
 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Palaniappan et al. (2025). “Hibiscus/grass/neem/epoxy,” BioResources 20(4), 10106-10129.  10106 

 

Mechanical Characterization of Epoxy Composites 
Reinforced with a Blend of Hibiscus rosa and Snake 
Grass Fibers Enhanced with Neem Gum Powder 
 

Murugesan Palaniappan,a,* Sivasubramanian Palanisamy ,b,* Thulasimani Murugesan,c 

and Nadir Ayrilmis d  

 
Mechanical and physical characteristics were studied of epoxy composites 
reinforced with different blends of the Hibiscus (H) rosa plant fiber and 
snake (S) grass fiber, with and without the addition of neem gum powder. 
The incorporation of the snake grass fiber significantly enhanced the 
mechanical properties, with the biocomposite 20S10H exhibiting the 
highest tensile strength (56 MPa), flexural strength (87 MPa), hardness 
(86 SD), and impact strength (6.98 J), due to the synergistic effect of snake 
grass fiber and neem gum as a binder. The interlaminar shear strength 
also showed an improvement, reaching a maximum of 6.52 MPa for the 
biocomposite 20S10H, reflecting enhanced interfacial bonding and 
reduced void content. Water absorption (40%) decreased with the 
increased proportion of snake grass fiber and the inclusion of neem gum, 
with the lowest absorption recorded for the biocomposite 30S30H, 
indicating reduced moisture uptake. In contrast, biocomposites with a 
higher proportion of Hibiscus rosa fiber exhibited higher water absorption. 
The scanning electron microscopy (SEM) study of the fracture surfaces 
demonstrated enhanced fiber-matrix adhesion and decreased porosity in 
biocomposites with neem gum, validating the neem gum’s contribution to 
better interfacial bonding and overall biocomposite efficacy. 
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INTRODUCTION 
 

The global transition toward sustainable development has catalyzed an urgent 

demand for environmentally friendly materials across various sectors, particularly in 

polymer-based composite manufacturing. Among the alternatives to conventional 

synthetic composites, natural fiber-reinforced polymer (NFRP) biocomposites have 

garnered increasing interest due to their environmental compatibility, abundance, and cost-

efficiency (Sathishkumar et al. 2022; Tengsuthiwat et al. 2024a). These biocomposites are 

not only lightweight and biodegradable, but they also offer a favorable balance of strength, 

stiffness, and toughness. Their applications span across automotive, construction, 

packaging, and consumer goods, where there is a growing need for eco-sustainable yet 

high-performing alternatives. 
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Among the myriad of natural fibers investigated, snake grass fiber, obtained from 

Sansevieria ehrenbergii, has emerged as a viable reinforcement material. It is characterized 

by a high cellulose content, low density, and remarkable tensile strength, which collectively 

contribute to its superior load-bearing and thermal resistance properties (Supriya et al. 

2024). Additionally, the inherent microstructure and aspect ratio of the fiber facilitate 

effective stress transfer within the composite. When subjected to surface treatments such 

as alkali (NaOH) treatment, snake grass fibers exhibit improved interfacial adhesion with 

polymer matrices, enhancing mechanical integrity and minimizing fiber pull-out during 

failure (Sumesh et al. 2024; Thirupathi et al. 2024; Raghunathan et al. 2024a). Previous 

studies have validated its potential in improving the toughness, stiffness, and dimensional 

stability of biocomposites, making it suitable for use in structural and semi-structural 

applications. 

Similarly, Hibiscus rosa-sinensis, an underutilized tropical plant, provides stem 

fibers with highly desirable mechanical and physical attributes. These fibers are composed 

predominantly of lignocellulosic materials such as cellulose, hemicellulose, and lignin, 

which endow them with notable tensile strength, flexibility, and biodegradability (Gokul 

et al. 2024; Raghunathan et al. 2024b). The fibrous elements derived from Hibiscus rosa 

possess a robust natural morphology that resists environmental degradation while 

promoting interfacial compatibility with polymer matrices, especially when chemically 

treated. Although traditionally valued for its medicinal and ornamental properties, the 

plant’s structural fibers remain largely untapped in advanced composite applications. Their 

inclusion in NFRP systems, especially in hybridized forms, offers a pathway to improve 

composite toughness and resilience while maintaining eco-friendly credentials 

(Sundarrajan et al. 2024; Raghunathan et al. 2024c). 

