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With the recovery of the economy and growth of living standards, the 
demand for wood furniture is increasing, leading to a focus on wood quality 
and market value. Mid-infrared (MIR) spectroscopy, which characterizes 
molecular vibrations, is well-suited for wood classification due to its ability 
to identify molecular structures. This study utilizes a Fourier Transform 
Infrared (FTIR) spectrometer to classify 31 wood species based on their 
commercial categories. While the basic composition of wood species is 
similar, spectral data are overall close, necessitating a robust approach for 
accurate identification. To address this, a two-dimensional transformation 
of the spectral data is performed, to convert wavenumber sequence and 
state transition probabilities (quantized intensity levels) of spectra into a 
matrix, followed by deep learning classification using the transformed data. 
This resulted in the development of the MTF-SKNet model, achieving a 
classification accuracy of 93% for wood species. The model demonstrated 
strong generalization performance, reaching 96% accuracy in classifying 
the rosewood category of woods. 
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INTRODUCTION 
 

Against the backdrop of China’s rapid economic growth, the wood products 

industry is also developing swiftly, leading to a steady increase in the demand for timber. 

Currently, China’s timber trade is characterized by supplementary import trade, with 

approximately 80% of the timber being imported (Ding and Yin 2024). The variety of 

imported wood species is vast, and the sources of timber are complex. The large market 

size makes it prone to trade frauds such as tariff evasion and the passing off of inferior 

goods as superior. In the new situation, accurately identifying wood species holds practical 

significance for stabilizing the market and protecting consumer interests. 

Traditional methods of wood identification primarily include morphological 

observation and chemical composition analysis (Abe 2016). Morphological observation 

relies on the inspection of the wood’s macro and microstructures, such as ring width, vessel 

morphology, and grain patterns. While this method is simple, it is often influenced by the 

observer’s experience and technical level, with a high degree of subjectivity and difficulty 

in distinguishing wood species with similar appearances. Chemical composition analysis 
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involves qualitative and quantitative analysis of the wood’s chemical components using 

chemical reagents, such as the determination of cellulose, hemicellulose, and lignin content. 

However, this method is complex, requires specialized equipment and reagents, and may 

cause damage during sample processing, making it time-consuming. Especially when 

dealing with a wide variety of tree species, manual identification can be very time-

consuming and labor-intensive, necessitating an efficient and non-destructive 

identification method. 

Significant progress has been made in the use of spectroscopy for wood analysis, 

with both mid-infrared (MIR, 400 to 4000 cm-1) and near-infrared (NIR, 12500 to 4000 

cm-1) technologies demonstrating effectiveness and accuracy (Huang et al. 2008; Li et al. 

2015; Shi et al. 2018; Pan et al. 2023; Das et al. 2024; Jesus et al. 2024). 

Before classifying using spectral data, preprocessing is necessary to better 

summarize features for classification algorithms and achieve better classification results. 

Various other algorithms, such as Standard Normal Variate (SNV) and Multiplicative 

Scatter Correction (MSC), have been applied in the preprocessing process to obtain 

satisfactory preprocessing effects (Mou et al. 2013; Grisanti et al. 2018). Previous research 

has focused on developing classification models for wood species identification, using 

machine learning algorithms such as PCA-SVM, PLSDA, and SIMCA to directly classify 

the basic types of trees (Jesus et al. 2024). Although these existing methods have 

contributed to wood species identification, they often lack generalization ability, especially 

in distinguishing between high-value and low-value wood species, which is the research 

objective of this paper—to differentiate material value directly based on features. 

To enhance generalization ability, deep learning comes to mind, as richer 

representational information and larger neural networks can better summarize the common 

characteristics of high and low value between different species. Studies using microscopic 

images have confirmed this (Ma, Kimura et al. 2024). Most current neural networks use 

two-dimensional data, requiring two-dimensional input for better training effects. This has 

led to the emergence of Two-Dimensional Correlation Spectroscopy (2DCOS), which 

transforms spectra into two-dimensional structures (Jiang and Rieppo 2006). Other two-

dimensional methods, such as Gramian Angular Field (GADF) and Recurrence Plots (RP), 

can also be implemented (Pan et al. 2023; Das et al. 2024). However, these studies have 

not deeply investigated the intra-species differences, only highlighting the inter-species 

differences between different wood species. Addressing these limitations is crucial for 

developing more robust and comprehensive wood analysis techniques. 

