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Classification of Leguminous Wood Species Based on
Small Sample Hyperspectral Images
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Leguminous wood occupies an important position in the market of cultural
and high-end wood. Accurate identification and classification of its species
is crucial for the development of the industry. However, existing studies
are still deficient in classification methods under small sample conditions.
This paper uses hyperspectral image data and combines models such as
support vector machine (SVM), random forest (RF), logistic regression
(LR), and one-dimensional convolutional neural network (1-CNN). The
synthetic minority oversampling technique (SMOTE) data enhancement
technology was introduced to classify and recognize 18 common legume
woods. After data processing, the classification accuracy of the traditional
models was improved by about 5% on average, with the SVM model
reaching 98.86%; the accuracy of the 1-CNN model was increased to
97.67% after adding the first-order derivative transform and Savitzky-
Golay filtering, it reached 98.89% after further adding the SMOTE.
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INTRODUCTION

Due to its excellent physical properties and a wide range of application scenarios,
legume wood occupies an important position, especially in the high-end furniture and
artifacts market. This type of wood is widely used in the production of high-end furniture,
handicrafts, and decorations due to its high hardness, durability, superior resistance to
compression and bending, as well as resistance to degradation. However, the scarcity and
high market value of legume timber has led to a large number of counterfeit and shoddy
timber flooding the market, which not only affects the rights and interests of consumers,
but it also poses a serious challenge to the fair competition and healthy development of the
industry. According to the statistics of domestic e-commerce platforms, there are more than
20 types of high-end wood used in the market for making cultural games and decorations,
of which leguminous wood occupies the vast majority of the share. Due to the lack of
identification technology and insufficient standardized management, the existence of
shoddy wood has caused huge economic losses and market confusion. Therefore, how to
quickly and accurately identify the species of leguminous timber and avoid the inflow of
counterfeit and shoddy products into the market has become a key problem that needs to
be solved in the current timber market.
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With the increasing application of hyperspectral technology in wood research, it
has become a cutting-edge research direction for wood species identification by virtue of
its non-destructive measurements, high-throughput analysis, and rich information
dimensions. By analyzing the reflectance spectra of wood samples, hyperspectral
technology can reveal the physical properties of wood such as color, texture, density,
hardness, etc., and capture the subtle differences in the growth environment, processing
and drying techniques, providing rich feature information for the accurate classification of
wood species. However, how to fully mine and utilize this feature information to solve the
classification problem under small sample conditions with limited sample size is still a
technical challenge that needs to be investigated. Therefore, exploring effective
hyperspectral data processing and classification methods is of great theoretical and
practical significance to improve the accuracy and reliability of wood species
identification.

Research Status

Hyperspectral imaging technology has proven to be a powerful tool in wood species
identification, especially when combined with machine learning and deep learning models.
Several studies have demonstrated the potential of this approach for achieving high
classification accuracy. For instance, Zhu ef al. (2019) used convolutional neural networks
(CNNs) coupled with hyperspectral imaging for soybean variety identification, which
could be extended to wood species recognition (Zhu et al. 2019). Pan et al. (2023) proposed
a deep learning multimodal fusion framework using near-infrared spectroscopy, GADF,
and RGB images, showing how multimodal data can enhance classification performance.
Similarly, Marrs and Ni-Meister (2019) applied LiDAR and hyperspectral data for tree
species classification, indicating the promise of integrating spatial and spectral data for
improved accuracy.

However, these studies often face limitations related to the sample size and data
complexity. For example, Aydemir and Bilgin (2017) addressed small sample sizes with a
semi-supervised classification method, but their results still suggest that small datasets may
not fully represent the variability of wood species, limiting the generalization of the model.
Chen et al. (2024) used hyperspectral imaging combined with machine learning for
Dalbergia species identification, but this approach might struggle when dealing with very
limited samples. Additionally, Masoumi and Bond (2024) focused on predicting moisture
content and swelling in thermally modified hardwoods, but the direct application of their
model for wood species classification remains unclear.

Ravindran et al. (2021) and Gerasimov et al. (2016) applied hyperspectral and
Raman spectroscopy methods for wood species identification, but their approaches
primarily focus on standard spectral data, which could benefit from incorporating advanced
preprocessing methods to better handle noisy data and improve classification accuracy in
complex environments. Zhao et al. (2021) proposed a fuzzy reasoning and decision-level
fusion technique for wood species recognition using visible and near-infrared spectral
analysis, but it still requires further refinement to handle the complexities of heterogeneous
datasets and limited data points. Fabijanska et al. (2021) employed residual CNNs for wood
species classification from wood core images, demonstrating the power of deep learning,
but they did not account for preprocessing methods like derivative transformations or
filtering techniques that could enhance the input data quality, especially when dealing with
small sample sizes.
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Objective and Scope of This Study

The main objective of this study was to address the limitations of existing legume
wood classification methods under small sample conditions, by combining hyperspectral
image data, advanced data processing techniques, and various classification models to
enhance the accuracy and reliability of legume wood classification. Specifically, the
research objectives included the following aspects:

Solving the classification accuracy problem in small sample learning: To address
the overfitting issue of traditional classification methods under small sample data, synthetic
minority oversampling technique (SMOTE) data augmentation was employed to increase
the diversity of training samples, thereby improving the model's generalization ability.