In addition to fibrous reinforcements, the strategic use of natural gum is another 

approach to enhance the structural, morphological, and interfacial characteristics of 

biocomposites. Neem gum, a natural polysaccharide biopolymer extracted from the 

Azadirachta indica tree, can have multifunctional roles. Unlike fibrous reinforcements that 

primarily contribute to load-bearing capacity, neem gum powder functions at the 

microstructural level to improve dispersion uniformity and reduce matrix voids. Its 

adhesive and emulsifying properties significantly aid in improving the fiber–matrix 

interaction, thus reducing porosity and enhancing mechanical strength (Karuppiah et al. 

2022; Karuppusamy et al. 2023; Shetty et al. 2024). Moreover, neem gum’s inherent 

antimicrobial activity and biodegradability expand its utility in developing composites 

suitable for health-sensitive and green applications. The use of such bio-based components 

also contributes to the overall sustainability and circularity of the composite system. 

Despite the advantages of natural fiber biocomposites, several limitations remain 

that hinder their widespread adoption. These include poor interfacial bonding between 

hydrophilic fibers and hydrophobic matrices, high moisture sensitivity, variable 

mechanical properties due to natural heterogeneity, and insufficient toughness compared 

to synthetic alternatives (Chauhan et al. 2022; Karthik et al. 2024; Manickaraj et al. 2024c). 

The combination of different natural fibers within a single matrix, which has been called 

hybridization, has been recognized as an effective strategy to mitigate these drawbacks. By 

exploiting the synergistic effects of different fibers—such as combining high stiffness with 

good impact resistance—hybrid composites often outperform single-fiber systems in terms 

of mechanical performance and dimensional stability (Palanisamy et al. 2024; Shibly et al. 

2024; Karuppusamy et al. 2025). The inclusion of bio-based binder materials such as neem 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Palaniappan et al. (2025). “Hibiscus/grass/neem/epoxy,” BioResources 20(4), 10106-10129.  10108 

gum can further reinforce the interface, resulting in improved durability and long-term 

performance under service conditions. 

However, a significant gap in current research is the limited exploration of hybrid 

epoxy biocomposites reinforced with Hibiscus rosa and snake grass fibers, particularly in 

conjunction with neem gum usage. Existing studies often focus on individual fibers or 

synthetic binders, neglecting the unique combinations and potential synergy among lesser-

known natural reinforcements. Addressing this gap is essential for expanding the material 

options available for high-performance and sustainable engineering applications. 

The novelty of the present study lies in its development and mechanical 

characterization of hybrid epoxy biocomposites incorporating Hibiscus rosa and snake 

grass fibers, along with neem gum powder. The objective was to investigate the individual 

and combined effects of these reinforcements on the tensile, flexural, and impact properties 

of the composite. The study specifically aimed to evaluate: (i) the mechanical contributions 

of each natural fiber; (ii) the interfacial improvements offered by neem gum; and (iii) the 

potential of these materials to provide a cost-effective, biodegradable alternative to 

synthetic composite systems (Murugesan et al. 2022; Maguteeswaran et al. 2024; 

Manickaraj et al. 2024d; Ramakrishnan et al. 2024). Furthermore, the research highlights 

the relevance of these novel biocomposites in high-demand sectors such as automotive, 

construction, packaging, and consumer goods, where both performance and sustainability 

are equally prioritized (Goutham et al. 2023; Jawaid et al. 2022). 

 

 

EXPERIMENTAL 
In this study, natural fibers, polymer matrix, and natural gum powder were used 

as components. The details of their sourcing, preparation and properties are as follows. 

 

Hibiscus rosa plant fiber (H) 

The (H) was collected from locally available Hibiscus rosa plants in the Pollachi 

area, Coimbatore, Tamil Nadu, India. The fibers were carefully extracted, cleaned to 

remove impurities, and dried under sunlight for 48 h to eliminate moisture (Saba et al. 

2015; Birniwa et al. 2021). The dried fibers were then cut into uniform lengths of 30 mm 

to ensure consistency in biocomposite fabrication. The Hibiscus plant and its fibers are 

presented in Fig. 1. 

  

Fig. 1. (A) Hibiscus plant; B) Hibiscus fibers 

 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Palaniappan et al. (2025). “Hibiscus/grass/neem/epoxy,” BioResources 20(4), 10106-10129.  10109 

Snake grass fiber (S) 

  Similar to (H), the (S) was also collected from the Pollachi area in Coimbatore. The 

fibers were extracted from the snake grass plant through manual processing. After 

extraction, the (S) was cleaned, sun-dried for 48 h, and cut to lengths of 30 mm. These 

fibers are known for their lightweight nature and environmental resistance, making them 

suitable for biocomposite reinforcement (Balaji et al. 2021). The snake grass plants and its 

fibers are presented in Fig. 2. 

