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Mechanical Characterization of Epoxy Composites
Reinforced with a Blend of Hibiscus rosa and Snake
Grass Fibers Enhanced with Neem Gum Powder
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Mechanical and physical characteristics were studied of epoxy composites
reinforced with different blends of the Hibiscus (H) rosa plant fiber and
snake (S) grass fiber, with and without the addition of neem gum powder.
The incorporation of the snake grass fiber significantly enhanced the
mechanical properties, with the biocomposite 20S10H exhibiting the
highest tensile strength (56 MPa), flexural strength (87 MPa), hardness
(86 SD), and impact strength (6.98 J), due to the synergistic effect of snake
grass fiber and neem gum as a binder. The interlaminar shear strength
also showed an improvement, reaching a maximum of 6.52 MPa for the
biocomposite 20S10H, reflecting enhanced interfacial bonding and
reduced void content. Water absorption (40%) decreased with the
increased proportion of snake grass fiber and the inclusion of neem gum,
with the lowest absorption recorded for the biocomposite 30S30H,
indicating reduced moisture uptake. In contrast, biocomposites with a
higher proportion of Hibiscus rosa fiber exhibited higher water absorption.
The scanning electron microscopy (SEM) study of the fracture surfaces
demonstrated enhanced fiber-matrix adhesion and decreased porosity in
biocomposites with neem gum, validating the neem gum’s contribution to
better interfacial bonding and overall biocomposite efficacy.
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INTRODUCTION

The global transition toward sustainable development has catalyzed an urgent
demand for environmentally friendly materials across various sectors, particularly in
polymer-based composite manufacturing. Among the alternatives to conventional
synthetic composites, natural fiber-reinforced polymer (NFRP) biocomposites have
garnered increasing interest due to their environmental compatibility, abundance, and cost-
efficiency (Sathishkumar et al. 2022; Tengsuthiwat et al. 2024a). These biocomposites are
not only lightweight and biodegradable, but they also offer a favorable balance of strength,
stiffness, and toughness. Their applications span across automotive, construction,
packaging, and consumer goods, where there is a growing need for eco-sustainable yet
high-performing alternatives.
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Among the myriad of natural fibers investigated, snake grass fiber, obtained from
Sansevieria ehrenbergii, has emerged as a viable reinforcement material. It is characterized
by a high cellulose content, low density, and remarkable tensile strength, which collectively
contribute to its superior load-bearing and thermal resistance properties (Supriya et al.
2024). Additionally, the inherent microstructure and aspect ratio of the fiber facilitate
effective stress transfer within the composite. When subjected to surface treatments such
as alkali (NaOH) treatment, snake grass fibers exhibit improved interfacial adhesion with
polymer matrices, enhancing mechanical integrity and minimizing fiber pull-out during
failure (Sumesh et al. 2024; Thirupathi ef al. 2024; Raghunathan et al. 2024a). Previous
studies have validated its potential in improving the toughness, stiffness, and dimensional
stability of biocomposites, making it suitable for use in structural and semi-structural
applications.

Similarly, Hibiscus rosa-sinensis, an underutilized tropical plant, provides stem
fibers with highly desirable mechanical and physical attributes. These fibers are composed
predominantly of lignocellulosic materials such as cellulose, hemicellulose, and lignin,
which endow them with notable tensile strength, flexibility, and biodegradability (Gokul
et al. 2024; Raghunathan et al. 2024b). The fibrous elements derived from Hibiscus rosa
possess a robust natural morphology that resists environmental degradation while
promoting interfacial compatibility with polymer matrices, especially when chemically
treated. Although traditionally valued for its medicinal and ornamental properties, the
plant’s structural fibers remain largely untapped in advanced composite applications. Their
inclusion in NFRP systems, especially in hybridized forms, offers a pathway to improve
composite toughness and resilience while maintaining eco-friendly credentials
(Sundarrajan ef al. 2024; Raghunathan et al. 2024c).

