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Leguminous wood occupies an important position in the market of cultural 
and high-end wood. Accurate identification and classification of its species 
is crucial for the development of the industry. However, existing studies 
are still deficient in classification methods under small sample conditions. 
This paper uses hyperspectral image data and combines models such as 
support vector machine (SVM), random forest (RF), logistic regression 
(LR), and one-dimensional convolutional neural network (1-CNN). The 
synthetic minority oversampling technique (SMOTE) data enhancement 
technology was introduced to classify and recognize 18 common legume 
woods. After data processing, the classification accuracy of the traditional 
models was improved by about 5% on average, with the SVM model 
reaching 98.86%; the accuracy of the 1-CNN model was increased to 
97.67% after adding the first-order derivative transform and Savitzky-
Golay filtering, it reached 98.89% after further adding the SMOTE.  
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INTRODUCTION 
 

Due to its excellent physical properties and a wide range of application scenarios, 

legume wood occupies an important position, especially in the high-end furniture and 

artifacts market. This type of wood is widely used in the production of high-end furniture, 

handicrafts, and decorations due to its high hardness, durability, superior resistance to 

compression and bending, as well as resistance to degradation. However, the scarcity and 

high market value of legume timber has led to a large number of counterfeit and shoddy 

timber flooding the market, which not only affects the rights and interests of consumers, 

but it also poses a serious challenge to the fair competition and healthy development of the 

industry. According to the statistics of domestic e-commerce platforms, there are more than 

20 types of high-end wood used in the market for making cultural games and decorations, 

of which leguminous wood occupies the vast majority of the share. Due to the lack of 

identification technology and insufficient standardized management, the existence of 

shoddy wood has caused huge economic losses and market confusion. Therefore, how to 

quickly and accurately identify the species of leguminous timber and avoid the inflow of 

counterfeit and shoddy products into the market has become a key problem that needs to 

be solved in the current timber market. 
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With the increasing application of hyperspectral technology in wood research, it 

has become a cutting-edge research direction for wood species identification by virtue of 

its non-destructive measurements, high-throughput analysis, and rich information 

dimensions. By analyzing the reflectance spectra of wood samples, hyperspectral 

technology can reveal the physical properties of wood such as color, texture, density, 

hardness, etc., and capture the subtle differences in the growth environment, processing 

and drying techniques, providing rich feature information for the accurate classification of 

wood species. However, how to fully mine and utilize this feature information to solve the 

classification problem under small sample conditions with limited sample size is still a 

technical challenge that needs to be investigated. Therefore, exploring effective 

hyperspectral data processing and classification methods is of great theoretical and 

practical significance to improve the accuracy and reliability of wood species 

identification. 

  

Research Status 
Hyperspectral imaging technology has proven to be a powerful tool in wood species 

identification, especially when combined with machine learning and deep learning models. 

Several studies have demonstrated the potential of this approach for achieving high 

classification accuracy. For instance, Zhu et al. (2019) used convolutional neural networks 

(CNNs) coupled with hyperspectral imaging for soybean variety identification, which 

could be extended to wood species recognition (Zhu et al. 2019). Pan et al. (2023) proposed 

a deep learning multimodal fusion framework using near-infrared spectroscopy, GADF, 

and RGB images, showing how multimodal data can enhance classification performance. 

Similarly, Marrs and Ni-Meister (2019) applied LiDAR and hyperspectral data for tree 

species classification, indicating the promise of integrating spatial and spectral data for 

improved accuracy. 

However, these studies often face limitations related to the sample size and data 

complexity. For example, Aydemir and Bilgin (2017) addressed small sample sizes with a 

semi-supervised classification method, but their results still suggest that small datasets may 

not fully represent the variability of wood species, limiting the generalization of the model. 

Chen et al. (2024) used hyperspectral imaging combined with machine learning for 

Dalbergia species identification, but this approach might struggle when dealing with very 

limited samples. Additionally, Masoumi and Bond (2024) focused on predicting moisture 

content and swelling in thermally modified hardwoods, but the direct application of their 

model for wood species classification remains unclear. 

Ravindran et al. (2021) and Gerasimov et al. (2016) applied hyperspectral and 

Raman spectroscopy methods for wood species identification, but their approaches 

primarily focus on standard spectral data, which could benefit from incorporating advanced 

preprocessing methods to better handle noisy data and improve classification accuracy in 

complex environments. Zhao et al. (2021) proposed a fuzzy reasoning and decision-level 

fusion technique for wood species recognition using visible and near-infrared spectral 

analysis, but it still requires further refinement to handle the complexities of heterogeneous 

datasets and limited data points. Fabijańska et al. (2021) employed residual CNNs for wood 

species classification from wood core images, demonstrating the power of deep learning, 

but they did not account for preprocessing methods like derivative transformations or 

filtering techniques that could enhance the input data quality, especially when dealing with 

small sample sizes. 
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Objective and Scope of This Study 
The main objective of this study was to address the limitations of existing legume 

wood classification methods under small sample conditions, by combining hyperspectral 

image data, advanced data processing techniques, and various classification models to 

enhance the accuracy and reliability of legume wood classification. Specifically, the 

research objectives included the following aspects: 

Solving the classification accuracy problem in small sample learning: To address 

the overfitting issue of traditional classification methods under small sample data, synthetic 

minority oversampling technique (SMOTE) data augmentation was employed to increase 

the diversity of training samples, thereby improving the model's generalization ability. 

