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The purpose of this study was to fit and compare semi-empirical thin-layer 
drying models and an artificial neural network (ANN) model to describe the 
drying kinetics of wood fiber in a near-infrared (NIR) dryer. The drying 
kinetics of wood fiber were evaluated using 18 semi-empirical models at 
three temperatures (105, 120, and 135 °C), utilizing a halogen moisture 
analyzer. The ANN model was designed with temperature and time as 
input factors and moisture content as the output variable. The findings 
revealed that the drying process was mainly controlled by a diffusion 
mechanism, and all the process occurred in two falling drying rate periods. 
The fitness of drying curves on semi-theoretical models based on 
statistical parameters, including RMSE, SSE, and R2 showed that there 
was not much difference between equations with a maximum of two 
constant parameters and equations with more than two constant 
parameters. Therefore, using a simple model can help to reduce the time 
of the analysis and is beneficial to avoid using complex drying models. 
Also, the results showed that at higher drying temperatures (120 to 135 
°C), both ANN and the best-performing semi-empirical models (Page and 
Henderson–Pabis) produced comparable accuracy, whereas at lower 
temperature (105 °C), ANN performed better due to its flexibility. 
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INTRODUCTION 
 

During drying, hornification occurs within the cell wall, where pore structures tend 

to shrink and partially close as moisture is removed. This phenomenon reduces the 

accessibility of bound water and alters diffusion dynamics (Sjöstrand et al. 2023). As a 

result, researchers and industry owners have considered strategies to recognize and manage 

the drying process of wood and cellulose fiber. Modeling the drying process of cellulose 

fiber is one technique to identify and manage the drying process. Several investigations 

have been carried out to simulate and examine the drying kinetic of wood and cellulosic 

fibers based on Fick’s law of diffusion (Dincer 1998; Wang et al. 2007a; Remond et al. 

2005; Salin 2008; Fernando et al. 2018; Autengruber et al. 2020; Chanpet et al. 2020). 

Recently, several studies have shown that the theoretical models do not adequately describe 

the fundamental aspects of the experimental wood drying process. Remond et al. (2005) 

indicated that when softwoods dry, a thin and dry shell without free water develops quickly 

in the substrate near the wood surface, slowing the drying process and releasing free water 

from the substrates. These substrates are still saturated with free water. It has been shown 

by Wiberg and Moren (1999) that at the beginning of the drying process with high moisture 
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content, the moisture in the central part of sapwood decreases very rapidly without any 

moisture gradients. The diffusion phenomenon cannot describe the moisture migration 

process gradient-free.  

Also, dynamic changes in the pore size of wood cell wall occur during drying 

process. So, when surface moisture evaporates quickly, the surface of the fibers also dries 

quickly, resulting in the highest wood shrinkage. Moreover, the diameter of pores in the 

wood cell wall will be decreased. Consequently, moisture cannot be transferred from the 

lower layers near the surface to the fiber’s surface (Li and Zhao 2020). Some researchers 

believe that some of the interactions and relationships between water and wood during the 

drying process at the microstructural scale are still unknown (Penttila et al. 2021; Zitting 

et al. 2021). As a result, mathematical modeling of the drying process of wood and 

cellulose fiber seems to be complex (Sander et al. 2010). Due to shrinkage and deformation 

in the cell walls of wood fibers during the drying process, the accuracy of the presented 

mathematical models is questioned. 

The drying process of lignocellulosic materials, agricultural products, and food has 

been modeled using various semi-empirical and experimental models (Verma et al. 1985; 

Babalis et al. 2006; Demir et al. 2007; Doymaz 2007; Gan and Pe 2014). These models are 

typically not mechanistically derived mathematical models; instead, they are formulated 

using simplified analytical expressions that are fitted to experimental data. Fick’s second 

law and its variants, as well as Newton’s law of cooling, are often used as a basis for 

constructing such semi-empirical relations. Because these models are developed directly 

from laboratory observations, they are generally less complex and more accessible than 

fully mechanistic mathematical models (Wang and Singh 1978; Hii et al. 2009; Kumar et 

al. 2012). Also, these empirical models have shown a strong capacity to estimate and 

forecast the drying kinetics of various materials (Ertekin and Firat 2017; Midili et al. 2002). 

Modeling the thin-layer drying of materials is mainly based on describing the moisture 

ratio (MR) versus time (t) data by using suitable mathematical model or models (Ademiluyi 

et al. 2008; Kaleta et al. 2013). Thin-layer drying means to dry as one layer of sample 

particles or slices. It is assumed that there is the same air velocity and temperature 

throughout this thin layer (Vega et al. 2007; Lee and Kim 2009; Kaur and Singh 2014). 

The drying kinetics of bacterial cellulose (Jatmiko et al. 2017), cotton fibers (Ghazanfari 

et al. 2006), and unbleached kraft pulp sheets (Kong et al. 2022) have all been investigated 

using thin-layer drying models, with promising findings.  

