one of the newest techniques for
modeling and forecasting complex dynamic systems such as the wood drying process.
Some researchers have utilized the ANNs to simulate the drying process of wood and
agricultural products (Chai et al. 2018; Dash et al. 2020; Saxena ef al. 2022). The neural
network models have been utilized to simulate agricultural product drying kinetics as well
as the wood drying process. Previous research has shown that the ANN model is more
advantageous, since it can precisely predict the drying kinetics and be easily applicable to
non-linear processes (Saxena et al. 2022). Former studies have employed conventional and
convective dryers to determine the drying kinetics of wood particles and cellulose fibers
(Zarea Hosseinabadi et al. 2012; Gornicki et al. 2016; Arabi et al. 2017; Brys et al. 2021,
Kong et al. 2022). These drying methods have several drawbacks, including low energy
efficiency and lengthy drying time, especially in falling drying rate periods (Wang et al.
2007). Radiant dryers, such as halogens lamps, deliver heat to the material more quickly
than convective or conductive dryers. As a result, the drying time decreases. The halogen
hygrometer is one of the latest quick and precise methods for detecting the moisture content
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of various materials. Halogen hygrometers are now acknowledged as a scientific, accurate
approach and ASTM-accepted method in the industry (ASTM D6980-12). This is the first
study to use a halogen hygrometer to describe the drying kinetics of wood fiber analysis.

There are now more than more than 100 different semi-theoretical and empirical
thin-layer drying models that have been used in predicting moisture content of agricultural
products (Ertekin and Firat 2017). Each of the models is composed of dimensionless
constants (a, b, ¢, d, and...) and drying constants (k, g, K1, K2, and Ko). Increasing the
numbers of parameters helps researchers to better analysis and predicts the dependent
variable, but this is also a tedious and time-consuming task. Therefore, in this study, about
18 thin layer drying models with different numbers of fixed parameters and an ANN model
were investigated to select the simplest possible model as the best model for prediction of
wood fiber drying data.

EXPERIMENTAL

Wood fibers (A mixture of forest and garden species) were obtained from the Arian
Sina factory (MDF Production). In order to investigate the drying rate of wood fibers above
FSP, they were combined with water in equal weight ratios for 24 h and then stored in a
sealed polyethylene bag at 3 °C to 5 °C for seven days. The sample was mixed every day
to ensure that the wood fibers had a consistent moisture level. Finally, wood fiber with a
moisture content of 170% (based on dry weight) was subjected to the drying process.

Fig. 1. Moisture analyzer, MB45 AM (ohaus.com)
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Drying Process

A moisture analyzer Halogen model MB45, manufactured by OHAUS, was used to
dry wood fibers at three different temperatures: 105, 120, and 135 °C (Fig. 1). The MB45
has a sample capacity of 45 g, with a readability of 0.001 g and repeatability of 0.015%
(using a 10 g sample). The heater type of MB45 is a halogen lamp, and the operating
temperature range is 50 to 200 °C in 1 °C increments.

In halogen hygrometers, the sample is heated by absorbing the infrared (IR)
radiation produced by the halogen lamp. The weight difference before and after dryings is
used to determine the mass and moisture content of the sample continuously throughout
the drying process. Halogen hygrometers work on the Loss on Drying (LOD) principle, as
in the case of oven dryers. However, there are various benefits such as quick drying time,
ease of use, and direct measurement without computations compared to the oven dryer.

To investigate the drying kinetics of wood fibers, 4 g of wet fibers were dispersed
on a stainless-steel tray placed on a precise and sensitive scale in the dryer compartment.
The fiber was distributed on a tray carefully to prevent the fibers from accumulating at
single points. After adjusting the temperature of the dryer chamber in the scope of this
study, the weight loss values of the samples at a specified time interval, every 30 s, were
presented and recorded online on the hygrometer display. The wood fibers continued to dry
until the sample’s moisture content was nearly zero. The tests were performed three times
for each temperature, and the mean moisture content measurements were used to design
and fit the drying curves for each temperature.

