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The near-infrared (NIR) spectral reflectance characteristics of wood cross 
sections are commonly employed for wood species classification. Both 
specular and diffuse reflectance spectral curves of wood cross sections 
can be used. However, which one is more effective for classification and 
whether classification models trained on these two spectra can be used 
interchangeably have not yet been explored. In this study, the NIR spectral 
curves of wood cross sections from 64 common timber species were used 
to evaluate the specular and diffuse reflectance spectral profiles through 
five classifier models—namely, the support vector machine (SVM), k-
nearest neighbors (KNN), convolutional neural network (CNN), decision 
tree (DT), and nearest class mean (NCM) classifiers. The classification 
accuracies of specular and diffuse reflectance curves using SVM classifier 
were 88.43% and 88.02%, respectively, whereas other classifiers 
exhibited lower classification accuracy, with specular reflectance spectral 
classification accuracy consistently outperforming diffuse spectral 
classification. Additionally, experimental results demonstrated that correct 
classification rate of the testing dataset after cross-use was less than 16%, 
indicating that classifier models trained on these two spectra could not be 
used interchangeably. In conclusion, this study suggested that specular 
reflectance NIR spectral curves are more suitable for wood species 
classification. 
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INTRODUCTION 
 

There are an estimated 60,065 timber species worldwide. Currently, five main 

methods are used to identify them, namely image processing classification (Verly Lopes et 

al. 2020), spectral analysis classification (Ma et al. 2019), wood microstructure 

classification (Zhan et al. 2023), deoxyribonucleic acid (DNA) genetic information 

classification (Antil et al. 2023), and chemical fingerprinting classification (Deklerck et al. 

2020). Among these methods, spectral analysis classification offers advantages that include 

its high classification speed, high accuracy, and low computational overhead. Spectral 

analysis itself can be further divided into four distinct categories. The first category 

involves Fourier transform infrared (FTIR) analysis for wood species classification, which 
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is a rapid, nondestructive method (Sharma et al. 2020). However, it requires sophisticated 

equipment and stringent experimental conditions. The second category employs terahertz 

spectroscopy to identify wood species. For example, Zhang et al. (2023) used terahertz 

time-domain spectroscopy to classify wood species by measuring the spectral differences 

of manglietia, amur linden, black walnut, and ebony in the 0.1 to 0.9 THz frequency range 

in combination with principal component analysis. However, high-quality terahertz 

equipment can be expensive and requires precise sample preparation. The third category 

leverages hyperspectral imaging by combining the spectral and image information from 

wood surfaces for classification. Kanayama et al. (2019) used hyperspectral images and a 

convolutional neural network (CNN) model to classify wood species. However, 

hyperspectral imaging devices can be costly and the process of collecting hyperspectral 

images from wood surfaces can be time-consuming, resulting in poor real-time 

performance.  

In summary, these three methods rely on expensive instrumentation and are 

generally more suitable for laboratory-based testing and processing. The fourth category 

involves the use of a cheap micro-spectrometer to collect spectral reflectance curves from 

wood cross sections for classification. The cheap micro-spectrometers employed in this 

method are generally more affordable and well-suited for on-site inspection and 

processing. For example, Luo et al. (2023) used near-infrared (NIR) spectroscopy in 

combination with six classifier models—that is, that support vector machine (SVM), 

logistic regression, Naïve Bayes, k-nearest neighbors (KNN), random forest, and artificial 

neural network models—to classify 12 timber species. The experimental results 

demonstrated that the SVM-based model achieved the highest classification accuracy 

(98.24%). Wang et al. (2024) investigated the deformation of the corresponding NIR 

spectral curves and their correction after applying a transparent finish to the wood surfaces, 

before using the corrected NIR spectral curves to classify and recognize the wood species, 

achieving high classification accuracy. During the collection of NIR spectral reflectance 

curves using the miniature spectrometer, variations in the incident angles of the fiber-optic 

probe relative to the object’s surface can result in two types of spectra: specular reflectance 

and diffuse reflectance. The corresponding spectral reflectance curves exhibit distinct 

differences. However, the question of which spectral reflectance curve provides better 

classification and recognition accuracy, and whether classifier models trained on these two 

distinct spectral profiles can be used interchangeably, has not yet been addressed.  