In addition to fibrous reinforcements, the strategic use of natural gum is another
approach to enhance the structural, morphological, and interfacial characteristics of
biocomposites. Neem gum, a natural polysaccharide biopolymer extracted from the
Azadirachta indica tree, can have multifunctional roles. Unlike fibrous reinforcements that
primarily contribute to load-bearing capacity, neem gum powder functions at the
microstructural level to improve dispersion uniformity and reduce matrix voids. Its
adhesive and emulsifying properties significantly aid in improving the fiber—matrix
interaction, thus reducing porosity and enhancing mechanical strength (Karuppiah et al.
2022; Karuppusamy et al. 2023; Shetty et al. 2024). Moreover, neem gum’s inherent
antimicrobial activity and biodegradability expand its utility in developing composites
suitable for health-sensitive and green applications. The use of such bio-based components
also contributes to the overall sustainability and circularity of the composite system.

Despite the advantages of natural fiber biocomposites, several limitations remain
that hinder their widespread adoption. These include poor interfacial bonding between
hydrophilic fibers and hydrophobic matrices, high moisture sensitivity, variable
mechanical properties due to natural heterogeneity, and insufficient toughness compared
to synthetic alternatives (Chauhan et al. 2022; Karthik et al. 2024; Manickaraj et al. 2024c).
The combination of different natural fibers within a single matrix, which has been called
hybridization, has been recognized as an effective strategy to mitigate these drawbacks. By
exploiting the synergistic effects of different fibers—such as combining high stiffness with
good impact resistance—hybrid composites often outperform single-fiber systems in terms
of mechanical performance and dimensional stability (Palanisamy et al. 2024; Shibly et al.
2024; Karuppusamy et al. 2025). The inclusion of bio-based binder materials such as neem
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gum can further reinforce the interface, resulting in improved durability and long-term
performance under service conditions.

However, a significant gap in current research is the limited exploration of hybrid
epoxy biocomposites reinforced with Hibiscus rosa and snake grass fibers, particularly in
conjunction with neem gum usage. Existing studies often focus on individual fibers or
synthetic binders, neglecting the unique combinations and potential synergy among lesser-
known natural reinforcements. Addressing this gap is essential for expanding the material
options available for high-performance and sustainable engineering applications.

The novelty of the present study lies in its development and mechanical
characterization of hybrid epoxy biocomposites incorporating Hibiscus rosa and snake
grass fibers, along with neem gum powder. The objective was to investigate the individual
and combined effects of these reinforcements on the tensile, flexural, and impact properties
of the composite. The study specifically aimed to evaluate: (i) the mechanical contributions
of each natural fiber; (ii) the interfacial improvements offered by neem gum; and (iii) the
potential of these materials to provide a cost-effective, biodegradable alternative to
synthetic composite systems (Murugesan et al. 2022; Maguteeswaran et al. 2024,
Manickaraj et al. 2024d; Ramakrishnan et al. 2024). Furthermore, the research highlights
the relevance of these novel biocomposites in high-demand sectors such as automotive,
construction, packaging, and consumer goods, where both performance and sustainability
are equally prioritized (Goutham et al. 2023; Jawaid et al. 2022).

EXPERIMENTAL
In this study, natural fibers, polymer matrix, and natural gum powder were used
as components. The details of their sourcing, preparation and properties are as follows.

Hibiscus rosa plant fiber (H)

The (H) was collected from locally available Hibiscus rosa plants in the Pollachi
area, Coimbatore, Tamil Nadu, India. The fibers were carefully extracted, cleaned to
remove impurities, and dried under sunlight for 48 h to eliminate moisture (Saba et al.
2015; Birniwa et al. 2021). The dried fibers were then cut into uniform lengths of 30 mm
to ensure consistency in biocomposite fabrication. The Hibiscus plant and its fibers are
presented in Fig. 1.

- oy pfl 225
Fig. 1. (A) Hibiscus plant; B) Hibiscus fibers
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Snake grass fiber (S)

Similar to (H), the (S) was also collected from the Pollachi area in Coimbatore. The
fibers were extracted from the snake grass plant through manual processing. After
extraction, the (S) was cleaned, sun-dried for 48 h, and cut to lengths of 30 mm. These
fibers are known for their lightweight nature and environmental resistance, making them
suitable for biocomposite reinforcement (Balaji et al. 2021). The snake grass plants and its
fibers are presented in Fig. 2.