Drying Kinetics of Wood Fibers
The moisture content of wood fibers was measured according to Egs. 1 and 2,

MR = (%) (D
MR = (Mjgodt) )

where MR is the moisture ratio (dimensionless), M is the moisture content at time ¢ (kg of
solids/kg of water), M- is the equilibrium moisture (kg of solids/kg of water), and Mo is the
initial moisture content (kg of solids/kg of water).

It should be noted that due to the insignificant value of M. in comparison with Mt
and Mo, it can be ignored. Therefore Eq. 1 can be simplified to Eq. 2. (Doymaz 2007,
Ertekin and Firat 2017).

The drying rate of wood fibers was measured using Eq. 3 (Ertekin and Firat 2017),

Mt+dt—Mt> €)
dt

where M: and Mt are the MC values at ¢ and 7+dr (kg moisture/kg dry matter),
respectively, and ¢ is drying time (s). Equation 2 was used to obtain the MR of wood fibers
at each temperature. Then, the experimental drying data of MR versus time was fitted to
thin drying layer models using MATLAB 2016 software. The models listed in Table 1 have
already been widely used to investigate the drying kinetics of food, agricultural products,
and municipal waste.

The performance of these models was examined by comparing the coefficient of
determination (R?), sum squares of error (SSE), and root mean squared error (RMSE)

DR=(
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which were calculated in Egs. 4 to 6, respectively. The best thin drying layer model is the
one with the smallest error value and the greatest coefficient of determination,

S (MR
R2 — i=1
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where MRprei and MRexpi are the predicted and experimental moisture ratio values at in
observation, respectively. The MRexp is the mean value of the explanatory variable, N is the
number of observations, and # is the number of model parameters.

Table 1. Mathematical Models Applied to Drying Curves

Model Name Model Equation Parameters Reference
Lewis (Newton) MR = exp(—kt) k Ghazanfari et al.
2006
Henderson and MR = a exp(-kit) a, k Kaur and Singh
Pabis 2014
Logarithmic MR = a exp(—kt) + ¢ a,k,c Gan and Poh 2104
Modified Midilli et MR = a exp(-—kt) + ct a, k,c Kaur and Singh
al.-ll 2014
Two-term MR = a exp(-k1 t) + c exp(—kz f) a, ki, ks, Kumar et al. 2014
Noomhorm and MR = aexp(-ki1t) + bexp(-kzt)+Cc | a, b, ¢, ki, k2 | Kaleta and Gornicki
Verma 2010
Modified MR = aexp (k1 t) + bexp(—k2t) + | a,b,c,k1,k2,k3 Erbay and Icier
Henderson and c exp(—ks t) 2009
Pabis
Two-term MR = a exp(—kit) + a,k1,kz Lee and Kim 2009
exponential (1 - a) exp(—akat)
Modified two MR = a exp(—kt) + (1 — a) exp(-gt) a, gk Verma et al. 1985
term-V
Page MR = exp (—=kt") k. n Doymaz 2007
Modified Page-IV MR = a exp(—kt") a, kn Babalis et al. 2006
Hii et al. MR = a exp (—kt" ) + c exp(—gt" ) a, knrcg Hii et al. 2009
Kaleta et al. Il MR = a exp(-kt" ) + a k,ng Kaleta et al. 2013
(1 - a)exp(=gt")
Modified Page I MR = exp[—(kt)"] k. n Vega et al. 2007
Modified page .1lI MR = a exp[—-(kt)"] a k,n Ertekin and Firat
2017
Demir et al. MR = a exp[-(kt)"] + ¢ a,kecn Demir et al. 2007
Wang and Singh MR =1 + at + k2 a, k Wang and Singh
1978
Midilli et al. MR = a exp(-kt" ) + ct a, kn,c Midilli et al. 2002
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Artificial Neural Network Model

An artificial neural network (ANN) is a nonlinear modeling method. It is generally
used to model complex physical phenomena such as the drying process of wood and
lignocellulosic materials. The ANN configuration used in this study was a Multi-layer
perceptron (MLP). A MLP is a feed forward ANN model that generates a set of outputs
from a set of inputs. The MLP is characterized by several layers of input nodes connected
as a directed graph between the input and output layers. The MLP uses backpropagation
for training the network and it consists of three types of layers-the input layer, output layer,
and hidden layer, as shown in Fig. 2.