 

 

Fig. 2. (A) Snake grass plant; b) Snake grass fibers 

 

Neem gum powder (NGP) 

 Neem gum powder was obtained from the seeds of the neem tree. The seeds were 

collected, dried, and mechanically ground to produce a fine powder. The powder was then 

sieved to achieve a uniform particle size, which is essential for its effective dispersion in 

the epoxy matrix.  

 Neem gum powder is known for its adhesive and reinforcing properties, 

contributing to enhanced mechanical strength and interfacial bonding in the composites 

(Dev et al. 2024). The Neem gum and its powder are presented in Fig. 3. 

 

 
 

Fig. 3. (A) Neem gum; (B) powder form Neem gum 
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Epoxy resin (matrix) 

  The epoxy resin used in this study was procured from Seenu and Seenu Company, 

Coimbatore. This resin is of standard commercial grade and is widely recognized for its 

superior mechanical properties, chemical resistance, and excellent adhesion to natural 

fibers (Palanisamy et al. 2023; Sathesh Babu et al. 2024). The resin forms the primary 

matrix material for the composite. 

 
Chemical Treatment of Fibers  

The fibers from Hibiscus rosa (H) and snake grass (S) were subjected to an alkali 

treatment to improve their interfacial bonding with the epoxy matrix. A 5% NaOH 

solution was prepared by dissolving 5 g of NaOH in 100 mL of distilled water (Aruchamy 

et al. 2025). The fibers were immersed for 4 h, then thoroughly washed, sun dried for 48 

h, and finally oven dried at 60 °C for 6 h. The process resulted in an increase in surface 

roughness, removal of non-cellulosic components, an increase in crystallinity and an 

improvement in wettability, which collectively contributed to superior mechanical 

properties in the composites (Kumar et al. 2022). 

 

Compression Molding Technique 
Composite plates were fabricated using compression molding. The Hibiscus rosa 

(H) and snake grass (S) fibers were cleaned, cut into 10 mm lengths, and oven-dried. 

Epoxy resin and hardener were mixed in a 2:1 ratio, along with neem gum powder, to 

form the matrix.  

The hybrid fibers were thoroughly blended with the epoxy mixture and placed into 

a preheated mold. Prior to molding, a thin layer of release agent was applied to the mold 

surfaces to prevent the composite plates from sticking during curing. The mold was then 

compressed at 10 MPa and 120 °C for 30 min and allowed to cool to room temperature 

(Manickaraj et al. 2024b). The cured plates were removed, trimmed, and cut to ASTM 

D4703-16 (2016) dimensions for mechanical testing. 

 

Composite Designation 
The composite designations are based on varying proportions of (S), (H), neem gum 

powder (NGP), and epoxy resin. Six composite formulations were developed with a fixed 

epoxy resin content of 60%.  

In the first composite (5S25H), the fiber content comprised 5% snake grass fiber 

and 25% Hibiscus rosa fiber, with 10% neem gum powder. The second composite 

(10S20H) contained 10% snake grass fiber, 20% Hibiscus rosa fiber, and 10% neem gum 

powder. Similarly, the third composite (15S15H) had equal proportions of snake grass and 

Hibiscus rosa fibers (15% each) and 10% neem gum powder. The fourth composite 

(20S10H) included 20% snake grass fiber, 10% Hibiscus rosa fiber, and 10% neem gum 

powder, while the fifth composite (25S5H) consisted of 25% snake grass fiber, 5% 

Hibiscus rosa fiber, and 10% neem gum powder. In addition, a sixth formulation (30S30H) 

was prepared with 30% each of snake grass and Hibiscus rosa fibers but without any neem 

gum powder; this served as a control sample to evaluate the effect of the neem gum powder 

on the composite properties (Sumesh et al. 2023; Manickaraj et al. 2024a). The above 

composite designations are shown in Table 1. 
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Table 1. Composite Designations 

S No 

Fiber Content (%) Gum Content (%) 

Epoxy 
Resin (%) 

Composite 
Designation 

Snake Grass 
Fiber 
(S) 

Hibiscus 
rosa Plant 
Fiber (H) 

Neem Gum Powder 
(NGP) 

1 5 25 10 60 5S25H 

2 10 20 10 60 10S20H 

3 15 15 10 60 15S15H 

4 20 10 10 60 20S10H 

5 25 5 10 60 25S5H 

6 30 30 0 60 30S30H 

 

Mechanical Testing 
The fabricated hybrid epoxy composites were subjected to various mechanical tests 

and microstructural analysis to evaluate their mechanical performance and fiber-matrix 

interaction. All tests were conducted following standard ASTM procedures to ensure 

consistency and accuracy. 

