Influence of Kaolin, Calcium Oxide, and Boron Trioxide **Sprays to Reduce Sunburn and Enhance Fruit Productivity and Quality in Murcott Mandarin**

Walid F. A. Mosa (D, a,* Waleed A. A. Alsakkaf, b Lidia Sas-Paszt (D, c and Hayssam M. Ali , b,*

> Climate change has increasingly disrupted the growth and development of many fruit crops. Among the associated challenges, sunburn caused by excessive light and solar radiation is a major physiological disorder affecting citrus and other fruit species. This study evaluated the potential of kaolin (KL), calcium oxide (CaO), and boric acid (B2O3) to mitigate sunburn and improve fruit set, yield, and quality in Murcott mandarin. Foliar sprays were applied at concentrations of 2000, 3000, and 4000 ppm KL, either alone or in combination with CaO and B₂O₃ at 0 CaO + 0 B₂O₃, 500 ppm CaO + 50 ppm B_2O_3 , and 1000 ppm CaO + 100 ppm B_2O_3 . Applications were performed four times during each season (mid-March, early July, early August, and early September) in 2023 and 2024. The results demonstrated that foliar application of KL, CaO, and B2O3 significantly increased fruit set, yield, and both physical and chemical quality attributes by reducing sunburn incidence across both study seasons. The most effective treatments were 4000 ppm KL + 500 ppm CaO + 50 ppm B_2O_3 and 4000 ppm KL + 1000 ppm CaO + 100 ppm B_2O_3 .

DOI: 10.15376/biores.20.4.9606-9624

Keywords: Fruit quality; Kaolin; Productivity; Sunburn

Contact information: a: Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt; b: Department of Botany and Microbiology, College of Science, King Saud University, Riyadh—11451, Saudi Arabia; c: The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;

* Corresponding author: walidmosa@alexu.edu.eg; hayhassan@ksu.edu.sa

INTRODUCTION

Fruit trees are highly vulnerable to environmental stresses, and the severity of these stresses has intensified in recent years due to climate change (Rachappanavar et al. 2022). Elevated temperatures impair photochemical activity and reduce light energy conversion efficiency, with excessive heat and radiation damaging the photosystems (Sun et al. 2018). Photosynthesis is particularly sensitive to high temperatures, leading to rapid declines under intense light conditions (Ahammed et al. 2018). During summer, when temperatures exceed 45 °C, sunburn damage can cause yield losses of up to 40% (Sarooghinia et al. 2020). The combined effects of strong solar radiation, high temperature, and low humidity trigger physiological disorders that markedly decrease fruit yield and quality (Kalcsits et al. 2017). Sunburn typically appears as peel discoloration and surface burns, progressing to large necrotic black patches on the fruit skin (Pareek et al. 2015).

Fertilizers and spraying of particle suspensions have emerged as promising strategies to enhance photosynthesis, improve leaf development, and promote overall plant vigor, while simultaneously reducing nutrient losses compared with conventional fertilizers. Their high efficiency not only improves yield and fruit quality but also minimizes negative environmental impacts such as soil pollution and nutrient leaching (Usman *et al.* 2020; Jakhar *et al.* 2022). Due to their small particle size and high absorption capacity, nanoparticles can improve nutrient delivery and uptake efficiency (Yadav *et al.* 2023).

Kaolin (KL) has been widely studied as a protective agent against abiotic stress. When applied as a foliar spray, KL forms a reflective barrier on leaves and fruits that lowers tissue temperature, mitigates solar radiation stress, reduces transpiration, and ultimately enhances fruit yield and quality (Glenn and Puterka 2010). KL reduces sunburn injury by reflecting ultraviolet and infrared radiation, without interfering with stomatal function or photosynthesis (Ergun 2012; Glenn 2012). In olive trees, KL application under waterlimited conditions improved photosynthetic rates (Denaxa et al. 2012). Similarly, in mango, KL coatings alleviated high irradiance stress, decreased leaf temperature and vapor pressure deficit, and increased photosynthesis, gas exchange, fruit set, and total yield (Chamchaiyaporn et al. 2013). Other studies reported that KL improves plant growth, dry matter accumulation, and water use efficiency under stress, while reducing transpiration, tissue temperature, and leaf thickness (Segura-Monroy et al. 2015). As a natural clay mineral, KL acts as both a reflective agent and an antitranspirant, enhancing photosynthetic efficiency and stress tolerance (Ramírez-Godoy et al. 2018). It has been shown to reduce canopy temperature (Luciani et al. 2020), improve gas exchange under drought and salinity (Abdallah 2019), and alter biochemical traits such as soluble solids and anthocyanin levels in grapes (Cataldo et al. 2022; Brito et al. 2019).

Saure (2005) emphasized that calcium is crucial for membrane stability and cell integrity. It helps prevent chlorophyll degradation, improves trees' nutritional quality by increasing chlorophyll content, leaf area, and water uptake, and enhances fruit nutrient levels. This, in turn, boosts photosynthetic efficiency, positively impacting vegetative growth and yield. Calcium, which is commonly applied as CaCl₂ or Ca(NO₃)₂, plays essential roles in plant growth, development, and stress responses. It supports photosynthesis by activating key metabolic enzymes (Akhtar et al. 2010), regulates auxin function, and promotes cell division, elongation, and pollen tube growth (Fageria 2009). In grape, calcium contributes to flowering, fruit set, cluster weight, and cell expansion (Bonomelli and Ruiz 2010). Preharvest CaCl₂ sprays reduce postharvest decay and physiological disorders (Madani et al. 2014), while enhancing antioxidant levels and secondary metabolites (Ghesmati et al. 2017; Vighi et al. 2019). Calcium strengthens the cell wall through the formation of Ca-pectate complexes, improving fruit firmness and delaying ripening (Zhang et al. 2019; Jaime-Guerrero et al. 2024). In addition, calcium regulates ethylene production, respiration, chlorophyll development, and senescence (Mounika et al. 2021). Calcium has shown promise in improving fruit yield (Gao et al. 2019), enhancing stress tolerance under salinity and drought (Nasrallah et al. 2022), and improving storage and shelf life (Zhou et al. 2018; Huang et al. 2023).

Boron (B) is another essential nutrient that plays critical roles in photosynthesis, stomatal conductance, carbohydrate metabolism, and reproductive development. Adequate boron supply improves photosynthetic efficiency, pollen germination, tube elongation, flowering, and fruit set (Sotiropoulos *et al.* 2002; Marschner 2012). Boron oxide (B₂O₃) is recognized as an essential factor in regulating the translocation of sugars and carbohydrates

within plant systems. In olive (*Olea europaea* L.), boron deficiency markedly diminishes pollen viability, fruit set, and the normal differentiation of reproductive organs. Furthermore, insufficient boron availability compromises the mechanical stability of the leaf cuticle, frequently resulting in epidermal fissuring. Such structural impairments adversely affect stomatal functionality, thereby reducing their efficiency in the foliar uptake of nutrient solutions (Khayyat *et al.* 2007). Boron deficiency reduces cell division and photosynthetic activity, while affecting structural integrity of cell walls by limiting Ca–pectin binding (Ardic *et al.* 2009; Gupta and Solanki 2013). In various fruit crops, borax application improves fruit set, sugar transport, the metabolism of carbohydrates, nucleic acids, indole acetic acid, and phenols, seed development, and overall productivity (Xu *et al.* 2015; Mohammed *et al.* 2018; Shireen *et al.* 2018; Bons and Sharma 2023). It also enhances vitamin C and soluble protein content, maintains cell membrane integrity, and increases metabolic activity (Milagres *et al.* 2019; Xu *et al.* 2021; Li *et al.* 2023).

Given the importance of these nutrients, the present study was conducted to evaluate whether foliar application of kaolin, calcium, and boron compounds could mitigate sunburn damage in Murcott mandarin while improving fruit yield and quality.