The purpose of this study is to construct an algorithm having high generalization 

capability, which combines intraspecific and interspecific spectral data characteristics, to 

achieve the identification of high-value rosewoods and non-rosewoods. The research 

utilized Fourier transform mid-infrared spectroscopy to collect data from 31 wood species, 

which were then processed with Multivariate Scattering Correction (MSC). Pearson 

correlation coefficient (Matsumoto et al. 2016) matrix calculations combined with 

hierarchical clustering analysis (Saxena et al. 2017) were performed on the processed data 

to identify the characteristic positions of intraspecific and interspecific differences. 

Subsequently, an attempt was made to convert the data into state probability maps using 

Markov Transition Fields (MTF) (Zhao et al. 2022), which served as input data for the 

optional Convolutional Neural Network (SKNet) model training (Li et al. 2019). The 

classification results were compared with other algorithms, verifying the effectiveness of 

the MTF-SKNet algorithm and demonstrating its universality and scalability in the 

qualitative analysis of wood mid-infrared spectra. 
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The innovations of this study are twofold. The first lies in the comparison of the 

intraspecific and interspecific difference characteristics of wood using Pearson correlation 

coefficient and hierarchical clustering analysis before developing the algorithm, whereas 

other papers only discussed the interspecific differences without comparing the mid-

infrared spectral characteristic differences within the same wood species. The second 

innovation is the development of an algorithm based on these characteristics, which can 

simultaneously handle the distinction between small tree species and the broader 

classification of rosewoods and non-rosewoods. Other papers aim at distinguishing small 

tree species and do not focus on the higher-level categorization of wood value, such as 

whether or not it belongs to the rosewood category. 
 

 
EXPERIMENTAL 
 

Samples 
A total of 31 wood species were used in the study, including 19 national standard 

rosewood species and 12 non-rosewood species (Table 1). Each species had two samples 

with dimensions of approximately 60 mm x 40 mm x 10 mm, as shown in Fig. 1a. During 

testing, each wood sample was divided into four regions with a cross shape on both the 

front and back sides, and eight data points were collected from the center of each region, 

resulting in a total of 480 data points. The samples were provided by Yushan Town Xie-

Qiao Huo-Men Rosewood Furniture Factory (Changshu City, Jiangsu Province, China) 

and they followed industry-standard protocols (air-dried, sanded to 400-grit). 

 

 

Fig. 1.  Experimental process diagrams: (a) sample, (b) apparatus, (c) spectral data, (d) algorithm 
structure 
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Table 1. Sample List (Species of Rosewood; GB/T 18107 2017) 

Species/ 
Category 

Rosewood (Latin name) Non-rosewood 

Dalbergia melanoxylon Black walnut wood 

Dalbergia granadillo North American black walnut wood 

Diospyros ebenum  Polished North American black walnut wood 

Dalbergia stevensonii  Polished northern walnut wood 

Dalbergia cultrata Northern walnut wood 

Pterocarpus erinaceus  Southern walnut 

Dalbergia louvelii Polished southern walnut 

Pterocarpus indicus Wood bean (Pahudia javanica) 

Diospyros crassiflora European ash (Fraxinus excelsior) 

Dalbergia cearensis  Polished European ash 

Pterocarpus dalbergioides  Walnut-colored oak 

Dalbergia bariensis Faded walnut-colored oak 

Diospyros pilosanthera  

Diospyros celebica  

Diospyros philippensis  

Cassia siamea  

Dalbergia latifolia  

Millettia laurentii  

Millettia leucantha  

Total number 19 12 

 

Equipment  
A Fourier transform infrared (FTIR) spectrometer (model MB3000, ABB, Zurich, 

Switzerland) was used for data acquisition. The instrument was equipped with a laboratory-

built internal gold-coated integrating sphere for uniform illumination and scattered light 

collection, as well as a gold-coated reflector plate used as a reference material for 

calibrating the infrared light source. The system is shown in Fig. 1b. 

All programs were run on a personal computer with the following specifications: 

GTX 1080 Ti graphics card, R5 5600X CPU, 32GB RAM. 