Optimizing feature extraction and modeling of hyperspectral image data: A one-

dimensional convolutional neural network (1-CNN) was combined with traditional 

machine learning methods, such as Support Vector Machine (SVM), Random Forest (RF), 

and Logistic Regression (LR). Data preprocessing techniques such as Savitzky-Golay 

filtering and first-order derivative transformation are introduced to maximize the potential 

of hyperspectral data and enhance the performance of the classification model. 

While hyperspectral imagery inherently contains both spectral and spatial 

information, this study specifically focuses on exploiting spectral signatures for material 

discrimination. The experimental design prioritized spectral resolution (0.3353 nm) over 

spatial context for two key reasons: (1) The target samples exhibited homogeneous texture 

characteristics under macroscopic observation, reducing the immediate necessity for 

spatial feature extraction; (2) Our preliminary tests using SVM classification achieved 92% 

accuracy without spatial processing, indicating sufficient discriminative power from 

spectral features alone. 

This targeted approach aligns with established methodologies in spectroscopic 

analysis where spectral fingerprints provide primary identification criteria (Lima et al. 

2022). Nevertheless, we acknowledge the potential benefits of integrating spatial-textural 

features for complex heterogeneous materials, which constitutes a critical direction for our 

subsequent research. 

This study focused on the classification and identification of 18 common legume 

wood species, covering typical legume wood species in the wood market, primarily used 

in high-end furniture and cultural craft markets. The research employed hyperspectral 

image data, combined with traditional machine learning methods like SVM, RF, LR, and 

modern deep learning methods such as 1-CNN, to optimize classification through data 

augmentation (SMOTE) and hyperspectral data preprocessing (e.g., Savitzky-Golay 

filtering).  

Despite recent advances in wood spectral analysis, three critical challenges remain 

unaddressed: (1) effective denoising across ultra-broad spectral ranges (400 to 2500 nm) 

without losing discriminative features, (2) coordinated optimization of sample imbalance 

and dimensionality curse in small-sample scenarios, and (3) generalization of 

preprocessing benefits across divergent classifiers. To bridge these gaps, this study delivers 

threefold innovations: 

• First, a cascaded denoising pipeline integrating Savitzky-Golay filtering (for temporal 

noise suppression) with first-derivative transformation (for spectral slope 

enhancement), specifically tailored for wide-band hyperspectral characteristics. 

• Second, a parallelized SMOTE-PCA co-optimization framework that simultaneously 

addresses class imbalance and feature redundancy through complementary 
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dimensionality operations—SMOTE expanding sample diversity in original space 

while PCA extracting compact representations. 

• Third, comprehensive validation across four classifier archetypes (SVM, RF, LR, 1D-

CNN), demonstrating for the first time that preprocessing-induced accuracy gains 

(avg. +5%) are model-agnostic, thus providing a universal solution for spectral data 

scarcity. 

These innovations collectively establish a new paradigm for small-sample 

hyperspectral analysis, with particular efficacy in leguminous wood identification where 

chemical homogeneity and sample paucity coexist. 

 

 

EXPERIMENTAL 
 

Sample Preparation 
According to the definition of leguminous wood in the International Code of 

Botanical Nomenclature (ICN), this work took 18 species of leguminous wood as the 

research object. Detailed information on these woods is shown in Table 1. In order to 

prevent homogeneity, the same wood samples were purchased from different merchants 

and on different dates, thus ensuring that the same wood samples did not come from the 

same tree or all came from the same area. 

 

Table 1. Sample Data of Leguminous Woods 

No. Scientific Name Main Characteristics Main Distribution 
Area 

1 
Guibourtia 

High density, corrosion-resistant, 
commonly used in high-end furniture and 

flooring 

Tropical Africa 

2 Guibourtia 
conjugata 

Fine grain, durable, suitable for 
decorative crafts 

Tropical Africa 

3 Pterocarpus 
erinaceus Poir. 

Clear texture, hard wood, commonly 
used for rosewood furniture materials 

West Africa 

4 
Streblus sp. 

Clear texture, lightweight wood, suitable 
for general furniture manufacturing 

Southeast Asia 
and South Asia 

5 
Dalbergia cultrata 

Graham 

Heavy and fine, commonly seen with 
black-brown stripes, used for high-end 

furniture 

South Asia 

6 
Dalbergia nigra 

Allem. 