Optimizing feature extraction and modeling of hyperspectral image data: A one-
dimensional convolutional neural network (I-CNN) was combined with traditional
machine learning methods, such as Support Vector Machine (SVM), Random Forest (RF),
and Logistic Regression (LR). Data preprocessing techniques such as Savitzky-Golay
filtering and first-order derivative transformation are introduced to maximize the potential
of hyperspectral data and enhance the performance of the classification model.

While hyperspectral imagery inherently contains both spectral and spatial
information, this study specifically focuses on exploiting spectral signatures for material
discrimination. The experimental design prioritized spectral resolution (0.3353 nm) over
spatial context for two key reasons: (1) The target samples exhibited homogeneous texture
characteristics under macroscopic observation, reducing the immediate necessity for
spatial feature extraction; (2) Our preliminary tests using SVM classification achieved 92%
accuracy without spatial processing, indicating sufficient discriminative power from
spectral features alone.

This targeted approach aligns with established methodologies in spectroscopic
analysis where spectral fingerprints provide primary identification criteria (Lima et al.
2022). Nevertheless, we acknowledge the potential benefits of integrating spatial-textural
features for complex heterogeneous materials, which constitutes a critical direction for our
subsequent research.

This study focused on the classification and identification of 18 common legume
wood species, covering typical legume wood species in the wood market, primarily used
in high-end furniture and cultural craft markets. The research employed hyperspectral
image data, combined with traditional machine learning methods like SVM, RF, LR, and
modern deep learning methods such as 1-CNN, to optimize classification through data
augmentation (SMOTE) and hyperspectral data preprocessing (e.g., Savitzky-Golay
filtering).

Despite recent advances in wood spectral analysis, three critical challenges remain
unaddressed: (1) effective denoising across ultra-broad spectral ranges (400 to 2500 nm)
without losing discriminative features, (2) coordinated optimization of sample imbalance
and dimensionality curse in small-sample scenarios, and (3) generalization of
preprocessing benefits across divergent classifiers. To bridge these gaps, this study delivers
threefold innovations:

e First, a cascaded denoising pipeline integrating Savitzky-Golay filtering (for temporal
noise suppression) with first-derivative transformation (for spectral slope
enhancement), specifically tailored for wide-band hyperspectral characteristics.

e Second, a parallelized SMOTE-PCA co-optimization framework that simultaneously
addresses class imbalance and feature redundancy through complementary
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dimensionality operations—SMOTE expanding sample diversity in original space
while PCA extracting compact representations.
e Third, comprehensive validation across four classifier archetypes (SVM, RF, LR, 1D-
CNN), demonstrating for the first time that preprocessing-induced accuracy gains
(avg. +5%) are model-agnostic, thus providing a universal solution for spectral data
scarcity.

These innovations collectively establish a new paradigm for small-sample

hyperspectral analysis, with particular efficacy in leguminous wood identification where
chemical homogeneity and sample paucity coexist.

EXPERIMENTAL

Sample Preparation

According to the definition of leguminous wood in the International Code of

Botanical Nomenclature (ICN), this work took 18 species of leguminous wood as the
research object. Detailed information on these woods is shown in Table 1. In order to
prevent homogeneity, the same wood samples were purchased from different merchants
and on different dates, thus ensuring that the same wood samples did not come from the
same tree or all came from the same area.