 
Software 

Horizon-MB (Zurich, Switzerland) was used to collect all the data from FTIR. The 

spectral data were collected within the range of 460 to 4000 cm-1, with a resolution of 16 

cm-1, 64 scans, and an exposure time of 10 seconds. The data were output as absorbance 

values (Abs). 

Python (Anaconda, Austin, TX, USA) was used to process the data, and draw some 

of pictures. This software was utilized for data preprocessing, feature extraction, model 

training, and evaluation. Libraries used include: NumPy: For numerical computing. SciPy: 

For scientific computing and signal processing. Pandas: For data manipulation and analysis. 

Scikit-learn: For machine learning algorithms and preprocessing. TensorFlow: For 

building and training deep learning models. PyTorch: For building and training deep 

learning models.  

Origin-Pro (Origin-Lab Corporation, Northampton, MA, USA) was used for 

creating complex figures and visualizations. 

 

  



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Xin et al. (2025). “Wood species ID by infrared,” BioResources 20(2), 4464-4478.  4468 

Methods 
Pre-process 

In the preprocessing phase, signals were identified as irrelevant if they fell outside 

the operational spectral wavenumber range of the light source or were obscured by 

atmospheric absorption from water vapor and carbon dioxide. These irrelevant signals were 

removed to reduce interference and enhance data quality. Subsequently, noise reduction 

techniques were applied to eliminate the impact of noise on the signals. Finally, 

Multivariate Scattering Correction (MSC) was utilized to normalize the data, which helps 

to eliminate the effects of light scattering and baseline drift, ensuring consistency and 

comparability of the spectral data. This process made the spectral data more suitable for 

subsequent analysis and modeling. MSC is a preprocessing technique used in spectroscopy 

to correct for light scattering and baseline variations, enhancing the spectral quality for 

better analysis. It is commonly applied to improve the accuracy of chemical composition 

determination in samples by normalizing the spectra to account for instrumental and 

sample-related effects. 

 

Analyze interspecific and intraspecific differences 

The Pearson correlation coefficient and Hierarchical Clustering Algorithm (HCA) 

were used to find the biggest interspecific differences and the smallest intraspecific 

differences. The Pearson correlation coefficient measures the linear relationship between 

two signals, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation) 

(Matsumoto et al. 2016). It was calculated as follows, 

𝑟 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)
2(𝑦𝑖−𝑦̅)

2
        (1) 

where the Pearson correlation coefficient is represented by 𝑟, 𝑥𝑖 , and 𝑦𝑖 , which are paired 

observations of two variables, and 𝑥̅ and 𝑦̅ are the averages of these two variables. 

The Hierarchical Clustering Algorithm is a commonly used clustering method that 

constructs a hierarchical tree of clusters by progressively merging or splitting existing 

clusters (Saxena et al. 2017). This method progressively merges existing clusters in a 

bottom-up approach. The agglomerative direction and the average linkage criterion were 

utilized as the method for determining the distance between clusters. The Pearson 

correlation coefficient was employed to measure the similarity between signals. Ultimately, 

this process results in a tree-like structure of the clusters.  

 

MTF 

The Markov Transition Field (MTF) method converts one-dimensional spectral 

data into a two-dimensional representation by encoding temporal dependencies through 

state transition probabilities (Zhao et al. 2022). This transformation involves three key 

steps: 

1. State Quantization: The spectral intensity values are discretized into N distinct 

states (empirically optimized to N=10 in this study) based on intensity ranges.  

2. Transition Probability Calculation: A Markov Transition Matrix (MTM) is 

constructed to capture the probability of transitioning between adjacent states along the 

spectral sequence. Each element 𝑃𝑖,𝑗 in the MTM represents the likelihood of transitioning 

from state i to state j. 

3. Image Generation: The MTM is mapped to a grayscale image matrix (Fig. 4a), 

where pixel intensity at position (i,j) corresponds to 𝑃𝑖,𝑗. This matrix preserves dynamic 
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features (e.g., peak shifts, intensity fluctuations) while suppressing noise through 

probabilistic smoothing. 

SKNet 

The Selective Kernel Network (SKNet) enhances feature extraction in neural 

networks through a multi-scale architecture and adaptive attention mechanisms (Li et al. 