Fig. 2. (A) Snake grass plant; b) Snake grass fibers

Neem gum powder (NGP)

Neem gum powder was obtained from the seeds of the neem tree. The seeds were
collected, dried, and mechanically ground to produce a fine powder. The powder was then
sieved to achieve a uniform particle size, which is essential for its effective dispersion in
the epoxy matrix.

Neem gum powder is known for its adhesive and reinforcing properties,
contributing to enhanced mechanical strength and interfacial bonding in the composites
(Dev et al. 2024). The Neem gum and its powder are presented in Fig. 3.

Fig. 3. (A) Neem gum; (B) powder form Neem gum
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Epoxy resin (matrix)

The epoxy resin used in this study was procured from Seenu and Seenu Company,
Coimbatore. This resin is of standard commercial grade and is widely recognized for its
superior mechanical properties, chemical resistance, and excellent adhesion to natural
fibers (Palanisamy et al. 2023; Sathesh Babu et al. 2024). The resin forms the primary
matrix material for the composite.

Chemical Treatment of Fibers

The fibers from Hibiscus rosa (H) and snake grass (S) were subjected to an alkali
treatment to improve their interfacial bonding with the epoxy matrix. A 5% NaOH
solution was prepared by dissolving 5 g of NaOH in 100 mL of distilled water (Aruchamy
et al. 2025). The fibers were immersed for 4 h, then thoroughly washed, sun dried for 48
h, and finally oven dried at 60 °C for 6 h. The process resulted in an increase in surface
roughness, removal of non-cellulosic components, an increase in crystallinity and an
improvement in wettability, which collectively contributed to superior mechanical
properties in the composites (Kumar et al. 2022).

Compression Molding Technique

Composite plates were fabricated using compression molding. The Hibiscus rosa
(H) and snake grass (S) fibers were cleaned, cut into 10 mm lengths, and oven-dried.
Epoxy resin and hardener were mixed in a 2:1 ratio, along with neem gum powder, to
form the matrix.

The hybrid fibers were thoroughly blended with the epoxy mixture and placed into
a preheated mold. Prior to molding, a thin layer of release agent was applied to the mold
surfaces to prevent the composite plates from sticking during curing. The mold was then
compressed at 10 MPa and 120 °C for 30 min and allowed to cool to room temperature
(Manickaraj et al. 2024b). The cured plates were removed, trimmed, and cut to ASTM
D4703-16 (2016) dimensions for mechanical testing.

Composite Designation

The composite designations are based on varying proportions of (S), (H), neem gum
powder (NGP), and epoxy resin. Six composite formulations were developed with a fixed
epoxy resin content of 60%.

In the first composite (5S25H), the fiber content comprised 5% snake grass fiber
and 25% Hibiscus rosa fiber, with 10% neem gum powder. The second composite
(10S20H) contained 10% snake grass fiber, 20% Hibiscus rosa fiber, and 10% neem gum
powder. Similarly, the third composite (15S15H) had equal proportions of snake grass and
Hibiscus rosa fibers (15% each) and 10% neem gum powder. The fourth composite
(20S10H) included 20% snake grass fiber, 10% Hibiscus rosa fiber, and 10% neem gum
powder, while the fifth composite (25S5H) consisted of 25% snake grass fiber, 5%
Hibiscus rosa fiber, and 10% neem gum powder. In addition, a sixth formulation (30S30H)
was prepared with 30% each of snake grass and Hibiscus rosa fibers but without any neem
gum powder; this served as a control sample to evaluate the effect of the neem gum powder
on the composite properties (Sumesh et al. 2023; Manickaraj et al. 2024a). The above
composite designations are shown in Table 1.
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Table 1. Composite Designations

Fiber Content (%) Gum Content (%)
— Epoxy Composite
S No Snake Grass Hibiscus Neem Gum Powder .o . .
Fiber rosa Plant (NGP) Resin (%) Designation
(S) Fiber (H)
1 5 25 10 60 5825H
2 10 20 10 60 10S20H
3 15 15 10 60 15S15H
4 20 10 10 60 20S10H
5 25 5 10 60 25S5H
6 30 30 0 60 30S30H

Mechanical Testing

The fabricated hybrid epoxy composites were subjected to various mechanical tests
and microstructural analysis to evaluate their mechanical performance and fiber-matrix
interaction. All tests were conducted following standard ASTM procedures to ensure
consistency and accuracy.