Table 1. Sample Data of Leguminous Woods

No. Scientific Name Main Characteristics Main Distribution
Area
1 High density, corrosion-resistant, Tropical Africa
Guibourtia commonly used in high-end furniture and
flooring
2 Guibourtia Fine grain, durable, suitable for Tropical Africa
conjugata decorative crafts
3 Pterocarpus Clear texture, hard wood, commonly West Africa
erinaceus Poir. used for rosewood furniture materials
4 Clear texture, lightweight wood, suitable Southeast Asia
Streblus sp. for general furniture manufacturing and South Asia
5 Dalbergia cultrata Heavy and fine, commonly seen with South Asia
g black-brown stripes, used for high-end
Graham ;
furniture
6 L Hard and dense material, dark color, Brazil and the
Dalbergia nigra O . .
commonly used for musical instruments | tropical rainforests
Allem. ) .
and decorations of South America
7 Pterocarpus Wood color is warm and suitable for Tropical Africa
soyauxii Taub. carving and decorative use
8 High hardness, high density, strong South America
Swartzia spp. corrosion resistance, often used for high-
end crafts and flooring
9 Golden color, tough wood, suitable for Southeast Asia
Golden rosewood ; S ) ;
making decorative items and Tropical Africa
10 S High hardness of wood, suitable for Tropical Asia and
Millettia 4 . X .
indoor decoration and flooring Africa
11 Coéte d'lvoire Deep red color, beautiful wood grain, West Africa
rosewood commonly used to make musical
instruments and high-end furniture
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No. Scientific Name Main Characteristics Main Distribution
Area
12 Burma padauk Stable wood, fine texture, often used for Myanmar and
rosewood furniture and decorative Southeast Asia
materials
13 Mexican rosewood | Rich color, suitable for carving and small Mexico and
decorative items Central America
14 Black ebony High density, high hardness, fine and Tropical Africa
smooth material, often used for high-end
musical instruments and decorations
15 Pterocarpus Deep red wood, high hardness, fine India, Southeast
santalinus texture, suitable for traditional crafts and Asia
Buddhist beads
16 Pterocarpus Stable wood, bright color, used for Southeast Asia
indicus decorative furniture and flooring and Tropical Asia
17 Peltogyne Distinct purple tone, dense and durable South America,
wood, suitable for high-end furniture and especially the
decorations Amazon
Rainforest in Brazil
18 Pterocarpus Deep red wood, high hardness, Tropical Africa
tinctorius Welw. commonly used for carving and
traditional crafts

Before data collection, the length, width, and height of all wood blocks were unified
to 6 cm X 4 cm X 2 cm, and the long side corresponded to the cross section of the wood.
Among the cut samples, two samples of each type of wood were taken for processing.
During the selection process, pure samples without cracking, insect infestation, or oil
contamination were selected. Before measurement, sandpaper with gradually finer grain
sizes (240, 400) was used, with grain sizes of 600, 800, 1,000, 1,500 used for polishing.

The data collection platform was Resonon Pika L03030988 hyperspectral imager.
The spectrum extraction and analysis software is SpectrononPro. In this study,
SpectrononPro software was used to process and analyze hyperspectral image data.
SpectrononPro is a professional hyperspectral image processing software that is widely
used in remote sensing, agriculture, geology, ecology, environmental monitoring, and other
fields. It provides a variety of data preprocessing functions such as atmospheric correction,
geometric correction, and radiometric correction to ensure the accuracy and consistency of
data; at the same time, the software has spectral analysis tools such as spectral curve
extraction, spectral matching, and spectral mixing analysis to help in-depth exploration of
the sample feature; Fig. 1. shows the appearance and working schematic of the
hyperspectral instrument.

Data Preprocessing and Feature Extraction

The wavelength range of the spectral data collected using the spectrometer was
between 350 and 1050 nm. The spectral resolution was 0.3353 nm, and its dimension was
1050. To enhance spectral separability, critical preprocessing steps including regional
averaging, smoothing, baseline correction, and noise reduction were systematically
implemented. Direct classification of raw spectra risks triggering the 'curse of
dimensionality' and compromises computational efficiency. Thus, dimensionality
reduction through spectral feature optimization is necessary.
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Fig. 1. Hyperspectral instrument and working schematic
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Fig. 2. Raw spectral reflectance curve

Figure 2 illustrates the original spectral reflectance curves containing 1050
dimensional features, demonstrating inherent spectral variability across samples. Figure 3.
presents the optimized spectral signature processed through SpectrononPro’s automated
workflow. This procedure generates a representative average spectrum by integrating
regional spectral features within designated wavelength intervals, effectively reducing data
dimensionality while preserving discriminative information. The contrast between the
multi-curve representation in Fig. 2 and the unified curve in Fig. 3 visually demonstrates
how preprocessing transforms high-dimensional raw data into a compact spectral profile
suitable for efficient pattern recognition.
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Fig. 3. Spectral curve after data processing

To eliminate the impact of feature dimensional differences, data normalization was
done. The normalization process transforms the data into zero mean and unit variance. Let
the original data matrix be X , and the normalization formula is as follows:

_X-nu
Z=— (D

where u and 6 represent the mean and standard deviation of each column of data,
respectively. This method was applied to standardize the data, ensuring that all features

Su et al. (2025). “Leguminous wood classification,” BioResources 20(3), 6317-6337. 6323



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

were on the same scale and effectively reducing the imbalance in the influence of different
features on the model. For specific scenarios, the data were also normalized based on the
range between the maximum and minimum values, as shown in the following formula:

Xoorm = X=X )

X max—X min

The first step of PCA is to standardize the data to eliminate the dimensional
differences of different features. The aforementioned formula was used to standardize the
data matrix X, obtaining the standardized matrix Z. After standardization, the covariance
matrix S of the data was computed to quantify the correlation between features. The
formula for the covariance matrix is:

S = 1 AVA 3)

n
where Z" is the transpose of the standardized data matrix, and n is the number of samples.