Materials and Methods

Experimental site and applied treatments

The experiment was conducted during the 2023 and 2024 seasons on eight-year-old Murcott mandarin (*Citrus reticulata*) trees grafted onto *Citrus volkameriana* rootstock, spaced 4 × 5 m apart. The orchard was located in El-Nubaria, Beheira Governorate, Egypt, with trees grown in sandy soil under drip irrigation. Soil characteristics are presented in Table 1.

Sixty uniform trees were selected and subjected to the same cultural practices throughout both seasons. Treatments consisted of foliar sprays of kaolin (KL: 2, 3, or 4 g/L), calcium oxide (CaO: 0, 0.5, or 1 g/L), and boric acid (B₂O₃: 0, 50, or 100 mg/L), as well as an untreated control (Table 2). Sprays were applied four times each season: mid-March, early July, early August, and early September. Treatments were arranged in a randomized complete block design (RCBD) with five replicates (one tree per replicate), giving a total of 60 trees. Spray solution volume was 20 L per tree, prepared with tap water.

Fruit Set %, fruit drop %, and fruit number

At full bloom in April, the total number of flowers was recorded, and fruit set (%) was calculated (Eq. 1).

Fruit set % =
$$\frac{No.of\ set\ fruits}{No.of\ flowers} \times 100$$
 (1)

The fruit drop percentage was calculated by Eq. 2.

Fruit drop % =
$$\frac{No.of\ fruitlets\ at\ initial\ set\ -\ No.of\ harvested\ fruits}{No.of\ fruitlets\ at\ initial\ set} \times 100$$
 (2)

Fruit Yield (ton/ha)

Fruit yield (t/ha) was calculated by multiplying the average fruit weight per tree by the number of trees per hectare.

Table 1. Soil Analysis

		90.8%	
	Silt		6.55%
	2.65%		
Text	Sandy		
Orga	0.275%		
	8.26		
C	4.8%		
EC	1.2		
	HCO₃ ⁻	3.12	
Soluble anions m	CL-	4.57	
		SO ₄	4.91
		Ca ⁺⁺	2.22
Soluble estions (n	oog/L\	Mg ⁺⁺	1.5
Soluble cations (n	neq/L)	Na⁺	3.66
		K⁺	4.42
		N	117.5
	Macronutrients	Р	15.2
Available putrients (mg/kg)		K	297.5
Available nutrients (mg/kg)		Fe	1.9
	Micronutrients	Zn	0.38
		Mn	1.85

Table 2. Weather Data during the Experimental Seasons of 2023 and 2024

Year	2023	2024	2023	2024	2023	2024	2023	2024	
Months	Minii	mum	Maximum		Average	Average Relative		Total Precipitation	
IVIOTILIS	Tempera	ture (°C)	Tempera	ture (°C)	Humid	ity (%)	(mm)		
January	11.89	12.20	20.35	19.84	72.73	66.88	31.70	28.20	
February	10.61	11.50	18.87	20.30	68.77	71.17	48.70	13.90	
March	12.75	12.55	23.43	23.27	63.57	64.55	19.00	8.90	
April	14.39	15.70	26.33	28.03	59.06	63.53	16.00	2.80	
May	17.36	18.07	29.53	29.92	59.56	55.40	0.40	0.00	
June	20.98	22.39	32.63	35.66	60.92	58.55	2.40	0.30	
July	23.70	24.64	35.93	35.61	61.01	60.53	0.00	0.00	
August	24.36	24.73	35.00	35.54	60.61	59.61	0.00	0.00	
September	24.05	23.87	34.80	33.45	60.11	60.04	0.60	0.00	
October	21.30	20.47	30.15	29.77	65.05	62.07	4.30	0.00	
November	18.05	17.01	26.89	24.72	63.62	65.22	5.00	6.80	

Table 3. Applied Treatments

T1	0 KL + 0 CaO + 0 B ₂ O ₃
T2	0 KL + 500 ppm CaO + 50 ppm B ₂ O ₃
T3	2000 ppm KL + 0 CaO + 0 B ₂ O ₃
T4	0 KL + 1000 ppm CaO + 100 ppm B ₂ O ₃
T5	3000 ppm KL + 0 CaO + 0 B ₂ O ₃
T6	2000 ppm KL + 500 ppm CaO + 50 ppm B ₂ O ₃
T7	4000 ppm KL + 0 CaO + 0 B ₂ O ₃
T8	2000 ppm KL + 1000 ppm CaO + 100 ppm B ₂ O ₃
T9	3000 ppm KL + 500 ppm CaO+ 50 ppm B ₂ O ₃
T10	3000 ppm KL + 1000 ppm CaO + 100 ppm B ₂ O ₃
T11	4000 ppm KL + 500 ppm CaO + 50 ppm B ₂ O ₃
T12	4000 ppm KL + 1000 ppm CaO + 100 ppm B ₂ O ₃

Physical fruit quality

Fruit length and diameter (cm) were measured using a digital Vernier caliper. Average fruit weight was recorded from 10 representative fruits. Fruit volume (cm³) was determined by water displacement in a 1000 mL graduated cylinder. Firmness (kg/cm²) was measured with a Magness–Taylor pressure tester. Sunburn incidence (%) was determined using Eq. 3:

Fruit sun scalds
$$\% = \frac{\text{Number of sun scald fruits}}{\text{total number of fruits}} \times 100$$
 (3)

Chemical fruit quality

Total soluble solids (TSS %) in the juice of fruits were measured by using a hand refractometer (ATAGO, Tokyo, Japan). Total acidity (%) was determined as citric acid/100 milliliters of fruit juice (AOAC 2005). The phenol-sulfuric acid method was used to estimate the total sugars by using 1.0 mL of sample treated with 1.0 mL of 5% phenol and 5.0 mL of concentrated H₂SO₄ and measured at 485 nm. Reduced sugars were estimated by using the 3,5-dinitro salicylic acid (DNS) method by using 2.0 mL of the sample and 1.5 mL of DNS at 80 °C for 10 min and measuring at 510 nm (Lam *et al.* 2021). The content of ascorbic acid was determined by titration using 2, 6-dichloro phenol indophenol (Nielsen 2017). Fruit carotene content was measured using the method of (Aquino *et al.* 2018) at a wavelength of 440 nm.

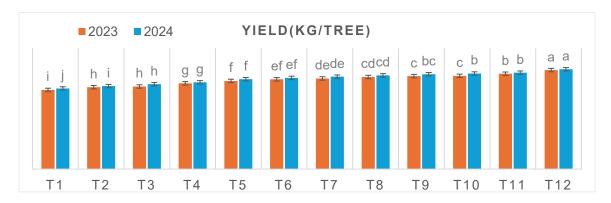
Nutritional Status

After harvesting the fruits in the 2023 and 2024 seasons, 40 leaves from the middle part of the shoots were collected from each tree (Arrobas *et al.* 2018). After washing the leaves very well with tap water, they were washed again with distilled water, dried at 70 °C until constant weight, and ground and digested using H₂SO₄ and H₂O₂ until the solution became clear.

The nitrogen content was determined using the micro Kjeldahl method (Wang et al. 2016). The phosphorus content was measured using the Vanadomolybdo method (Wieczorek et al. 2022). Potassium content was determined using a flame photometer (Asch et al. 2022). Atomic absorption spectrophotometry was used to measure the content of Ca, and B.

Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) using CoHort Software 6.311 (Pacific Grove, CA, USA). Treatment means were compared using the least significant difference (LSD) test at the 0.05 probability level (Snedecor and Cochran 2021).


RESULTS

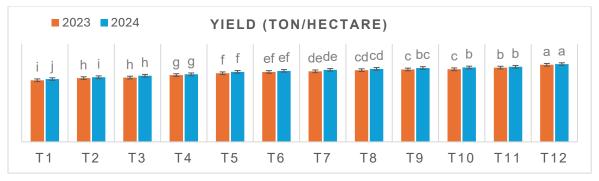

Fruit set percentage, fruit weight, fruit number, and overall yield were significantly improved by foliar spraying of KL in combination with calcium and boron compared with the control (Table 4; Fig. 1). The greatest increases were observed with treatment T12, followed by T11, T10, and T9, which all showed significant improvements over untreated trees in both seasons.