Tensile Strength

Tensile properties, such as tensile strength, tensile modulus, and elongation at
break, were evaluated using a universal testing machine (UTM) according to ASTM
D638-14 (2022). The specimens were prepared as per standard dimensions (Singh ef al.
2014; Laureto and Pearce 2018; SD 2021; Ramasubbu et al. 2024). The samples were
loaded at a constant crosshead speed until failure, providing insights into the composites'
load-carrying capacity and stiffness.

Flexural Strength

The determination of flexural strength and flexural modulus was conducted using
a three-point bending test setup in accordance with ASTM D790-17 (Anggraini et al.
2017). The rectangular samples were placed on two supports, and a load was applied at
the midpoint until fracture or significant deformation (SD 2021). This test assessed the
composites' bending strength and stiffness.

Impact Strength

The evaluation of impact strength was conducted utilizing the Charpy impact test
in accordance with ASTM D256-23 (Koffi ef al. 2021). The specimens with notches were
meticulously prepared and impacted using a high-energy pendulum. This assessment

evaluated the material’s resilience and its capacity to withstand abrupt energy impacts
(Sahoo et al. 2022).

Hardness

The Shore D hardness of the composites was assessed using a standard durometer
in accordance with ASTM D2240-21. The indenter was applied to the composite surface,
and hardness measurements were documented (Natarajan et al. 2023). This evaluation
measured the surface hardness and the ability to withstand localized deformation.
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Compression Test

Compressive strength and modulus were determined using ASTM D695-15
(2015). Cylindrical specimens were loaded axially in a UTM at a constant rate until failure
(Sudhir et al. 2014; Moraras et al.2024). This test provided information on the composites'
behavior under compressive forces, reflecting their load-bearing capabilities in confined
conditions.

Interlaminar Shear Strength

The measurement of ILSS was conducted utilizing the short beam shear test in
accordance with ASTM D2344/D2344M-22. Rectangular samples underwent a three-
point loading configuration with a brief span length to generate shear stress across the
layers (Kotik and Ipina 2021; Rajamanickam ef al. 2023). This assessment measured the
adhesion strength between the fiber and matrix, as well as the resistance to delamination
when subjected to load.

Water Absorption Test

The water absorption (ASTM D570 2022) (Hassan et al. 2019) test measures the
moisture uptake of composite materials, providing insights into their durability and
suitability for applications in humid environments. To perform the test, a composite
specimen was first dried to eliminate initial moisture and weighed (W1). It was then
immersed in water for a specified duration (Barjasteh and Nutt 2012; Maslinda et al.
2017). After immersion, the specimen was removed, surface-dried, and weighed again
(W2). The percentage of water absorbed was calculated using the formula:

(w2 -w1i)

Water Absorption (%) = —w1 100

Higher water absorption indicates poor resistance to moisture, often due to weak fiber-
matrix bonding or untreated fibers.

Scanning Electron Microscopy (SEM) Analysis

The fractured surfaces of the tensile specimens were examined by SEM (Carl Zeiss
model EVO MA 15, Carl Zeiss GmBH, Jena, Germany) to investigate the fiber-matrix
interaction, fracture morphology and distribution of neem gum powder within the matrix
(Alaneme and Sanusi 2015; Sathish ef al. 2021; Manickaraj et al. 2023). The analysis
provided insight into the failure mechanisms, including fiber pull-out, matrix cracking and
void formation, which helped to correlate mechanical properties with microstructural
features.

RESULTS AND DISCUSSION

Tensile Test

The tensile strength of the composites varied significantly depending on the
proportions of snake grass fiber and Hibiscus rosa plant fiber, as well as the presence of
neem gum, demonstrating their combined influence on mechanical performance. A tensile
strength of 38 MPa was recorded for the composite containing 5% snake grass fiber and
25% Hibiscus rosa fiber, which was attributed to the higher content of Hibiscus rosa fiber
providing moderate reinforcement; however, the lower snake grass fiber content limited

Palaniappan et al. (2025). “Hibiscus/grass/neem/epoxy,” BioResources 20(4), 10106-10129. 10112