The use of artificial neural networks (ANNs) is one of the newest techniques for 

modeling and forecasting complex dynamic systems such as the wood drying process. 

Some researchers have utilized the ANNs to simulate the drying process of wood and 

agricultural products (Chai et al. 2018; Dash et al. 2020; Saxena et al. 2022). The neural 

network models have been utilized to simulate agricultural product drying kinetics as well 

as the wood drying process. Previous research has shown that the ANN model is more 

advantageous, since it can precisely predict the drying kinetics and be easily applicable to 

non-linear processes (Saxena et al. 2022). Former studies have employed conventional and 

convective dryers to determine the drying kinetics of wood particles and cellulose fibers 

(Zarea Hosseinabadi et al. 2012; Górnicki et al. 2016; Arabi et al. 2017; Brys et al. 2021; 

Kong et al. 2022). These drying methods have several drawbacks, including low energy 

efficiency and lengthy drying time, especially in falling drying rate periods (Wang et al. 

2007). Radiant dryers, such as halogens lamps, deliver heat to the material more quickly 

than convective or conductive dryers. As a result, the drying time decreases. The halogen 

hygrometer is one of the latest quick and precise methods for detecting the moisture content 
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of various materials. Halogen hygrometers are now acknowledged as a scientific, accurate 

approach and ASTM-accepted method in the industry (ASTM D6980-12). This is the first 

study to use a halogen hygrometer to describe the drying kinetics of wood fiber analysis.  

There are now more than more than 100 different semi-theoretical and empirical 

thin-layer drying models that have been used in predicting moisture content of agricultural 

products (Ertekin and Firat 2017). Each of the models is composed of dimensionless 

constants (a, b, c, d, and…) and drying constants (k, g, K1, K2, and K0). Increasing the 

numbers of parameters helps researchers to better analysis and predicts the dependent 

variable, but this is also a tedious and time-consuming task. Therefore, in this study, about 

18 thin layer drying models with different numbers of fixed parameters and an ANN model 

were investigated to select the simplest possible model as the best model for prediction of 

wood fiber drying data. 
 
 
EXPERIMENTAL 
 

Wood fibers (A mixture of forest and garden species) were obtained from the Arian 

Sina factory (MDF Production). In order to investigate the drying rate of wood fibers above   

FSP, they were combined with water in equal weight ratios for 24 h and then stored in a 

sealed polyethylene bag at 3 °C to 5 °C for seven days. The sample was mixed every day 

to ensure that the wood fibers had a consistent moisture level. Finally, wood fiber with a 

moisture content of 170% (based on dry weight) was subjected to the drying process. 

 

 
Fig. 1. Moisture analyzer, MB45 AM (ohaus.com) 
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Drying Process 

A moisture analyzer Halogen model MB45, manufactured by OHAUS, was used to 

dry wood fibers at three different temperatures: 105, 120, and 135 °C (Fig. 1). The MB45 

has a sample capacity of 45 g, with a readability of 0.001 g and repeatability of 0.015% 

(using a 10 g sample). The heater type of MB45 is a halogen lamp, and the operating 

temperature range is 50 to 200 °C in 1 °C increments.  

In halogen hygrometers, the sample is heated by absorbing the infrared (IR) 

radiation produced by the halogen lamp. The weight difference before and after dryings is 

used to determine the mass and moisture content of the sample continuously throughout 

the drying process. Halogen hygrometers work on the Loss on Drying (LOD) principle, as 

in the case of oven dryers. However, there are various benefits such as quick drying time, 

ease of use, and direct measurement without computations compared to the oven dryer.  

To investigate the drying kinetics of wood fibers, 4 g of wet fibers were dispersed 

on a stainless-steel tray placed on a precise and sensitive scale in the dryer compartment. 

The fiber was distributed on a tray carefully to prevent the fibers from accumulating at 

single points. After adjusting the temperature of the dryer chamber in the scope of this 

study, the weight loss values of the samples at a specified time interval, every 30 s, were 

presented and recorded online on the hygrometer display. The wood fibers continued to dry 

until the sample’s moisture content was nearly zero. The tests were performed three times 

for each temperature, and the mean moisture content measurements were used to design 

and fit the drying curves for each temperature. 

 

Drying Kinetics of Wood Fibers 

The moisture content of wood fibers was measured according to Eqs. 1 and 2, 

MR = (
𝑀t−𝑀e

𝑀0 −𝑀e
) 

                                                           (1) 

MR = (
𝑀t+dt

𝑀0
) 

                                             (2) 

where MR is the moisture ratio (dimensionless), Mt is the moisture content at time t (kg of 

solids/kg of water), Me is the equilibrium moisture (kg of solids/kg of water), and M0 is the 

initial moisture content (kg of solids/kg of water). 

It should be noted that due to the insignificant value of Me in comparison with Mt 

and M0, it can be ignored. Therefore Eq. 1 can be simplified to Eq. 2. (Doymaz 2007; 

Ertekin and Firat 2017). 

