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Comparative Analysis of Specular and Diffuse
Reflection Near-Infrared Spectra in Wood Species
Classification
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The near-infrared (NIR) spectral reflectance characteristics of wood cross
sections are commonly employed for wood species classification. Both
specular and diffuse reflectance spectral curves of wood cross sections
can be used. However, which one is more effective for classification and
whether classification models trained on these two spectra can be used
interchangeably have not yet been explored. In this study, the NIR spectral
curves of wood cross sections from 64 common timber species were used
to evaluate the specular and diffuse reflectance spectral profiles through
five classifier models—namely, the support vector machine (SVM), k-
nearest neighbors (KNN), convolutional neural network (CNN), decision
tree (DT), and nearest class mean (NCM) classifiers. The classification
accuracies of specular and diffuse reflectance curves using SVM classifier
were 88.43% and 88.02%, respectively, whereas other classifiers
exhibited lower classification accuracy, with specular reflectance spectral
classification accuracy consistently outperforming diffuse spectral
classification. Additionally, experimental results demonstrated that correct
classification rate of the testing dataset after cross-use was less than 16%,
indicating that classifier models trained on these two spectra could not be
used interchangeably. In conclusion, this study suggested that specular
reflectance NIR spectral curves are more suitable for wood species
classification.
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INTRODUCTION

There are an estimated 60,065 timber species worldwide. Currently, five main
methods are used to identify them, namely image processing classification (Verly Lopes et
al. 2020), spectral analysis classification (Ma et al. 2019), wood microstructure
classification (Zhan et al. 2023), deoxyribonucleic acid (DNA) genetic information
classification (Antil e al. 2023), and chemical fingerprinting classification (Deklerck et al.
2020). Among these methods, spectral analysis classification offers advantages that include
its high classification speed, high accuracy, and low computational overhead. Spectral
analysis itself can be further divided into four distinct categories. The first category
involves Fourier transform infrared (FTIR) analysis for wood species classification, which
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is a rapid, nondestructive method (Sharma et al. 2020). However, it requires sophisticated
equipment and stringent experimental conditions. The second category employs terahertz
spectroscopy to identify wood species. For example, Zhang et al. (2023) used terahertz
time-domain spectroscopy to classify wood species by measuring the spectral differences
of manglietia, amur linden, black walnut, and ebony in the 0.1 to 0.9 THz frequency range
in combination with principal component analysis. However, high-quality terahertz
equipment can be expensive and requires precise sample preparation. The third category
leverages hyperspectral imaging by combining the spectral and image information from
wood surfaces for classification. Kanayama ef al. (2019) used hyperspectral images and a
convolutional neural network (CNN) model to classify wood species. However,
hyperspectral imaging devices can be costly and the process of collecting hyperspectral
images from wood surfaces can be time-consuming, resulting in poor real-time
performance.

In summary, these three methods rely on expensive instrumentation and are
generally more suitable for laboratory-based testing and processing. The fourth category
involves the use of a cheap micro-spectrometer to collect spectral reflectance curves from
wood cross sections for classification. The cheap micro-spectrometers employed in this
method are generally more affordable and well-suited for on-site inspection and
processing. For example, Luo et al. (2023) used near-infrared (NIR) spectroscopy in
combination with six classifier models—that is, that support vector machine (SVM),
logistic regression, Naive Bayes, k-nearest neighbors (KNN), random forest, and artificial
neural network models—to classify 12 timber species. The experimental results
demonstrated that the SVM-based model achieved the highest classification accuracy
(98.24%). Wang et al. (2024) investigated the deformation of the corresponding NIR
spectral curves and their correction after applying a transparent finish to the wood surfaces,
before using the corrected NIR spectral curves to classify and recognize the wood species,
achieving high classification accuracy. During the collection of NIR spectral reflectance
curves using the miniature spectrometer, variations in the incident angles of the fiber-optic
probe relative to the object’s surface can result in two types of spectra: specular reflectance
and diffuse reflectance. The corresponding spectral reflectance curves exhibit distinct
differences. However, the question of which spectral reflectance curve provides better
classification and recognition accuracy, and whether classifier models trained on these two
distinct spectral profiles can be used interchangeably, has not yet been addressed.

Consequently, this study focused on 64 common wood species to compare and
investigate the use of specular and diffuse reflectance spectra from wood cross sections for
species classification and recognition. It further analyzed the classification accuracy of
wood species in both cases and explored the potential for cross-using classifier models
trained on them both.