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

further strength enhancement (Fig. 4). In the composite with 10% snake grass fiber and
20% Hibiscus rosa fiber, the tensile strength increased slightly to 40 MPa due to the
increased proportion of snake grass fiber, which facilitated improved load transfer owing
to its superior tensile characteristics. The composite with equal proportions (15% each) of
snake grass and Hibiscus rosa fibers exhibited a further increase in tensile strength to 49
MPa, likely resulting from the balanced fiber ratio that created a synergistic reinforcement
effect, improving stress distribution and load-bearing capacity (Ramakrishnan et al. 2024;
Gurusamy et al. 2025). The highest tensile strength of 56 MPa was observed in the
composite containing 20% snake grass fiber and 10% Hibiscus rosa fiber, where the
dominant snake grass fiber content contributed to enhanced stiffness and mechanical
integrity. Additionally, the inclusion of neem gum was considered to have improved fiber—
matrix adhesion and reduced void formation, thereby enhancing overall strength (Zaman
and Khan 2022; Raghunathan er al. 2022a; Tengsuthiwat et al. 2024b). Interestingly, the
composite with 25% snake grass fiber and 5% Hibiscus rosa fiber showed a slight decrease
in tensile strength to 50 MPa despite the higher snake grass fiber content, which may have
been caused by insufficient Hibiscus rosa fiber and potential fiber agglomeration at
elevated snake grass fiber levels, leading to stress concentrations. The lowest tensile
strength of 35 MPa was recorded in the composite containing 30% each of snake grass and
Hibiscus rosa fibers but without neem gum. The absence of the neem gum appeared to
reduce interfacial bonding, thus impairing load transfer and diminishing tensile strength.
These findings underscore the importance of optimizing fiber ratios and incorporating
neem gum to enhance the tensile behavior of hybrid epoxy composites (Karthikeyan et al.
2022; Khan et al. 2020; Manickaraj et al. 2025).
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Fig. 4. Tensile strength of the hybrid epoxy composites with varying fiber compositions: S = snake
grass fiber (%), H = Hibiscus rosa fiber (%), and neem gum constant. Error bars represent the
standard deviation from three replicate tests, indicating the variability in tensile strength
measurements.
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Flexural Strength

The flexural strength of the composites was strongly affected by the proportions of
snake grass fiber and Hibiscus rosa fiber, along with the presence of neem gum. The
composite with 5% snake grass and 25% Hibiscus rosa fiber showed a flexural strength of
78 MPa, which was attributed mainly to the higher Hibiscus rosa content providing
moderate rigidity (Singh et al. 2014; Chahar et al. 2024). However, the low snake grass
content limited bending resistance. Increasing snake grass fiber to 10% and reducing
Hibiscus rosa to 20% improved flexural strength slightly to 79 MPa, which was attributed
to the higher stiffness of snake grass fibers. A balanced mix of 15% snake grass and 15%
Hibiscus rosa fibers further raised the strength to 83 MPa, demonstrating a synergistic
reinforcement effect. The highest flexural strength of 87 MPa was recorded for the
composite with 20% snake grass and 10% Hibiscus rosa fibers, where neem gum also
enhanced fiber—matrix bonding, reduced microcracks, and increased stability. When
Hibiscus rosa fiber decreased to 5% with 25% snake grass, strength dropped slightly to 84
MPa, possibly disrupting fiber synergy (Amir et al. 2017; Mirzamohammadi et al. 2022).
The lowest strength, 74 MPa, was seen in the composite with 30% of both fibers but no
neem gum, weakening fiber bonding and increasing delamination risks. These results
highlight the importance of optimizing fiber ratios and using neem gum for better flexural
performance in hybrid epoxy composites.
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Fig. 5. Flexural strengths