Next, eigenvalue decomposition of the covariance matrix S was carried out to
obtain the eigenvalues A: and corresponding eigenvectors i . The formula is:

Sp = Aigh “4)
where A: represents the variance of the principal components, and g represents the
direction of the principal component.

The principal components with larger eigenvalues represent the directions of the
largest variance in the data. Based on the cumulative explained variance ratio, the first k
principal components were selected to ensure that at least 95% of the information was
retained. The cumulative explained variance ratio is given by:

Ai
Cumulative Explained Variance Ratio =-=! (5)
Ai

M~

NgE

i=1
where m is the total number of features.
Based on the experimental results, the first k eigenvectors U were selected to form
the new basis.
Finally, the standardized data Z were projected onto the new principal component
space to obtain the reduced-dimensional data matrix Y:

Y=2U (6)

where U is the matrix containing the first k eigenvectors. This step significantly reduced
the dimensionality of the data and improved the efficiency of subsequent model training.

The results of the first two principal components, PC1 and PC2, extracted by PCA
show that the main information of the data was effectively captured:

Principal Component 1 (PC1) captured the primary trend with the largest variation
in reflectance, related to the overall spectral information, and reflected the global features
of the samples.

Principal Component 2 (PC2) represents the secondary variation direction
orthogonal to PC1, capturing subtle features under different wavelength combinations.

The application of PCA significantly reduced the dimensionality of the data while
retaining 95% of the variance information, providing a solid foundation for model training
and analysis.
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Fig. 4. Hyperspectral data processing and classification flow chart

Figure 4 shows a flowchart for processing tree species spectral data. It should be
noted that PCA dimensionality reduction and SMOTE processing are performed
simultaneously rather than sequentially. The SMOTE method solves the problem of class
imbalance by synthesizing minority class samples to enhance the model’s ability to
represent spectral features. PCA solves the problem of high-dimensional data redundancy
by extracting low dimensional principal components of spectral data through orthogonal
transformation, alleviating the curse of dimensionality. The two are not simply upstream
and downstream relationships, but independent optimizations for data distribution
(category balance) and feature space (dimensional redundancy). Parallel processing can
avoid coupling interference in sequential operations. If SMOTE is first followed by PCA,
then the synthesized high-dimensional samples may lose key discriminative features during
the dimensionality reduction process, weakening the data augmentation effect. If PCA is
first followed by SMOTE, the low dimensional space after dimensionality reduction is
difficult to accurately depict the original spectral distribution, resulting in synthesized
samples deviating from the true feature space. The parallel branch design allows the
original standardized data to enter two independent processing channels simultaneously.
The SMOTE branch generates synthetic samples that conform to the spectral data
distribution in the original high-dimensional space, ensuring class balance. PCA branch
extracts low dimensional discriminative principal components, eliminates noise and
redundancy, and improves computational efficiency.

In this study, four different models were used to classify the hyperspectral images
of 18 species of leguminous trees. To ensure the reliability of the results, we first performed
a preliminary evaluation of the accuracy for each model. The classification accuracy of
each model was recorded without using the SMOTE method.

Random Forest Model: The accuracy of the random forest model reached 88%.
This model performed well in classifying most of the tree species, but there were still some
errors when handling certain categories.

Support Vector Machine Model (SVM): The accuracy of the SVM model was 92%.
The SVM performed better than the random forest model and was able to handle the
complex patterns in the hyperspectral data more effectively.
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Logistic Regression Model: The classification accuracy of the logistic regression
model was 93%. This model performed excellently, accurately classifying most of the
samples, but its sensitivity to imbalanced data might have affected the overall performance.

The class imbalance in our dataset inherently reflects the objective imprint of
economic principles governing the collectible wood market within research samples. As
core commodities in China’s premium timber sector, leguminous rosewoods
(Dalbergia/Pterocarpus spp.) face triple supply-chain constraints:

Stringent international trade quotas under CITES for endangered species such as
Dalbergia odorifera severely restrict global circulation volumes. Custom records indicate
that annual imports of regulated species account for less than 12% of non-restricted
varieties, legally constraining the naturally diminished sample pool accessible to
researchers.

