
 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et. al. (2025). “Spherical porous carbon,” BioResources 20(2), 4229-4249.  4228 

 

Role of Intrinsic and Extrinsic Silicon on the Structure 
and Adsorption Properties of Lignin-Based Spherical 
Porous Carbon 
 

Shuangfeng Li,a Sen Yao,d Huai Wang,a Yong Sun,d Risheng Yao,a,*  

and Fenghe Li ,b,a,c,* 

 
* Corresponding author: lifenghe@ahmu.edu.cn; rishengyao@163.com 

 
DOI: 10.15376/biores.20.2.4229-4249 

 
 
GRAPHICAL ABSTRACT 
 

 
  

 

https://orcid.org/0000-0001-6753-2974


 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et. al. (2025). “Spherical porous carbon,” BioResources 20(2), 4229-4249.  4229 

 

Role of Intrinsic and Extrinsic Silicon on the Structure 
and Adsorption Properties of Lignin-Based Spherical 
Porous Carbon 
 

Shuangfeng Li,a Sen Yao,d Huai Wang,a Yong Sun,d Risheng Yao,a,*  

and Fenghe Li ,b,a,c,* 

 
The influence of SiO2 on the properties of lignin spherical porous carbon 
(LSC) was examined. Evidence suggested that the presence of optimal 
SiO2 contributed to stabilizing the spherical structure of LSC and 
significantly enhanced LSC’s ability to adsorb antibiotics. Lignin/SiO2 
composite microspheres, fabricated through co-precipitation with added 
sodium silicate, served as precursors for C/SiO2 composite microspheres 
(LSC-Si(+)). LSC-Si(+) demonstrated excellent adsorption capacity for 
ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline hydrochloride 
(TC). Furthermore, LSC-Si(+) exhibits excellent physicochemical stability 
and noteworthy recyclability, maintaining high adsorption capacity after 
five cycles of recycling. Given the benefits of low cost, ease of production, 
and excellent adsorption performance, LSC-Si(+)-20 holds promise for 
removing antibiotic contaminants from wastewater. 
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INTRODUCTION 
 

 Carbon materials have become one of the most attractive materials in the 21st 

century (Balandin 2011). Among them, spherical porous carbon materials possess 

extremely high chemical and thermal stability, an adjustable specific surface area, pore 

structure, and surface chemistry, as well as regular spherical morphology and high 

adsorption capacity. These properties have led to their extensive application in water 

treatment (Ma et al. 2012; Han et al. 2000; Tran et al. 2020; Gao et al. 2021). In addition, 

their utilization extends to energy storage and conversion, catalysis, blood purification, air 

purification, and soil remediation (Sun and Li 2004; Kolb et al. 2017; Ouzzine et al. 2019; 

Wang 2019; Kameda et al. 2020; Wang et al. 2020; Xu et al. 2020). 

However, precursors for spherical porous carbon materials primarily rely on 

petrochemicals and their derivatives, which exert significant pressure on the environment 

and energy resources (Liu et al. 2015). With the emergence of “green chemistry,” the 

development of bio spherical porous carbon has captured global attention. Spherical lignin 

is considered an ideal carbon precursor due to its abundance of functional groups, 

consistent morphology, adjustable size, high aromatic ring content (up to 60% carbon), and 

renewable nature (Guo et al. 2017; Moreno and Sipponen 2020). 
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The preparation of spherical lignin-based porous carbon mainly includes two 

processes: carbonization and activation. First, carbonization treatment is conducted to 

convert spherical lignin, serving as the precursor, into carbon black with a high carbon 

content. Then, physical or chemical activation treatment is applied to develop the pore 

structure of the lignin-derived carbon black, thereby increasing its specific surface area and 

pore volume. In general, the larger the specific surface area and pore volume of spherical 

porous carbon, the stronger the adsorption capacity. But, it depends on the specific 

application.  

For the preparation of spherical lignin porous carbon, the most important step is to 

prepare spherical lignin carbon precursors. The primary techniques for synthesizing the 

spherical lignin precursor include direct acid hydrolysis (Al-Lagtah et al. 2016; Liu et al. 

2020), self-assembly (Zhao et al. 2016; Jiang 2019), crosslinking polymerization (Yu et al. 