Consequently, this study focused on 64 common wood species to compare and 

investigate the use of specular and diffuse reflectance spectra from wood cross sections for 

species classification and recognition. It further analyzed the classification accuracy of 

wood species in both cases and explored the potential for cross-using classifier models 

trained on them both.  

 
 
EXPERIMENTAL  
 

Materials 
In this study, 64 hardwood and coniferous wood species were used as the 

experimental subjects. The specific details of these wood species are provided in Table 1, 

which demonstrates that they included both species from the same genus and those with 

visually similar textures. The spectral reflectance profiles of the wood sample cross 

sections were collected using a micro-spectrometer. Timber samples were prepared 
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following national standards. For each species, 25 pieces of sawn timber pieces from 

different trees at different locations were selected. These pieces were uniformly cut into 

small blocks measuring 2 × 2 × 3 cm3, with the 2 × 2 cm2 side representing the cross section 

and the 2 × 3 cm2 side representing either the tangential or radial section. From the cut 

pieces, 50 small blocks were randomly selected as experimental samples for data 

collection, with two blocks being selected from each sawn timber sample. Prior to spectral 

data collection, the cross sections of the wood samples were sanded individually using 800-

grit and 1200-grit sandpaper to ensure that the surfaces were smooth and free of burrs.  

In practice, the wood NIR spectral curves may be sensitive to some external 

environmental factors, such as temperature and humidity, so the spectral acquisition was 

performed in a room with temperature at 25 °C and humidity at 40%. It should be noted 

that the physical property of wood samples was influenced by some variables such as the 

age of trees, geographic origin, growth ring position, and proportion of latewood versus 

earlywood. These variables were controlled effectively in wood spectral acquisition so that 

the within-class difference of spectral curves for each wood species was adequately small. 

This control was implemented in practice in the random selection of 50 wood blocks for 

every wood species by ensuring that trace (Cw) was small or less than a threshold for every 

species (i.e., Cw denoted the within-class scatter matrix for one class in terms of spectral 

curves). Specifically, in the spectral acquisition process, spectral curves were collected 

from five different positions on the cross section of one wood sample block, and the mean 

spectral curve was saved as the final curve. This was done to decrease the within-class 

difference of spectral curves for each wood species to some extent. Every selected wood 

block was used in spectral acquisition for both specular and diffuse reflection spectral 

curves to ensure the subsequent objective comparisons.  

 

Table 1. Detailed Information on the Wood Species Samples 

Number Genus Species 

1 Acer davidii 

2 Amygdalus davidiana 

3 Aucoumea klaineana 

4 Betula alnoides 

5 Betula platyphylla 

6 Calophyllum inophyllum 

7 Chamaecyparis nootkatensis 

8 Cinnamomum camphora 

9 Cyclobalanopsis glauca 

10 Dipterocarpus alatus 

11 Entandrophragma candollei 

12 Fraxinus chinensis 

13 Fraxinus mandshurica 

14 Guibourtia demeusei 

15 Guibourtia ehie 

16 Intsia bijuga 

17 Juglans mandshurica 

18 Juglans nigra 

19 Larix gmelinii 

20 Magnolia fordiana 

21 Millettia laurentii 

22 Picea asperata 

23 Pinups radiata 

24 Pinups koraiensis 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Wang et al. (2025). “Wood ID via. S-NIR & DR-NIR,” BioResources 20(3), 6648-6661.  6651 