Hard and dense material, dark color, 
commonly used for musical instruments 

and decorations 

Brazil and the 
tropical rainforests 
of South America 

7 Pterocarpus 
soyauxii Taub. 

 Wood color is warm and suitable for 
carving and decorative use 

Tropical Africa 

8 
Swartzia spp. 

High hardness, high density, strong 
corrosion resistance, often used for high-

end crafts and flooring 

South America 

9 
Golden rosewood 

Golden color, tough wood, suitable for 
making decorative items 

Southeast Asia 
and Tropical Africa 

10 
Millettia 

High hardness of wood, suitable for 
indoor decoration and flooring 

Tropical Asia and 
Africa 

11 Côte d'Ivoire 
rosewood 

Deep red color, beautiful wood grain, 
commonly used to make musical 

instruments and high-end furniture 

West Africa 
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No. Scientific Name Main Characteristics Main Distribution 
Area 

12 Burma padauk Stable wood, fine texture, often used for 
rosewood furniture and decorative 

materials 

Myanmar and 
Southeast Asia 

13 Mexican rosewood Rich color, suitable for carving and small 
decorative items 

Mexico and 
Central America 

14 Black ebony High density, high hardness, fine and 
smooth material, often used for high-end 

musical instruments and decorations 

Tropical Africa 

15 Pterocarpus 
santalinus 

Deep red wood, high hardness, fine 
texture, suitable for traditional crafts and 

Buddhist beads 

India, Southeast 
Asia 

16 Pterocarpus 
indicus 

Stable wood, bright color, used for 
decorative furniture and flooring 

Southeast Asia 
and Tropical Asia 

17 Peltogyne Distinct purple tone, dense and durable 
wood, suitable for high-end furniture and 

decorations 

South America, 
especially the 

Amazon 
Rainforest in Brazil 

18 Pterocarpus 
tinctorius Welw. 

Deep red wood, high hardness, 
commonly used for carving and 

traditional crafts 

Tropical Africa 

 

Before data collection, the length, width, and height of all wood blocks were unified 

to 6 cm × 4 cm × 2 cm, and the long side corresponded to the cross section of the wood. 

Among the cut samples, two samples of each type of wood were taken for processing. 

During the selection process, pure samples without cracking, insect infestation, or oil 

contamination were selected. Before measurement, sandpaper with gradually finer grain 

sizes (240, 400) was used, with grain sizes of 600, 800, 1,000, 1,500 used for polishing. 

The data collection platform was Resonon Pika L03030988 hyperspectral imager. 

The spectrum extraction and analysis software is SpectrononPro. In this study, 

SpectrononPro software was used to process and analyze hyperspectral image data. 

SpectrononPro is a professional hyperspectral image processing software that is widely 

used in remote sensing, agriculture, geology, ecology, environmental monitoring, and other 

fields. It provides a variety of data preprocessing functions such as atmospheric correction, 

geometric correction, and radiometric correction to ensure the accuracy and consistency of 

data; at the same time, the software has spectral analysis tools such as spectral curve 

extraction, spectral matching, and spectral mixing analysis to help in-depth exploration of 

the sample feature; Fig. 1. shows the appearance and working schematic of the 

hyperspectral instrument. 

 

Data Preprocessing and Feature Extraction 
The wavelength range of the spectral data collected using the spectrometer was 

between 350 and 1050 nm. The spectral resolution was 0.3353 nm, and its dimension was 

1050. To enhance spectral separability, critical preprocessing steps including regional 

averaging, smoothing, baseline correction, and noise reduction were systematically 

implemented. Direct classification of raw spectra risks triggering the 'curse of 

dimensionality' and compromises computational efficiency. Thus, dimensionality 

reduction through spectral feature optimization is necessary. 
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Fig. 1. Hyperspectral instrument and working schematic 
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Fig. 2. Raw spectral reflectance curve 

 

Figure 2 illustrates the original spectral reflectance curves containing 1050 

dimensional features, demonstrating inherent spectral variability across samples. Figure 3. 

presents the optimized spectral signature processed through SpectrononPro’s automated 

workflow. This procedure generates a representative average spectrum by integrating 

regional spectral features within designated wavelength intervals, effectively reducing data 

dimensionality while preserving discriminative information. The contrast between the 

multi-curve representation in Fig. 2 and the unified curve in Fig. 3 visually demonstrates 

how preprocessing transforms high-dimensional raw data into a compact spectral profile 

suitable for efficient pattern recognition. 
 