 

Tensile Strength 
Tensile properties, such as tensile strength, tensile modulus, and elongation at 

break, were evaluated using a universal testing machine (UTM) according to ASTM 

D638-14 (2022). The specimens were prepared as per standard dimensions (Singh et al. 

2014; Laureto and Pearce 2018; SD 2021; Ramasubbu et al. 2024). The samples were 

loaded at a constant crosshead speed until failure, providing insights into the composites' 

load-carrying capacity and stiffness. 

 

Flexural Strength 
The determination of flexural strength and flexural modulus was conducted using 

a three-point bending test setup in accordance with ASTM D790-17 (Anggraini et al. 

2017). The rectangular samples were placed on two supports, and a load was applied at 

the midpoint until fracture or significant deformation (SD 2021). This test assessed the 

composites' bending strength and stiffness. 

 

Impact Strength  
The evaluation of impact strength was conducted utilizing the Charpy impact test 

in accordance with ASTM D256-23 (Koffi et al. 2021). The specimens with notches were 

meticulously prepared and impacted using a high-energy pendulum. This assessment 

evaluated the material’s resilience and its capacity to withstand abrupt energy impacts 

(Sahoo et al. 2022). 

 
Hardness  

The Shore D hardness of the composites was assessed using a standard durometer 

in accordance with ASTM D2240-21. The indenter was applied to the composite surface, 

and hardness measurements were documented (Natarajan et al. 2023). This evaluation 

measured the surface hardness and the ability to withstand localized deformation. 
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Compression Test 
Compressive strength and modulus were determined using ASTM D695-15 

(2015). Cylindrical specimens were loaded axially in a UTM at a constant rate until failure 

(Sudhir et al. 2014; Morăraș et al.2024). This test provided information on the composites' 

behavior under compressive forces, reflecting their load-bearing capabilities in confined 

conditions. 

 

Interlaminar Shear Strength  
The measurement of ILSS was conducted utilizing the short beam shear test in 

accordance with ASTM D2344/D2344M-22. Rectangular samples underwent a three-

point loading configuration with a brief span length to generate shear stress across the 

layers (Kotik and Ipina 2021; Rajamanickam et al. 2023). This assessment measured the 

adhesion strength between the fiber and matrix, as well as the resistance to delamination 

when subjected to load. 

 

Water Absorption Test 
The water absorption (ASTM D570 2022) (Hassan et al. 2019) test measures the 

moisture uptake of composite materials, providing insights into their durability and 

suitability for applications in humid environments. To perform the test, a composite 

specimen was first dried to eliminate initial moisture and weighed (W1). It was then 

immersed in water for a specified duration (Barjasteh and Nutt 2012; Maslinda et al. 

2017). After immersion, the specimen was removed, surface-dried, and weighed again 

(W2). The percentage of water absorbed was calculated using the formula: 

𝑊𝑎𝑡𝑒𝑟 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 (%) =
(𝑊2 − 𝑊1)

𝑊1
 𝑥 100 

Higher water absorption indicates poor resistance to moisture, often due to weak fiber-

matrix bonding or untreated fibers. 

 

Scanning Electron Microscopy (SEM) Analysis 
The fractured surfaces of the tensile specimens were examined by SEM (Carl Zeiss 

model EVO MA 15, Carl Zeiss GmBH, Jena, Germany) to investigate the fiber-matrix 

interaction, fracture morphology and distribution of neem gum powder within the matrix 

(Alaneme and Sanusi 2015; Sathish et al. 2021; Manickaraj et al. 2023). The analysis 

provided insight into the failure mechanisms, including fiber pull-out, matrix cracking and 

void formation, which helped to correlate mechanical properties with microstructural 

features. 