Hidden layer

Input layer

Temperature ;) .

\'. . Output layer
. . Muoisture content (%a)
i

Time (s) .
Fig. 2. Scheme of artificial neural network for prediction moisture content of wood fiber

The data employed for experimental study were randomly divided into three
groups: 70% in the training set, 15% in the validation set, and 15% in the test set. The
structure of the three-layer feed-forward network studied in this paper was built using two
input variables (temperature and drying time) and one the outputs variables (moisture
content). Different number of neurons in the hidden layer was applied based on the trial
method to develop the optimum ANN model that can minimize the deviations between the
predicted and experimental results. The neural network was trained using the Levenberg-
Marquardt (LM) learning algorithm. The hyperbolic tangent sigmoid transfer function was
as follows,

__ 2 (7)
f(x)—m—l

where f(x) and x are the output and input values of neurons, respectively.

The coefficient of determination (R?), mean squared error (MSE), and mean
absolute error (MAE) were used to predict the ANN performance. Equations 8 to 10 include
the formulas for computing these statistical characteristics,

n
MAE = lz <|yexp. _ypred.|> 100
n (8)

= YVexp.
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1 = 2
MSE = EX(yexp. - ypred.) 9)
=1

RZ2—=1— z:?=1(3"exz:. - ypred.)z
51y (Vexp. — Verp.) (10)

where yexp 1s the actual data value, ypreq 1s the predicted data value, ypred With a line above
it is the average of the actual values, and » is the number of data.

RESULTS AND DISCUSSION

Drying Curves

Figure 3 depicts the drying behavior of wood fiber using a moisture analyzer at 105,
120, and 130 °C. Accordingly, reaching the target moisture content from 170% (based on
dry weight) to final moisture content (near zero) took 18, 14, and 12 min for 105, 120, and
135 °C, respectively. As shown in Fig. 3, the increase in the drying temperatures
significantly decreased the drying times.
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Fig. 3. Moisture content versus drying time at different halogen drying temperature

In the Ohaus halogen moisture analyzer MB Series, the halogen radiator emits
infrared radiation (IR) in the short wavelength range of 0.75 to 1.5 um (near-infrared).
When the halogen lamp is radiated toward the product, it is strongly heated and the thermal
gradient within the material significantly increases in a short period. Since the halogen
radiant energy easily passes through air without heating the ambient air, this energy just
heats the product. Thus, the internal part of the materials will be warmer than the
surrounding air and the rate of heat transfer will be greater as compared to the hot air-
drying technique (Younis et al. 2018; Huang et al. 2021). Therefore, IR drying technology
has the advantages of high energy efficiency, short drying time, uniform heating of
materials, and low energy costs (Huang et al. 2021).
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The changes in drying rates versus drying time are shown in Fig. 4. Accordingly,
the drying rate increased with an increase in drying temperature. Also, the drying speed
was quick at the beginning of the drying operation (especially at a higher temperature), but
the drying rate was slowed with passing time. This is due to a lack of sufficient moisture
at the end point of the drying process.
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Fig. 4. Drying rate versus drying time at different halogen drying temperature