Market pricing mechanisms exacerbate sample disparity. Mass-producible species
such as Dalbergia cochinchinensis (priced below 600,000 CNY/ton) dominate 76% of
manufacturers’ procurement, while premium-grade D. odorifera (exceeding 1.2 million
CNY/ton) becomes hoarded by investment entities, creating a paradoxical “circulation
without accessibility” scenario for scientific inquiry. This price hierarchy functionally
filters samples, compelling research reliance on readily available mid-tier species.

High-value wood sampling incurs disproportionate expenses: destructive testing of
auction-grade materials requires substantial security deposits, while non-destructive micro-
sampling techniques (to preserve material integrity) prolong processing time by 2.8% per
specimen. These combined economic and technical barriers objectively compress sampling
scales for rare species.

As per 2023 China Collectibles Market Report, the circulation of sandalwood
exhibits the Matthew effect:

Dalbergia nigra accounts for 38.7% of the total.

Guibourtia accounts for 29.1% of the total.

Pterocarpus soyauxii accounts for only 5.3%.

1D Convolutional Neural Network Model (1-CNN): The initial classification
accuracy of the 1-CNN model was 92.25%.

In hyperspectral image classification, due to the class imbalance in the dataset,
minority class samples often lead to the model being biased towards the majority class,
thereby affecting classification accuracy. To address this issue, this study adopted three
methods: first-order derivative transformation, Savitzky-Golay filtering, and SMOTE
(Synthetic Minority Over-sampling Technique) to process the data, aiming to improve
classification accuracy.

The first-order derivative transformation is a differential processing technique
applied to spectral data to emphasize the trend of changes and characteristic points on the
spectral curve. In hyperspectral data, many important spectral features (such as absorption
peaks and reflection peaks) manifest themselves as changes in the spectral curve. By
calculating the rate of change for each spectral band, the response in these significantly
changing parts can be enhanced, helping the model better identify subtle differences
between tree species. Let S(A) represent the value of the spectral curve at wavelength 4,

then the formula for the first-order derivative is:
dS(A)  S(A+A)-S(A)
dA AL

()
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where A/ is the wavelength step size. This method highlights abrupt changes or variation
regions in the spectral data, helping the classification model focus on key features.

The Savitzky-Golay filtering is a commonly used smoothing technique, especially
suitable for noise removal while retaining the main features of the signal. In hyperspectral
data, noise can interfere with the model training process, leading to incorrect classification
results. The Savitzky-Golay filter smooths the data by performing local polynomial fitting
on the spectral data, thus reducing the noise’s influence. This filtering method is a filtering
method based on local polynomial least squares fitting in the time domain. Its biggest
feature is that it can keep the shape and width of the signal unchanged while filtering out
noise. The basic principle is to fit the data with a sliding window, using local polynomial
approximations to smooth the data. The algorithm idea is to suppress noise through motion
smoothing.

Figure 5 explains the principle of how the sliding window smoothes the function
graph.

Fig. 5. Schematic diagram of sliding window noise suppression

The key parameters of SG filtering are the number of window points (non physical
width), and the window slides along the standardized data point number (step size=1 point).
During processing, it does not rely on wavelength calibration but only focuses on the
numerical relationship between adjacent data points. The 5-point window (the optimal
value in this experiment) balances the noise suppression requirements with the ability to
preserve spectral peak valley features.

The formula is as follows:

()= ibkx(t +k) (8)

where y(t) is the smoothed data, x(t+k) is the original data point, b« is the filter coefficient,
and m is the window size.

This method allows the Savitzky-Golay filter to smooth spectral data while
effectively preserving spectral feature information, improving the quality of the data.
Figure 6 shows the process of window sliding and local fitting during the filtering process.

Figure 7 presents a comparative analysis of the spectral reflectance curves for
selected wood species samples before and after the application of the Savitzky-Golay (SG)
filtering technique. The left subplot displays the original spectral curves, illustrating the
inherent variability and noise present in the raw hyperspectral data. Each blue line
represents the reflectance spectrum of an individual sample, capturing the detailed
fluctuations across the wavelength range from 350 to 1050 nm. In contrast, the right subplot
showcases the filtered spectral curves, depicted as red dashed lines.
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The SG filter effectively smooths out high-frequency noise while preserving
essential spectral features, resulting in more continuous and less erratic reflectance profiles.
This enhancement facilitates better visualization and subsequent analysis by mitigating the
impact of random noise without distorting significant spectral characteristics. The side-by-
side comparison underscores the efficacy of the Savitzky-Golay filter in improving data
quality, thereby enabling more accurate and reliable interpretations of the hyperspectral
information.