2019).  Its core design comprises three components (Fig.1.d): 

1. Multi-Scale Convolution Branches: Parallel branches with varying kernel sizes 

(e.g., 3×3 and 5×5) extract local and global spectral features. For instance, smaller kernels 

capture fine-grained lignin aromatic vibrations (1600 to 1800 cm⁻¹), while larger kernels 

detect broad cellulose C-O stretching patterns (1000 to 1200 cm⁻¹). 

2. Feature Fusion: A squeeze-and-excitation module aggregates multi-scale outputs, 

generating channel-wise attention weights to prioritize critical spectral regions (e.g., lignin 

vs. cellulose-dominated bands). 

3. Dynamic Kernel Selection: The attention weights dynamically adjust the 

contribution of each branch, enabling the model to adaptively focus on discriminative 

features (e.g., subtle peak shifts in rosewood spectra). 

SKNet, unlike standard CNNs with fixed kernel sizes, employs an adaptive 

selection mechanism that dynamically adjusts feature extraction across multiple kernel 

sizes. This attention-based approach contrasts with the static nature of traditional CNNs, 

offering a more efficient and focused feature representation with only a slight increase in 

parameters, making it particularly suitable for complex data analysis. 

 

Result evaluation 

The dataset was divided into a training set and a test set according to a 4:1 ratio. 

For each small category, if the number of individuals in the test set was greater than half 

of the category’s individuals or equaled zero after intra-class division, a secondary 

replacement and redivision were performed. This means adjusting the number of test sets 

for that category and making up the difference with the test sets of other categories. This 

ensured the presence of test individuals without being too numerous. 

After qualitative analysis of the dataset using the training set, the test set was used 

to evaluate the results. The accuracy rate of the actual test set results was compared to the 

algorithm’s predicted results to assess the algorithm. Accuracy measures the performance 

of a classification model and represents the proportion of samples correctly predicted by 

the model out of all predicted samples, as follows, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁
      (2) 

where TP (True Positive) is the number of positive samples correctly predicted, TN (True 

Negative) is the number of negative samples correctly predicted, FP (False Positive) is the 

number of negative samples incorrectly predicted as positive, and FN (False Negative) is 

the number of positive samples incorrectly predicted as negative. 

 
 
RESULTS AND DISCUSSION 
 
Pre-processing 

The light source signal was weak between the wavenumbers of 0 to 600 and 2300 

to 2400, with strong signal fluctuation between 2300 to 2400, which is attributed to the 

mid-infrared absorption of carbon dioxide and water vapor gases. Typically, the method of 
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purging with nitrogen is used to remove these effects. However, in the course of this study, 

nitrogen purging was not employed. Consequently, during preprocessing, a truncation from 

460 to 600 wavenumbers and a smoothing from 2300 to 2450 wavenumbers were added to 

reduce signal characteristics caused by non-sample factors. 

The data results after preprocessing for one sample are shown in Fig. 2. For most 

samples, after preprocessing, the signal range area became smaller, indicating smaller 

intraspecific differences, which is beneficial for clustering based on intraspecific 

characteristics. 

 

 
Fig. 2. Spectrum data. a. Reference light source comparison chart before and after preprocessing 
(using Pterocarpus erinaceus as an example) b. Average pre-processed spectrum for each wood 
species 

 

Analyze interspecific and intraspecific differences 

The Pearson correlation coefficients were calculated to obtain the intraspecific and 

interspecific correlation coefficient matrices. Using these matrices, hierarchical clustering 

with the average distance method was performed. The resulting dendrograms for 

intraspecific and interspecific clustering revealed that the two wood species with the largest 

intraspecific distances were Dalbergia latifolia and Dalbergia louvelii. The group with the 

smallest interspecific distance included Pterocarpus indicus, Pterocarpus andamanicus, 

Dalbergia cearensis, Juglans nigra, and Juglans nigra from North America, as well as 

Diospyros ebenum, Diospyros crassiflora, Dalbergia louvelii, Machilus thunbergii, 

Pahudia javanica, and Fraxinus mandshurica. 
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As shown in Fig. 3-a,b after preprocessing, the two species still exhibited 

significant intraspecific differences, primarily concentrated in two wave number ranges. 