EXPERIMENTAL

Materials

In this study, 64 hardwood and coniferous wood species were used as the
experimental subjects. The specific details of these wood species are provided in Table 1,
which demonstrates that they included both species from the same genus and those with
visually similar textures. The spectral reflectance profiles of the wood sample cross
sections were collected using a micro-spectrometer. Timber samples were prepared

Wang et al. (2025). “Wood ID via. S-NIR & DR-NIR,” BioResources 20(3), 6648-6661. 6649



bioresources.cnr.ncsu.edu

PEER-REVIEWED ARTICLE

following national standards. For each species, 25 pieces of sawn timber pieces from
different trees at different locations were selected. These pieces were uniformly cut into
small blocks measuring 2 x 2 x 3 cm?, with the 2 x 2 cm? side representing the cross section
and the 2 x 3 cm? side representing either the tangential or radial section. From the cut
pieces, 50 small blocks were randomly selected as experimental samples for data
collection, with two blocks being selected from each sawn timber sample. Prior to spectral
data collection, the cross sections of the wood samples were sanded individually using 800-
grit and 1200-grit sandpaper to ensure that the surfaces were smooth and free of burrs.

In practice, the wood NIR spectral curves may be sensitive to some external
environmental factors, such as temperature and humidity, so the spectral acquisition was
performed in a room with temperature at 25 °C and humidity at 40%. It should be noted
that the physical property of wood samples was influenced by some variables such as the
age of trees, geographic origin, growth ring position, and proportion of latewood versus
earlywood. These variables were controlled effectively in wood spectral acquisition so that
the within-class difference of spectral curves for each wood species was adequately small.
This control was implemented in practice in the random selection of 50 wood blocks for
every wood species by ensuring that trace (Cw) was small or less than a threshold for every
species (i.e., Cwdenoted the within-class scatter matrix for one class in terms of spectral
curves). Specifically, in the spectral acquisition process, spectral curves were collected
from five different positions on the cross section of one wood sample block, and the mean
spectral curve was saved as the final curve. This was done to decrease the within-class
difference of spectral curves for each wood species to some extent. Every selected wood
block was used in spectral acquisition for both specular and diffuse reflection spectral
curves to ensure the subsequent objective comparisons.

Table 1. Detailed Information on the Wood Species Samples

Number Genus Species
1 Acer davidii
2 Amygdalus davidiana
3 Aucoumea klaineana
4 Betula alnoides
5 Betula platyphylla
6 Calophyllum inophyllum
7 Chamaecyparis nootkatensis
8 Cinnamomum camphora
9 Cyclobalanopsis glauca
10 Dipterocarpus alatus
11 Entandrophragma candollei
12 Fraxinus chinensis
13 Fraxinus mandshurica
14 Guibourtia demeusei
15 Guibourtia ehie
16 Intsia bijuga
17 Juglans mandshurica
18 Juglans nigra
19 Larix gmelinii
20 Magnolia fordiana
21 Millettia laurentii
22 Picea asperata
23 Pinups radiata
24 Pinups koraiensis
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25 Pinups massoniana
26 Pinups sylvestris
27 Platanus orientalis
28 Pometia pinnata
29 Populus alba

30 Populus cathayana
31 Populus tomentosa
32 Pouteria speciosa
33 Prunus avium

34 Pseudotsuga menziesii
35 Pterocarpus soyauxii
36 Quercus mongolica
37 Quercus acutissima
38 Rhodamnia dumetorum
39 Robinia pseudoacacia
40 Sailx matsudana
41 Shorea contorta
42 Shorea laevis

43 Sophora Japonica
44 Swietenia mahagoni
45 Tectona grandis
46 Terminalia cattapa
47 Tilia mandshurica
48 Toona ciliata

49 Ulmus glabra

50 Vernicia fordii

51 Pterocarpus antunesii
52 Pterocarpus erinaceus
53 Pterocarpus macrocarpus
54 Pterocarpus tinctorius
55 Cryptomeria fortune
56 Distemonanthus benthaminanus
57 Cylicodiscus gabunensis
58 Albizia kalkora
59 Berlinia confusa
60 Daniellia oliveri

61 Sabina chinensis
62 Acer pictum

63 Phellodendron amurense
64 Hovenia dulcis

A Flame-NIR mini-spectrometer (Ocean Optics, Orlando, FL, USA), which offers
advantages, such as portability, high accuracy, and rapid acquisition, was used in this study.
Its operating range was 950 to 1650 nm; the NIR spectrum within this range provides
greater stability compared to the visible light spectra. To ensure spectral accuracy, both the
indoor temperature and light conditions were stabilized during spectrum collection. The
environment for spectrum acquisition in this study was maintained at 25 °C and 40%
relative humidity. The spectral data acquisition platform used in the experiment is
illustrated in (Fig. 1), where (1) is the sample under test, (2) is the spectral reflectance
acquisition kit, (3) is the cold light source, (4) is the computer, (5) is the Flame-NIR
spectrometer, and (6) is the calibration plate.