Figure 8 illustrates the quantitative impact of Savitzky-Golay filtering on the
spectral reflectance data by plotting the difference between the filtered and original
reflectance values for each selected sample. Each plot represents the reflectance difference
(Filtered - Original) across the wavelength range of 350 to 1050 nm for an individual wood
species sample. The purple line indicates the magnitude and direction of changes
introduced by the filtering process. Positive values signify an increase in reflectance post-
filtering, while negative values denote a decrease. This visualization highlights the areas
where the SG filter has smoothed out noise and retained or enhanced significant spectral
features. By isolating the reflectance differences into separate plots for each sample, the
figure avoids overlapping data points, ensuring clarity and facilitating a more precise
assessment of the filter's effects. The consistent pattern of reduced variability and enhanced
spectral smoothness across samples demonstrates the robustness of the Savitzky-Golay
filter in refining hyperspectral data, thereby supporting more accurate classification and
analys1s of Wood spec1es based on thelr spectral 51gnatures
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Fig. 8. Reflectance difference after Savitzky-Golay filtering

SMOTE (Synthetic Minority Over-sampling Technique) is a widely used data
augmentation method in small-sample learning to address the class imbalance problem.
SMOTE increases the proportion of minority class samples in the dataset by synthesizing
new samples. Specifically, the SMOTE method interpolates within the feature space of the
minority class samples to generate new samples. Let x; represent a minority class sample
and x; represent its nearest neighbor sample, the new synthetic sample xu.w can be
generated by the following formula:

Su et al. (2025). “Leguminous wood classification,” BioResources 20(3), 6317-6337. 6329



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Xnew = Xi+ O - (Xj — Xi) 9)

where ¢ is a parameter randomly chosen within the interval [0, 1], controlling the position
of the newly generated sample. By averaging the minority class sample with its neighbor
samples, the SMOTE method effectively increases the number of minority class samples
while preserving the diversity and features of the samples.

The left side of the figure below shows a PCA scatter plot of wood species before
applying SMOTE, showing the original data distribution and class separation. The right
side of the PCA scatter plot after applying SMOTE shows the expansion of the minority
class and the improvement of class balance.

PCA Scatter Before SMOTE PCA Scatter After SMOTE

Principal Component 2
Principal Component 2

-20
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Principal Component 1 Principal Component 1

Fig. 9. PCA scatter plot before and after SMOTE

The combination of these methods helps to address the issue of scarce minority
class samples, thereby enhancing the model’s learning and generalization ability. The first-
order derivative transformation and Savitzky-Golay filtering help to reinforce important
features in the spectral data, while the SMOTE method increases the number of minority
class samples and balances the sample distribution across classes, improving the model's
performance on the minority class.

In this study, to address this issue, this study applied SMOTE (Synthetic Minority
Over-sampling Technique) to process the data, aiming to improve classification accuracy.
For the 1D CNN model, there was a combining of first-order derivative transformation,
Savitzky-Golay filtering, and SMOTE synthesis to enhance the model’s ability to
recognize spectral features and improve classification accuracy for minority class samples.

RESULTS AND DISCUSSION

This section presents the classification results for the different machine learning
models applied to hyperspectral images of leguminous tree species. Classification
performance was evaluated for Random Forest (RF), Support Vector Machine (SVM),
Logistic Regression (Logistic Regression), and 1D Convolutional Neural Network (1D
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CNN), both before and after applying data augmentation techniques such as SMOTE and
first-order derivative transformations.

The core contribution of this study lies in proposing an innovative preprocessing
pipeline for small-sample spectral data. Consequently, all classification models were
implemented using standard configurations to focus on evaluating the effects of data
optimization:

SVM: Implemented through scikit-learn (v1.2) SVC class with default radial basis
function (RBF) kernel, regularization parameter C=1.0, and gamma parameter set to 'scale’
(i.e., 1/(n_features * X.var())).

Random Forest (RF): Utilized scikit-learn’s RandomForestClassifier with default
settings: 100 decision trees, Gini impurity as the splitting criterion, and unlimited
maximum tree depth.

Logistic Regression (LR): Employed scikit-learn's LogisticRegression with L2
regularization, 1bfgs solver, and maximum iterations set to 1000.

1D-CNN: Constructed using Keras framework, consisting of:

An input layer (accepting raw spectral sequences)

One convolutional layer (64 filters, kernel size=3, ReLU activation)

A global average pooling layer (replacing fully-connected layers to reduce
parameters)

An output layer (softmax activation with neurons matching category count)

All conventional models (SVM/RF/LR) employed scikit-learn’s default parameters,
which have demonstrated robust performance in multiple spectral analysis benchmark
tasks. For the 1D-CNN implementation, a compact architecture was adopted that is
commonly used in spectral analysis (He et al. 2020), modifying only the input dimensions
to accommodate data characteristics. To ensure reproducibility, all models were initialized
with identical random seeds (seed=42). Future work will incorporate advanced
optimization techniques such as Bayesian optimization or grid search to further enhance
model performance.