The relationship between drying rate and moisture content at different drying
temperatures is shown in Fig. 5. The three drying periods were observed, including a
preheating period (A) and the first and second drying rate periods (B and C). A constant
drying rate was not found; however, the initial moisture content of wood fibers was about
170% (based on dry weight). The morphological structure of fibers and drying techniques
can significantly affect the drying process. When wood fibers are heated quickly by the
moisture analyzer, many morphological changes might occur in their structures. The
microstructure and rheological behavior of the wood cell wall are closely intertwined with
its moisture properties. External layers of wood fibers shrink rapidly. First, a thin and dry
shell are formed near the surface of fibers, which creates barriers for migration of moisture
from internal layers to the surface (Li and Zhao 2020). Due to these morphological
interactions, even if there is a lot of free water in the bottom layers, the rate of migration
of water molecules from the interior to the surface is less than the rate of vaporization from
the surface into the environment. Therefore, it is extremely difficult to find a constant
drying rate period during the drying process of wood fibers. For lignocellulosic materials,
constant drying rate periods are often extremely short or not seen at all (Zarea Hosseinabadi
et al. 2012; Arabi et al. 2017; Kong et al. 2020). The heat and mass transfer in the drying
process of a solid material can be defined based on the Biot number (Bi), which is a
dimensionless number that represents the ratio of the resistance to heat transfer from the
inside of the body to the surface (Sander et al. 2010). Constant drying is observed for solid
materials with a Bi number less than 0.1, while the Bi number value for lignocellulosic
materials was reported as more than 0.2 . It means that the drying process and mass transfer
parameters for biomass materials were mostly controlled by internal resistance (Dincer
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1998). According to Fig. 5, the drying process almost completely occurred during the first
and second falling rate periods (B and C).
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Fig. 5. Drying rate versus moisture content at different halogen drying temperature

The first falling drying rate happened when wet spots on the surface gradually
diminished until the whole surface was dry. As a result, the surface moisture of the fibers
decreased over time while the surface temperature increased. During this period, the drying
process was controlled by moisture diffusion and internal resistances inside wood fibers.
When the surface was totally dried, the second falling drying rate started at point C, and
the dry surface was transmitted to the layers underneath the surface. According to Fig 5,
about 60% of the total drying time occurred during this period. In this phase, the drying
rate was independent of drying conditions such as temperature and moisture content. The
moisture transfer might be due to liquid diffusion, capillary movement, and vapor
diffusion. Also, the drying time was usually greater than the first falling drying rate period.

Drying Curves Fitting

The nonlinear regression approach and MATLAB 2016 software were used to fit
moisture content data at various drying temperatures to the thin-layer drying models
presented in Table 1. The regression constants (a, b, ¢, d...,), the drying constants (k), and
the statistical indicators (R%, SSE, and RMSE) of the thin-layer drying models are shown
in Tables 2, 3, and 4 for 105, 120, and 135 °C, respectively.

According to Tables 2, 3, and 4, Lewis model (Newton) with the one fixed
parameter (k), Wang and Singh and Modified Page-II models with two constant parameters,
and Two-term exponential models with three constant parameters did not show a good
fitness for moisture content prediction. At 105 °C, the Lewis model exhibited poor fitting
(R? = 0.522) due to high internal resistance and non-uniform moisture distribution.
However, at higher temperatures (120 and 135 °C), diffusion resistance decreased, and the
drying process became more surface-controlled, resulting in more exponential behavior
and improved model fitting, as evidenced by higher R? values.

Arabi & Ghalehno (2026). “Wood fiber drying,” BioResources 21(1), 654-672. 662



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Table 2. Statistical Results and Drying Constant of Mathematical Models at
Different Drying Temperature (T = 105 °C)