The drying rate of wood fibers was measured using Eq. 3 (Ertekin and Firat 2017), 

DR = (
𝑀t+dt−𝑀t

dt
) 

                               (3) 

where Mt and Mt+dt are the MC values at t and t+dt (kg moisture/kg dry matter), 

respectively, and t is drying time (s). Equation 2 was used to obtain the MR of wood fibers 

at each temperature. Then, the experimental drying data of MR versus time was fitted to 

thin drying layer models using MATLAB 2016 software. The models listed in Table 1 have 

already been widely used to investigate the drying kinetics of food, agricultural products, 

and municipal waste.  

The performance of these models was examined by comparing the coefficient of 

determination (R²), sum squares of error (SSE), and root mean squared error (RMSE) 
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which were calculated in Eqs. 4 to 6, respectively. The best thin drying layer model is the 

one with the smallest error value and the greatest coefficient of determination, 
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where MRprei and MRexpi are the predicted and experimental moisture ratio values at ith 

observation, respectively. The MRexp is the mean value of the explanatory variable, N is the 

number of observations, and n is the number of model parameters. 

 

Table 1. Mathematical Models Applied to Drying Curves 

Model Name Model Equation Parameters Reference 

Lewis (Newton) MR = exp(−kt) k Ghazanfari et al. 
2006 

Henderson and 
Pabis 

MR = a exp(−kt) a, k Kaur and Singh 
2014 

Logarithmic MR = a exp(−kt) + c a, k , c Gan and Poh 2104 

Modified Midilli et 
al.-III 

MR = a exp(−kt) + ct a, k, c Kaur and Singh 
2014 

Two-term MR = a exp(−k1 t) + c exp(−k2 t) a, k1, k2, c Kumar et al. 2014 

Noomhorm and 
Verma 

MR = a exp(−k1 t) + b exp(−k2 t) + c a, b, c, k1, k2 Kaleta and Gornicki 
2010 

Modified 
Henderson and 

Pabis 

MR = a exp (−k1 t) + b exp(−k2 t) +  
c exp(−k3 t) 

a,b,c,k1,k2,k3 Erbay and Icier 
2009 

Two-term 
exponential 

MR = a exp(−k1t) +  
(1 − a) exp(−ak2t) 

a,k1,k2 Lee and Kim 2009 

Modified two  
term-V 

MR = a exp(−kt) + (1 − a) exp(−gt) a, g, k Verma et al. 1985 

Page MR = exp (−ktn ) k, n Doymaz 2007 

Modified Page-IV MR = a exp(−ktn ) a, k, n Babalis et al. 2006 

Hii et al. MR = a exp (−ktn ) + c exp(−gtn ) a, k, n, c, g Hii et al. 2009 

Kaleta et al. II MR = a exp(−ktn ) +  
(1 − a)exp(−gtn ) 

a, k, n, g  Kaleta et al. 2013 

Modified Page II MR = exp[−(kt)n] k, n Vega et al. 2007 

Modified page .III MR = a exp[−(kt)n] a, k, n Ertekin and Firat 
2017 

Demir et al. MR = a exp[−(kt)n] + c a, k, c, n Demir et al. 2007 

Wang and Singh MR = 1 + at + kt2 a, k Wang and Singh 
1978 

Midilli et al. MR = a exp(−ktn ) + ct a, k, n, c Midilli et al. 2002 
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Artificial Neural Network Model 
An artificial neural network (ANN) is a nonlinear modeling method. It is generally 

used to model complex physical phenomena such as the drying process of wood and 

lignocellulosic materials. The ANN configuration used in this study was a Multi-layer 

perceptron (MLP). A MLP is a feed forward ANN model that generates a set of outputs 

from a set of inputs. The MLP is characterized by several layers of input nodes connected 

as a directed graph between the input and output layers. The MLP uses backpropagation 

for training the network and it consists of three types of layers-the input layer, output layer, 

and hidden layer, as shown in Fig. 2.  

 

 
Fig. 2. Scheme of artificial neural network for prediction moisture content of wood fiber 

 

The data employed for experimental study were randomly divided into three 

groups: 70% in the training set, 15% in the validation set, and 15% in the test set. The 

structure of the three-layer feed-forward network studied in this paper was built using two 

input variables (temperature and drying time) and one the outputs variables (moisture 

content). Different number of neurons in the hidden layer was applied based on the trial 

method to develop the optimum ANN model that can minimize the deviations between the 

predicted and experimental results. The neural network was trained using the Levenberg-

Marquardt (LM) learning algorithm. The hyperbolic tangent sigmoid transfer function was 

as follows, 

𝑓(𝑥) =
2

1 + 𝑒(−2𝑥)
− 1 

                                                    (7) 

where f (x) and x are the output and input values of neurons, respectively. 