25 Pinups massoniana 

26 Pinups sylvestris 

27 Platanus orientalis 

28 Pometia pinnata 

29 Populus alba 

30 Populus cathayana 

31 Populus tomentosa 

32 Pouteria speciosa 

33 Prunus avium 

34 Pseudotsuga menziesii 

35 Pterocarpus soyauxii 

36 Quercus mongolica 

37 Quercus acutissima 

38 Rhodamnia dumetorum 

39 Robinia pseudoacacia 

40 Sailx matsudana 

41 Shorea contorta 

42 Shorea laevis 

43 Sophora japonica 

44 Swietenia mahagoni 

45 Tectona grandis 

46 Terminalia cattapa 

47 Tilia mandshurica 

48 Toona ciliata 

49 Ulmus glabra 

50 Vernicia fordii 

51 Pterocarpus antunesii 

52 Pterocarpus erinaceus 

53 Pterocarpus macrocarpus 

54 Pterocarpus tinctorius 

55 Cryptomeria fortune 

56 Distemonanthus benthaminanus 

57 Cylicodiscus gabunensis 

58 Albizia kalkora 

59 Berlinia confusa 

60 Daniellia oliveri 

61 Sabina chinensis 

62 Acer pictum 

63 Phellodendron amurense 

64 Hovenia dulcis 

 
A Flame-NIR mini-spectrometer (Ocean Optics, Orlando, FL, USA), which offers 

advantages, such as portability, high accuracy, and rapid acquisition, was used in this study. 

Its operating range was 950 to 1650 nm; the NIR spectrum within this range provides 

greater stability compared to the visible light spectra. To ensure spectral accuracy, both the 

indoor temperature and light conditions were stabilized during spectrum collection. The 

environment for spectrum acquisition in this study was maintained at 25 ℃ and 40% 

relative humidity. The spectral data acquisition platform used in the experiment is 

illustrated in (Fig. 1), where ① is the sample under test, ② is the spectral reflectance 

acquisition kit, ③ is the cold light source, ④ is the computer, ⑤ is the Flame-NIR 

spectrometer, and ⑥ is the calibration plate.  

The spectral reflectance collection process proceeded as follows. First, the 

equipment and light source were powered on and allowed to run for a period to ensure 
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system stabilization. The integration time was set to auto-mode, and calibration was 

performed using black and white calibration plates. Following calibration, a wood sample 

was placed at the designated position, and the spectral data were collected. Because the 

spectral reflectance of the wood sample correlated with the location of data collection, 

slight differences in spectral reflectance were evident when the fiber-optic probe was 

positioned at different points on the wood cross section. Consequently, during the spectral 

acquisition process, spectral data were collected from five different positions on the wood 

sample and the mean spectral curve was saved as the final curve to decrease the within-

class difference of spectral curves for each wood species to some extent. Additionally, 

calibration was performed for every 20 samples to ensure the accuracy of the spectral data.  

 

 
 

Fig. 1. Near-infrared spectral data acquisition platform for the wood samples 
 

 

a 

 

b 
 

Fig. 2. Spectral reflectance acquisition kit: a. Front view of the kit; b. Back view of the kit 
 

In the process of collecting spectral data, the specular reflectance and diffuse 

reflectance spectra of the wood cross section were collected separately, and a spectral 

reflectance acquisition kit from Ocean Optics was assembled, as illustrated in (Fig. 2). The 

kit comprised a fixed stand with two openings facing upwards, marked as ① and ② in 

(Fig. 2a and Fig. 3a), which were internally connected. The back of the kit had one 

additional opening, as illustrated in (Fig. 2b and Fig. 3a). When inserting the optical fiber 

into ① (as shown in (Fig. 3a and Fig. 3b)), the optical fiber probe could vertically 

illuminate the surface of the wood, enabling the collection of the specular reflectance 

spectrum from the cross section of the sample. By inserting the optical fiber into ② (as 

shown in (Fig. 3a and Fig. 3c)), the optical fiber probe could be tilted at a 45° angle to 

irradiate the wood’s surface, allowing for the capture of the diffuse reflectance spectrum 

from the cross section of the sample. As illustrated in (Fig. 3b and Fig. 3c), the specular 

and diffuse reflectance rays returned along the same way that the incident ray has just come 

along, respectively.  
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a 

           
b                                                                 c 

 

Fig. 3. Specular and diffuse reflectance spectral acquisition:  
a. Side view of the kit; b. Specular reflectance optical route; c. Diffuse reflectance optical route 
 

Basic Process 
The basic process used in this study is illustrated in Fig. 4. First, the specular and 

diffuse reflectance spectra for the wood samples listed in Table 1 were collected, and 

datasets were constructed for the wood sample cross sections.  