The first range is between 600 to 1100 cm-1, where generally, vibrations reflecting cellulose 

C-H deformation occur, with an appearance near 900 cm-1. The absorption peak near 1050 

cm-1 corresponds to the C-O stretching vibration in cellulose and hemicellulose. The 

fluctuations in the fingerprint region below 900 cm-1 are often influenced by C-H bonds in 

special structures, such as the aromatic ring C-H stretching near 850 cm-1. The second 

range is between 1850 and 2800 cm-1, where the spectrum is relatively smooth with fewer 

absorption peaks. There is a fixed envelope near 2100 cm-1, which, as it is not mentioned 

in other wood-related studies, is speculated to be due to C=O (carbonyl) from the benzene 

ring of specific lignin monomers (such as p-coumaric acid) or the carbonyl on the pyran 

ring in cellulose carbonyl. This deviates from the original position. 

As shown in Fig. 3-c,d, the interspecific differences between different species were 

relatively small after preprocessing, mainly concentrated in two wave number ranges. The 

first range is between 1100 and 1600 cm-1, where there are more complex molecular bond 

vibrations, including C=O, aromatic, and C-O stretching vibrations, as well as alkyl 

vibrations on different carbon chains. The 1100 to 1600 cm-1 range mainly involves lignin 

aromatic ring skeleton stretching vibrations and C=O, C-O-C, methyl C-H stretching 

deformation vibrations in lignin and cellulose. The peak segment between 1032 and 1037 

cm-1 is primarily due to lignin aromatic C-H in-plane deformation, in-plane bending, C-O 

deformation in primary alcohols, and non-conjugated C=O stretching. The 1245 cm-1 

corresponds to lignin syringyl ring vibration, and 1266 cm-1 is the guaiacyl ring plus C-O 

stretching vibration. The 1630 to 1660 cm-1 range corresponds to the vibration of amino 

compounds in protein peptides. The second range is at 3000 cm-1. 

 

Table 2. Wood IR Vibrational Spectrum and Wavenumber Reference Table 

No. Wavenumber (cm-1) Vibration 

1 835 Cellulose β-chain, stretching of C-H bonds extending out of 
the aromatic ring plane 

2 898 Cellulose P-chain, stretching of C-H bonds extending out of 
the aromatic ring plane 

3 1030 C-O vibration in secondary alcohols and fatty ethers 

4 1160 C-O-C stretching in the pyran ring, C=O stretching in 
aliphatic groups 

5 1230 C-O-C stretching of phenol ether bonds in lignin 

6 1260 Guaiacol ring C–N–H stretching vibration in lignin 

7 1270 Stretching of guaiacyl unit G ring and O-C-O 

8 1317 Connecting bond between guaiacyl unit and coniferyl unit, 
bending and stretching of coniferyl unit and CH2 

9 1375 O-H in methyl and phenol, and aliphatic C-H stretching 
vibration 

10 1425 Stretching vibration of C-H in-plane bound to the aromatic 
skeleton 

11 1463 Stretching vibration of CH2 in lignin and xylan 

12 1510 Aromatic skeleton stretching 

13 1619 / 1640 C=O stretching vibration in coumarin 

14 1740 C=O stretching vibration in unconjugated ketones, 
carbonyls, and aliphatic groups (xylan) 

15 2930 C-H stretching vibration in methyl and methylene groups 

16 3400 O-H stretching vibration in hydroxyl groups 
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By synthesizing the display of both interspecific and intraspecific differences 

above, one can observe that these differences mostly do not overlap. Therefore, it is not 

difficult to distinguish different types of wood using spectroscopy. As long as the model 

training process focuses on the characteristic information of the corresponding wavebands 

and uses it as a basis, the accuracy of the classification results can be ensured. This also 

provides a basis for the subsequent use of the SKNet network with a self-attention 

mechanism. All observed signal peaks wavenumber and their corresponding positions are 

recorded in Table 1 (Huang et al. 2008; Li et al. 2015; Shi et al. 2018; Liu et al. 2024). 