Table 4. Effect of the Foliar Spraying of Kaolin, CaO, and B ₂ O ₃ on the Fruit Set %,
Fruit Weight, and Number in Murcott Mandarin during 2023 and 2024

Treatments	Fruit S	et (%)	Fruit We	eight (g)	Fruit Number		
Treatments	2023	2024	2023	2024	2023	2024	
T1	3.75f	4.38e	173.25g	174.88h	302.67f	305.33e	
T2	3.9f	4.56e	174.06g	176.68gh	311.67e	311.33d	
T3	4.19e	4.81d	175.04g	176.60gh	312.67e	318.67c	
T4	4.29de	4.90cd	179.67f	178.76g	316.33de	321.67c	
T5	4.32de	4.89cd	182.82e	182.16f	319.33cd	327.00b	
T6	4.36cde	4.88cd	183.54de	184.71ef	324.00bc	327.00b	
T7	4.39cde	4.89cd	184.96d	186.19de	324.67bc	329.00ab	
T8	4.49bcd	5.03c	186.93c	188.54cd	326.33ab	329.33ab	
T9	4.57bc	5.08bc	187.43c	190.85bc	328.67ab	329.33ab	
T10	4.59bc	5.27ab	187.36c	190.53bc	329.67ab	332.33a	
T11	4.66b	5.31a	191.67b	192.62b	329.67ab	331.67ab	
T12	5.11a	5.39a	198.20a	198.66a	331.00a	333.00a	
LSD _{0.05}	0.21	0.20	1.79	2.85	5.23	4.67	

Note: No significant differences between the treatments that have the same letters in each column. The explanation for the treatments is demonstrated in Table 2.

Fig. 1. The effect of the foliar spraying of KL, CaO, and B_2O_3 on the fruit yields in kg per tree and in ton per hectare in Murcott mandarin during 2023 and 2024 seasons

Fruit volume, length, and diameter were also significantly enhanced by KL + CaO + B₂O₃ applications (Table 5). Among the treatments, T12 produced the highest values, while T11 and T10 also markedly improved these parameters relative to the control.

Table 5. Effect of the Foliar Spraying of Kaolin, CaO, and B₂O₃ on the Fruit Volume, Length, and Diameter in Murcott Mandarin during 2023 and 2024

Treatments	Fruit Volu	ume (cm³)	Fruit Le	ngth (cm)	Fruit Diameter (cm)		
Treatments	2023	2024	2023	2024	2023	2024	
T1	180.58g	182.11h	5.31e	5.26 e	6.15e	6.18f	
T2	181.39g	183.78gh	5.38de	5.34de	6.17de	6.20ef	
T3	182.37g	184.00gh	5.42de	5.36cde	6.18de	6.20ef	
T4	187.34f	186.23g	5.45de	5.41cde	6.20cde	6.20ef	
T5	189.82e	189.36f	5.47de	5.47cd	6.23cd	6.23def	
T6	190.54de	192.18ef	5.54cd	5.49cd	6.24c	6.24de	
T7	192.62cd	193.62de	5.67bc	5.52bcd	6.29b	6.26cd	
T8	193.60c	196.01cd	5.67bc	5.56bc	6.31b	6.26cd	
T9	194.43c	198.15bc	5.75b	5.69b	6.31b	6.32bc	
T10	194.36c	200.06b	5.79ab	5.93a	6.31b	6.34b	
T11	198.67b	197.93bc	5.84ab	5.95a	6.35b	6.34b	
T12	205.53a	205.96a	5.93a	5.98a	6.42a	6.41a	
LSD _{0.05}	2.21	2.82	0.16	0.18	0.05	0.06	

Note: No significant differences between the treatments that have the same letters in each column

Fruit juice percentage and firmness increased significantly in trees treated with KL + CaO + B₂O₃ (Table 6). Treatment T12 achieved the greatest improvement, whereas T11, T10, and T9 also produced positive effects compared with untreated trees in both seasons. In contrast, sunburn incidence was markedly reduced by T12, T11, and T10, with moderate reductions observed in T9 and T8 compared to the control.

Table 6. Effect of the Foliar Spraying of Kaolin, CaO, and B₂O₃ on Sunburn and Fruit Juice Percentages, and Fruit Firmness in Murcott Mandarin during 2023 and 2024

Treatments	Sunburn (%)		Juic	e (%)	Fruit Firmness (kg/cm²)		
	2023	2024	2023	2024	2023	2024	
T1	13.90a	13.50a	48.10f	50.10g	2.20c	2.23c	
T2	13.00b	12.60b	49.49ef	51.60fg	2.23bc	2.23c	
T3	12.50bc	12.00bc	49.87ef	51.62fg	2.24bc	2.24c	
T4	12.00cd	11.79c	51.13de	52.87ef	2.23 bc	2.26c	
T5	11.80cd	11.43cd	51.53de	53.00ef	2.26b	2.26c	
T6	11.74d	10.79de	51.67de	53.67def	2.26b	2.27c	
T7	10.47e	10.30e	52.37cd	54.33de	2.26b	2.27c	
T8	10.29ef	9.53f	52.43cd	55.27de	2.26b	2.28c	
T9	10.26ef	9.30f	54.33c	56.20cd	2.27b	2.33b	
T10	9.67f	8.43g	54.43c	58.33c	2.34a	2.36b	
T11	8.90g	8.30g	56.80b	62.33b	2.35a	2.37b	
T12	8.25g	7.83g	61.91a	65.00a	2.38a	2.45a	
LSD _{0.05}	0.67	0.75	2.17	2.43	0.04	0.05	

Note: No significant differences between the treatments that have the same letters in each column

Chemical fruit quality also responded positively to kaolin + CaO + B₂O₃. Total soluble solids (TSS), vitamin C, and carotene content were significantly increased, with T12 again being the most effective treatment (Table 7). T11, T10, T9, and T8 also showed substantial improvements compared with untreated trees. At the same time, fruit acidity was significantly reduced by all treatments, with T12 producing the greatest reduction across both seasons.

Table 7. Effect of the Foliar Spraying of Kaolin, CaO, and B₂O₃ on Fruit Total Soluble Solids, and Acidity Percentages, Vitamin C, and Carotene in Murcott Mandarin during 2023 and 2024

Treatment	TSS (%)		Acidity (%)		VC (mg/100 mL Juice)		Carotene (mg/100g)	
	2023	2024	2023	2024	2023	2024	2023	2024
T1	8.69h	9.38f	1.35a	1.23a	29.93e	30.47h	2.78e	2.81f
T2	9.00gh	9.43f	1.24b	1.23a	30.68de	31.43gh	2.90de	3.07e
T3	9.24fg	9.93e	1.167c	1.20ab	31.13cde	32.22fg	2.95d	3.17e
T4	9.39efg	10.21de	1.137cd	1.157b	32.19cd	32.05fg	3.02cd	3.14de
T5	9.52ef	10.49d	1.12cd	1.10c	31.32cde	33.14ef	3.02cd	3.26cd
T6	9.88de	11.11c	1.10de	1.08cd	32.21cd	34.33de	3.14bc	3.28bc
T7	10.19cd	11.18c	1.10de	1.06cd	32.18cd	34.60cd	3.15bc	3.40ab
T8	10.23bcd	11.29c	1.09de	1.08cd	32.91bc	35.82bc	3.17b	3.42a
T9	10.37bcd	11.52bc	1.05e	1.07 cd	32.17cd	36.53b	3.19ab	3.43a
T10	10.53bc	11.83b	0.98f	1.04de	34.46ab	36.63b	3.23ab	3.41a
T11	10.73b	11.94b	0.91g	1.00e	35.02a	36.87b	3.28ab	3.46a
T12	11.45a	12.40a	0.88g	0.86f	36.16a	38.30a	3.32a	3.48a
LSD _{0.05}	0.46	0.46	0.05	0.04	1.67	1.22	0.13	0.12

Note: No significant differences between the treatments that have the same letters in each column

Sugar fractions were strongly affected by the treatments (Table 8). T12 and T11 significantly increased total sugars, reducing sugars, and non-reducing sugars, while T10, T9, T8, and T7 also enhanced sugar content relative to the control.