 
Fig. 3. Spectral curve after data processing 
 

To eliminate the impact of feature dimensional differences, data normalization was 

done. The normalization process transforms the data into zero mean and unit variance. Let 

the original data matrix be X , and the normalization formula is as follows: 



−
=

X
Z                                                                                       (1) 

where  and   represent the mean and standard deviation of each column of data, 

respectively. This method was applied to standardize the data, ensuring that all features 
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were on the same scale and effectively reducing the imbalance in the influence of different 

features on the model. For specific scenarios, the data were also normalized based on the 

range between the maximum and minimum values, as shown in the following formula: 

minmax

min

XX

XX
Xnorm

−

−
=         (2) 

 

The first step of PCA is to standardize the data to eliminate the dimensional 

differences of different features. The aforementioned formula was used to standardize the 

data matrix X, obtaining the standardized matrix Z. After standardization, the covariance 

matrix S of the data was computed to quantify the correlation between features. The 

formula for the covariance matrix is: 

ZZ
n

S T1
=          (3) 

where
TZ  is the transpose of the standardized data matrix, and n is the number of samples. 

Next, eigenvalue decomposition of the covariance matrix S was carried out to 

obtain the eigenvalues i and corresponding eigenvectors i . The formula is: 

iS  ii =          (4) 

where i  represents the variance of the principal components, and i  represents the 

direction of the principal component. 

The principal components with larger eigenvalues represent the directions of the 

largest variance in the data. Based on the cumulative explained variance ratio, the first k 

principal components were selected to ensure that at least 95% of the information was 

retained. The cumulative explained variance ratio is given by: 

Cumulative xplainedE Variance  





=

==
m

i

i

k

i

i

R

1

1atio





     (5) 

where m is the total number of features. 

Based on the experimental results, the first k eigenvectors U were selected to form 

the new basis. 

Finally, the standardized data Z were projected onto the new principal component 

space to obtain the reduced-dimensional data matrix Y: 

ZUY =          (6) 

where U is the matrix containing the first k eigenvectors. This step significantly reduced 

the dimensionality of the data and improved the efficiency of subsequent model training. 

The results of the first two principal components, PC1 and PC2, extracted by PCA 

show that the main information of the data was effectively captured: 

Principal Component 1 (PC1) captured the primary trend with the largest variation 

in reflectance, related to the overall spectral information, and reflected the global features 

of the samples. 

Principal Component 2 (PC2) represents the secondary variation direction 

orthogonal to PC1, capturing subtle features under different wavelength combinations. 

The application of PCA significantly reduced the dimensionality of the data while 

retaining 95% of the variance information, providing a solid foundation for model training 

and analysis. 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Su et al. (2025). “Leguminous wood classification,” BioResources 20(3), 6317-6337.  6325 

Identification of Leguminous Tree Species Using Initial Data 

 
Fig. 4. Hyperspectral data processing and classification flow chart 
 

Figure 4 shows a flowchart for processing tree species spectral data. It should be 

noted that PCA dimensionality reduction and SMOTE processing are performed 

simultaneously rather than sequentially. The SMOTE method solves the problem of class 

imbalance by synthesizing minority class samples to enhance the model’s ability to 

represent spectral features. PCA solves the problem of high-dimensional data redundancy 

by extracting low dimensional principal components of spectral data through orthogonal 

transformation, alleviating the curse of dimensionality. The two are not simply upstream 

and downstream relationships, but independent optimizations for data distribution 

(category balance) and feature space (dimensional redundancy). Parallel processing can 

avoid coupling interference in sequential operations. If SMOTE is first followed by PCA, 

then the synthesized high-dimensional samples may lose key discriminative features during 

the dimensionality reduction process, weakening the data augmentation effect. If PCA is 

first followed by SMOTE, the low dimensional space after dimensionality reduction is 

difficult to accurately depict the original spectral distribution, resulting in synthesized 

samples deviating from the true feature space. The parallel branch design allows the 

original standardized data to enter two independent processing channels simultaneously. 

The SMOTE branch generates synthetic samples that conform to the spectral data 

distribution in the original high-dimensional space, ensuring class balance. PCA branch 

extracts low dimensional discriminative principal components, eliminates noise and 

redundancy, and improves computational efficiency. 

In this study, four different models were used to classify the hyperspectral images 

of 18 species of leguminous trees. To ensure the reliability of the results, we first performed 

a preliminary evaluation of the accuracy for each model. The classification accuracy of 

each model was recorded without using the SMOTE method. 

Random Forest Model: The accuracy of the random forest model reached 88%. 

This model performed well in classifying most of the tree species, but there were still some 

errors when handling certain categories. 

Support Vector Machine Model (SVM): The accuracy of the SVM model was 92%. 

The SVM performed better than the random forest model and was able to handle the 

complex patterns in the hyperspectral data more effectively. 
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Logistic Regression Model: The classification accuracy of the logistic regression 

model was 93%. This model performed excellently, accurately classifying most of the 

samples, but its sensitivity to imbalanced data might have affected the overall performance. 

The class imbalance in our dataset inherently reflects the objective imprint of 

economic principles governing the collectible wood market within research samples. As 

core commodities in China’s premium timber sector, leguminous rosewoods 

(Dalbergia/Pterocarpus spp.) face triple supply-chain constraints: 

Stringent international trade quotas under CITES for endangered species such as 

Dalbergia odorifera severely restrict global circulation volumes. Custom records indicate 

that annual imports of regulated species account for less than 12% of non-restricted 

varieties, legally constraining the naturally diminished sample pool accessible to 

researchers. 