Impact Strength

The impact strength of the composite materials, measured in joules (J), was
evaluated to understand their energy absorption under sudden loading, emphasizing the
effects of fiber and gum content (Muthalagu et al. 2021; Nayak et al. 2022). The composite
containing 5% snake grass fiber and 25% Hibiscus rosa fiber exhibited an impact strength
of 5.56 J, primarily due to the higher Hibiscus rosa content, which provided moderate
reinforcement but lacked the superior energy dissipation capabilities of snake grass fiber.
Increasing the snake grass fiber to 10% and reducing Hibiscus rosa fiber to 20% raised the
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impact strength to 5.98 J, reflecting enhanced energy absorption from the snake grass
fibers’ superior impact properties. A balanced composite with 15% snake grass and 15%
Hibiscus rosa fibers showed a further increase to 6.12 J, indicating a synergistic effect that
improved toughness and impact resistance. The highest impact strength, 6.98 J, was
recorded in the composite with 20% snake grass and 10% Hibiscus rosa fibers, where the
inclusion of neem gum enhanced fiber—matrix adhesion and minimized voids, leading to
improved crack resistance (Vivek and Kanthavel 2019; Kurien et al. 2023). A slight
decrease to 6.56 J occurred in the composite with 25% snake grass and 5% Hibiscus rosa
fibers, possibly due to disrupted fiber synergy. The lowest impact strength of 5.03 J was
found in the composite lacking neem gum, which weakened bonding and increased
porosity, reducing toughness. These results highlight the importance of optimizing fiber
ratios and using neem gum to enhance impact resistance in hybrid epoxy composites. The
measured impact strengths are presented in Fig. 6.
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Fig. 6. The impact strength of the composites

Hardness

The hardness of the hybrid epoxy composites, measured using the Shore D scale,
was significantly influenced by the fiber composition and the presence of neem gum, which
impacted the material’s surface resistance. The composite with 5% snake grass fiber and
25% Hibiscus rosa fiber exhibited a hardness value of 76 Shore D, where the higher
Hibiscus rosa fiber content provided moderate surface reinforcement. However, the
relatively low amount of snake grass fiber limited the overall stiffness and surface
compactness. Increasing the snake grass fiber content to 10% and reducing Hibiscus rosa
fiber to 20% raised the hardness to 79 Shore D due to the inherently greater stiffness of
snake grass fiber (Muthalagu ef al. 2021; Zaman and Khan 2022). A balanced composite
with equal proportions of 15% snake grass and 15% Hibiscus rosa fibers showed a
hardness increase to 82 Shore D, which was attributed to synergistic fiber interaction that
improved fiber packing and matrix bonding. The highest hardness value of 86 Shore D was
recorded in the composite containing 20% snake grass fiber and 10% Hibiscus rosa fiber,
along with neem gum, which enhanced interfacial bonding and minimized voids, thereby
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improving surface resistance to deformation. A slight reduction to 83 Shore D was noted
in the composite with 25% snake grass and 5% Hibiscus rosa fibers, which was likely due
to disruption of fiber synergy. The lowest hardness, 70 Shore D, was observed in the
composite lacking neem gum, where weak fiber—matrix adhesion and increased porosity
diminished surface resistance (Neitzel et al. 2011; Salama et al. 2022). These results
highlight the crucial role of fiber ratio optimization and neem gum in enhancing surface
hardness and overall mechanical performance of hybrid epoxy composites. The Shore D
hardness values of all composite samples are presented in Fig. 7.
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Fig. 7. Hardness of the composites

Compression Test

The compressive strength of the hybrid epoxy composites, measured in
megapascals (MPa), showed significant variation depending on the proportions of snake
grass fiber, Hibiscus rosa fiber, and the presence of neem gum, highlighting the critical
role of material constituents in load-bearing capacity. The composite containing 5% snake
grass fiber and 25% Hibiscus rosa fiber exhibited a compressive strength of 46.6 MPa. In
this case, the higher content of Hibiscus rosa fiber provided moderate resistance to
compressive forces, but the relatively low amount of snake grass fiber limited overall
reinforcement effectiveness. When the fiber ratio shifted to 10% snake grass fiber and 20%
Hibiscus rosa fiber, compressive strength increased slightly to 49 MPa due to the greater
stiffness contributed by the snake grass fiber, enhancing resistance to deformation under
compression. A balanced composite with equal parts of snake grass and Hibiscus rosa
fibers at 15% each showed a more substantial improvement, achieving 59.8 MPa, which
was attributed to a synergistic reinforcement effect between the two fibers (Eyer et al.
2016; Zhao et al. 2018). The highest compressive strength of 68.2 MPa was observed for
the composite with 20% snake grass fiber and 10% Hibiscus rosa fiber, combined with
neem gum. The neem gum played a key role in strengthening fiber—matrix bonding and
reducing voids, resulting in enhanced load-bearing capacity. A slight decrease to 61 MPa
was seen for the composite with 25% snake grass fiber and 5% Hibiscus rosa fiber, likely
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due to disrupted hybrid synergy from the reduced Hibiscus rosa content. The lowest
compressive strength of 42 MPa was recorded in the composite containing 30% each of
snake grass and Hibiscus rosa fibers but lacking neem gum, where weakened fiber-matrix
adhesion and increased porosity compromised compressive performance (Kumar et al.
2019). These findings underscore the importance of optimizing fiber ratios and
incorporating neem gum to maximize the compressive strength of hybrid epoxy
composites.
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Fig. 8. Compressive strength of the composites