The coefficient of determination (R2), mean squared error (MSE), and mean 

absolute error (MAE) were used to predict the ANN performance. Equations 8 to 10 include 

the formulas for computing these statistical characteristics, 

𝑀𝐴𝐸 =
1

𝑛
∑(

|𝑦𝑒𝑥𝑝. − 𝑦𝑝𝑟𝑒𝑑.|

𝑦𝑒𝑥𝑝.
)100

𝑛

𝑖=1

 
 

                                 (8) 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑒𝑥𝑝. − 𝑦𝑝𝑟𝑒𝑑.)

2
𝑛

𝑖=1

 
 

                                 (9) 

𝑅2 = 1 −
∑ (𝑦𝑒𝑥𝑝. − 𝑦𝑝𝑟𝑒𝑑.)

2𝑛
𝑖=1

∑ (𝑦𝑒𝑥𝑝. − 𝑦𝑒𝑥𝑝.̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

 
 

                                 (10) 

 

where yexp is the actual data value, ypred is the predicted data value, ypred with a line above 

it is the average of the actual values, and n is the number of data. 

 
 
RESULTS AND DISCUSSION 
 

Drying Curves 

Figure 3 depicts the drying behavior of wood fiber using a moisture analyzer at 105, 

120, and 130 °C. Accordingly, reaching the target moisture content from 170% (based on 

dry weight) to final moisture content (near zero) took 18, 14, and 12 min for 105, 120, and 

135 °C, respectively. As shown in Fig. 3, the increase in the drying temperatures 

significantly decreased the drying times.  

 
Fig. 3. Moisture content versus drying time at different halogen drying temperature 
 

In the Ohaus halogen moisture analyzer MB Series, the halogen radiator emits 

infrared radiation (IR) in the short wavelength range of 0.75 to 1.5 µm (near-infrared). 

When the halogen lamp is radiated toward the product, it is strongly heated and the thermal 

gradient within the material significantly increases in a short period. Since the halogen 

radiant energy easily passes through air without heating the ambient air, this energy just 

heats the product. Thus, the internal part of the materials will be warmer than the 

surrounding air and the rate of heat transfer will be greater as compared to the hot air-

drying technique (Younis et al. 2018; Huang et al. 2021). Therefore, IR drying technology 

has the advantages of high energy efficiency, short drying time, uniform heating of 

materials, and low energy costs (Huang et al. 2021). 
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The changes in drying rates versus drying time are shown in Fig. 4. Accordingly, 

the drying rate increased with an increase in drying temperature. Also, the drying speed 

was quick at the beginning of the drying operation (especially at a higher temperature), but 

the drying rate was slowed with passing time. This is due to a lack of sufficient moisture 

at the end point of the drying process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Drying rate versus drying time at different halogen drying temperature 

  

The relationship between drying rate and moisture content at different drying 

temperatures is shown in Fig. 5. The three drying periods were observed, including a 

preheating period (A) and the first and second drying rate periods (B and C).  A constant 

drying rate was not found; however, the initial moisture content of wood fibers was about 

170% (based on dry weight). The morphological structure of fibers and drying techniques 

can significantly affect the drying process. When wood fibers are heated quickly by the 

moisture analyzer, many morphological changes might occur in their structures. The 

microstructure and rheological behavior of the wood cell wall are closely intertwined with 

its moisture properties. External layers of wood fibers shrink rapidly. First, a thin and dry 

shell are formed near the surface of fibers, which creates barriers for migration of moisture 

from internal layers to the surface (Li and Zhao 2020). Due to these morphological 

interactions, even if there is a lot of free water in the bottom layers, the rate of migration 

of water molecules from the interior to the surface is less than the rate of vaporization from 

the surface into the environment. Therefore, it is extremely difficult to find a constant 

drying rate period during the drying process of wood fibers. For lignocellulosic materials, 

constant drying rate periods are often extremely short or not seen at all (Zarea Hosseinabadi 

et al. 2012; Arabi et al. 2017; Kong et al. 2020). The heat and mass transfer in the drying 

process of a solid material can be defined based on the Biot number (Bi), which is a 

dimensionless number that represents the ratio of the resistance to heat transfer from the 

inside of the body to the surface (Sander et al. 2010). Constant drying is observed for solid 

materials with a Bi number less than 0.1, while the Bi number value for lignocellulosic 

materials was reported as more than 0.2 . It means that the drying process and mass transfer 

parameters for biomass materials were mostly controlled by internal resistance (Dincer 
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1998). According to Fig. 5, the drying process almost completely occurred during the first 

and second falling rate periods (B and C). 

 

 
 

Fig. 5. Drying rate versus moisture content at different halogen drying temperature 

  

The first falling drying rate happened when wet spots on the surface gradually 

diminished until the whole surface was dry. As a result, the surface moisture of the fibers 

decreased over time while the surface temperature increased. During this period, the drying 

process was controlled by moisture diffusion and internal resistances inside wood fibers. 