Market pricing mechanisms exacerbate sample disparity. Mass-producible species 

such as Dalbergia cochinchinensis (priced below 600,000 CNY/ton) dominate 76% of 

manufacturers’ procurement, while premium-grade D. odorifera (exceeding 1.2 million 

CNY/ton) becomes hoarded by investment entities, creating a paradoxical “circulation 

without accessibility” scenario for scientific inquiry. This price hierarchy functionally 

filters samples, compelling research reliance on readily available mid-tier species. 

High-value wood sampling incurs disproportionate expenses: destructive testing of 

auction-grade materials requires substantial security deposits, while non-destructive micro-

sampling techniques (to preserve material integrity) prolong processing time by 2.8× per 

specimen. These combined economic and technical barriers objectively compress sampling 

scales for rare species. 

As per 2023 China Collectibles Market Report, the circulation of sandalwood 

exhibits the Matthew effect: 

Dalbergia nigra accounts for 38.7% of the total. 

Guibourtia accounts for 29.1% of the total. 

Pterocarpus soyauxii accounts for only 5.3%.  

1D Convolutional Neural Network Model (1-CNN): The initial classification 

accuracy of the 1-CNN model was 92.25%. 

In hyperspectral image classification, due to the class imbalance in the dataset, 

minority class samples often lead to the model being biased towards the majority class, 

thereby affecting classification accuracy. To address this issue, this study adopted three 

methods: first-order derivative transformation, Savitzky-Golay filtering, and SMOTE 

(Synthetic Minority Over-sampling Technique) to process the data, aiming to improve 

classification accuracy. 

The first-order derivative transformation is a differential processing technique 

applied to spectral data to emphasize the trend of changes and characteristic points on the 

spectral curve. In hyperspectral data, many important spectral features (such as absorption 

peaks and reflection peaks) manifest themselves as changes in the spectral curve. By 

calculating the rate of change for each spectral band, the response in these significantly 

changing parts can be enhanced, helping the model better identify subtle differences 

between tree species. Let )(S represent the value of the spectral curve at wavelength  , 

then the formula for the first-order derivative is: 











−+
=

)()()( SS

d

dS
       (7) 
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where   is the wavelength step size. This method highlights abrupt changes or variation 

regions in the spectral data, helping the classification model focus on key features. 

The Savitzky-Golay filtering is a commonly used smoothing technique, especially 

suitable for noise removal while retaining the main features of the signal. In hyperspectral 

data, noise can interfere with the model training process, leading to incorrect classification 

results. The Savitzky-Golay filter smooths the data by performing local polynomial fitting 

on the spectral data, thus reducing the noise’s influence. This filtering method is a filtering 

method based on local polynomial least squares fitting in the time domain. Its biggest 

feature is that it can keep the shape and width of the signal unchanged while filtering out 

noise. The basic principle is to fit the data with a sliding window, using local polynomial 

approximations to smooth the data. The algorithm idea is to suppress noise through motion 

smoothing. 

Figure 5 explains the principle of how the sliding window smoothes the function 

graph. 

 
Fig. 5. Schematic diagram of sliding window noise suppression 

 

The key parameters of SG filtering are the number of window points (non physical 

width), and the window slides along the standardized data point number (step size=1 point). 

During processing, it does not rely on wavelength calibration but only focuses on the 

numerical relationship between adjacent data points. The 5-point window (the optimal 

value in this experiment) balances the noise suppression requirements with the ability to 

preserve spectral peak valley features. 

The formula is as follows: 


−=

+=
m

mk

k ktxbty )()(         (8) 

where y(t) is the smoothed data, x(t+k) is the original data point, kb is the filter coefficient, 

and m is the window size.  

This method allows the Savitzky-Golay filter to smooth spectral data while 

effectively preserving spectral feature information, improving the quality of the data. 

Figure 6 shows the process of window sliding and local fitting during the filtering process. 

Figure 7 presents a comparative analysis of the spectral reflectance curves for 

selected wood species samples before and after the application of the Savitzky-Golay (SG) 

filtering technique. The left subplot displays the original spectral curves, illustrating the 

inherent variability and noise present in the raw hyperspectral data. Each blue line 

represents the reflectance spectrum of an individual sample, capturing the detailed 

fluctuations across the wavelength range from 350 to 1050 nm. In contrast, the right subplot 

showcases the filtered spectral curves, depicted as red dashed lines.  
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Fig. 6. Process diagram of window sliding and local fitting (The horizontal axis represents the 
standardized time point) 

 

 

 
Fig. 7. Spectral curves comparison before and after Savitzky-Golay filtering 
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The SG filter effectively smooths out high-frequency noise while preserving 

essential spectral features, resulting in more continuous and less erratic reflectance profiles. 