2018), spray drying (Liu et al. 2020), and hydrothermal treatment. Among these, 

hydrothermal treatment is preferred due to its simplicity, controllability, high efficiency, 

and environmental benefits. Using this method, Mao et al. (2018) produced lignin carbon 

spheres through hydrothermal carbonization, starting with enzymatically digested lignin as 

the raw material. Similarly,  spherical lignin has been created by dissolving lignosulfonate 

in an acidic aqueous solution and applying hydrothermal treatment (Fan 2020; Fan et al. 

2020). Ho et al. (2019) used a solvothermal reaction with dimethylsulfoxide as the solvent 

to prepare lignin carbon spheres. Pang et al. (2021) generated lignin microspheres by 

adding poly(vinylpyrrolidone) as a surfactant to a hydrothermal reaction involving kraft 

lignin. Notably, all previous studies have utilized either laboratory-extracted or 

commercially available lignin as precursors, synthesizing spherical lignin through 

solubilization and recombination of lignin molecules, necessitating the use of costly 

chemicals and specialized laboratory equipment. Additionally, spherical lignin can also be 

effectively prepared from black liquor (BL). Cha et al. (2020) successfully extracted lignin 

microspheres (LM) directly from the BL of Miscanthus sacchariflorus using controlled pH 

adjustments and hydrothermal treatment. These microspheres were characterized by their 

polydispersity, smooth surfaces, and narrow size distribution, making this method highly 

suitable for the direct and large-scale extraction of lignin microspheres from BL.  

There are both lignin and silicates present in biomass black liquor. In the solution, 

silica functionalities are mainly surface silanol groups (SiOH); they can be protonated or 

deprotonated in water, and they can interact with polar groups or molecules via hydrogen 

bond interactions (Valetti et al. 2017).  Lignin can form a reinforced three-dimensional 

network structure through electrostatic adsorption with SiO2 in water (Valetti et al. 2017). 

SiO₂ exhibits excellent mechanical properties and thermal stability, and their derivatives 

are widely used to achieve the high-value use of lignin (Wang et al. 2021). 

Antibiotics (ATs) are emerging contaminants frequently detected in the subsurface 

environment (López-Serna et al. 2013; Goldstein et al. 2014; Qiu et al. 2019; Ben et al. 

2020). These compounds pose potential long-term health risks, even at low concentrations 

(Zhang et al. 2018; Zhang et al. 2019). Antibiotic residues in the environment can have 

adverse effects on both soil organisms (Thiele-Bruhn and Beck 2005) and plants (Reichel 

et al. 2015). Sorption is a crucial process that controls the mobility, fate, bioavailability, 

and reactivity of antibiotics in the environment (Zhang et al. 2013). Adsorption is 

recognized as the most promising and cost-effective method for removing various 

emerging contaminants from water and wastewater bodies (Sophia et al. 2018). 
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When preparing LSC with wheat straw BL using a hydrothermal treatment-

carbonization-activation method, the authors observed differences in morphology and 

ciprofloxacin (CIP) adsorption capacity between LSC derived from primary and desilicated 

BL; notably, the structure of LM was more regular and smoother than that of LM-Si(-), 

exhibiting better dispersion. At the same time, during carbonization and activation, the 

structure of LSC-Si(-) was being more severely compromised. In addition, the adsorption 

capacity from desilicated BL was lower. Therefore, this paper aimed to analyze the impact 

of SiO2 on the structure and adsorption capacity of lignin spherical porous carbon, and to 

introduce new methods for preparing high-performance C/SiO2 composite microspheres 

from sodium silicate-enhanced BL. 

  

 
EXPERIMENTAL 
 

Materials 
 Wheat straw was obtained from Changfeng County, Hefei City, Anhui province. 

Ciprofloxacin (CIP), tetracycline hydrochloride (TC), sulfadiazine (SDZ), potassium 

dichromate (Cr6+), Na2SiO3•9H2O, sodium hydroxide (NaOH), and potassium hydroxide 

(KOH) were purchased from Shanghai Aladdin Biochemical Technology Co., LTD. 