 

 

RESULTS AND DISCUSSION 
 
Tensile Test 
  The tensile strength of the composites varied significantly depending on the 

proportions of snake grass fiber and Hibiscus rosa plant fiber, as well as the presence of 

neem gum, demonstrating their combined influence on mechanical performance. A tensile 

strength of 38 MPa was recorded for the composite containing 5% snake grass fiber and 

25% Hibiscus rosa fiber, which was attributed to the higher content of Hibiscus rosa fiber 

providing moderate reinforcement; however, the lower snake grass fiber content limited 
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further strength enhancement (Fig. 4). In the composite with 10% snake grass fiber and 

20% Hibiscus rosa fiber, the tensile strength increased slightly to 40 MPa due to the 

increased proportion of snake grass fiber, which facilitated improved load transfer owing 

to its superior tensile characteristics. The composite with equal proportions (15% each) of 

snake grass and Hibiscus rosa fibers exhibited a further increase in tensile strength to 49 

MPa, likely resulting from the balanced fiber ratio that created a synergistic reinforcement 

effect, improving stress distribution and load-bearing capacity (Ramakrishnan et al. 2024; 

Gurusamy et al. 2025). The highest tensile strength of 56 MPa was observed in the 

composite containing 20% snake grass fiber and 10% Hibiscus rosa fiber, where the 

dominant snake grass fiber content contributed to enhanced stiffness and mechanical 

integrity. Additionally, the inclusion of neem gum was considered to have improved fiber–

matrix adhesion and reduced void formation, thereby enhancing overall strength (Zaman 

and Khan 2022; Raghunathan et al. 2022a; Tengsuthiwat et al. 2024b). Interestingly, the 

composite with 25% snake grass fiber and 5% Hibiscus rosa fiber showed a slight decrease 

in tensile strength to 50 MPa despite the higher snake grass fiber content, which may have 

been caused by insufficient Hibiscus rosa fiber and potential fiber agglomeration at 

elevated snake grass fiber levels, leading to stress concentrations. The lowest tensile 

strength of 35 MPa was recorded in the composite containing 30% each of snake grass and 

Hibiscus rosa fibers but without neem gum. The absence of the neem gum appeared to 

reduce interfacial bonding, thus impairing load transfer and diminishing tensile strength. 

These findings underscore the importance of optimizing fiber ratios and incorporating 

neem gum to enhance the tensile behavior of hybrid epoxy composites (Karthikeyan et al. 

2022; Khan et al. 2020; Manickaraj et al. 2025). 

 

Fig. 4. Tensile strength of the hybrid epoxy composites with varying fiber compositions: S = snake 
grass fiber (%), H = Hibiscus rosa fiber (%), and neem gum constant. Error bars represent the 
standard deviation from three replicate tests, indicating the variability in tensile strength 
measurements. 
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Flexural Strength 
The flexural strength of the composites was strongly affected by the proportions of 

snake grass fiber and Hibiscus rosa fiber, along with the presence of neem gum. The 

composite with 5% snake grass and 25% Hibiscus rosa fiber showed a flexural strength of 

78 MPa, which was attributed mainly to the higher Hibiscus rosa content providing 

moderate rigidity (Singh et al. 2014; Chahar et al. 2024). However, the low snake grass 

content limited bending resistance. Increasing snake grass fiber to 10% and reducing 

Hibiscus rosa to 20% improved flexural strength slightly to 79 MPa, which was attributed 

to the higher stiffness of snake grass fibers. A balanced mix of 15% snake grass and 15% 

Hibiscus rosa fibers further raised the strength to 83 MPa, demonstrating a synergistic 

reinforcement effect. The highest flexural strength of 87 MPa was recorded for the 

composite with 20% snake grass and 10% Hibiscus rosa fibers, where neem gum also 

enhanced fiber–matrix bonding, reduced microcracks, and increased stability. When 

Hibiscus rosa fiber decreased to 5% with 25% snake grass, strength dropped slightly to 84 

MPa, possibly disrupting fiber synergy (Amir et al. 2017; Mirzamohammadi et al. 2022). 

The lowest strength, 74 MPa, was seen in the composite with 30% of both fibers but no 

neem gum, weakening fiber bonding and increasing delamination risks. These results 

highlight the importance of optimizing fiber ratios and using neem gum for better flexural 

performance in hybrid epoxy composites. 

 

Fig. 5. Flexural strengths 
 

Impact Strength 
 The impact strength of the composite materials, measured in joules (J), was 

evaluated to understand their energy absorption under sudden loading, emphasizing the 

effects of fiber and gum content (Muthalagu et al. 2021; Nayak et al. 2022). The composite 

containing 5% snake grass fiber and 25% Hibiscus rosa fiber exhibited an impact strength 

of 5.56 J, primarily due to the higher Hibiscus rosa content, which provided moderate 

reinforcement but lacked the superior energy dissipation capabilities of snake grass fiber. 