Leaf mineral composition was similarly improved (Table 9). Foliar sprays of KL + calcium + boron significantly increased leaf concentrations of N, P, K, Ca, and B compared with untreated trees. T12 consistently produced the highest nutrient contents, followed by T11, T10, T9, and T8.

Table 8. Effect of the Foliar Spraying of Kaolin, CaO, and B₂O₃ on Fruit Content from the Total, Reduced, and Non-reduced Sugars in Murcott Mandarin during 2023 and 2024

Treatments	Total Sugars (%)		Reduced Su	ıgars (%)	Non-reduced Sugars (%)		
Treatments	2023	2024	2023	2024	2023	2024	
T1	5.47e	6.13d	3.05d	3.55f	2.42de	2.58d	
T2	5.47e	6.28d	3.10d	3.58f	2.37e	2.70 bcd	
Т3	5.48e	6.33d	3.15d	3.77de	2.33e	2.57d	
T4	5.57de	6.43d	3.12d	3.70ef	2.453de	2.73bcd	
T5	5.80c 6.45d		3.25d	3.77de	2.55d	2.68cd	
T6	5.75cd	6.55d	3.20d	3.88cde	2.54d	2.68cd	
T7	6.28b	7.03c	3.55bc	3.88cde	2.73c	3.15a	
T8	6.36b	7.05c	3.57bc	3.93cd	2.79c	3.11ab	
Т9	6.47b	7.11bc	3.53bc	4.04bc	2.94b	3.07abc	
T10	6.48b	7.47ab	3.50c	4.05bc	2.98b	3.43a	
T11	6.87a	7.58a	3.73ab	4.17b	3.14a	3.41a	
T12	6.93a	7.66a	3.81a	4.51a	3.12a	3.15a	
LSD _{0.05}	0.21	0.4	0.19	0.17	0.12	0.38	

Note: No significant differences between the treatments that have the same letters in each column

Table 9. Effect of the Foliar Spraying of Kaolin, CaO, and B₂O₃ on Leaf Content from Nitrogen, Phosphorous, Potassium, Calcium, and Boron in Murcott Mandarin during 2023 and 2024

Treatments	N%		Р%		K%		Ca%		B (ppm)	
	2023	2024	2023	2024	2023	2024	2023	2024	2023	2024
T1	1.62f	1.76g	0.52f	0.52g	1.43e	1.48g	1.37g	1.35h	43.33g	43.00g
T2	1.62f	1.78g	0.53f	0.53g	1.43e	1.50fg	1.37g	1.37gh	45.00fg	44.67g
T3	1.64f	1.80fg	0.52f	0.57f	1.45e	1.50fg	1.41fg	1.38gh	45.67fg	45.67fg
T4	1.70e	1.83ef	0.53f	0.58ef	1.45e	1.53f	1.40fg	1.43fg	46.33efg	46.33fg
T5	1.73d	1.83ef	0.54f	0.60e	1.46e	1.58e	1.44ef	1.45ef	47.33ef	45.67fg
T6	1.74d	1.84ef	0.54f	0.63d	1.52d	1.66d	1.45def	1.50de	49.33de	48.33ef
T7	1.82c	1.86de	0.58e	0.63d	1.52d	1.68d	1.43f	1.54cd	51.67cd	51.33de
T8	1.83c	1.90cd	0.59de	0.64d	1.60c	1.74c	1.48de	1.52d	54.67c	54.33d
Т9	1.84c	1.94bc	0.62cd	0.65d	1.61c	1.83b	1.49cd	1.59c	60.33b	60.00bc
T10	1.88b	1.99b	0.64bc	0.68c	1.68b	1.84b	1.53c	1.66b	59.33b	58.33c
T11	1.93a	2.04a	0.66b	0.72b	1.72a	1.87a	1.59b	1.67b	62.00ab	62.00b
T12	1.93a	2.06a	0.70a	0.76a	1.73a	1.90a	1.65a	1.73a	65.00a	66.00a
LSD _{0.05}	0.03	0.04	0.03	0.02	0.03	0.04	0.04	0.06	3.27	3.10

Note: No significant differences between the treatments that have the same letters in each column

DISCUSSION

In this study, foliar application of kaolin (KL), calcium oxide (CaO), and boron trioxide (B₂O₃) significantly reduced fruit sunburn, enhanced fruit set, and improved both yield and fruit quality of Murcott mandarin trees. The combined treatment (T12) was consistently superior across both seasons, indicating a strong synergistic effect of these elements on productivity and fruit quality traits.

The positive effects of KL observed here agree with previous findings that KL enhances crop performance under heat stress. KL forms a reflective particle film that lowers fruit and leaf surface temperature, mitigates water loss, and optimizes physiological processes such as stomatal conductance and photosynthesis (Glenn and Puterka 2010; Dinis et al. 2018; Brillante et al. 2016). Studies on pear, olive, grapevine, and citrus similarly reported that KL sprays reduce sunburn, improve fruit set, and enhance both physical and biochemical quality traits (Colavita et al. 2011; Brito et al. 2018; Gullo et al. 2020; Terán et al. 2024). These benefits stem not only from reduced heat load but also from improved water use efficiency and the stimulation of primary and secondary metabolism, which contribute to higher fruit size, juice content, vitamin C, carotene, and sugar levels. Applying KL particle film promotes both primary and secondary metabolic processes in grapevines, thereby enhancing berry quality. In addition, it has been employed as a short-term strategy for mitigating climate change, as its reflective properties toward ultraviolet and infrared radiation help decrease leaf temperature and improve photosynthetic performance by alleviating photoinhibition (Conde et al. 2018). KL helps reduce water loss from transpiration and maintains a relatively open rate of stomata, thereby ameliorating the plant water content (Brito et al. 2019). KL can lower leaf temperature by up to 6.7 °C, promoting stomatal opening, which in turn boosts photosynthesis and improves plant tolerance to intense light and heat (de Abreu et al. 2022). Applying KL at concentrations of 2%, 4%, and 6% significantly improved fruit set percentage, yield, fruit weight, and firmness, while simultaneously reducing sunburn incidence in pomegranate (Al-Saif et al. 2022). Foliar KL application provides key nutrients and improves soil moisture retention, while its reflective properties lower leaf temperature and reduce water loss, collectively supporting cell division, elongation, and overall growth (Vani et al. 2023). KL alleviates environmental stress by minimizing leaf damage and abscission, protecting carotenoids, elevating proline, chlorophyll, and gas exchange, and regulating key hormones like abscisic acid, salicylic acid, indole-3-acetic acid, and jasmonic acid to strengthen stress tolerance (Terán et al. 2024). KL sprays at 3 and 6 % on apple improved tree crown and volume, increased fruit weight, fruit length, firmness, and fruit soluble solids (Faghih et al. 2021), enhanced leaf area, chlorophyll, photosynthesis, gas exchange, internal CO₂, water-use efficiency, potassium status, and kernel yield/quality, while reducing leaf temperature, fruit drop, sunburn, and cracking in Persian walnut (Gharaghani et al. 2018). Spraying KL at 3 and 6 % on 'Tardy Nonpareil' Almond trees improved shoot growth, prevented premature leaf abscission, water use efficiency and tree yield, reduced leaf temperature by up to 3.25 °C, and it increased the photosynthesis rate and stomata conductance, tree yield, and nut attributes, under water deficit (Gharaghani et al. 2023).