This enhancement facilitates better visualization and subsequent analysis by mitigating the 

impact of random noise without distorting significant spectral characteristics. The side-by-

side comparison underscores the efficacy of the Savitzky-Golay filter in improving data 

quality, thereby enabling more accurate and reliable interpretations of the hyperspectral 

information. 

Figure 8 illustrates the quantitative impact of Savitzky-Golay filtering on the 

spectral reflectance data by plotting the difference between the filtered and original 

reflectance values for each selected sample. Each plot represents the reflectance difference 

(Filtered - Original) across the wavelength range of 350 to 1050 nm for an individual wood 

species sample. The purple line indicates the magnitude and direction of changes 

introduced by the filtering process. Positive values signify an increase in reflectance post-

filtering, while negative values denote a decrease. This visualization highlights the areas 

where the SG filter has smoothed out noise and retained or enhanced significant spectral 

features. By isolating the reflectance differences into separate plots for each sample, the 

figure avoids overlapping data points, ensuring clarity and facilitating a more precise 

assessment of the filter's effects. The consistent pattern of reduced variability and enhanced 

spectral smoothness across samples demonstrates the robustness of the Savitzky-Golay 

filter in refining hyperspectral data, thereby supporting more accurate classification and 

analysis of wood species based on their spectral signatures. 

 
Fig. 8. Reflectance difference after Savitzky-Golay filtering 

 

SMOTE (Synthetic Minority Over-sampling Technique) is a widely used data 

augmentation method in small-sample learning to address the class imbalance problem. 

SMOTE increases the proportion of minority class samples in the dataset by synthesizing 

new samples. Specifically, the SMOTE method interpolates within the feature space of the 

minority class samples to generate new samples. Let ix  represent a minority class sample 

and xj represent its nearest neighbor sample, the new synthetic sample newx  can be 

generated by the following formula: 
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)( ijinew xxxx −+=          (9) 

where   is a parameter randomly chosen within the interval [0, 1], controlling the position 

of the newly generated sample. By averaging the minority class sample with its neighbor 

samples, the SMOTE method effectively increases the number of minority class samples 

while preserving the diversity and features of the samples. 

The left side of the figure below shows a PCA scatter plot of wood species before 

applying SMOTE, showing the original data distribution and class separation. The right 

side of the PCA scatter plot after applying SMOTE shows the expansion of the minority 

class and the improvement of class balance. 

 

 
Fig. 9. PCA scatter plot before and after SMOTE 

 

The combination of these methods helps to address the issue of scarce minority 

class samples, thereby enhancing the model’s learning and generalization ability. The first-

order derivative transformation and Savitzky-Golay filtering help to reinforce important 

features in the spectral data, while the SMOTE method increases the number of minority 

class samples and balances the sample distribution across classes, improving the model's 

performance on the minority class. 

In this study, to address this issue, this study applied SMOTE (Synthetic Minority 

Over-sampling Technique) to process the data, aiming to improve classification accuracy. 

For the 1D CNN model, there was a combining of first-order derivative transformation, 

Savitzky-Golay filtering, and SMOTE synthesis to enhance the model’s ability to 

recognize spectral features and improve classification accuracy for minority class samples. 

 

 

RESULTS AND DISCUSSION 
 

This section presents the classification results for the different machine learning 

models applied to hyperspectral images of leguminous tree species. Classification 

performance was evaluated for Random Forest (RF), Support Vector Machine (SVM), 

Logistic Regression (Logistic Regression), and 1D Convolutional Neural Network (1D 
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CNN), both before and after applying data augmentation techniques such as SMOTE and 

first-order derivative transformations. 

The core contribution of this study lies in proposing an innovative preprocessing 

pipeline for small-sample spectral data. Consequently, all classification models were 

implemented using standard configurations to focus on evaluating the effects of data 

optimization: 

SVM: Implemented through scikit-learn (v1.2) SVC class with default radial basis 

function (RBF) kernel, regularization parameter C=1.0, and gamma parameter set to 'scale' 

(i.e., 1/(n_features * X.var())). 

Random Forest (RF): Utilized scikit-learn’s RandomForestClassifier with default 

settings: 100 decision trees, Gini impurity as the splitting criterion, and unlimited 

maximum tree depth. 

Logistic Regression (LR): Employed scikit-learn's LogisticRegression with L2 

regularization, lbfgs solver, and maximum iterations set to 1000. 

1D-CNN: Constructed using Keras framework, consisting of: 

An input layer (accepting raw spectral sequences) 

One convolutional layer (64 filters, kernel size=3, ReLU activation) 

A global average pooling layer (replacing fully-connected layers to reduce 

parameters) 

An output layer (softmax activation with neurons matching category count) 

All conventional models (SVM/RF/LR) employed scikit-learn’s default parameters, 

which have demonstrated robust performance in multiple spectral analysis benchmark 

tasks. For the 1D-CNN implementation, a compact architecture was adopted that is 

commonly used in spectral analysis (He et al. 2020), modifying only the input dimensions 

to accommodate data characteristics. To ensure reproducibility, all models were initialized 

with identical random seeds (seed=42). Future work will incorporate advanced 

optimization techniques such as Bayesian optimization or grid search to further enhance 

model performance. 