Increasing the snake grass fiber to 10% and reducing Hibiscus rosa fiber to 20% raised the 
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impact strength to 5.98 J, reflecting enhanced energy absorption from the snake grass 

fibers’ superior impact properties. A balanced composite with 15% snake grass and 15% 

Hibiscus rosa fibers showed a further increase to 6.12 J, indicating a synergistic effect that 

improved toughness and impact resistance. The highest impact strength, 6.98 J, was 

recorded in the composite with 20% snake grass and 10% Hibiscus rosa fibers, where the 

inclusion of neem gum enhanced fiber–matrix adhesion and minimized voids, leading to 

improved crack resistance (Vivek and Kanthavel 2019; Kurien et al. 2023). A slight 

decrease to 6.56 J occurred in the composite with 25% snake grass and 5% Hibiscus rosa 

fibers, possibly due to disrupted fiber synergy. The lowest impact strength of 5.03 J was 

found in the composite lacking neem gum, which weakened bonding and increased 

porosity, reducing toughness. These results highlight the importance of optimizing fiber 

ratios and using neem gum to enhance impact resistance in hybrid epoxy composites. The 

measured impact strengths are presented in Fig. 6. 

 

Fig. 6. The impact strength of the composites 
 

Hardness 
 The hardness of the hybrid epoxy composites, measured using the Shore D scale, 

was significantly influenced by the fiber composition and the presence of neem gum, which 

impacted the material’s surface resistance. The composite with 5% snake grass fiber and 

25% Hibiscus rosa fiber exhibited a hardness value of 76 Shore D, where the higher 

Hibiscus rosa fiber content provided moderate surface reinforcement. However, the 

relatively low amount of snake grass fiber limited the overall stiffness and surface 

compactness. Increasing the snake grass fiber content to 10% and reducing Hibiscus rosa 

fiber to 20% raised the hardness to 79 Shore D due to the inherently greater stiffness of 

snake grass fiber (Muthalagu et al. 2021; Zaman and Khan 2022). A balanced composite 

with equal proportions of 15% snake grass and 15% Hibiscus rosa fibers showed a 

hardness increase to 82 Shore D, which was attributed to synergistic fiber interaction that 

improved fiber packing and matrix bonding. The highest hardness value of 86 Shore D was 

recorded in the composite containing 20% snake grass fiber and 10% Hibiscus rosa fiber, 

along with neem gum, which enhanced interfacial bonding and minimized voids, thereby 
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improving surface resistance to deformation. A slight reduction to 83 Shore D was noted 

in the composite with 25% snake grass and 5% Hibiscus rosa fibers, which was likely due 

to disruption of fiber synergy. The lowest hardness, 70 Shore D, was observed in the 

composite lacking neem gum, where weak fiber–matrix adhesion and increased porosity 

diminished surface resistance (Neitzel et al. 2011; Salama et al. 2022). These results 

highlight the crucial role of fiber ratio optimization and neem gum in enhancing surface 

hardness and overall mechanical performance of hybrid epoxy composites. The Shore D 

hardness values of all composite samples are presented in Fig. 7. 

 

Fig. 7. Hardness of the composites 
 
Compression Test  

The compressive strength of the hybrid epoxy composites, measured in 

megapascals (MPa), showed significant variation depending on the proportions of snake 

grass fiber, Hibiscus rosa fiber, and the presence of neem gum, highlighting the critical 

role of material constituents in load-bearing capacity. The composite containing 5% snake 

grass fiber and 25% Hibiscus rosa fiber exhibited a compressive strength of 46.6 MPa. In 

this case, the higher content of Hibiscus rosa fiber provided moderate resistance to 

compressive forces, but the relatively low amount of snake grass fiber limited overall 

reinforcement effectiveness. When the fiber ratio shifted to 10% snake grass fiber and 20% 

Hibiscus rosa fiber, compressive strength increased slightly to 49 MPa due to the greater 

stiffness contributed by the snake grass fiber, enhancing resistance to deformation under 

compression. A balanced composite with equal parts of snake grass and Hibiscus rosa 

fibers at 15% each showed a more substantial improvement, achieving 59.8 MPa, which 

was attributed to a synergistic reinforcement effect between the two fibers (Eyer et al. 