Calcium oxide application also was found to play a role in enhancing fruit quality in this study. As background, it is known that each type of calcium salt produces a different pH in distilled water, influencing its solubility. Calcium citrate has a higher solubility than calcium carbonate in water, the difference is minimal at pH 7.5. The partial pressure of

CO₂ reduced the solubility of calcium carbonate at pH 7.5. Soluble calcium calculations aligned with in-vivo data on absorbed calcium. The data highlight the influence of pH and CO₂ on the solubility of calcium salts in the presence of bicarbonate secretions in the intestine (Goss *et al.* 2007). Marschner (2012) noted that calcium plays a key role in binding proteins and polysaccharides in the cell wall, enhancing flowering, fruit maturation, and the transport of carbohydrates from leaves to fruits.

Calcium oxide spray enhances cell wall permeability, improving water and nutrient transport from leaves to fruits, which boosts fruit growth, maintains moisture balance between the peel and internal tissues, and preserves cell wall elasticity (Korkmaz and Askın 2015). Foliar CaCl₂ applications have been shown to improve fruit firmness, size, and storability by strengthening cell walls, maintaining water balance, and delaying senescence (Michailidis et al. 2020). The present results align with reports from pomegranate, apple, and kiwifruit where Ca sprays improved yield, fruit weight, soluble solids, and vitamin C while reducing acidity and sunburn (Ramírez-Godoy et al. 2018; Denaxa et al. 2023; Fahmy et al. 2023). The improvements in firmness and reduced sunburn incidence observed in the present study further support Ca's protective role under environmental stress. CaCl₂ application in fruits helps maintain firmness and cell turgor, while preventing physiological disorders (Jain et al. 2019). The spraying of 100 and 200 CaCO₃ notably increased the stem thickness and plant height, which are essential for supporting the overall structure and stability of the plant, and this improvement can be attributed to Ca's crucial role in maintaining cell wall integrity and promoting cell division and elongation (Nangare et al. 2020; Mogazy et al. 2022). Applying CaCl₂ at 1.5 and 2.0% on apple significantly improved fruit physical attributes such as fruit firmness, fruit diameter, length, weight, and size, fruit content from anthocyanin, phenols, TSS, acidity, starch content, and fiber content (Ranjbar et al. 2020). Spraying pomegranate trees cv. Wonderful with CaCl₂ at 2 and 3 % noticeably improved the fruit weight, number and fruit yield, fruit dimensions, as well as fruit content from soluble solids, and vitamin C, while it significantly reduced the fruit acidity, fruit drop percentages and fruit sunburn percentages (Fahmy et al. 2023). Calcium oxide (CaO), commonly called quicklime, is a white to grayish solid obtained by heating calcium carbonate to release carbon dioxide. At room temperature, it readily reabsorbs carbon dioxide from the air and reacts vigorously with water to form calcium hydroxide, Ca(OH)₂, releasing heat in the process—hence the term "quick," or living, lime. This exothermic reaction has been used in portable heat sources. One of the oldest manufactured chemical products, quicklime is widely applied in construction, industrial neutralization processes, and occasionally as fertilizer, though calcium carbonate is generally preferred for agriculture. When water acts on CaO, it produces calcium hydroxide, also known as slaked lime. Only a small amount dissolves to yield limewater, while the remainder forms a suspension called milk of lime. Calcium hydroxide serves as an industrial alkali and a key ingredient in mortars, plasters, and cement. It also plays roles in the kraft paper process and in sewage treatment as a flocculant (Hanusa 2025).

Boron supplementation also contributed significantly to fruit set, retention, and overall productivity. Boron is essential for pollen germination, tube growth, sugar transport, and cell wall integrity, flower fertilization and ultimately improving the productivity (Davis *et al.* 2003; Bybordi and Malakouti 2006; Lewis 2019). Deficiency often results in flower drop, reduced fertilization, and lower leaf growth, root elongation, and yields (Han *et al.* 2008; Wang *et al.* 2015). The present findings agree with earlier reports by Ali *et al.* (2017), they noted that the external spraying of B₂O₃ at 0.2 and 0.3% improved the fruit set %, retained fruit number, fruit weight, pulp %, fruit productivity,

fruit dimensions, and fruit content of chlorophyll, carotene, and vitamin C in mango and lowered the fruit drop percentage. Boron also has a vital role in cell structure and cell wall integrity (Lewis 2019) and in maintaining plasma membrane functions (Brown et al. 2002). The reduction in fruit drop from borax spraying may also be attributed to B's indirect role in auxin synthesis, which delays the formation of the abscission layer during the early stages of fruit development, ultimately increasing the percentage of fruit retention (Gupta et al. 2022). Mosa et al. (2015) noted that the spraying of apple with B₂O₃ at 0.2% markedly improved the shoot diameter, shoot length and leaf area, fruit set %, productivity, while it minimised the fruit acidity and fruit drop percentages. Spraying mandarin trees with borax at 0.04% boron remarkably improved the total flower and fruit set percentage and significantly reduced the flower and fruit drop percentages as compared to untreated trees (Ruchal et al. 2020). Sajid et al. (2024) reported that spraying B₂O₃ at 1% on three sweet cherry cultivars increased leaf area, fruit diameter, pulp %, total soluble solids, total sugars, fruit number, yield in kg, fruit set %, while it reduced the percentages of fruit drop and fruit acidity compared to untreated trees. Taken together, the combined application of KL, CaO, and B2O3 compounds improved both physiological efficiency and fruit quality traits in Murcott mandarin. KL primarily reduced heat and water stress, CaO enhanced cell wall strength and nutrient transport, and B₂O₃ optimized reproductive success and carbohydrate allocation. The synergistic effects of these treatments translated into higher fruit number, size, firmness, juice content, vitamin C, carotene, sugars, and leaf mineral concentrations.

These findings highlight the potential of integrated foliar sprays as an eco-friendly strategy to enhance citrus productivity and mitigate the negative impacts of abiotic stress. Further work should investigate the economic feasibility of large-scale adoption and the long-term effects of repeated applications on soil-plant interactions.

CONCLUSIONS

- 1. Foliar application of kaolin (KL) together with calcium oxide (CaO) and boron trioxide (B₂O₃) effectively mitigated the adverse effects of high temperature and solar radiation, reducing fruit sunburn and thereby increasing the proportion of marketable Murcott mandarin fruits.
- 2. The combined application of KL, CaO, and B₂O₃ compounds improved photosynthesis, fruit set, yield, and overall fruit quality.
- 3. The treatment with 4000 ppm KL + 1000 ppm CaO + 100 ppm B₂O₃ consistently produced the best results across all measured traits.

ACKNOWLEDGMENTS

The authors would like to extend their sincere appreciation to the Ongoing Research Funding Program (ORF-2025-123), King Saud University, Riyadh, Saudi Arabia.

Funding

This research was funded by Ongoing Research Funding Program (ORF-2025-123), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

All the required data are included in the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