 

 
Fig. 3. FT-IR Interspecific and Intraspecific signal difference comparison chart 

 

MTF 

Four common methods for transforming one-dimensional mid-infrared data into 

two dimensions were compared: Gramian Angular Field (GAF), Markov Transition Field 

(MTF), Recurrence Plot (RP), and Two-Dimensional Correlation Spectroscopy (2DCOS). 
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The two-dimensional images obtained through these four methods are shown in Fig. 4. The 

Recurrence Plot retained the best details, but it lacked image blocks of varying sizes, which 

is not conducive to feature extraction. The Gramian Angular Field had a low redundancy 

of information, with detailed differences distributed at the edges of the image, which is 

beneficial for information retention. However, the details were concentrated, which can 

lead to blurred features. 2DCOS, typically used for analyzing coherent peaks between 

different signals, resulted in feature overlapping due to the calculation of the 

autocorrelation matrix. The Markov Transition Field selectively retains or discards local 

information based on state definitions, allowing for the focus on feature information 

relevant to the algorithm’s objectives as the screening criterion. As Shown in Fig. 4e, for 

the 1850 to 2800 cm-1 region, which is not of interest in classification, most images 

exhibited convergence, corresponding to no features being extracted. However, at the more 

significant glycosidic bond response position (1160 cm-1) and the position of the aromatic-

related C-H bonds (1850 cm-1), more signals were extracted, and the features were more 

pronounced. More states result in richer information about the details obtained, but they 

are more susceptible to noise. Therefore, it is necessary to determine the specific number 

of states for the MTF algorithm. 

 

 
Fig. 4. Spectral data after the two-dimensional transformation:(a) Markov Transition Field (b) 
Recurrence Plot (c) Gramian Angular Field (d) Two-Dimensional Autocorrelation Spectroscopy 
(e) Spectral and matrix correlation diagram 

 

For the MTF algorithm, it is necessary to determine the algorithm parameters, with 

the most critical parameter being the number of states. The greater the number of states, 

the stronger the information extraction capability of the Markov Transition Field, and the 

more details are preserved. However, the corresponding two-dimensional image becomes 

more complex, leading to poorer clustering results. The aim is to retain the features 

representing inter-species differences while filtering out the intra-species difference 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Xin et al. (2025). “Wood species ID by infrared,” BioResources 20(2), 4464-4478.  4474 

features. By comparing the image transformation results with state numbers of 5, 10, 25, 

50, and 100, as shown in Fig. 5, it was determined that a state number of 10 best met the 

computational expectations. 

 

 
Fig. 5. Images of Markov transformation fields with different numbers of states 

 

Evaluation 

The comparative qualitative analysis methods include the following: 

Method One: Directly input the preprocessed data into the Support Vector Machine 

(SVC). Support Vector Machine is a classification method based on the maximum margin 

principle, which is simple and efficient, suitable for medium and small-scale classification 

problems. By introducing a kernel function, SVC can effectively solve nonlinear 

classification problems and is applicable to this classification problem. 

Method Two: Use Principal Component Analysis (PCA) to reduce the 

dimensionality of the preprocessed data and then classify using SVC (PCA-SVC). By 

reducing the dimensionality with PCA, the data dimensionality is reduced, the 

computational complexity is lowered, noise and redundant information are removed, which 

helps to improve the classification accuracy of SVC. 

Method Three: Generate two-dimensional data using the Markov Transition Field 

and then classify using a Convolutional Neural Network (MTF-CNN). MTF can generate 

two-dimensional data with local correlations, which is beneficial for CNN to extract local 

features. CNN has superior performance in the field of image recognition and is suitable 

for complex classification problems. 

Method Four: Generate two-dimensional data using the Markov Transition Field 

and then classify using the Selective Kernel Network (MTF-SKNet). SKNet can 

dynamically select the appropriate convolution kernels based on the features of the input 

data, improving classification performance. By processing data with different features in 

parallel with convolution kernels, it has strong adaptability. Most importantly, it maintains 

a high classification accuracy while reducing computational complexity, which is 

conducive to the application of practical problems. 

Method Five: Generate two-dimensional data using the Random Projection (RP) 

method, and then classify using CNN (RP-CNN). RP transforms data into a lower-

dimensional space, preserving the structure for CNN to process. 