When the surface was totally dried, the second falling drying rate started at point C, and 

the dry surface was transmitted to the layers underneath the surface. According to Fig 5, 

about 60% of the total drying time occurred during this period. In this phase, the drying 

rate was independent of drying conditions such as temperature and moisture content. The 

moisture transfer might be due to liquid diffusion, capillary movement, and vapor 

diffusion. Also, the drying time was usually greater than the first falling drying rate period. 

 

Drying Curves Fitting 

The nonlinear regression approach and MATLAB 2016 software were used to fit 

moisture content data at various drying temperatures to the thin-layer drying models 

presented in Table 1. The regression constants (a, b, c, d...,), the drying constants (k), and 

the statistical indicators (R2, SSE, and RMSE) of the thin-layer drying models are shown 

in Tables 2, 3, and 4 for 105, 120, and 135 °C, respectively.   

According to Tables 2, 3, and 4, Lewis model (Newton) with the one fixed 

parameter (k), Wang and Singh and Modified Page-II models with two constant parameters, 

and Two-term exponential models with three constant parameters did not show a good 

fitness for moisture content prediction. At 105 °C, the Lewis model exhibited poor fitting 

(R² = 0.522) due to high internal resistance and non-uniform moisture distribution. 

However, at higher temperatures (120 and 135 °C), diffusion resistance decreased, and the 

drying process became more surface-controlled, resulting in more exponential behavior 

and improved model fitting, as evidenced by higher R² values. 
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Table 2. Statistical Results and Drying Constant of Mathematical Models at 
Different Drying Temperature (T = 105 ºC) 

T Model adj. R2  Constant Parameters RSME SSE 

105 F(t) = exp(-kt) 
0.3308 

k = 0.001095 0.3785 17.91 

F(t) = a exp(-kt) 
0.9804 

a = 2.004, k = 0.002016 0.06489 0.5221 

F(t) = a exp(-kt) +c 
0.9987 

a = 2.352, k = 0.00129,  
c = -0.4487 

0.01638 0.03298 

F(t) = a exp(-kt) +c t 
0.9986 

a = 1.909, k = 0.001517,  
c = -0.0002181 

0.01715 0.03619 

F(t) = a exp(-k1t) + 
c exp(-k2t) 0.9987 

a = 58.78, k1 = 0.0007727, k2 = 
0.0007472, c = -56.89 

0.01646 0.03304 

F(t) = a exp(-k1t) +b 
exp(-k2t) +c 

0.9987 

a = 2.361, k1 = 0.00126,  
k2 = 0.01683, 

 b = 0.02563, c = -0.471 

0.01627 0.03205 

F(t) = a exp(-k1t) +b 
exp(-k2t) +c exp(-k3t) 

0.9973 

a = 20.62, k1 = 0.0002808,  
k1 = 0.003502, k3 = 0.0002256  

b = 0.5778, c =-19.28 

0.02422 0.07037 

F(t) = a exp(-k1t) +(1-a) 
exp(-ak2t) 0.3837 

a =18.57, k1 = 0.0003812,  
k2 =1.902e-05 

0.3655 16.43 

F(t) = a exp(-kt) +(1-a) 
exp(-gt) 0.8920 

a = 2.035, k = 0.002048,  
g = 0.9649 

0.153 2.878 

F(t) = exp(-ktn) 
0.9874 

k= 2.326e-08, n = 2.617 0.05198 0.335 

F(t) = a exp(-ktn) 
0.9937 

a =1.827, k = 0.0002737,  
n = 1.298 

0.03695 0.1679 

F(t) = a exp(-ktn) +(1-a) 
exp(-gtn) 0.9043 

a = 1.787, k = 0.0001936,  
g = 0.9649, n = 1.348 

0.1445 2.548 

F(t) = a exp(-ktn) +bt 
0.9990 

a = 1.571, k = 7.104,  
c = -0.001415, n = -9.327 

0.02559 0.02934 

F(t) = 1+at+kt2 
0.5641 

a = 0.00017, k = -9.287e-07 0.3061 11.62 

F(t) = a exp[-(kt)n] 
0.9937 

a =1.827, k = 0.001797,  
n =1.298 

0.03695 0.1679 

F(t) = exp[-(kt)n] 
0.5989 

k = 0.001215, n = 3.284 0.2925 10.61 

F(t) = a exp[-(kt)n] +c 
0.9987 

a = 2.359, k = 0.001285,  
c = -0.4543, n = 0.9974 

0.02644 0.03298 

 

Henderson and Pabis and Page models with two adjustment parameters and 

Logarithmic, Modified Midilli et al.-III, Modified Page-III and Modified Page-IV models 

with three adjustment parameters showed good fits for the wood fiber drying process. Also, 

Demir et al., Midilli et al., Hii et al., Kaleta et al. II., Two-term, Noomhorm and Verma, 

Modified Henderson and Pabis model with more than three adjustment parameters 

predicted moisture content of wood fiber with the highest value of R2 and lowest value of 

RMSE and SSE.  