REFERENCES CITED

- AbdAllah, A. (2019). "Impacts of kaolin and pinoline foliar application on growth, yield and water use efficiency of tomato (*Solanum lycopersicum* L.) grown under water deficit: A comparative study," *J. Saudi Soc. Agric. Sci.* 18(3), 256-268.
- Ahammed, G. J., Xu, W., Liu, A., and Chen, S. (2018). "COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato," *Front. Plant Sci.* 9, 998. DOI: 10.3389/fpls.2018.00998
- Akhtar, A., Abbasi, N. A., and Hussain, A. (2010). "Effect of calcium chloride treatments on quality characteristics of loquat fruit during storage," *Pak. J. Bot.* 42(1), 181-188.
- Ali, M., Elhamahmy, M., and El-Shiekh, A. (2017). "Mango trees productivity and quality as affected by boron and putrescine," *Sci. Hortic.* 216, 248-255. DOI: 10.1016/j.scienta.2017.01.026
- Al-Saif, A. M., Mosa, W. F., Saleh, A. A., Ali, M. M., Sas-Paszt, L., Abada, H. S., and Abdel-Sattar, M. (2022). "Yield and fruit quality response of pomegranate (*Punica granatum*) to foliar spray of potassium, calcium and kaolin," *Horticulturae* 8(10), article 946. DOI: 10.3390/ horticulturae8100946
- AOAC International (2005). Official Methods of Analysis (18th Ed.), Gaithersburg, MD, USA.
- Aquino, C. F., Salomão, L. C. C., Pinheiro-Sant'ana, H. M., Ribeiro, S. M. R., Siqueira, D. L. D., and Cecon, P. R. (2018). "Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages," *Rev. Ceres* 65, 217-226. DOI: 10.1590/0034-737X201865030001
- Ardic, M., Sekmen, A.H., Tokur, S., Ozdemir, F., and Turkan, I. (2009). "Antioxidant responses of chickpea plants subjected to boron toxicity," *Plant Biol.* 2009, 11, 328-338. DOI: 10.1111/j.1438-8677.2008.00132.x
- Arrobas, M., Afonso, S., and Rodrigues, M. Â. (2018). "Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses," *Sci. Hortic.* 228, 113-121. DOI: 10.1016/j.scienta.2017.10.027
- Asch, J., Johnson, K., Mondal, S., and Asch, F. (2022). "Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride *via* automated flow analysis," *J. Plant Nutr. Soil Sci.* 185(2), 308-316. DOI: 10.1002/jpln.202100344.
- Bonomelli, C., and Ruiz, R. (2010). "Effects of foliar and soil calcium application on yield and quality of table grape cv. 'Thompson Seedless," *J. Plant Nutr.* 33(3), 299-314. DOI: 10.1080/01904160903470364
- Bons, H. K., and Sharma, A. (2023). "Impact of foliar sprays of potassium, calcium, and boron on fruit setting behavior, yield, and quality attributes in fruit crops: A review," *J. Plant Nutr.* 46(13), 3232-3246. DOI: 10.1080/01904167.2023.2192242

- Brillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S., and Tomasi, D. (2016). "Comparing kaolin and pinolene to improve sustainable grapevine production during drought," *PLoS One* 11(6), article ID e0156631. DOI: 10.1371/journal.pone.0156631
- Brito, C., Dinis, L.-T., Moutinho-Pereira, J., and Correia, C. (2019). "Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance," *Sci. Hortic.* 250, 310-316. DOI:10.1016/j.scienta.2019.02.070
- Brito, C., Dinis, L.-T., Silva, E., Gonçalves, A., Matos, C., Rodrigues, M. A., Moutinho-Pereira, J., Barros, A., and Correia, C. (2018). "Kaolin and salicylic acid foliar application modulate yield, quality and phytochemical composition of olive pulp and oil from rainfed trees," *Sci. Hortic.* 237, 176-183. DOI:10.1016/j.scienta.2018.04.019
- Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., ... and Römheld, V. (2002). "Boron in plant biology," *Plant Biol.*, 4(02), 205-223.
- Bybordi, A. and Malakouti, M.J. (2006). "Effects of foliar applications of nitrogen, boron and zinc on fruit setting and quality of almonds," *Acta Hortic*. 726, 2351-2358. DOI: 10.17660/ActaHortic.2006.726.56
- Cataldo, E., Fucile, M., and Mattii, G. B. (2022). "Effects of kaolin and shading net on the ecophysiology and berry composition of Sauvignon Blanc grapevines," *Agriculture* 12(4), article 491. DOI: 10.3390/agriculture12040491
- Chamchaiyaporn, T., Jutamanee, K., Kasemsap, P., Vaithanomsat, P., and Henpitak, C. (2013). "Effects of kaolin clay coating on mango leaf gas exchange, fruit yield and quality," *Agric. Nat. Res.* 47(4), 479-491. https://li01.tci-thaijo.org/index.php/anres/article/view/243088.
- Colavita, G.M., Blackhall, V. and Valdez, S. (2011). "Effect of kaolin particle films on the temperature and solar injury of pear fruits," *Acta Hortic*. 909, 609-615. DOI: 10.17660/ActaHortic.2011.909.73
- Conde, A., Neves, A., Breia, R., Pimentel, D., Dinis, L.-T., Bernardo, S., Correia, C. M., Cunha, A., Gerós, H., and Moutinho-Pereira, J. (2018). "Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves," *J. Plant Physiol.* 223, 47-56. DOI: 10.1016/j.jplph.2018.02.004
- Davis, J. M., Sanders, D. C., Nelson, P. V., Lengnick, L. and Sperry, W. J. (2003). "Boron improves growth, yield, quality, and nutrient content of tomato," *J. Am. Soc. Hortic. Sci.*, 128, 441-446.
- de Abreu, D. P., Roda, N. D. M., de Abreu, G. P., Bernado, W. D. P., Rodrigues, W. P., Campostrini, E., and Rakocevic, M. (2022). "Kaolin film increases gas exchange parameters of coffee seedlings during transference from nursery to full sunlight," *Fron. Plant Sci.* 12, article 784482. DOI:10.3389/fpls.2021.784482
- Denaxa, N.-K., Roussos, P. A., Damvakaris, T., and Stournaras, V. (2012). "Comparative effects of exogenous glycine betaine, kaolin clay particles and Ambiol on photosynthesis, leaf sclerophylly indexes and heat load of olive cv. 'Chondrolia Chalkidikis' under drought," *Sci. Hortic.* 137, 87-94. DOI: 10.1016/j.scienta.2012.01.012
- Denaxa, N.-K., Tsafouros, A., Ntanos, E., Kosta, A., and Roussos, P. A. (2023). "Mitigation of high solar irradiance and heat stress in kiwifruit during summer via the use of alleviating products with different modes of action Part 2. Effects on fruit quality, organoleptic, and phytochemical properties at harvest and after storage," *Agriculture* 13(3), article 701. DOI: 10.3390/agriculture13030701

- Dinis, L.-T., Malheiro, A., Luzio, A., Fraga, H., Ferreira, H., Gonçalves, I., Pinto, G., Correia, C., and Moutinho-Pereira, J. (2018). "Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application: Water relations, photosynthesis and oxidative damage," *Photosynthetica* 56, 641-651. DOI: 10.1007/s11099-017-0714-3
- Ergun, M. (2012). "Postharvest quality of 'Galaxy' apple fruit in response to kaolin-based particle film application," *J. Agric. Sci. Technol.* 14(3), 599-607. URL: http://jast.modares.ac.ir/article-23-4511-en.html
- Fahmy, E. F., El-Rhman, A., and El-Sayed, I. (2023). "Effect of hydrogel and foliar spray with potassium and calcium on the yield, fruit physical and chemical properties of Wonderful pomegranate," *Hortic. Res. J.* 1(4), 107-119. DOI: 10.21608/hrj.2023.347327
- Fageria, N. K. (2009). *The Use of Nutrients in Crop Plants*, CRC Press, Boca Raton, 2009.
- Faghih, S., Zamani, Z., Fatahi, R., and Omidi, M. (2021). "Influence of kaolin application on the most important fruit and leaf characteristics of two apple cultivars under sustained deficit irrigation," *Biol. Res.* 54, 1. DOI: 10.1186/s40659-020-00325-z
- Gao, Q., Xiong, T., Li, X., Chen, W., and Zhu, X. (2019). "Calcium and calcium sensors in fruit development and ripening," *Sci. Hortic.* 253, 412-421. DOI: 10.1016/j.scienta.2019.04.069
- Goss, S. L., Lemons, K. A., Kerstetter, J. E., and Bogner, R. H. (2007). "Determination of calcium salt solubility with changes in pH and PCO₂, simulating varying gastrointestinal environments," *J. Pharm. Pharmacol.* 59(11), 1485-1492. DOI. 10.1211/jpp.59.11.0004
- Gharaghani, A., Javarzari, A. M., and Vahdati, K. (2018). "Kaolin particle film alleviates adverse effects of light and heat stresses and improves nut and kernel quality in Persian walnut," *Sci. Hortic.* 239, 35-40. DOI: 10.1016/j.scienta.2018.05.024
- Gharaghani, A., Javarzari, A. M., Rezaei, A., and Nejati, R. (2023). "Kaolin spray improves growth, physiological functions, yield, and nut quality of 'Tardy Nonpareil' almond under deficit irrigation regimens," *Erwerbs-Obstbau* 65(4), 989-1001.
- Ghesmati, M., Moradinezhad, F., and Khayyat, M. (2017). "Effects of foliar application of calcium nitrate and calcium chloride on antioxidant properties and quality of *Ziziphus jujuba* Mill," *Iran. J. Med. Aromat. Plants* 33 (5), Pe871-Pe880, En881 ref. 45.
- http://ijmapr.areeo.ac.ir/article_114028_26999f47ac20a6394281c046c38edd78.pdf Glenn, D. M. (2012). "The mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops," *HortSci.* 47(6), 710-711. DOI: 10.21273/HORTSCI.47.6.710
- Glenn, D. M., and Puterka, G. J. (2010). "Particle films: A new technology for agriculture," *Hortic. Rev.* 31, 1-44. DOI:10.1002/9780470650882.ch1
- Gullo, G., Dattola, A., Vonella, V., and Zappia, R. (2020). "Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree *Citrus sinensis* (L.)," *Osb. Eur. J. Agron.* 118, article 126071. DOI: 10.1016/j.eja.2020.126071
- Gupta, A., Tripathi, V. K., and Shukla, J. K. (2022). "Influence of GA₃, zinc and boron on fruit drop, yield and quality of litchi (*Litchi chinensis* Sonn.)," *Biol. Forum-Int. J.* 14(3), 1079-1083.
- Gupta, U., and Solanki, H. (2013). "Impact of boron deficiency on plant growth," *Inter. J. Bioass.* 2(7), 1048-1050.