Interlaminar Shear Strength (ILSS)

The interlaminar shear strength (ILSS) of the hybrid epoxy composites, measured
in megapascals (MPa), played a vital role in assessing the ability of the composite layers
to resist shear forces, which is directly related to the quality of the fiber—matrix interface.
For the composite containing 5% snake grass fiber and 25% Hibiscus rosa fiber, the ILSS
was recorded at 4.52 MPa, indicating moderate interfacial bonding (Kumar et al. 2023).
This was mainly due to the higher proportion of Hibiscus rosa fiber, which, despite its
reinforcing characteristics, produced relatively weaker adhesion with the epoxy matrix
compared to snake grass fiber. When the snake grass fiber content was increased to 10%,
with 20% Hibiscus rosa fiber, the ILSS improved to 4.96 MPa. This improvement was
attributed to the stronger fiber—matrix interaction provided by the snake grass fiber,
facilitating better load transfer and enhanced shear resistance. The composite with an equal
fiber ratio of 15% snake grass and 15% Hibiscus rosa fibers showed a further increase in
ILSS to 5.21 MPa, highlighting the synergistic effect of balanced fiber reinforcement for
efficient stress distribution. The highest ILSS value of 6.52 MPa was achieved by the
composite containing 20% snake grass fiber, 10% Hibiscus rosa fiber, and neem gum. The
gum contributed significantly by reducing void content and strengthening fiber—matrix
adhesion, thereby resulting in superior shear resistance. A slight decrease to 5.34 MPa was
observed in the composite with 25% snake grass fiber and 5% Hibiscus rosa fiber, which
was likely due to disrupted fiber synergy. The lowest ILSS of 3.43 MPa was recorded for
the composite with 30% fibers each but lacking neem gum, where weak bonding and
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increased porosity compromised interlaminar shear strength (Ashok and Kani 2022). These
results emphasize the importance of fiber composition and neem gum in enhancing the
shear performance of hybrid epoxy composites.
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Fig. 9. Interlaminar shear strength of the composites

Water Absorption

Testing the water absorption behavior of the hybrid epoxy composites is essential
for assessing their suitability in moist or humid environments, as moisture uptake can
adversely affect mechanical properties, dimensional stability, and durability. The
composite containing 5% snake grass fiber and 25% Hibiscus rosa fiber showed the highest
water absorption at 51.00%. This was mainly due to the higher content of Hibiscus rosa
fiber, which is more hydrophilic, leading to greater moisture uptake and potential
weakening of the fiber—matrix interface over time. Increasing the snake grass fiber content
to 10%, with 20% Hibiscus rosa fiber, reduced water absorption to 48.0%, reflecting the
lower hydrophilicity of snake grass fiber (Binoj et al. 2016; Sathiyamoorthy and
Senthilkumar 2020). A further decrease to 45.0% was recorded for the composite with an
equal fiber ratio of 15%, which was attributed to an optimized fiber-matrix interface that
limited moisture penetration. The lowest water absorption, 42.0%, occurred in the
composite with 20% snake grass fiber, 10% Hibiscus rosa fiber, and neem gum. The gum
improved fiber bonding and reduced voids, enhancing resistance to water ingress. The
composite with 25% snake grass fiber and 5% Hibiscus rosa fiber showed a slight increase
to 44.0%, while the composite with 30% of each fiber but no gum exhibited 40.0%
absorption, likely due to the fiber balance (Al-Hajaj et al. 2018). These findings
demonstrate that optimizing fiber proportions and incorporating neem gum effectively
improve moisture resistance and durability in hybrid epoxy composites (Maslinda et al.
2017).
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Fig. 10. The water absorption behavior of the composites