According to results of Tables 2, 3, and 4, based on the statistical indicators; there 

was not much difference among some of models with two, three, and more than three 

adjustment parameters. The Midilli et al. model with four fixed parameters were selected 

as a best model for drying kinetic of wood poplar particle (Zarea Hosseinabadi et al. 2012; 

Arabi et al. 2017).  
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Table 3. Statistical Results and Drying Constant of Mathematical Models at 
Different Drying Temperature (T=120 °C) 

T 
 

Model Equation adj. R2 Constants RSME SSE 

 
 
 
 
 
 
 
 
 

120 °C 

f(t) = exp(-kt) 0.98334 k = 0.003745 0.06306 0.09942 

f(t) = a exp(-kt) 0.9986 a = 2.116, k = 0.00577 0.01889 0.008567 

f(t) = a exp(-kt) +c 
0.99762 

a =2.145, k1 =0.002314, c = -0.06061   0.02282 0.0198 

f(t) = a exp(-k1t) +c exp(-k2t) 
0.9965 

a = 2.157, k1 = 0.005964, k2 = 0.9134,  
c = -0.2919 

0.03085 0.02094 

f(t) = a exp(-k1t) + b exp(-k2t) 
+c 0.9993 

a = 2.155, k1 = 0.005375, k2 = 0.9134,  
b = -0.2292, c = -0.06012 

0.02445 0.004384 

f(t) = a exp(-k1t)+c exp(-
k2t)+b exp(-k3t) 0.9965 

a = 2.158, k1 = 0.005965, k2 = 0.9134,  
k3 = 0.2735, b = -0.402, c = 0.1097 

0.03236 0.02094 

f(t) = a exp(-kt) + 
(1-a) exp(-ak1t) 0.96682 

a = 2.134, k = 0.00585, k1 = 0.9134 0.09278 0.198 

f(t) = a exp(-kt) + (1-a) exp(-
gt) 0.96682 

a =2.134, k = 0.00585, g = 0.9134 0.09278 0.198 

f(x) = a exp(-ktn) 
0.99734 

a = 1.898, k = 0.001704, n = 1.208 0.02652 0.01617 

f(x) = exp(-ktn) 0.57398 k = 1.629e-08, n = 2.979 0.3207 6.581 

f(t) = a exp(-ktn) +  
(1-a) exp(-gtn) 0.95142 

a =1.954, k = .002078, g = 1.403,  
n = 1.178 

0.1148 0.29 

f(t) = a exp(-k tn) + c exp(-g 
tn) 0.9993 

a =1.125, k=2.499e-05, c = 0.7501,   
g = 0.00024, n = 1.87 

0.00760
1 

0.001213 

f(t) = a exp(-ktn) + ct 
0.99776 

a = 1.907, k = 0.002072,  
c = -3.828e-05,  n = 1.168 

0.02442 0.01311 

f(t) = 1+at+kt2 0.6171 a = -0.002029, k = 7.124e-07 0.3084 2.282 

f(t) = a exp[-(kt)n] 
0.99734 

a =1.898, k = 0.0051, n = 1.208 o.02652 0.01617 

f(t) = exp[-(kt)n] 0.9608 k = 0.003214, n = 2.116 0.9868 0.2337 

f(t) = a exp[-(kt)n] + c 
0.99776 

a =1.937, k = 0.00498, c = -0.02897,  
n = 1.16 

0.02445 0.01316 

 

Additionally, Kong et al. (2020) presented a complex model (the Yun model) with 

five fixed parameters for predicting the drying kinetics of pulpboard, achieving very high 

accuracy (Adjusted R² = 0.999; RMSE = 0.003). The drying behavior of sawdust mixtures 

has also been investigated by Górnicki et al. (2016), who reported that the Logarithmic, 

Noomhorm, Verma (Kaleta and Gornicki 2010), Demir et al. (2007), and Midilli et al. 

(2002) models showed the best performance when fitting experimental data. However, 

Buzrul (2022) emphasized that in complex models—particularly those with more than two 

parameters—some parameters may be statistically non-significant (p > 0.05), and therefore 

the use of unnecessarily complex models may not be justified. 