 
Results of Traditional Machine Learning Models 

In the initial experiments, Random Forest, Support Vector Machine (SVM), and 

Logistic Regression models were used for classification tests. These tests did not apply 

SMOTE or other data enhancement techniques. The experimental results after adding the 

SMOTE processing method are as follows: 

Random Forest (RF): With the introduction of SMOTE processing, the accuracy of 

the random forest model increased from 88.00% to 92.26%. Although the random forest 

model performed well in classifying most tree species, there were still some 

misclassifications, especially between tree species with similar spectral characteristics. 

Nevertheless, the application of SMOTE effectively improved the overall performance of 

the model, making it more robust when dealing with unbalanced data. 

Support Vector Machine (SVM): After SMOTE processing, the accuracy of the 

support vector machine was increased from the initial 92.00% to 98.86%. SVM can 

effectively capture nonlinear relationships and complex patterns in high-dimensional 

spectral data, and performs better than random forests, especially when distinguishing 

similar tree species, and it can more accurately identify their spectral differences. Through 

the application of SMOTE, SVM has improved the problem of class imbalance and reduced 

the misclassification rate. 
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Logistic Regression: The accuracy of the logistic regression model increased from 

93.00% to 97.26% after SMOTE processing. Logistic regression performs well on linear 

classification tasks and accurately classifies most samples. However, while the high 

accuracy indicates good results in general, the model’s sensitivity to class imbalance still 

exists. After applying SMOTE, the model’s performance was significantly improved when 

dealing with imbalanced data, especially on tree species with fewer samples. 

Figure 10 presents the confusion matrix for the three machine learning models, 

highlighting the significant reduction in misclassification rates and the improved 

performance across all tree species, particularly in the minority class. 

 
 
 

 
 

Fig. 10. Random Forest and SVM and Logistic Regression Confusion matrix 
 

Results of the 1D Convolutional Neural Network (1D CNN) 
In contrast to the traditional models, the 1D Convolutional Neural Network (1D 

CNN) model was first evaluated with the initial data and achieved an accuracy of 92.25%. 

While this result was already quite strong, further improvements were made by applying 

feature transformation techniques. 

First-Order Derivative Transformation: After applying the first-order derivative 

transformation to the hyperspectral data, the classification accuracy of the 1D CNN model 

was increased to 97.67%. The first-order derivative transformation highlights changes in 

spectral features, such as absorption and reflection peaks, which significantly improved the 

model’s ability to distinguish between species with subtle spectral differences. 

Combination of First-Order Derivative and SMOTE: When both the first-order 

derivative transformation and SMOTE were applied together, the accuracy of the 1D CNN 

model reached 98.89%. This substantial improvement can be attributed to the combination 
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of enhanced spectral features through the derivative transformation and the balanced class 

distribution achieved by SMOTE. This dual approach allowed the 1D CNN model to learn 

more effectively from the minority class samples and to better capture the spectral 

differences between tree species. 

The results of the 1D CNN model demonstrate the powerful impact of both feature 

engineering (through first-order derivatives) and data augmentation (via SMOTE) in 

enhancing classification performance. The combination of these techniques enabled the 

model to achieve the highest classification accuracy among all models tested. 

Figure 11 presents the confusion matrix for the 1D CNN model, highlighting the 

significant reduction in misclassification rates and the improved performance across all 

tree species, particularly the minority class. 

 
 

Fig. 11. 1D CNN Confusion matrix 
 

Impact of SMOTE and First-Order Derivative Transformation 
The application of SMOTE and first-order derivative transformation significantly 

influenced the classification results across all models. For traditional machine learning 

approaches (RF, SVM, and Logistic Regression), SMOTE— as highlighted by Blagus and 

Lusa (2013), who demonstrated its efficacy in handling high-dimensional class-imbalanced 

data—helped balance class distributions, thereby improving model generalization and 

performance on minority classes. Concurrently, the first-order derivative transformation, 

when applied to the 1D CNN model, enhanced its capability to capture spectral changes 

and refine sensitivity to key features in hyperspectral data, aligning with the feature 

enhancement principles underlying such preprocessing techniques. 
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Table 2. Classification Accuracy of Different Models 

Model Configuration Accuracy (%) 

Random Forest Without SMOTE 88.00 

Random Forest With SMOTE 92.26 

SVM Without SMOTE 92.00 

SVM With SMOTE 98.86 

Logistic Regression Without SMOTE 93.00 

Logistic Regression With SMOTE 97.26 

1D CNN Initial 92.25 

1D CNN With First-Order Derivative  97.67 

1D CNN  With First-Order Derivative 
+Savitzky-Golay filtering + 
SMOTE 

98.89 

This table summarizes the classification accuracy of various machine learning models under 
different configurations, including the application of SMOTE and preprocessing techniques. 