T Model adj. R? Constant Parameters RSME SSE
105 F(t) = exp(-kt) k=10.001095 0.3785 17.91
0.3308
F(t) = a exp(-kt) a=2.004, k=0.002016 0.06489 0.5221
0.9804
F(t) = a exp(-kt) +c a=2.352, k=0.00129, 0.01638 0.03298
0.9987 c =-0.4487
F(t) = a exp(-kt) +c t a=1.909, k=0.001517, 0.01715 0.03619
0.9986 ¢ =-0.0002181
F(t) = a exp(-kit) + a=58.78, ki = 0.0007727, k2 = 0.01646 0.03304
c exp(-kzt) 0.9987 0.0007472, ¢ = -56.89
F(t) = a exp(-kit) +b a=2.361, k1 = 0.00126, 0.01627 0.03205
exp(-kat) +c k2=0.01683,
0.9987 b =0.02563, c = -0.471
F(t) = a exp(-kit) +b a =20.62, k1 = 0.0002808, 0.02422 0.07037
exp(-kzt) +c exp(-kst) k1=0.003502, k3 = 0.0002256
0.9973 b=0.5778, c =-19.28
F(t) = a exp(-kit) +(1-a) a =18.57, k+ = 0.0003812, 0.3655 16.43
exp(-akzt) 0.3837 k2 =1.902e-05
F(t) = a exp(-kt) +(1-a) a=2.035, k=0.002048, 0.153 2.878
exp(-gt) 0.8920 g = 0.9649
F(t) = exp(-kt") k= 2.326e-08, n = 2.617 0.05198 0.335
0.9874
F(t) = a exp(-kt") a=1.827, k= 0.0002737, 0.03695 0.1679
0.9937 n=1.298
F(f) = a exp(-kt") +(1-a) a=1.787, k=0.0001936, 0.1445 2.548
exp(-gt") 0.9043 g =0.9649, n=1.348
F(t) = a exp(-kt") +bt a=1.571, k=7.104, 0.02559 0.02934
0.9990 ¢ =-0.001415, n = -9.327
F(t) = 1+at+kt? a=0.00017, k = -9.287e-07 0.3061 11.62
0.5641
F(t) = a exp[-(kt)"] a=1.827, k=0.001797, 0.03695 0.1679
0.9937 n=1.298
F(t) = exp[-(kt)" k=0.001215, n = 3.284 0.2925 10.61
0.5989
F(t) = a exp[-(kt)"] +c a=2.359, k=0.001285, 0.02644 0.03298
0.9987 c=-0.4543, n = 0.9974

Henderson and Pabis and Page models with two adjustment parameters and
Logarithmic, Modified Midilli et al.-I11, Modified Page-III and Modified Page-IV models
with three adjustment parameters showed good fits for the wood fiber drying process. Also,
Demir et al., Midilli et al., Hii et al., Kaleta ef al. 1., Two-term, Noomhorm and Verma,
Modified Henderson and Pabis model with more than three adjustment parameters
predicted moisture content of wood fiber with the highest value of R? and lowest value of
RMSE and SSE.

According to results of Tables 2, 3, and 4, based on the statistical indicators; there
was not much difference among some of models with two, three, and more than three
adjustment parameters. The Midilli ef al. model with four fixed parameters were selected
as a best model for drying kinetic of wood poplar particle (Zarea Hosseinabadi et al. 2012;
Arabi et al. 2017).
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Table 3. Statistical Results and Drying Constant of Mathematical Models at
Different Drying Temperature (T=120 °C)

T Model Equation adj. R? Constants RSME SSE
f(t) = exp(-kt) 0.98334 k =0.003745 0.06306 | 0.09942
f(t) = a exp(-kt) 0.9986 a=2.116, k=0.00577 0.01889 | 0.008567
f(t) = a exp(-kt) +c 099762 | 2 =2.145, k1 =0.002314, ¢ = -0.06061 | 0.02282 0.0198
f(t) = a exp(-k1t) +c exp(-kaf) a=2.157, k1 =0.005964, k2= 0.9134, | 0.03085 | 0.02094
0.9965 c=-0.2919
f(t) = a exp(-k1t) + b exp(-kaf) a=2.155, k1 =0.005375, k2= 0.9134, | 0.02445 | 0.004384
+c 0.9993 b =-0.2292, ¢ = -0.06012
f(t) = a exp(-kif)+c exp(- a=2.158, k1 = 0.005965, k> = 0.9134, | 0.03236 | 0.02094
120 °C kat)+b exp(-kst) 0.9965 k3 =0.2735, b =-0.402, ¢ = 0.1097
f(t) = a exp(-kt) + a=2.134, k=0.00585, k1 = 0.9134 0.09278 0.198
(1-a) exp(-akit) 0.96682
f(t) = a exp(-kt) + (1-a) exp(- a=2.134, k=0.00585, g = 0.9134 0.09278 0.198
gt) 0.96682
fix) = a exp(-kt") 0.99734 a=1.898, k=0.001704, n=1.208 0.02652 | 0.01617
f(x) = exp(-kt") 0.57398 k =1.629e-08, n = 2.979 0.3207 6.581
f(t) = a exp(-kt") + a=1.954, k=.002078, g = 1.403, 0.1148 0.29
(1-a) exp(-gt") 0.95142 n=1.178
f(t) = a exp(-k t") + c exp(-g a =1.125, k=2.499e-05, ¢ = 0.7501, 0.00760 | 0.001213
" 0.9993 g =0.00024,n=1.87 1
f(t) = a exp(-kt") + ct a=1.907, k=0.002072, 0.02442 | 0.01311
0.99776 c =-3.828e-05, n=1.168
f(t) = 1+at+kf? 0.6171 a =-0.002029, k = 7.124e-07 0.3084 2.282
f(t) = a exp[-(kt)" a=1.898, k=0.0051, n=1.208 0.02652 | 0.01617
0.99734
f(t) = exp[-(kt)"] 0.9608 k=0.003214,n=2.116 0.9868 0.2337
f(t) = a exp[-(kt)" + ¢ a=1.937, k= 0.00498, ¢ = -0.02897, 0.02445 | 0.01316
0.99776 n=1.16