In the present study, the Adjusted R² and RMSE values for the Henderson and Pabis 

and Page models, each containing a maximum of two fixed parameters, ranged from 0.9785 

to 0.9832 and from 0.0998 to 0.0824, respectively. These Adjusted R² values, which 

account for the number of model parameters, confirm that increasing model complexity 

does not lead to a meaningful improvement in predictive performance. Therefore, it can be 

concluded that the Henderson and Pabis and Page models, as simple and statistically 

efficient models, are the most appropriate choices for describing the thin-layer drying 

process of wood fibers. 
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Table 4. Statistical Results and Drying Constants of Mathematical Models at 
Different Drying Temperature (T = 135 °C) 

T Model adj. R2 Constants RSME SSE 

 
 
 
 
 
 
 
 

135 °C 
 
 
  

f(t) = exp(-kt) 0.9797 k = 0.006706 0.07281 0.1007 

f(t) = a exp(-kt) 0.99678 a = 2.366, b = 0.01029 0.02914 0.01528 

f(t) = a exp(-kt) +c 
0.98404 

a = 2.083, b = 0.008413, c = -0.05057 0.06703 0.07638 

f(t) = a exp(-k1t) + 
c exp(-k2t) 0.99916 

a = 2.411, k = 0.01053, k1 = 0.975,  
c =-0.5302 

0.01536 0.003775 

f(t) = a exp(-k1t) 
+c exp(-k2t) +d 0.9993 

a = 2.402, k = 0.01029, k1 = 0.975,  
c = -0.5089, d = -0.01262 

0.001748 0.002727 

f(t) = a exp(-k1t) 
+c exp(-k2t) + 

d exp(-k3t) 0.99916 

a = 2.411, k1 = 0.01054, k2 = 0.975,  
k3 = 0.5469, c = -0.2046, d = -0.3261 

0.01642 0.003775 

f(t) = a exp(-k1t) 
+(1-a) exp(-ak2t) 0.83788 

a = 2.411, k1 = 0.01054, k2 = 0.975 0.2141 0.7795 

f(t) = a exp(-kt) 
+(1-a) exp(-gt) 0.8376 

a = 2.411, k = 0.01054, g = 0.9649 0.2141 0.7795 

f(t) = a exp(-ktn) 
0.9958 

a = 1.932, k = 0.001844, n = 1.312 0.03431 0.02001 

f(t) = exp(-ktn) 0.68836 k = 6.524e-07, n = 2.718 0.2882 1.495 

f(t) = a exp(-ktn) 
+(1-a) exp(-gtn) 0.83774 

a = 2.288, k = 0.007153, g = 0.9649,  
n = 1.07 

0.2206 0.7784 

f(t) = a exp(-ktn)+ 
c exp(-gtn) 0.9993 

a = 2.288, k = 0.007151, g = 0.975,  
c = -0.4077, n =1.07 

0.001326 0.001638 

f(t) = a exp(-ktn) + 
ct 0.96766 

a = 0.02299, b = -0.001318, k =-5.648,  
c = -0.06798 

0.09136 0.1753 

f(t) = 1+at+kt2 0.93434 a = -0.004318, k = 4.627e-06 0.1323 0.3149 

f(t) = a exp[-(kt)n] 0.9958 a = 1.932, k = 0.008252, n = 1.312 0.03431 0.02001 

f(t) = exp[-(kt)n] 0.6885 k = 0.005315, n = 2.791 0.2882 1.495 

f(x) = a exp[-(kt)n] 
+ c 0.99608 

a = 1.913, k = 0.008354, c = 0.01465,  
n = 1.344 

0.03409 0.0186 

 

ANN Model 
A multilayer perceptron consisting of layers with one or more neurons with 

different activation functions was employed to optimize the perceptron network. The MLP 

model was developed based on temperature and drying time as input variables and moisture 

content as an output variable. The number of neurons in the hidden layer is the variable (x). 

Experimental data were separated into three groups for the ANN modeling, including 

training (70%), validation (15%), and testing (15%). After training and testing the network, 

the findings revealed that topology 2-5-1 with hyperbolic tangent sigmoid transfer 

functions provided the greatest training for moisture modeling. The R values for MR for 

neural network training, validation, and testing data are shown in Fig. 6. In the training, 

validation, and testing data, as well as the total data, the R-values for MR were 0.99956, 

0.99979, 0.99947, and 0.99958, respectively. 

According to Table 5, the total data in the ANN model for MR prediction had an 

absolute mean percent error (MAPE) of 2.53%. The ANN showed a higher capacity to 

predict the moisture content of wood fibers than regression and thin-layer drying models, 

as evidenced by the high coefficient of determination and low error percentage between 

experimental and predicted data. 
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Fig. 6. Regression plots of the developed ANN model for (a) the training data set, (b) the 
validation data set, (c) the testing data set, and (d) all data 
 

Table 5. Evaluation of the Performance of ANN using Statistical Parameters 

 MAPE MSE R Parameter Factor 

  0.000011 0.99998 Training  

 0.000014 0.99998 Validation MC 

 0.00005 0.99993 Testing  

2.53  0.99997 All Data  

 

Figure 7 depicts experimental data against predicted data obtained based on ANN 

models. Accordingly, the neural network predicted the experimental data (R2) more 

accurately than Midilli et al. (2002) model. Artificial neural networks are unique machine 

learning algorithms that mimic the human brain and find the relationship between the data 

sets. Therefore, ANN can learn from the past data and improve its performance based on 

previous experience and training. Moreover, the designed program can adapt to new 
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conditions in case of data change. These two factors of generalizability and adaptability 

distinguish the ANN from other modeling methods and allow it to provide better results 

than other modeling methods. Many researchers have utilized ANNs to predict the drying 

process of wood and lignocellulosic materials. These studies employed MAPE, MSE, and 

R2 statistical parameters as the main comparison between experimental and predicted data.  