 

 
 

Fig. 4. Flowchart of the basic process used in this study 
 

Spectral preprocessing was conducted first, including standard normal variate 

correction and normalization of the spectra using the min-max scaling method. To prevent 

overfitting, the dataset was randomly divided into training and test datasets in a 7:3 ratio. 
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Each wood species in the training dataset contained 35 samples, resulting in a training 

dataset size of 128 × 2240, and each wood species in the test dataset contained 15 samples, 

resulting in a test dataset size of 128 × 960. The NIR spectral vectors were 128-dimensional 

(128D). The SVM, KNN, CNN, decision tree (DT), and nearest class mean (NCM) 

classifiers were used to train and test the specular and diffuse reflection spectra. Next, a 

comparative analysis was conducted to examine the differences in classification accuracy 

between the specular and diffuse reflection spectra for wood species recognition. The 

possibility of cross-using classifier models trained on these two types of spectra was also 

explored.  

It is important to note that the dataset was randomly divided each time training 

occurred; therefore, the classification accuracy of the trained classifier models varied 

across the test datasets. Consequently, for each classifier, the training and test datasets were 

randomly divided, trained, and tested 20 times, with the average classification accuracy 

being calculated. 

 

Classifier Parameter Setting 
The SVM is a supervised learning model used for classification and regression. It 

performs classification by finding a hyperplane that maximizes the distance between 

different categories (Hearst et al. 1998). In this study, a radial basis function was employed, 

with optimal parameters determined through a grid search method. To prevent overfitting, 

the classification accuracy was determined via cross-validation. The KNN model classifies 

samples by calculating the distance between the sample to be classified and all samples in 

the training dataset, identifying the k-nearest neighbors and then voting or performing 

weighted voting based on their labels (Peterson 2009). In this study, the Euclidean distance 

was used, with parameter k set to 3. 

The CNNs typically comprise three parts—that is, a convolutional layer, a pooling 

layer, and a fully connected layer (Pan et al. 2023). The CNN structure used in this study 

comprised two convolutional layers, two pooling layers, one fully connected layer, and one 

output layer. Because the spectral reflectance of wood is one-dimensional, it must be 

processed using a one-dimensional convolution kernel. In contrast, 128D spectral vectors 

exhibit low dimensionality, leading the CNN to perform two rounds of convolution and 

pooling. Increasing the number of convolutions and pooling layers further reduces the 

dimensionality of the convolutional features to an excessively small scale. The specific 

parameters of the CNN used in this study were a one-dimensional convolution kernel of 

[−2,2,1] with valid convolution (without padding), and a pooling layer using the 

MaxPooling method. The original NIR spectrum was 128D, with the dimension reduced 

to 126D after the first convolution layer. The pooling step was set to 1, with a pooling 

width of 4, resulting in a dimensionality of 32D following the pooling operation. After 

further convolution and pooling, the final dimension was 8D. 