- Han, S., Chen, L.-S., Jiang, H.-X., Smith, B. R., Yang, L.-T., and Xie, C.-Y. (2008). "Boron deficiency decreases growth and photosynthesis and increases starch and hexoses in leaves of citrus seedlings," *J. Plant Physiol.* 165(13), 1331-1341. DOI: 10.1016/j.jplph.2007.11.002
- Hanusa, T. P. (2025). "Calcium," Encyclopedia Britannica, Accessed 20 August 2025, https://www.britannica.com/science/calcium.
- Huang, W., Shi, Y., Yan, H., Wang, H., Wu, D., Grierson, D., and Chen, K. (2023). "The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage," *J. Adv. Res.* 49, 47-62. DOI: 10.1016/j.jare.2022.09.009
- Jaime-Guerrero, M., Álvarez-Herrera, J. G., and Fischer, G. (2024). "Effect of calcium on fruit quality: A review," *Agronomía Colombiana* 42(1), 1-14. DOI: 10.15446/agron.colomb.v42n1.112026
- Jain, V., Chawla, S., Choudhary, P., and Jain, S. (2019). "Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (*Ziziphus mauritiana* Lamk.) fruits during storage," *J. Food Sci. Technol.* 56, 4535-4542. DOI: 10.1007/s13197-019-03934-z
- Jakhar, A. M., Aziz, I., Kaleri, A. R., Hasnain, M., Haider, G., Ma, J., and Abideen, Z. (2022). "Nano-fertilizers: A sustainable technology for improving crop nutrition and food security," *NanoImpact* 27, article 100411. DOI: 10.1016/j.impact.2022. 100411
- Kalcsits, L., Musacchi, S., Layne, D. R., Schmidt, T., Mupambi, G., Serra, S., Mendoza, M., Asteggiano, L., Jarolmasjed, S., and Sankaran, S. (2017). "Above and belowground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple," *Agric. For. Meteorol.* 237, 9-17. DOI: 10.1016/j.agrformet.2017.01.016
- Khayyat, M., Tafazoli, E., Eshghi, S., and Rajaee, S. (2007). "Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm," *Am. Eurasian. J. Agric. Environ. Sci.* 2(3), 289-296.
- Korkmaz, M., and Askın M. A. (2015). "Effects of calcium and boron foliar application on pomegranate (*Punica granatum* L.) fruit quality, yield, and seasonal changes of leaf mineral nutrition," *Acta Hortic*. 1089, 413-422. DOI: 10.17660/ActaHortic.2015.1089.57
- Lam, H.-H., Dinh, T.-H., and Dang-Bao, T. (2021). "Quantification of total sugars and reducing sugars of dragon fruit-derived sugar samples by UV-Vis spectrophotometric method," *IOP Conference Series: Earth and Environmental Science, IOP Publishing*, 947(1), article 012041. DOI: 10.1088/1755-1315/947/1/012041.
- Lewis, D. H. (2019). "Boron: The essential element for vascular plants that never was," *New Phytol.* 221, 1685-1690. DOI: 10.1111/nph.15519
- Li, S., Yan, L., Venuste, M., Xu, F., Shi, L., White, P. J., Wang, X., and Ding, G. (2023). "A critical review of plant adaptation to environmental boron stress: Uptake, utilization, and interplay with other abiotic and biotic factors," *Chemosphere* 338, article 139474. DOI: 10.1016/j.chemosphere.2023.139474
- Luciani, E., Palliotti, A., Frioni, T., Tombesi, S., Villa, F., Zadra, C., and Farinelli, D. (2020). "Kaolin treatments on Tonda Giffoni hazelnut (*Corylus avellana* L.) for the control of heat stress damages," *Sci. Hortic*. 263, article 109097. DOI: 10.1016/j.scienta.2019.109097
- Madani, B., Mohamed, M. T. M., Watkins, C. B., Kadir, J., Awang, Y., and Shojaei, T. R. (2014). "Preharvest calcium chloride sprays affect ripening of Eksotika II'papaya

- fruits during cold storage," *Sci. Hortic.* 171, 6-13. DOI:10.1016/j.scienta.2014.03.032 Marschner, P. (2012). *Mineral Nutrition of Higher Plants* (3rd Ed.), Academic Press London.
- Michailidis, M., Karagiannis, E., Tanou, G., Samiotaki, M., Tsiolas, G., Sarrou, E., Stamatakis, G., Ganopoulos, I., Martens, S., Argiriou, A., and Molassiotis, A. (2020). "Novel insights into the calcium action in cherry fruit development revealed by high-throughput mapping," *Plant Mol. Biol.*, 104, 597-614. DOI: 10.1007/s11103-020-01063-2
- Milagres, C. d. C., Maia, J. T. L. S., Ventrella, M. C., and Martinez, H. E. P. (2019). "Anatomical changes in cherry tomato plants caused by boron deficiency," *Braz. J. Bot.* 42, 319-328. DOI: 10.1007/s40415-019-00537-y
- Mogazy, A. M., Mohamed, H. I., and El-Mahdy, O. M. (2022). "Calcium and iron nanoparticles: A positive modulator of innate immune responses in strawberry against *Botrytis cinerea*," *Process Biochem.* 115, 128-145. DOI: 10.1016/j.procbio.2022.02.014
- Mohammed, N., Malchoul, G., and Bousissa, A. (2018). "Effect of foliar spraying with B, Zn and Fe on flowering, fruit set and physical traits of the lemon fruits (*Citrus Meyeri*)," *SSRG Int. J. Agric. Env. Sci.* 5(2), 50-57. DOI: 10.14445/23942568/IJAES-V5I2P107
- Mosa, W. F. A., N. A. Abd EL-Megeed and L. S. Paszt (2015). "The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of 'Anna' apple trees," *A. J. Exp. Agric*. 8(4), 224-234.
- Mounika, M., Kumar, T. S., Kumar, A. K., Joshi, V., and Sunil, N. (2021). "Studies on the effect of foliar application of calcium, potassium and silicon on quality and shelf life of sweet orange (*Citrus sinensis* L.) cv. Sathgudi," *J. Pharmacogn. Phytochem.* 10, 1711-1713.
- Nangare, D., Taware, P., Singh, Y., Kumar, P., Bal, S., Ali, S., and Pathak, H. (2020). "Dragon fruit: A potential crop for abiotic stressed areas," *Tech. Bull.* 46, 24.
- Nasrallah, A. K., Kheder, A. A., Kord, M. A., Fouad, A. S., El-Mogy, M. M., and Atia, M. A. (2022). "Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application," *Horticulturae* 8(1), article 75. DOI: 10.3390/ horticulturae8010075
- Nielsen, S. S. (2017). "Vitamin C determination by indophenol method," in: *Food Analysis Laboratory Manual*, Springer, Cham, Switzerland, pp. 143-146. DOI: 10.1007/978-3-319-44127-6 15
- Pareek, S., Valero, D., and Serrano, M. (2015). "Postharvest biology and technology of pomegranate," *J. Sci. Food Agric.* 95(12), 2360-2379. DOI: 10.1002/jsfa.7069
- Rachappanavar, V., Padiyal, A., Sharma, J. K., and Gupta, S. K. (2022). "Plant hormone-mediated stress regulation responses in fruit crops A review," *Sci. Hortic.* 304, article 111302. DOI: 10.1016/j. scienta.2022.111302
- Ramírez-Godoy, A., Puentes-Peréz, G., and Restrepo-Díaz, H. (2018). "Evaluation of the effect of foliar application of kaolin clay and calcium carbonate on populations of *Diaphorina citri* (Hemiptera: Liviidae) in Tahiti lime," *Crop Prot.* 109, 62-71. DOI: 10.1016/j.cropro.2018.01.012
- Ranjbar, S., Ramezanian, A., and Rahemi, M. (2020). "Nano-calcium and its potential to improve 'Red Delicious' apple fruit characteristics," *Hortic. Environ. Biot.* 61, 23-30. DOI: 10.1007/s13580-019-00168-y