 

 
Fig. 7. Comparison of ANN predictions and experimental data 

 
 

Fig. 8. Neural network performance by period (epoch) for training, validation, and testing data 
 

The findings from the current study are consistent with results from previous 

studies (Saxena et al. 2022). Overfitting is the most common issue in neural network 

training. This issue occurs when a neural network only performs well on training data and 

does not provide good results for other data sets. A periodic epoch performance chart for a 

neural network is shown in Fig. 8, when the error due to the validation data stays constant 

for six consecutive epochs, the neural network computation stops.  
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As shown in Fig. 8, after 25 epochs, the error was fixed in the following six 

consecutive periods, and the forecasting and data processing was stopped. This showed the 

network has been well-trained, validated, and tested. 

 

Sensitivity Analysis of ANN Model 
A sensitivity analysis based on the Garson algorithm was conducted to quantify the 

effect of drying temperature and time on predicted moisture content. The analysis revealed 

that temperature had a dominant influence (normalized sensitivity coefficient = 0.72), 

while time contributed less (0.28). This indicates that temperature changes have a stronger 

nonlinear effect on moisture removal within the ANN framework. 

 
Comparison between ANN and Classical Thin-Layer Models  

The ANN model, being purely data-driven, can capture such nonlinearities and 

parameter interactions without relying on simplified assumptions. At higher drying 

temperatures (120 to 135 °C), both ANN and the best-performing semi-empirical models 

(Page and Henderson–Pabis) produced comparable accuracy, whereas at lower temperature 

(105 °C), ANN performed better due to its flexibility. 

It should be noted that classical thin-layer models (e.g., Page, Henderson–Pabis, 

and Logarithmic) provide echanistic or semi-empirical insights into drying kinetics, but 

their accuracy decreases under conditions where the drying curve deviates from simple 

exponential behavior. The ANN model, by contrast, is a purely data-driven approach, 

capable of capturing complex nonlinearities in drying behavior without requiring 

predefined equations. A comparative interpretation has been contributed by this work, 

showing that ANN predictions aligned well with the best-performing thin-layer models at 

higher temperatures, while outperforming them at lower temperature (105 °C), where 

model inadequacy was observed. Finally, the ANN approach complements traditional 

models, as it provides high predictive accuracy, whereas classical models remain useful for 

mechanistic interpretation.  

 

Limitations of the Study 
This research was conducted using a laboratory-scale halogen moisture analyzer 

(MB45, OHAUS), which, despite offering precise temperature control and rapid moisture 

measurement, presents inherent limitations when extrapolating the results to industrial 

drying systems. The halogen dryer operates within a small, enclosed chamber that provides 

uniform but static heat transfer conditions, which do not fully reflect the dynamic 

convective heat and mass transfer processes occurring in industrial dryers. In addition, air 

velocity, humidity, and fiber bed thickness were maintained constant throughout the 

experiments, thereby limiting the ability to analyze their combined effects on drying 

kinetics. The restricted sample size and localized heating zone may also lead to thermal 

gradients and non-uniform internal moisture diffusion, differing from large-scale drying 

behavior.  

Moreover, the predictive performance of the artificial neural network (ANN) model 

is highly dependent on the size, variability, and representativeness of the experimental 

dataset; its accuracy may decline when applied to untested conditions. Consequently, 

scaling up these results requires pilot- or industrial-scale studies that account for variable 

airflow, humidity, and material loading. Future research should also investigate hybrid or 

physics-informed ANN models that combine data-driven learning with mechanistic 

understanding to enhance both accuracy and interpretability. 
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CONCLUSIONS 
 

Several investigators have proposed over 100 different semi-theoretical and 

empirical thin-layer drying models for agricultural products, highlighting the complexity 

and variety in modeling approaches. In this study, the drying kinetics of wood fibers were 

evaluated using 18 semi-empirical models and an artificial neural net (ANN) model to 

identify the simplest model for predicting moisture changes during the drying process. The 

performance of the thin-layer drying models was assessed based on statistical parameters, 

including R2, sum of the square of errors (SSE), and root mean squared error (RMSE). The 

results can be summarized as follows: 

1. Among the evaluated models, the Henderson and Pabis, and Page models, each with 

two adjustable parameters (a, k; and k, n, respectively), provided a good and 

acceptable fit for the drying kinetics of wood fibers at temperatures ranging from 120 

to 135 °C. 

2. The ANN model did not outperform traditional thin-layer drying methods in 

predicting changes in moisture content, suggesting that simpler methods are often 

more effective. 
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