Results of Traditional Machine Learning Models

In the initial experiments, Random Forest, Support Vector Machine (SVM), and
Logistic Regression models were used for classification tests. These tests did not apply
SMOTE or other data enhancement techniques. The experimental results after adding the
SMOTE processing method are as follows:

Random Forest (RF): With the introduction of SMOTE processing, the accuracy of
the random forest model increased from 88.00% to 92.26%. Although the random forest
model performed well in classifying most tree species, there were still some
misclassifications, especially between tree species with similar spectral characteristics.
Nevertheless, the application of SMOTE effectively improved the overall performance of
the model, making it more robust when dealing with unbalanced data.

Support Vector Machine (SVM): After SMOTE processing, the accuracy of the
support vector machine was increased from the initial 92.00% to 98.86%. SVM can
effectively capture nonlinear relationships and complex patterns in high-dimensional
spectral data, and performs better than random forests, especially when distinguishing
similar tree species, and it can more accurately identify their spectral differences. Through
the application of SMOTE, SVM has improved the problem of class imbalance and reduced
the misclassification rate.
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Logistic Regression: The accuracy of the logistic regression model increased from
93.00% to 97.26% after SMOTE processing. Logistic regression performs well on linear
classification tasks and accurately classifies most samples. However, while the high
accuracy indicates good results in general, the model’s sensitivity to class imbalance still
exists. After applying SMOTE, the model’s performance was significantly improved when
dealing with imbalanced data, especially on tree species with fewer samples.

Figure 10 presents the confusion matrix for the three machine learning models,
highlighting the significant reduction in misclassification rates and the improved
performance across all tree species, particularly in the minority class.
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Fig. 10. Random Forest and SVM and Logistic Regression Confusion matrix

Results of the 1D Convolutional Neural Network (1D CNN)

In contrast to the traditional models, the 1D Convolutional Neural Network (1D
CNN) model was first evaluated with the initial data and achieved an accuracy of 92.25%.
While this result was already quite strong, further improvements were made by applying
feature transformation techniques.

First-Order Derivative Transformation: After applying the first-order derivative
transformation to the hyperspectral data, the classification accuracy of the 1D CNN model
was increased to 97.67%. The first-order derivative transformation highlights changes in
spectral features, such as absorption and reflection peaks, which significantly improved the
model’s ability to distinguish between species with subtle spectral differences.

Combination of First-Order Derivative and SMOTE: When both the first-order
derivative transformation and SMOTE were applied together, the accuracy of the 1D CNN
model reached 98.89%. This substantial improvement can be attributed to the combination
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of enhanced spectral features through the derivative transformation and the balanced class
distribution achieved by SMOTE. This dual approach allowed the 1D CNN model to learn
more effectively from the minority class samples and to better capture the spectral
differences between tree species.

The results of the 1D CNN model demonstrate the powerful impact of both feature
engineering (through first-order derivatives) and data augmentation (via SMOTE) in
enhancing classification performance. The combination of these techniques enabled the
model to achieve the highest classification accuracy among all models tested.

Figure 11 presents the confusion matrix for the 1D CNN model, highlighting the
significant reduction in misclassification rates and the improved performance across all
tree species, particularly the minority class.
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Fig. 11. 1D CNN Confusion matrix

Impact of SMOTE and First-Order Derivative Transformation

The application of SMOTE and first-order derivative transformation significantly
influenced the classification results across all models. For traditional machine learning
approaches (RF, SVM, and Logistic Regression), SMOTE— as highlighted by Blagus and
Lusa (2013), who demonstrated its efficacy in handling high-dimensional class-imbalanced
data—helped balance class distributions, thereby improving model generalization and
performance on minority classes. Concurrently, the first-order derivative transformation,
when applied to the 1D CNN model, enhanced its capability to capture spectral changes
and refine sensitivity to key features in hyperspectral data, aligning with the feature
enhancement principles underlying such preprocessing techniques.
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Table 2. Classification Accuracy of Different Models

Model Configuration Accuracy (%)

Random Forest Without SMOTE 88.00

Random Forest With SMOTE 92.26

SVM Without SMOTE 92.00

SVM With SMOTE 98.86

Logistic Regression Without SMOTE 93.00

Logistic Regression With SMOTE 97.26

1D CNN Initial 92.25

1D CNN With First-Order Derivative 97.67

1D CNN With First-Order Derivative 98.89
+Savitzky-Golay filtering +
SMOTE

This table summarizes the classification accuracy of various machine learning models under

different configurations, including the application of SMOTE and preprocessing techniques.