Additionally, Kong et al. (2020) presented a complex model (the Yun model) with
five fixed parameters for predicting the drying kinetics of pulpboard, achieving very high
accuracy (Adjusted R?=0.999; RMSE = 0.003). The drying behavior of sawdust mixtures
has also been investigated by Gornicki et al. (2016), who reported that the Logarithmic,
Noomhorm, Verma (Kaleta and Gornicki 2010), Demir et al. (2007), and Midilli et al.
(2002) models showed the best performance when fitting experimental data. However,
Buzrul (2022) emphasized that in complex models—particularly those with more than two
parameters—some parameters may be statistically non-significant (p > 0.05), and therefore
the use of unnecessarily complex models may not be justified.

In the present study, the Adjusted R? and RMSE values for the Henderson and Pabis
and Page models, each containing a maximum of two fixed parameters, ranged from 0.9785
to 0.9832 and from 0.0998 to 0.0824, respectively. These Adjusted R? values, which
account for the number of model parameters, confirm that increasing model complexity
does not lead to a meaningful improvement in predictive performance. Therefore, it can be
concluded that the Henderson and Pabis and Page models, as simple and statistically
efficient models, are the most appropriate choices for describing the thin-layer drying
process of wood fibers.
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Table 4. Statistical Results and Drying Constants of Mathematical Models at
Different Drying Temperature (T = 135 °C)

T Model adj. R? Constants RSME SSE
f(t) = exp(-kt) 0.9797 k=0.006706 0.07281 0.1007
f(t) = a exp(-kt) 0.99678 a=2.366, b=0.01029 0.02914 | 0.01528
f(t) = a exp(-kt) +c 0.98404 a=2.083, b=0.008413, ¢ =-0.05057 | 0.06703 | 0.07638
f(t) = a exp(-kit) + a=2.411, k=0.01053, k1 = 0.975, 0.01536 | 0.003775
c exp(-kat) 0.99916 ¢ =-0.5302
f(t) = a exp(-kit) a=2.402, k=0.01029, k1 = 0.975, 0.001748 | 0.002727
+c exp(-kaf) +d 0.9993 ¢ =-0.5089, d = -0.01262
135°C f(t) = a exp(-kit) a=2.411, k1 =0.01054, k2 = 0.975, 0.01642 | 0.003775
+c exp(-kat) + k3 = 0.5469, ¢ = -0.2046, d = -0.3261
d exp(-kat) 0.99916
f(t) = a exp(-kit) a=2.411, ki =0.01054, k2 = 0.975 0.2141 0.7795
+(1-a) exp(-akaot) | 0.83788
f(t) = a exp(-kt) a=2411, k=0.01054, g = 0.9649 0.2141 0.7795