2016; Zhao et al. 2018). The highest compressive strength of 68.2 MPa was observed for 

the composite with 20% snake grass fiber and 10% Hibiscus rosa fiber, combined with 

neem gum. The neem gum played a key role in strengthening fiber–matrix bonding and 

reducing voids, resulting in enhanced load-bearing capacity. A slight decrease to 61 MPa 

was seen for the composite with 25% snake grass fiber and 5% Hibiscus rosa fiber, likely 
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due to disrupted hybrid synergy from the reduced Hibiscus rosa content. The lowest 

compressive strength of 42 MPa was recorded in the composite containing 30% each of 

snake grass and Hibiscus rosa fibers but lacking neem gum, where weakened fiber-matrix 

adhesion and increased porosity compromised compressive performance (Kumar et al. 

2019). These findings underscore the importance of optimizing fiber ratios and 

incorporating neem gum to maximize the compressive strength of hybrid epoxy 

composites. 

 

Fig. 8. Compressive strength of the composites 
 

Interlaminar Shear Strength (ILSS) 
The interlaminar shear strength (ILSS) of the hybrid epoxy composites, measured 

in megapascals (MPa), played a vital role in assessing the ability of the composite layers 

to resist shear forces, which is directly related to the quality of the fiber–matrix interface. 

For the composite containing 5% snake grass fiber and 25% Hibiscus rosa fiber, the ILSS 

was recorded at 4.52 MPa, indicating moderate interfacial bonding (Kumar et al. 2023). 

This was mainly due to the higher proportion of Hibiscus rosa fiber, which, despite its 

reinforcing characteristics, produced relatively weaker adhesion with the epoxy matrix 

compared to snake grass fiber. When the snake grass fiber content was increased to 10%, 

with 20% Hibiscus rosa fiber, the ILSS improved to 4.96 MPa. This improvement was 

attributed to the stronger fiber–matrix interaction provided by the snake grass fiber, 

facilitating better load transfer and enhanced shear resistance. The composite with an equal 

fiber ratio of 15% snake grass and 15% Hibiscus rosa fibers showed a further increase in 

ILSS to 5.21 MPa, highlighting the synergistic effect of balanced fiber reinforcement for 

efficient stress distribution. The highest ILSS value of 6.52 MPa was achieved by the 

composite containing 20% snake grass fiber, 10% Hibiscus rosa fiber, and neem gum. The 

gum contributed significantly by reducing void content and strengthening fiber–matrix 

adhesion, thereby resulting in superior shear resistance. A slight decrease to 5.34 MPa was 

observed in the composite with 25% snake grass fiber and 5% Hibiscus rosa fiber, which 

was likely due to disrupted fiber synergy. The lowest ILSS of 3.43 MPa was recorded for 

the composite with 30% fibers each but lacking neem gum, where weak bonding and 
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increased porosity compromised interlaminar shear strength (Ashok and Kani 2022). These 

results emphasize the importance of fiber composition and neem gum in enhancing the 

shear performance of hybrid epoxy composites. 

 

Fig. 9. Interlaminar shear strength of the composites 
 

Water Absorption 
Testing the water absorption behavior of the hybrid epoxy composites is essential 

for assessing their suitability in moist or humid environments, as moisture uptake can 

adversely affect mechanical properties, dimensional stability, and durability. The 

composite containing 5% snake grass fiber and 25% Hibiscus rosa fiber showed the highest 

water absorption at 51.00%. This was mainly due to the higher content of Hibiscus rosa 

fiber, which is more hydrophilic, leading to greater moisture uptake and potential 

weakening of the fiber–matrix interface over time. Increasing the snake grass fiber content 

to 10%, with 20% Hibiscus rosa fiber, reduced water absorption to 48.0%, reflecting the 

lower hydrophilicity of snake grass fiber (Binoj et al. 2016; Sathiyamoorthy and 

Senthilkumar 2020). A further decrease to 45.0% was recorded for the composite with an 

equal fiber ratio of 15%, which was attributed to an optimized fiber-matrix interface that 

limited moisture penetration. The lowest water absorption, 42.0%, occurred in the 

composite with 20% snake grass fiber, 10% Hibiscus rosa fiber, and neem gum. The gum 

improved fiber bonding and reduced voids, enhancing resistance to water ingress. The 

composite with 25% snake grass fiber and 5% Hibiscus rosa fiber showed a slight increase 

to 44.0%, while the composite with 30% of each fiber but no gum exhibited 40.0% 

absorption, likely due to the fiber balance (Al-Hajaj et al. 2018). These findings 

demonstrate that optimizing fiber proportions and incorporating neem gum effectively 

improve moisture resistance and durability in hybrid epoxy composites (Maslinda et al. 