The spectral reflectance collection process proceeded as follows. First, the
equipment and light source were powered on and allowed to run for a period to ensure
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system stabilization. The integration time was set to auto-mode, and calibration was
performed using black and white calibration plates. Following calibration, a wood sample
was placed at the designated position, and the spectral data were collected. Because the
spectral reflectance of the wood sample correlated with the location of data collection,
slight differences in spectral reflectance were evident when the fiber-optic probe was
positioned at different points on the wood cross section. Consequently, during the spectral
acquisition process, spectral data were collected from five different positions on the wood
sample and the mean spectral curve was saved as the final curve to decrease the within-
class difference of spectral curves for each wood species to some extent. Additionally,
calibration was performed for every 20 samples to ensure the accuracy of the spectral data.

a b

Fig. 2. Spectral reflectance acquisition kit: a. Front view of the kit; b. Back view of the kit

In the process of collecting spectral data, the specular reflectance and diffuse
reflectance spectra of the wood cross section were collected separately, and a spectral
reflectance acquisition kit from Ocean Optics was assembled, as illustrated in (Fig. 2). The
kit comprised a fixed stand with two openings facing upwards, marked as (1) and (2) in
(Fig. 2a and Fig. 3a), which were internally connected. The back of the kit had one
additional opening, as illustrated in (Fig. 2b and Fig. 3a). When inserting the optical fiber
into (1) (as shown in (Fig. 3a and Fig. 3b)), the optical fiber probe could vertically
illuminate the surface of the wood, enabling the collection of the specular reflectance
spectrum from the cross section of the sample. By inserting the optical fiber into (2) (as
shown in (Fig. 3a and Fig. 3c)), the optical fiber probe could be tilted at a 45° angle to
irradiate the wood’s surface, allowing for the capture of the diffuse reflectance spectrum
from the cross section of the sample. As illustrated in (Fig. 3b and Fig. 3c), the specular
and diffuse reflectance rays returned along the same way that the incident ray has just come
along, respectively.
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Fig. 3. Specular and diffuse reflectance spectral acquisition:
a. Side view of the kit; b. Specular reflectance optical route; c. Diffuse reflectance optical route

Basic Process

The basic process used in this study is illustrated in Fig. 4. First, the specular and
diffuse reflectance spectra for the wood samples listed in Table 1 were collected, and
datasets were constructed for the wood sample cross sections.
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Fig. 4. Flowchart of the basic process used in this study

Spectral preprocessing was conducted first, including standard normal variate
correction and normalization of the spectra using the min-max scaling method. To prevent
overfitting, the dataset was randomly divided into training and test datasets in a 7:3 ratio.
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Each wood species in the training dataset contained 35 samples, resulting in a training
dataset size of 128 x 2240, and each wood species in the test dataset contained 15 samples,
resulting in a test dataset size of 128 x 960. The NIR spectral vectors were 128-dimensional
(128D). The SVM, KNN, CNN, decision tree (DT), and nearest class mean (NCM)
classifiers were used to train and test the specular and diffuse reflection spectra. Next, a
comparative analysis was conducted to examine the differences in classification accuracy
between the specular and diffuse reflection spectra for wood species recognition. The
possibility of cross-using classifier models trained on these two types of spectra was also
explored.

It is important to note that the dataset was randomly divided each time training
occurred; therefore, the classification accuracy of the trained classifier models varied
across the test datasets. Consequently, for each classifier, the training and test datasets were
randomly divided, trained, and tested 20 times, with the average classification accuracy
being calculated.

Classifier Parameter Setting

The SVM is a supervised learning model used for classification and regression. It
performs classification by finding a hyperplane that maximizes the distance between
different categories (Hearst et al. 1998). In this study, a radial basis function was employed,
with optimal parameters determined through a grid search method. To prevent overfitting,
the classification accuracy was determined via cross-validation. The KNN model classifies
samples by calculating the distance between the sample to be classified and all samples in
the training dataset, identifying the k-nearest neighbors and then voting or performing
weighted voting based on their labels (Peterson 2009). In this study, the Euclidean distance
was used, with parameter k set to 3.