Method Six: Generate two-dimensional data using the Gramian Angular Field 

(GAF) and then classify using CNN (GAF-CNN). GAF captures temporal relationships, 

converting them into a format that CNN can effectively analyze for classification. 
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Table 3. Comparison of Classification Accuracy Results for Wood Species 

Method SVC PCA-SVC MTF-CNN MTF-SKNet GAF-CNN RP-CNN 

Train 
Accuracy 

61.2% 92.4% 91.6% 93.5% 71.4% 80.3% 

Test 
Accuracy 

55.6% 92.6% 86.2% 93.2% 70.1% 76.3% 

 

Comparing MTF-CNN, GAF-CNN, and RP-CNN, a clear difference becomes 

evident. MTF is key for feature extraction and noise reduction. It boosted classification 

accuracy by about 10% compared to GAF and RP. MTF-CNN vs. MTF-SKNet showed 

another layer of difference. SKNet excels in selecting and extracting feature scales. This is 

vital for complex 2D images. It improved accuracy by around 2 to 5%. The MTF-SKNet 

algorithm exhibited a marginally higher accuracy in comparisons, with PCA-SVC also 

achieving a commendable accuracy rate of 92.6%. The slight difference in accuracy 

between MTF-SKNet and PCA-SVC, with MTF-SKNet scoring 93.2%, underscores the 

importance of sophisticated feature extraction techniques in high-dimensional mid-infrared 

spectral data. SVC’s lower accuracy can be attributed to the lack of effective feature 

extraction in high-dimensional mid-infrared spectral data, leading to poor classification. 

This highlights the significance of feature extraction and dimension reduction. SKNet’s 

adaptability in extracting features of different sizes was demonstrated by its performance 

compared to MTF-CNN, ensuring accurate predictions. The experiment confirmed 

SKNet’s suitability for MTF-generated two-dimensional data, with the confusion matrix 

for the predicted results shown in Fig. 6. 

 
Fig. 6. Confusion Matrix of the MTF-SKNet Algorithm 

 

The label is simplified to “Rosewood” and “non-Rosewood,” thus turning the 

prediction results into a binary classification for the model. After retraining the model, an 
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independent dataset was employed that had been collected from separately purchased 

samples, which underwent the same processing methods as the previous samples. The 

dataset consisted of six species: three types of rosewood (Dalbergia cochinchinensis, 

Dalbergia sissoo, and Dalbergia melanoxylon) and three types of non-rosewood (Pinus 

sylvestris, Populus adenopoda, and Quercus alba), with five samples of each species, 

totaling 30 samples. This dataset was not involved in the model training process, ensuring 

the independence of the validation data. The accuracy rates of the algorithms are compared 

as follows:  

 

Table 4. Comparison of Classification Accuracy Rates for Wood Category 

Method SVC PCA-SVC MTF-CNN MTF-SKNet RP-CNN GAF-CNN 

Accuracy 42.6% 85.6% 83.2% 96.0% 90.4% 79.7% 
 

For directly representing binary classification, the MTF-SKNet algorithm reduces 

data details, extracts data features, and improves accuracy. Therefore, it has a higher 

resistance to label ambiguity compared to the PCA-SVC algorithm. This data reflects the 

stronger generalization ability of the MTF-SKNet algorithm. 

 
 
CONCLUSIONS 
 
1. The MTF-SKNet algorithm demonstrated robust performance in differentiating wood 

species and broader commercial categories, achieving 93.2% accuracy with strong 

generalization (96.0% for rosewood classification with new samples). 

2. The hierarchical clustering analysis revealed that the spectral differences between 

species and within species are localized in distinct mid-infrared spectral regions, 

indicative of unique material composition variations among the tree samples studied. 

3. The manual definition of state positions in the MTF two-dimensional method allows 

for the leveraging of prior knowledge, which is instrumental in the selective filtering 

and extraction of discriminative features from the spectral data. 

4. The research underscores the potential of advanced machine learning techniques, such 

as the MTF-SKNet algorithm, for the accurate and efficient identification of wood 

species, which could have significant implications for the timber industry, conservation 

efforts, and regulatory compliance. 

5. The findings of this study contribute to the broader understanding of the spectral 

characteristics of wood and the development of analytical methods that can be applied 

to a wide range of forensic, ecological, and industrial challenges. 
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