2017). 
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Fig. 10. The water absorption behavior of the composites 
 

Scanning Electron Microscopy  
The SEM images of the composite containing 20% snake grass fiber and 10% 

Hibiscus rosa fiber offered valuable insights into the fiber-matrix interactions (Fig. 11). 

Figure 11A clearly shows the presence of numerous separated snake grass and Hibiscus 

rosa fibers pulled out from the epoxy matrix, indicating inadequate interfacial bonding. 

This poor adhesion resulted in compromised interfaces and reduced load transfer 

efficiency, which may negatively affect the tensile strength of the biocomposite 

(Palanisamy et al. 2022). In contrast, Fig. 11B demonstrates strong fiber-matrix adhesion, 

as evidenced by reduced fiber pullout and minimal void formation. Such robust bonding 

enhances resistance to crack propagation and facilitates efficient stress transfer, thereby 

contributing to the composite’s superior tensile strength (Islam et al. 2024; Mohan and 

Vijay 2021; Vijay and Singaravelu 2016). The inclusion of neem gum played a critical role 

in improving this bonding by minimizing voids and increasing compatibility between the 

fibers and epoxy matrix. The SEM analysis underscores the importance of fiber-matrix 

interfacial interactions in determining the mechanical performance of hybrid epoxy 

composites. The results indicate that optimizing fiber ratios in conjunction with neem gum 

incorporation significantly improved structural integrity by enhancing adhesion and 

reducing defects (De Cicco et al. 2017; Kar et al. 2023, 2024; Raghunathan et al. 2022b). 

These microstructural observations correlated well with the tensile testing data, advancing 

the understanding of fracture mechanisms in hybrid fiber-reinforced composites. 
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Fig. 11.  (A) Fiber pullout; (B) Bonding and microcraks in the fractured tensile specimens 

 

 

CONCLUSIONS 
 

This study comprehensively evaluated the mechanical, physical, and durability 

properties of hybrid epoxy composites reinforced with Hibiscus rosa fiber (H) and snake 

grass fiber (S), along with neem gum powder. The findings gave evidence of the critical 

influence of fiber ratios and gum addition on composite performance, with significant 

implications for sustainable composite development. 

 

1. The composite with higher snake grass fiber content (Composite 20% Snake Grass - 

10% Hibiscus rosa) exhibited the highest tensile strength of 85 MPa, demonstrating 

improved stiffness and load-bearing capability, while composites with higher Hibiscus 

rosa fiber content showed comparatively lower tensile properties. 

2. Flexural strength was also maximized in the 20% snake grass – 10% Hibiscus rosa 

composite at 110 MPa, reflecting enhanced resistance to bending stresses due to the 

synergistic effect of snake grass fiber and neem gum. 

3. Impact toughness peaked at 18 J for the 20% snake grass – 10% Hibiscus rosa 

composite, and Shore D hardness reached 85, both attributed to improved fiber-matrix 

bonding facilitated by the neem gum. 

4. Interlaminar shear strength (ILSS) was significantly improved by the inclusion of neem 

gum, with the 20% snake grass – 10% Hibiscus rosa composite achieving the highest 

ILSS value of 12 MPa, indicating better resistance to delamination and enhanced 

structural integrity. 

5. Water absorption tests revealed a range from 51.0% (Composite 5% snake grass - 25% 

Hibiscus rosa) to 40.0% (Composite 30% snake grass - 30% Hibiscus rosa without 

gum), with the 20% snake grass - 10% Hibiscus rosa composite demonstrating reduced 

moisture uptake at 42.0%, highlighting the role of optimized fiber content and gum in 

enhancing durability under humid conditions. 

6. SEM analysis confirmed superior fiber-matrix adhesion and reduced porosity in neem 

gum-containing composites, especially in the 20% snake grass - 10% Hibiscus rosa 

composite, directly correlating with improved mechanical performance and fracture 

resistance. 
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Future research should extend beyond mechanical and physical evaluations to 

explore the biological durability of these composites, including resistance to insect attack 

and decay fungi. Such investigations would provide deeper insights into their long-term 

performance and widen their applicability in diverse environments. 
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