The CNNss typically comprise three parts—that is, a convolutional layer, a pooling
layer, and a fully connected layer (Pan ef al. 2023). The CNN structure used in this study
comprised two convolutional layers, two pooling layers, one fully connected layer, and one
output layer. Because the spectral reflectance of wood is one-dimensional, it must be
processed using a one-dimensional convolution kernel. In contrast, 128D spectral vectors
exhibit low dimensionality, leading the CNN to perform two rounds of convolution and
pooling. Increasing the number of convolutions and pooling layers further reduces the
dimensionality of the convolutional features to an excessively small scale. The specific
parameters of the CNN used in this study were a one-dimensional convolution kernel of
[-2,2,1] with valid convolution (without padding), and a pooling layer using the
MaxPooling method. The original NIR spectrum was 128D, with the dimension reduced
to 126D after the first convolution layer. The pooling step was set to 1, with a pooling
width of 4, resulting in a dimensionality of 32D following the pooling operation. After
further convolution and pooling, the final dimension was 8D.

The DT is a tree-structured supervised learning algorithm that classifies a dataset
using a series of conditional judgments (Safavian and Landgrebe 1991). In this study, a
fine tree was used, and the maximum number of splits was set at 100. The NCM classifier
is a class-centered classification method that compares the distances between the sample
to be classified and the class centers of all categories, assigning the sample to the closest
class (Veenman and Reinders 2005).
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RESULTS AND DISCUSSION

Comparison of Spectral Curves of Specular and Diffuse Reflections

The specular and diffuse reflectance spectra of the five wood cross sections are
illustrated in Fig. 5. The spectral curves for the specular and diffuse reflections of the same
wood species followed similar trends, with only slight shifts in their values. Additionally,
the reflectance of the diffuse reflections was generally higher than that of the specular
reflections. To quantitatively analyze the difference in mode separability information
between the specular and diffuse reflectance spectra, three metrics based on scatter
matrices were employed. These metrics can be defined as follows:

82 ®
J2 = tr(S5'Sp), (2)
J3 = 1S5"Ss] 3)

where S, denotes the total within-class scatter matrix for all classes, and S, denotes the
total between-class scatter matrix for all classes. Consequently, larger J;, J,,and J3, values
resulted in better separability of the sample patterns.

Table 2 lists the three metrics calculated from the specular and diffuse reflectance
spectra of the 64 wood species listed in Table 1. The specular reflectance spectra provided
better pattern separability, suggesting that they should yield higher classification accuracy
when applied to wood species classification and recognition.
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Fig. 5. Comparison of specular and diffuse spectral reflectance curves for cross sections of the
same wood sample
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Table 2. Comparison of Mode Separability Informativeness of Specular and
Diffuse Reflectance Spectra

Jy 2 J3
Specular reflectance spectrum 52.19 11338 3.82 x 107
Diffuse reflectance spectrum 12.23 1915 2.14 x 10732

Comparison of Specular and Diffuse Spectral Classification Accuracy

The average correct classification rates of the five classifiers after 20 training and
testing sessions are listed in Table 3. The classification accuracies of the specular and
diffuse reflectance spectra under the SVM classifier were essentially the same. For the
other classifiers, the classification accuracy of the specular reflectance spectra was higher
than that of the diffuse reflectance spectra, consistent with the three metrics J;, J,, and J3in
Table 2. Figure 6 illustrates the classification accuracy of the SVM classifier over 20
training and testing sessions. The classification accuracies of specular and diffuse
reflectance spectra were similar, though the accuracy of the diffuse reflectance spectra
exhibited slightly more fluctuation compared to that of the specular reflectance spectra.
The classification accuracy values for the SVM model for each wood species are
summarized in Table 4.