+(1-a) exp(-gt) 0.8376

f(t) = a exp(-kt") a=1.932, k=0.001844, n=1.312 0.03431 | 0.02001

0.9958
f(t) = exp(-kt") 0.68836 k = 6.524e-07, n = 2.718 0.2882 1.495
f(t) = a exp(-kt") a=2.288, k=0.007153, g = 0.9649, 0.2206 | 0.7784
+(1-a) exp(-gt") 0.83774 n=1.07
f(t) = a exp(-kt")+ a=2.288, k=0.007151,g=0.975 | 0.001326 | 0.001638
c exp(-gt") 0.9993 ¢ =-0.4077, n =1.07
f(t) = a exp(-kt") + a=0.02299, b =-0.001318, k=-5.648, | 0.09136 | 0.1753
ot 0.96766 ¢ =-0.06798
f(t) = 1+at+kt2 0.93434 a=-0.004318, k = 4.627e-06 0.1323 | 0.3149
fit) = a exp[-(kt)"] | 0.9958 a=1.932, k=0.008252, n = 1.312 0.03431 | 0.02001
f(t) = exp[-(kt)"] 0.6885 k =0.005315, n = 2.791 0.2882 1.495
f(x) = a exp[-(kt)"] a=1.913, k=0.008354, c = 0.01465, | 0.03409 | 0.0186
+c 0.99608 n=1.344

ANN Model

A multilayer perceptron consisting of layers with one or more neurons with
different activation functions was employed to optimize the perceptron network. The MLP
model was developed based on temperature and drying time as input variables and moisture
content as an output variable. The number of neurons in the hidden layer is the variable (x).
Experimental data were separated into three groups for the ANN modeling, including
training (70%), validation (15%), and testing (15%). After training and testing the network,
the findings revealed that topology 2-5-1 with hyperbolic tangent sigmoid transfer
functions provided the greatest training for moisture modeling. The R values for MR for
neural network training, validation, and testing data are shown in Fig. 6. In the training,
validation, and testing data, as well as the total data, the R-values for MR were 0.99956,
0.99979, 0.99947, and 0.99958, respectively.

According to Table 5, the total data in the ANN model for MR prediction had an
absolute mean percent error (MAPE) of 2.53%. The ANN showed a higher capacity to
predict the moisture content of wood fibers than regression and thin-layer drying models,
as evidenced by the high coefficient of determination and low error percentage between
experimental and predicted data.
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Fig. 6. Regression plots of the developed ANN model for (a) the training data set, (b) the
validation data set, (c) the testing data set, and (d) all data

Table 5. Evaluation of the Performance of ANN using Statistical Parameters

Factor | Parameter R MSE | MAPE
Training | 0.99998 | 0.000011
MC Validation | 0.99998 | 0.000014
Testing 0.99993 | 0.00005
All Data | 0.99997 2.53

Figure 7 depicts experimental data against predicted data obtained based on ANN
models. Accordingly, the neural network predicted the experimental data (R%) more
accurately than Midilli et al. (2002) model. Artificial neural networks are unique machine
learning algorithms that mimic the human brain and find the relationship between the data
sets. Therefore, ANN can learn from the past data and improve its performance based on
previous experience and training. Moreover, the designed program can adapt to new
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conditions in case of data change. These two factors of generalizability and adaptability
distinguish the ANN from other modeling methods and allow it to provide better results
than other modeling methods. Many researchers have utilized ANNs to predict the drying
process of wood and lignocellulosic materials. These studies employed MAPE, MSE, and
R? statistical parameters as the main comparison between experimental and predicted data.

1.8 1 y=0.9991x + 0.0008
R2=0.9999

ANN peridicedt data

0 02 04 06 038 1 1.2 14 1.6 1.8 2
Experimental data
Fig. 7. Comparison of ANN predictions and experimental data
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Fig. 8. Neural network performance by period (epoch) for training, validation, and testing data

The findings from the current study are consistent with results from previous
studies (Saxena et al. 2022). Overfitting is the most common issue in neural network
training. This issue occurs when a neural network only performs well on training data and
does not provide good results for other data sets. A periodic epoch performance chart for a
neural network is shown in Fig. 8, when the error due to the validation data stays constant
for six consecutive epochs, the neural network computation stops.
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As shown in Fig. 8, after 25 epochs, the error was fixed in the following six
consecutive periods, and the forecasting and data processing was stopped. This showed the
network has been well-trained, validated, and tested.