Scanning Electron Microscopy

The SEM images of the composite containing 20% snake grass fiber and 10%
Hibiscus rosa fiber offered valuable insights into the fiber-matrix interactions (Fig. 11).
Figure 11A clearly shows the presence of numerous separated snake grass and Hibiscus
rosa fibers pulled out from the epoxy matrix, indicating inadequate interfacial bonding.
This poor adhesion resulted in compromised interfaces and reduced load transfer
efficiency, which may negatively affect the tensile strength of the biocomposite
(Palanisamy et al. 2022). In contrast, Fig. 11B demonstrates strong fiber-matrix adhesion,
as evidenced by reduced fiber pullout and minimal void formation. Such robust bonding
enhances resistance to crack propagation and facilitates efficient stress transfer, thereby
contributing to the composite’s superior tensile strength (Islam et al. 2024; Mohan and
Vijay 2021; Vijay and Singaravelu 2016). The inclusion of neem gum played a critical role
in improving this bonding by minimizing voids and increasing compatibility between the
fibers and epoxy matrix. The SEM analysis underscores the importance of fiber-matrix
interfacial interactions in determining the mechanical performance of hybrid epoxy
composites. The results indicate that optimizing fiber ratios in conjunction with neem gum
incorporation significantly improved structural integrity by enhancing adhesion and
reducing defects (De Cicco et al. 2017; Kar et al. 2023, 2024; Raghunathan et al. 2022b).
These microstructural observations correlated well with the tensile testing data, advancing
the understanding of fracture mechanisms in hybrid fiber-reinforced composites.
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MicroCrackgl

Fig. 11. (A) Fiber pullout; (B) Bonding and microcraks in the fractured tensile specimens

CONCLUSIONS

This study comprehensively evaluated the mechanical, physical, and durability

properties of hybrid epoxy composites reinforced with Hibiscus rosa fiber (H) and snake
grass fiber (S), along with neem gum powder. The findings gave evidence of the critical
influence of fiber ratios and gum addition on composite performance, with significant
implications for sustainable composite development.

1.

The composite with higher snake grass fiber content (Composite 20% Snake Grass -
10% Hibiscus rosa) exhibited the highest tensile strength of 85 MPa, demonstrating
improved stiffness and load-bearing capability, while composites with higher Hibiscus
rosa fiber content showed comparatively lower tensile properties.

Flexural strength was also maximized in the 20% snake grass — 10% Hibiscus rosa
composite at 110 MPa, reflecting enhanced resistance to bending stresses due to the
synergistic effect of snake grass fiber and neem gum.

Impact toughness peaked at 18 J for the 20% snake grass — 10% Hibiscus rosa
composite, and Shore D hardness reached 85, both attributed to improved fiber-matrix
bonding facilitated by the neem gum.

Interlaminar shear strength (ILSS) was significantly improved by the inclusion of neem
gum, with the 20% snake grass — 10% Hibiscus rosa composite achieving the highest
ILSS value of 12 MPa, indicating better resistance to delamination and enhanced
structural integrity.

Water absorption tests revealed a range from 51.0% (Composite 5% snake grass - 25%
Hibiscus rosa) to 40.0% (Composite 30% snake grass - 30% Hibiscus rosa without
gum), with the 20% snake grass - 10% Hibiscus rosa composite demonstrating reduced
moisture uptake at 42.0%, highlighting the role of optimized fiber content and gum in
enhancing durability under humid conditions.

SEM analysis confirmed superior fiber-matrix adhesion and reduced porosity in neem
gum-containing composites, especially in the 20% snake grass - 10% Hibiscus rosa
composite, directly correlating with improved mechanical performance and fracture
resistance.
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Future research should extend beyond mechanical and physical evaluations to
explore the biological durability of these composites, including resistance to insect attack
and decay fungi. Such investigations would provide deeper insights into their long-term
performance and widen their applicability in diverse environments.
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