Table 3. Classification Correctness of Specular and Diffuse Reflectance Spectra
Under Different Classifiers

SVM KNN CNN DT NCM
Specular reflectance spectrum 88.43% | 80.00% | 64.48% | 72.19% 56.97%
Diffuse reflectance spectrum 88.02% | 76.56% | 62.81% | 65.10% | 48.33%
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Fig. 6. Classification results of SVM classifier for two types of spectra for 20 training and testing
cases

Wang et al. (2025). “Wood ID via. S-NIR & DR-NIR,” BioResources 20(3), 6648-6661. 6656



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Table 4. Correct Classification Rate for Each Wood Species under the SVM
Classifier

Serial number 1 2 3 4 5 6 7 8
Specular 100% | 86.67% | 100% 100% 100% | 93.33% | 100% | 93.33%
Diffuse 100% | 93.33% | 100% 100% | 66.67% | 93.33% | 93.33% | 66.67%
Serial number 9 10 11 12 13 14 15 16
Specular 86.67% | 86.67% | 100% 60% 100% | 66.67% | 93.33% | 93.33%
Diffuse 80% 73.33% | 93.33% | 100% | 93.33% 80% | 86.67% | 100%
Serial number 17 18 19 20 21 22 23 24
Specular 100% | 86.67% | 33.33% 80% 100% 80% 73.33% 60%
Diffuse 80% 93.33% | 73.33% 80% 100% | 93.33% | 73.33% 80%
Serial number 25 26 27 28 29 30 31 32
Specular 80% 86.67% | 86.67% | 86.67% | 66.67% | 93.33% | 86.67% | 100%
Diffuse 86.67% | 66.67% | 93.33% | 100% 100% 80% | 93.33% | 100%
Serial number 33 34 35 36 37 38 39 40

Specular 73.33% | 100% | 86.67% | 86.67% | 93.33% | 86.67% | 100% | 86.67%

Diffuse 93.33% | 93.33% | 60% | 93.33% | 80% 80% | 73.33% | 66.67%

Serial number 41 42 43 44 45 46 47 48
Specular 100% 100% | 86.67% | 100% | 93.33% | 93.33% 80% 86.67%
Diffuse 100% 100% | 53.33% 80% 100% | 93.33% | 86.67% | 93.33%

Serial number 49 50 51 52 53 54 55 56
Specular 80% 40% 100% 80% 40% 93.33% 80% 100%
Diffuse 86.67% 60% 100% | 73.33% | 86.67% | 100% | 93.33% | 93.33%

Serial number 57 58 59 60 61 62 63 64
Specular 100% 100% | 86.67% | 100% 100% | 93.33% | 100% 100%

Diffuse 93.33% | 93.33% | 93.33% | 100% | 33.33% | 66.67% | 100% 80%

Among the 64 wood species, 23 species in the specular reflectance spectra and 16
species in the diffuse reflectance spectra achieved 100% classification accuracy. In the
specular reflectance spectra, species 19, 50, and 53 exhibited lower classification accuracy.
A common characteristic of these species is the distinct color variation bands in the cross
sections of the wood samples, as illustrated in (Fig. 7). In the diffuse reflectance spectra,
species 35, 43, and 61 exhibited lower classification accuracy. These species can be
grouped into two categories—that is, species with considerable variation in black tubular
holes in the cross section (such as species 35 and 43), species with more uniform color in
the cross section, and less distinct grain features (such as species 61). Figure 7 illustrates
the schematic cross sections of these wood species.

Ev e
s

m B
b3 Lbu‘ s raras
No. 19. No. 50. No. 53. No. 35. No. 43. No. 61.

) 3 RS
e FUN A SRR
;L"q,f‘!‘u " <';"‘_f P

Fig. 7. Schematic cross sections of wood species with low correct classification in specular and
diffuse reflectance spectra

Additionally, three tree species were classified with an accuracy of less than 50%
in the specular reflectance spectrum, whereas only one species had an accuracy of less than
50% in the diffuse reflectance spectrum. In other words, although the overall classification
accuracy of the specular reflectance spectrum was slightly higher than that of the diffuse
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reflectance spectrum, the accuracy was lower for species with distinct color bands in wood
sample cross sections. In contrast, the diffuse reflectance spectrum exhibited a more stable
classification performance, with fewer species exhibiting low classification accuracy.

Next, the classification accuracy of the NIR spectra across different wavelength
bands was explored. From Fig. 5 it is evident that the spectral reflectance curves of the
cross sections of the wood samples exhibited more complex waveform changes within the
1200 to 1500 nm range, whereas they remained smoother in other wavelength ranges.
Consequently, the entire spectral reflectance curve could be divided into three bands—that
is, the 939 to 1181, 1186 to 1423, and 1428 to 1671 nm bands. Table 5 presents the
classification accuracies of different classifiers for these wavelength bands. From Table 5,
it is evident that the classification performance of the SVM classifier in the two end bands
was inferior to that in the middle band. Additionally, after segmenting the entire spectral
band into three parts, the classification accuracy decreased compared with that of the
original unsegmented band. All classifiers, except the SVM, exhibited higher classification
accuracy for the specular reflectance spectrum than for the diffuse reflectance spectrum
across different bands.