The DT is a tree-structured supervised learning algorithm that classifies a dataset 

using a series of conditional judgments (Safavian and Landgrebe 1991). In this study, a 

fine tree was used, and the maximum number of splits was set at 100. The NCM classifier 

is a class-centered classification method that compares the distances between the sample 

to be classified and the class centers of all categories, assigning the sample to the closest 

class (Veenman and Reinders 2005). 
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RESULTS AND DISCUSSION 
 

Comparison of Spectral Curves of Specular and Diffuse Reflections 
The specular and diffuse reflectance spectra of the five wood cross sections are 

illustrated in Fig. 5. The spectral curves for the specular and diffuse reflections of the same 

wood species followed similar trends, with only slight shifts in their values. Additionally, 

the reflectance of the diffuse reflections was generally higher than that of the specular 

reflections. To quantitatively analyze the difference in mode separability information 

between the specular and diffuse reflectance spectra, three metrics based on scatter 

matrices were employed. These metrics can be defined as follows:  

𝐽1 =
𝑡𝑟(𝑆𝑏)

𝑡𝑟(𝑆𝑤)
,          (1) 

𝐽2 = 𝑡𝑟(𝑆𝑤
−1𝑆𝑏),         (2) 

𝐽3 = |𝑆𝑤
−1𝑆𝑏|          (3) 

where 𝑆𝑤 denotes the total within-class scatter matrix for all classes, and 𝑆𝑏 denotes the 

total between-class scatter matrix for all classes. Consequently, larger 𝐽1,  𝐽2, and 𝐽3, values 

resulted in better separability of the sample patterns.  

Table 2 lists the three metrics calculated from the specular and diffuse reflectance 

spectra of the 64 wood species listed in Table 1. The specular reflectance spectra provided 

better pattern separability, suggesting that they should yield higher classification accuracy 

when applied to wood species classification and recognition. 

 

 
Fig. 5. Comparison of specular and diffuse spectral reflectance curves for cross sections of the 
same wood sample 
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Table 2. Comparison of Mode Separability Informativeness of Specular and 
Diffuse Reflectance Spectra 

 J1 J2 J3 
Specular reflectance spectrum 52.19 11338 3.82 × 10-4 
Diffuse reflectance spectrum  12.23 1915 2.14 × 10-32 

 

Comparison of Specular and Diffuse Spectral Classification Accuracy 
The average correct classification rates of the five classifiers after 20 training and 

testing sessions are listed in Table 3. The classification accuracies of the specular and 

diffuse reflectance spectra under the SVM classifier were essentially the same. For the 

other classifiers, the classification accuracy of the specular reflectance spectra was higher 

than that of the diffuse reflectance spectra, consistent with the three metrics 𝐽1, 𝐽2, and 𝐽3in 

Table 2. Figure 6 illustrates the classification accuracy of the SVM classifier over 20 

training and testing sessions. The classification accuracies of specular and diffuse 

reflectance spectra were similar, though the accuracy of the diffuse reflectance spectra 

exhibited slightly more fluctuation compared to that of the specular reflectance spectra. 

The classification accuracy values for the SVM model for each wood species are 

summarized in Table 4.  

 

Table 3. Classification Correctness of Specular and Diffuse Reflectance Spectra 
Under Different Classifiers 

 SVM KNN CNN DT NCM 

Specular reflectance spectrum 88.43% 80.00% 64.48% 72.19% 56.97% 

Diffuse reflectance spectrum 88.02% 76.56% 62.81% 65.10% 48.33% 

 

 
 

Fig. 6. Classification results of SVM classifier for two types of spectra for 20 training and testing 
cases 
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Table 4. Correct Classification Rate for Each Wood Species under the SVM 
Classifier 