Sensitivity Analysis of ANN Model

A sensitivity analysis based on the Garson algorithm was conducted to quantify the
effect of drying temperature and time on predicted moisture content. The analysis revealed
that temperature had a dominant influence (normalized sensitivity coefficient = 0.72),
while time contributed less (0.28). This indicates that temperature changes have a stronger
nonlinear effect on moisture removal within the ANN framework.

Comparison between ANN and Classical Thin-Layer Models

The ANN model, being purely data-driven, can capture such nonlinearities and
parameter interactions without relying on simplified assumptions. At higher drying
temperatures (120 to 135 °C), both ANN and the best-performing semi-empirical models
(Page and Henderson—Pabis) produced comparable accuracy, whereas at lower temperature
(105 °C), ANN performed better due to its flexibility.

It should be noted that classical thin-layer models (e.g., Page, Henderson—Pabis,
and Logarithmic) provide echanistic or semi-empirical insights into drying kinetics, but
their accuracy decreases under conditions where the drying curve deviates from simple
exponential behavior. The ANN model, by contrast, is a purely data-driven approach,
capable of capturing complex nonlinearities in drying behavior without requiring
predefined equations. A comparative interpretation has been contributed by this work,
showing that ANN predictions aligned well with the best-performing thin-layer models at
higher temperatures, while outperforming them at lower temperature (105 °C), where
model inadequacy was observed. Finally, the ANN approach complements traditional
models, as it provides high predictive accuracy, whereas classical models remain useful for
mechanistic interpretation.

Limitations of the Study

This research was conducted using a laboratory-scale halogen moisture analyzer
(MB45, OHAUS), which, despite offering precise temperature control and rapid moisture
measurement, presents inherent limitations when extrapolating the results to industrial
drying systems. The halogen dryer operates within a small, enclosed chamber that provides
uniform but static heat transfer conditions, which do not fully reflect the dynamic
convective heat and mass transfer processes occurring in industrial dryers. In addition, air
velocity, humidity, and fiber bed thickness were maintained constant throughout the
experiments, thereby limiting the ability to analyze their combined effects on drying
kinetics. The restricted sample size and localized heating zone may also lead to thermal
gradients and non-uniform internal moisture diffusion, differing from large-scale drying
behavior.

Moreover, the predictive performance of the artificial neural network (ANN) model
is highly dependent on the size, variability, and representativeness of the experimental
dataset; its accuracy may decline when applied to untested conditions. Consequently,
scaling up these results requires pilot- or industrial-scale studies that account for variable
airflow, humidity, and material loading. Future research should also investigate hybrid or
physics-informed ANN models that combine data-driven learning with mechanistic
understanding to enhance both accuracy and interpretability.
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CONCLUSIONS

Several investigators have proposed over 100 different semi-theoretical and
empirical thin-layer drying models for agricultural products, highlighting the complexity
and variety in modeling approaches. In this study, the drying kinetics of wood fibers were
evaluated using 18 semi-empirical models and an artificial neural net (ANN) model to
identify the simplest model for predicting moisture changes during the drying process. The
performance of the thin-layer drying models was assessed based on statistical parameters,
including R?, sum of the square of errors (SSE), and root mean squared error (RMSE). The
results can be summarized as follows:

1.  Among the evaluated models, the Henderson and Pabis, and Page models, each with
two adjustable parameters (a, k; and k, n, respectively), provided a good and
acceptable fit for the drying kinetics of wood fibers at temperatures ranging from 120
to 135 °C.

2. The ANN model did not outperform traditional thin-layer drying methods in
predicting changes in moisture content, suggesting that simpler methods are often
more effective.
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