It is worth noting that the CNN classifier was not included in Table 5 because each
segmented band contained only 42 dimensions. Following feature extraction using a CNN,
the feature dimensions were reduced to only two, limiting its utility in this context.

Table 5. Comparison of Classification Accuracies of Specular and Diffuse
Reflectance Spectra Across Different Wavelength Bands

Model Specular Reflection

939 to 1181 nm 1186 to 1423 nm 1428 to 1671 nm
SVM 74.24% 74.75% 65.00%
KNN 72.71% 40.31% 74.17%

DT 53.90% 48.70% 45.00%
NCM 49.48% 42.81% 42.92%
Model Diffuse Reflection

939 to 1181 nm 1186 to 1423 nm 1428 to 1671 nm
SVM 69.34% 81.18% 67.22%
KNN 67.60% 34.69% 72.08%

DT 48.30% 43.50% 35.30%

NCM 44.90% 34.79% 34.79%

Cross Use of Classifier Models Trained with Two Types of Spectra

This section discusses the feasibility of cross-using classifier models trained with
specular and diffuse reflectance spectra, with the specific classification results provided in
Table 6. It is evident that neither the classifier model trained with specular reflectance
spectra, nor the model trained with diffuse reflectance spectra can be used interchangeably.
In terms of classification accuracy, the NCM classifier performed slightly better than the
other classifiers; however, all the classifiers exhibited accuracies below 16%. This was due
to the sensitivity of the spectral reflectance curve to the surface properties of the object.
Although the specular and diffuse reflectance spectra exhibited similar trends
(mathematically expressible as differentials), differences in their values led to considerably
lower classification accuracy when the classifiers were cross used. Consequently, when
collecting spectral profiles of wood cross sections, it is essential to distinguish between
diffuse and specular reflectance spectra. The classifier models generated by training each
type cannot be used interchangeably.
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Table 6. Comparison of Classification Accuracies After Cross Use of Classifier

Models for the Two Spectral

Classes

Classifier Models Trained on Specular Reflection Spectrum
Classifier model SVM KNN CNN DT NCM
Diffuse reflection 12.08% 13.65% 12.80% 11.25% 15.94%
Classifier Model Trained on Diffuse Reflectance Spectrum
Classifier model SVM KNN CNN DT NCM
Specular reflection 13.12% 13.54% 11.40% 8.20% 12.08%

CONCLUSIONS

In this study, the characteristics of the specular and diffuse reflectance spectra from

the cross sections of timber samples were examined, along with a comparison of their
classification performance in identifying timber species using NIR spectra. A total of 64
experimental timber samples were used. The following conclusions were drawn:

The specular reflectance spectra generally exhibited superior -classification
performance compared to the diffuse reflectance spectra, as confirmed by the
intraclass and interclass scatter matrices.
Consequently, it is recommended that the specular reflection NIR spectral profile
should be selected as a feature for classifying and identifying timber species.

Among the tested classifiers, the SVM classifier demonstrated the highest
classification accuracy, with both types of spectra achieving similarly high
classification rates. This can be attributed to the fact that SVMs use a combination of
binary classifiers for multiclass classification, employing three strategies—that is, 1-
vs-1, 1-vs-rest, and one-class SVM. The effective combination of these binary
classifiers enhances the generalization ability of the SVM model. Moreover, the SVM
model uses kernel functions to map samples that are challenging to classify in a low-
dimensional space into a higher-dimensional space, thereby facilitating a more
effective classification. These advantages enable the SVM classifier to overcome the
inherent distributional differences between the two types of spectra, resulting in

In contrast, the generalized classification performance of the other classifiers was
limited, and their accuracy was heavily influenced by the separability of the patterns
within the two types of spectra. Consequently, these classifiers also performed better
on the specular reflectance spectra than on the diffuse reflectance spectra.

1.
evaluation metrics based on the
2.
consistently high classification accuracy.
3.
4.

The classifier models trained on the specular and diffuse reflection spectra were
found to be non-interchangeable, indicating that the models developed for one type
of spectrum could not be substituted for the other.
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