Together, these techniques address the challenges posed by class imbalance and
subtle spectral differences, which are particularly common in hyperspectral image
classification tasks. Table 2 summarizes the introduction of all the models experimented
above and the improvement in accuracy.

Role of SMOTE in Small Sample Learning

In hyperspectral image classification tasks, class imbalance is a prevalent issue,
especially when certain tree species have fewer samples. Traditional classification models
tend to be biased towards majority classes, resulting in poorer performance for minority
classes. SMOTE addresses this by over-sampling the minority classes, thereby balancing
the class distribution.

According to Chawla et al. (2002), SMOTE generates feature-space interpolated
instances by interpolating between existing minority class samples in the feature space.
This not only increases the number of minority class samples but also introduces new
sample diversity, reducing the risk of overfitting. By generating feature-space interpolated
instances within the minority class’s feature space, SMOTE enables classifiers to better
learn the characteristics of these underrepresented classes, thereby improving their
recognition capabilities.

Advantages of First-Order Derivative Transformation in Spectral Data
Processing

First-order derivative transformation is a common spectral preprocessing technique
aimed at enhancing the trend and characteristic points of the spectral curve, such as
absorption and reflection peaks. This method calculates the rate of change of spectral
values with respect to wavelength, thereby emphasizing subtle variations in the spectral
data.

Koashi (1999) demonstrated that first-order derivative transformation effectively
eliminates baseline drifts and slow trends in spectral data, highlighting regions of rapid
change. These rapid changes often correspond to key spectral features that are critical for
distinguishing between different materials or species. By enhancing these features, first-
order derivative transformation improves the resolution of spectral data, making it easier
for classification models to detect and differentiate subtle differences between classes.
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For the 1D CNN model, the initial classification accuracy was 92.2%. After
applying the first-order derivative transformation, the accuracy increased to 97.67%. This
significant improvement indicates that the first-order derivative transformation effectively
enhanced the spectral features, allowing the 1D CNN model to better distinguish between
tree species with minor spectral differences.

Role of Savitzky-Golay Filtering in Spectral Noise Reduction

Savitzky-Golay filtering, a polynomial-based smoothing technique widely
employed in spectral data processing, effectively removes noise while preserving essential
spectral features. As demonstrated by John, Sadasivan, and Seelamantula (2021), this
method performs local polynomial fitting within a sliding window to smooth spectral
data—particularly notable for its adaptive capability in non-Gaussian noise environments,
which reduces high-frequency noise without distorting underlying spectral characteristics.
This adaptive refinement, as outlined in their study, enhances the technique’s robustness
across diverse spectral datasets, ensuring both noise reduction and feature integrity.

Introduced by Savitzky and Golay (1964), this filtering technique maintains the
integrity of important spectral features such as peaks and valleys by fitting a low-degree
polynomial to the data within each window. This approach effectively reduces noise
interference in the spectral data, enhancing the signal-to-noise ratio and enabling more
accurate feature extraction for classification purposes.

In this study, combining Savitzky-Golay filtering with first-order derivative
transformation and SMOTE further improved the 1D CNN model’s accuracy to 98.89%.
This indicates that Savitzky-Golay filtering successfully reduced noise in the spectral data,
allowing the model to better capture and utilize the true spectral features for classification,
thereby enhancing overall performance.

CONCLUSIONS

1. This study demonstrated that combining data augmentation techniques, particularly
synthetic minority oversampling technique (SMOTE), with spectral feature
enhancement methods (e.g., first-order derivative transformation and Savitzky-Golay
filtering) significantly improved the classification accuracy of hyperspectral images for
leguminous tree species.

2. The 1D Convolutional Neural Network (1D CNN), when integrated with these
preprocessing and augmentation techniques, achieved an exceptional accuracy of
98.89%, outperforming traditional models like Random Forest, Support Vector
Machine (SVM), and Logistic Regression, which also showed improvements after
SMOTE application.

3. The findings emphasize the importance of addressing class imbalance and enhancing
spectral features in high-dimensional hyperspectral data classification, which is crucial
for advancing agricultural information engineering.

4. The framework developed in this study offers valuable strategies for improving
classification performance in similar domains, particularly for imbalanced and complex
datasets.
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5. Limitations include the potential for synthetic samples from SMOTE to reduce
generalizability, and the exclusion of spatial information, which may limit
classification accuracy. Future research should explore advanced augmentation
techniques like Generative Adversarial Networks (GANs) and integrate spatial-spectral
hybrid models to improve robustness and applicability.
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