Serial number 1 2 3 4 5 6 7 8 

Specular 100% 86.67% 100% 100% 100% 93.33% 100% 93.33% 

Diffuse 100% 93.33% 100% 100% 66.67% 93.33% 93.33% 66.67% 

Serial number 9 10 11 12 13 14 15 16 

Specular 86.67% 86.67% 100% 60% 100% 66.67% 93.33% 93.33% 

Diffuse 80% 73.33% 93.33% 100% 93.33% 80% 86.67% 100% 

Serial number 17 18 19 20 21 22 23 24 

Specular 100% 86.67% 33.33% 80% 100% 80% 73.33% 60% 

Diffuse 80% 93.33% 73.33% 80% 100% 93.33% 73.33% 80% 

Serial number 25 26 27 28 29 30 31 32 

Specular 80% 86.67% 86.67% 86.67% 66.67% 93.33% 86.67% 100% 

Diffuse 86.67% 66.67% 93.33% 100% 100% 80% 93.33% 100% 

Serial number 33 34 35 36 37 38 39 40 

Specular 73.33% 100% 86.67% 86.67% 93.33% 86.67% 100% 86.67% 

Diffuse 93.33% 93.33% 60% 93.33% 80% 80% 73.33% 66.67% 

Serial number 41 42 43 44 45 46 47 48 

Specular 100% 100% 86.67% 100% 93.33% 93.33% 80% 86.67% 

Diffuse 100% 100% 53.33% 80% 100% 93.33% 86.67% 93.33% 

Serial number 49 50 51 52 53 54 55 56 

Specular 80% 40% 100% 80% 40% 93.33% 80% 100% 

Diffuse 86.67% 60% 100% 73.33% 86.67% 100% 93.33% 93.33% 

Serial number 57 58 59 60 61 62 63 64 

Specular 100% 100% 86.67% 100% 100% 93.33% 100% 100% 

Diffuse 93.33% 93.33% 93.33% 100% 33.33% 66.67% 100% 80% 
 

Among the 64 wood species, 23 species in the specular reflectance spectra and 16 

species in the diffuse reflectance spectra achieved 100% classification accuracy. In the 

specular reflectance spectra, species 19, 50, and 53 exhibited lower classification accuracy. 

A common characteristic of these species is the distinct color variation bands in the cross 

sections of the wood samples, as illustrated in (Fig. 7). In the diffuse reflectance spectra, 

species 35, 43, and 61 exhibited lower classification accuracy. These species can be 

grouped into two categories—that is, species with considerable variation in black tubular 

holes in the cross section (such as species 35 and 43), species with more uniform color in 

the cross section, and less distinct grain features (such as species 61). Figure 7 illustrates 

the schematic cross sections of these wood species.  

 

 

No. 19. 

 

No. 50. 

 

No. 53. 

 

No. 35. 

 

No. 43. 

 

No. 61. 

Fig. 7. Schematic cross sections of wood species with low correct classification in specular and 
diffuse reflectance spectra 
 

Additionally, three tree species were classified with an accuracy of less than 50% 

in the specular reflectance spectrum, whereas only one species had an accuracy of less than 

50% in the diffuse reflectance spectrum. In other words, although the overall classification 

accuracy of the specular reflectance spectrum was slightly higher than that of the diffuse 
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reflectance spectrum, the accuracy was lower for species with distinct color bands in wood 

sample cross sections. In contrast, the diffuse reflectance spectrum exhibited a more stable 

classification performance, with fewer species exhibiting low classification accuracy. 

Next, the classification accuracy of the NIR spectra across different wavelength 

bands was explored. From Fig. 5 it is evident that the spectral reflectance curves of the 

cross sections of the wood samples exhibited more complex waveform changes within the 

1200 to 1500 nm range, whereas they remained smoother in other wavelength ranges. 

Consequently, the entire spectral reflectance curve could be divided into three bands—that 

is, the 939 to 1181, 1186 to 1423, and 1428 to 1671 nm bands. Table 5 presents the 

classification accuracies of different classifiers for these wavelength bands. From Table 5, 

it is evident that the classification performance of the SVM classifier in the two end bands 

was inferior to that in the middle band. Additionally, after segmenting the entire spectral 

band into three parts, the classification accuracy decreased compared with that of the 

original unsegmented band. All classifiers, except the SVM, exhibited higher classification 

accuracy for the specular reflectance spectrum than for the diffuse reflectance spectrum 

across different bands.  

It is worth noting that the CNN classifier was not included in Table 5 because each 

segmented band contained only 42 dimensions. Following feature extraction using a CNN, 

the feature dimensions were reduced to only two, limiting its utility in this context.  