- Ruchal, O. K., Pandeya, S. R., Regmia, R., Regmib, R., and Magrati, B. B. (2020). "Effect of foliar application of micronutrient (Zinc and Boron) in flowering and fruit setting of mandarin (*Citrus reticulata* Blanco) in Dailekh, Nepal," *MJSA*, 4(2), 94-98.
- Sajid, M., Basit, A., Shah, S. T., Khan, A., Ullah, I., Bilal, M., ... and Khan, W. (2024). "Enhancing the quality and fruit yield of sweet cherry (*Prunus avium*) cultivars by foliar application of boron," *Appl. Fruit Sci.* 66(2), 485-494.
- Sarooghinia, F., Khadivi, A., Abbasifar, A., and Khaleghi, A. (2020). "Foliar application of kaolin to reduce sunburn in 'Red Delicious' apple," *Erwerbs-Obstbau* 62(1), article 83. DOI: 10.1007/s10341-019-00464-y
- Saure, M. C. (2005). "Calcium translocation to fleshy fruit: Its mechanism and endogenous control," *Sci. Hortic.* 105(1), 65-89. DOI: 10.1016/j.scienta.2004.10.003
- Segura-Monroy, S., Uribe-Vallejo, A., Ramirez-Godoy, A., and Restrepo-Diaz, H. (2015). "Effect of kaolin application on growth, water use efficiency, and leaf epidermis characteristics of *Physallis peruviana* seedlings under two irrigation regimes," *J. Agric. Sci. Technol.* 17(6), 1585-1596. URL: http://jast.modares.ac.ir/article-23-2523-en.html
- Snedecor, G. C., and Cochran, W. G. (2021). *Statistical Methods*, 8th Ed., Iowa State University Press, Ames, IA, USA.
- Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., and Bie, Z. (2018). "Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture," *Int. J. Mol. Sci.* 19(7), article 1856. DOI: 10.3390/ijms19071856
- Sotiropoulos, Th. E., Therios, I. N., Dimassi, K. N., Bosabalidis, A., and Kofidis, G. (2002). "Nutritional status, growth, CO₂ assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity," *J. Plant Nutr.* 25(6), 1249-1261. DOI: 10.1081/PLN-120004386
- Sun, D., Zhang, Z., and Chen, F. (2018). "Effects of light intensity, light quality, and illumination period on cell growth, TFA accumulation, and DHA production in *Crypthecodinium* sp. SUN," *J. Appl. Phycol.* 30, 1495-1502. DOI: 10.1007/s10811-017-1379-9
- Terán, F., Vives-Peris, V., López-Climent, M. F., Gómez-Cadenas, A., and Pérez-Clemente, R. M. (2024). "Palliative effects of kaolin on citrus plants under controlled stress conditions of high temperature and high light intensity," *J. Plant Growth Reg.* 43(2), 486-499. DOI: 10.1007/s00344-023-11103-y
- Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., Ashraf, I., and Sanaullah, M. (2020). "Nanotechnology in agriculture: Current status, challenges and future opportunities," *Sci. Total Environ.* 721, article 137778. DOI: 10.1016/j.scitotenv.2020.137778
- Vani, B. R. D., Ramesh, N., Manimaran, S., and Thangavel, P. (2023). "Effect of organic mulches and kaolin clay foliar spray on growth, yield attributes and yield of dry land maize (*Zea mays*)," *Crop Res.* 58(1-2), 29-33. DOI: 10.31830/2454-1761.2023.CR-868.
- Vighi, I. L., Crizel, R. L., Perin, E. C., Rombaldi, C. V., and Galli, V. (2019). "Crosstalk during fruit ripening and stress response among abscisic acid, calcium-dependent protein kinase and phenylpropanoid," *Crit. Rev. Plant Sci.* 38(2), 99-116. DOI:10.1080/07352689.2019.1602959
- Wang, H., Pampati, N., McCormick, W. M., and Bhattacharyya, L. (2016). "Protein nitrogen determination by Kjeldahl digestion and ion chromatography," *J. Pharm.*

- Sci. 105(6), 1851-1857. DOI: 10.1016/j.xphs.2016.03.039
- Wang, N., Yang, C., Pan, Z., Liu, Y., and Peng, S. (2015). "Boron deficiency in woody plants: Various responses and tolerance mechanisms," *Front. Plant Sci.* 6, article 916. DOI: 10.3389/fpls. 2015.00916
- Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., and Lipok, J. (2022). "Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry," *Plant Meth.* 18(1), article 22. DOI: 10.1186/s 13007-022-00854-6
- Xu, W. P., Wang, L., Yang, Q., Wei, Y. H., Zhang, C. X. and Wang, S. P. (2015). "Effect of calcium and boron on the quality of kiwifruit," *Acta Hortic*. 1096, 317-320. DOI: 10.17660/ActaHortic.2015. 1096.35
- Xu, W., Wang, P., Yuan, L., Chen, X., and Hu, X. (2021). "Effects of application methods of boron on tomato growth, fruit quality and flavor," *Horticulturae* 7(8), article 223. DOI: 10.3390/horticulturae7080223
- Yadav, A., Yadav, K., and Abd-Elsalam, K. A. (2023). "Nanofertilizers: Types, delivery and advantages in agricultural sustainability," *Agrochem.* 2(2), 296-336. DOI: 10.3390/agrochemicals202 0019
- Zhang, L., Wang, P., Chen, F., Lai, S., Yu, H., and Yang, H. (2019). "Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage," *Food Chem.* 289, 40-48. DOI: 10.1016/j.foodchem.2019.03.008
- Zhou, J., Xiao, W., Chen, X. D., Zhang, Z. J., Wen, B. B., Song, W.L., Gao, D.S., and Li, L. (2018). "Effects of spraying calcium on the postharvest storability of 'Whangkeumbae' pear during young fruit period," *Acta Phytophysiol. Sin.* 54, 1038–1044. DOI: 10.13592/j.cnki.ppj.2018.0062

Article submitted: December 28, 2024; Peer review completed: March 30, 2025; Revised version received: August 20, 2025; Further revised version received September 7, 2025; Accepted: September 8, 2025; Published: September 12, 2025.

DOI: 10.15376/biores.20.4.9606-9624