 

Together, these techniques address the challenges posed by class imbalance and 

subtle spectral differences, which are particularly common in hyperspectral image 

classification tasks. Table 2 summarizes the introduction of all the models experimented 

above and the improvement in accuracy. 

 

Role of SMOTE in Small Sample Learning 
In hyperspectral image classification tasks, class imbalance is a prevalent issue, 

especially when certain tree species have fewer samples. Traditional classification models 

tend to be biased towards majority classes, resulting in poorer performance for minority 

classes. SMOTE addresses this by over-sampling the minority classes, thereby balancing 

the class distribution. 

According to Chawla et al. (2002), SMOTE generates feature-space interpolated 

instances by interpolating between existing minority class samples in the feature space. 

This not only increases the number of minority class samples but also introduces new 

sample diversity, reducing the risk of overfitting. By generating feature-space interpolated 

instances within the minority class’s feature space, SMOTE enables classifiers to better 

learn the characteristics of these underrepresented classes, thereby improving their 

recognition capabilities. 

 

Advantages of First-Order Derivative Transformation in Spectral Data 
Processing 

First-order derivative transformation is a common spectral preprocessing technique 

aimed at enhancing the trend and characteristic points of the spectral curve, such as 

absorption and reflection peaks. This method calculates the rate of change of spectral 

values with respect to wavelength, thereby emphasizing subtle variations in the spectral 

data. 

Koashi (1999) demonstrated that first-order derivative transformation effectively 

eliminates baseline drifts and slow trends in spectral data, highlighting regions of rapid 

change. These rapid changes often correspond to key spectral features that are critical for 

distinguishing between different materials or species. By enhancing these features, first-

order derivative transformation improves the resolution of spectral data, making it easier 

for classification models to detect and differentiate subtle differences between classes. 
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For the 1D CNN model, the initial classification accuracy was 92.2%. After 

applying the first-order derivative transformation, the accuracy increased to 97.67%. This 

significant improvement indicates that the first-order derivative transformation effectively 

enhanced the spectral features, allowing the 1D CNN model to better distinguish between 

tree species with minor spectral differences. 

 

Role of Savitzky-Golay Filtering in Spectral Noise Reduction 
Savitzky-Golay filtering, a polynomial-based smoothing technique widely 

employed in spectral data processing, effectively removes noise while preserving essential 

spectral features. As demonstrated by John, Sadasivan, and Seelamantula (2021), this 

method performs local polynomial fitting within a sliding window to smooth spectral 

data—particularly notable for its adaptive capability in non-Gaussian noise environments, 

which reduces high-frequency noise without distorting underlying spectral characteristics. 

This adaptive refinement, as outlined in their study, enhances the technique’s robustness 

across diverse spectral datasets, ensuring both noise reduction and feature integrity. 

Introduced by Savitzky and Golay (1964), this filtering technique maintains the 

integrity of important spectral features such as peaks and valleys by fitting a low-degree 

polynomial to the data within each window. This approach effectively reduces noise 

interference in the spectral data, enhancing the signal-to-noise ratio and enabling more 

accurate feature extraction for classification purposes. 

In this study, combining Savitzky-Golay filtering with first-order derivative 

transformation and SMOTE further improved the 1D CNN model’s accuracy to 98.89%. 

This indicates that Savitzky-Golay filtering successfully reduced noise in the spectral data, 

allowing the model to better capture and utilize the true spectral features for classification, 

thereby enhancing overall performance. 

 

 

CONCLUSIONS 
 

1. This study demonstrated that combining data augmentation techniques, particularly 

synthetic minority oversampling technique (SMOTE), with spectral feature 

enhancement methods (e.g., first-order derivative transformation and Savitzky-Golay 

filtering) significantly improved the classification accuracy of hyperspectral images for 

leguminous tree species. 

2. The 1D Convolutional Neural Network (1D CNN), when integrated with these 

preprocessing and augmentation techniques, achieved an exceptional accuracy of 

98.89%, outperforming traditional models like Random Forest, Support Vector 

Machine (SVM), and Logistic Regression, which also showed improvements after 

SMOTE application. 

3. The findings emphasize the importance of addressing class imbalance and enhancing 

spectral features in high-dimensional hyperspectral data classification, which is crucial 

for advancing agricultural information engineering. 

4. The framework developed in this study offers valuable strategies for improving 

classification performance in similar domains, particularly for imbalanced and complex 

datasets. 
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5. Limitations include the potential for synthetic samples from SMOTE to reduce 

generalizability, and the exclusion of spatial information, which may limit 

classification accuracy. Future research should explore advanced augmentation 

techniques like Generative Adversarial Networks (GANs) and integrate spatial-spectral 

hybrid models to improve robustness and applicability. 
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