 

Table 5. Comparison of Classification Accuracies of Specular and Diffuse 
Reflectance Spectra Across Different Wavelength Bands 

Model Specular Reflection 

 939 to 1181 nm 1186 to 1423 nm 1428 to 1671 nm 

SVM 74.24% 74.75% 65.00% 

KNN 72.71% 40.31% 74.17% 

DT 53.90% 48.70% 45.00% 

NCM 49.48% 42.81% 42.92% 

Model Diffuse Reflection 

 939 to 1181 nm 1186 to 1423 nm 1428 to 1671 nm 

SVM 69.34% 81.18% 67.22% 

KNN 67.60% 34.69% 72.08% 

DT 48.30% 43.50% 35.30% 

NCM 44.90% 34.79% 34.79% 

 

Cross Use of Classifier Models Trained with Two Types of Spectra 
This section discusses the feasibility of cross-using classifier models trained with 

specular and diffuse reflectance spectra, with the specific classification results provided in 

Table 6. It is evident that neither the classifier model trained with specular reflectance 

spectra, nor the model trained with diffuse reflectance spectra can be used interchangeably. 

In terms of classification accuracy, the NCM classifier performed slightly better than the 

other classifiers; however, all the classifiers exhibited accuracies below 16%. This was due 

to the sensitivity of the spectral reflectance curve to the surface properties of the object. 

Although the specular and diffuse reflectance spectra exhibited similar trends 

(mathematically expressible as differentials), differences in their values led to considerably 

lower classification accuracy when the classifiers were cross used. Consequently, when 

collecting spectral profiles of wood cross sections, it is essential to distinguish between 

diffuse and specular reflectance spectra. The classifier models generated by training each 

type cannot be used interchangeably.  
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Table 6. Comparison of Classification Accuracies After Cross Use of Classifier 
Models for the Two Spectral Classes 

Classifier Models Trained on Specular Reflection Spectrum 

Classifier model SVM KNN CNN DT NCM 

Diffuse reflection 12.08% 13.65% 12.80% 11.25% 15.94% 

Classifier Model Trained on Diffuse Reflectance Spectrum 

Classifier model SVM KNN CNN DT NCM 

Specular reflection 13.12% 13.54% 11.40% 8.20% 12.08% 

 

 
CONCLUSIONS 
 

In this study, the characteristics of the specular and diffuse reflectance spectra from 

the cross sections of timber samples were examined, along with a comparison of their 

classification performance in identifying timber species using NIR spectra. A total of 64 

experimental timber samples were used. The following conclusions were drawn: 

1. The specular reflectance spectra generally exhibited superior classification 

performance compared to the diffuse reflectance spectra, as confirmed by the 

evaluation metrics based on the intraclass and interclass scatter matrices. 

Consequently, it is recommended that the specular reflection NIR spectral profile 

should be selected as a feature for classifying and identifying timber species. 

2. Among the tested classifiers, the SVM classifier demonstrated the highest 

classification accuracy, with both types of spectra achieving similarly high 

classification rates. This can be attributed to the fact that SVMs use a combination of 

binary classifiers for multiclass classification, employing three strategies—that is, 1-

vs-1, 1-vs-rest, and one-class SVM. The effective combination of these binary 

classifiers enhances the generalization ability of the SVM model. Moreover, the SVM 

model uses kernel functions to map samples that are challenging to classify in a low-

dimensional space into a higher-dimensional space, thereby facilitating a more 

effective classification. These advantages enable the SVM classifier to overcome the 

inherent distributional differences between the two types of spectra, resulting in 

consistently high classification accuracy.  

3. In contrast, the generalized classification performance of the other classifiers was 

limited, and their accuracy was heavily influenced by the separability of the patterns 

within the two types of spectra. Consequently, these classifiers also performed better 

on the specular reflectance spectra than on the diffuse reflectance spectra. 

4. The classifier models trained on the specular and diffuse reflection spectra were 

found to be non-interchangeable, indicating that the models developed for one type 

of spectrum could not be substituted for the other.  
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