Sulfuric acid (H2SO4), hydrofluoric acid (HF), and hydrochloric acid (HCl) were purchased 

from Sinopharm Holding Chemical Reagent Co., LTD. Chemicals were of analytical grade. 

 

Preparation of Lignin Spherical Porous Carbon 
To explore the impact of SiO2 on the properties of lignin porous carbon, two types 

of lignin porous carbon were synthesized: The first type was desilicated lignin spherical 

porous carbon (LSC-Si(-)). 1% (w/v) calcium oxide was added to the BL, reacting at 25 °C 

for 1 h, followed by filtering to remove silica. The BL pH was adjusted to 1 through the 

dropwise addition of 72% H2SO4, followed by a hydrothermal reaction at 121 °C for 1 h. 

After the reaction, the mixture was cooled, filtered, and washed with deionized water under 

vacuum filtration until the pH of the permeate approximated 7, yielding lignin 

microspheres (LM-Si(-)). The prepared LM were carbonized at 700 °C and subsequently 

activated with KOH in a 1:2 mass ratio in a tubular furnace at 800 °C for 120 min under a 

nitrogen atmosphere. The mixture was then washed with hydrochloric acid to remove 

impurities, followed by a rinse with deionized water under vacuum filtration until the pH 

of the permeate approximated 7. Finally, the material was dried at 100 °C for 12 h to yield 

LSC-Si(-). The second type was lignin spherical porous carbon (LSC). Primary BL served 

as the raw material, with all steps identical to those above, except that the desilication step 

was omitted to produce LSC. 

 
Preparation of Silicon-modified Lignin Spherical Porous Carbon by  
Co-precipitation Method 

To verify whether the artificially added silicon element can be successfully loaded 

onto LSC, Na2SiO3·9H2O was selected as the Si source. Na2SiO3·9H2O was added to BL 

at 10 g/L and stirred at 60 °C for 1 h. The hydrothermal reaction, carbonization and 

activation processes were the same as the preparation of lignin spherical porous carbon 

described above, and the sample was named LSC-Si(+)-10. 
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Effect of Different Silica Contents on the Properties of LSC-Si(+) 
Na2SiO3·9H2O was added to the BL according to the addition amount of 5-25 g/L 

and stirred at 60 °C for 1 h. The hydrothermal reaction, carbonization and activation 

processes were the same as the preparation of lignin spherical porous carbon described 

above, and LSC-Si(+) with different SiO2 content is prepared. According to the amount of 

Na2SiO3·9H2O added, they were named as LSC-Si(+)-5, LSC-Si(+)-10, LSC-Si(+)-20, LSC-

Si(+)-25.  

To verify the effect of the presence of SiO2 on the performance of LSC-Si(+), 30% 

HF was used to react at 80 ℃, 150 rpm for 4 h to remove SiO2. During the experiment, the 

container is opened in a fume hood. 

 
Characterization 

The surface morphology and composition of samples were examined with the help 

of a scanning electron microscope (SEM, Gemini 500, Carl Zeiss, Germany). X-ray 

photoelectron spectroscopy (XPS, Thermo Nicolet, USA) analysis was made with the help 

of Thermo Scientific KAlpha determining the chemical-structure of porous carbon. The 

structural confirmation was made with the help of Fourier-transform infrared (FTIR) 

spectroscopy.  

The measurements were obtained using a Nicolet 6700 spectrometer (Thermo 

Nicolet, USA) with a 4 cm−1 resolution in the range of 4000 to 600 cm−1. Brunauer-

Emmett-Teller (BET) surface area, pore size, and total pore volume were obtained using a 

specific surface area and aperture analyzer (Micromeritics ASAP 2460, USA).  

Antibiotics concentrations were measured using an ultraviolet spectrophotometer 

(UV-117A, Agilent, USA). In order to obtain more structural information of the materials, 

X-ray diffraction (XRD) characterization was performed (PAN analytical X-Pert PRO 

MPD, Netherlands).  

 
Antibiotic Adsorption Selectivity of LSC-Si(+)-20 

The adsorption capacity of LSC-Si(+)-20 on CIP, sulfadiazine (SDZ) and 

tetracycline hydrochloride (TC) was investigated: 10 mg of LSC-Si(+)-20 was mixed with 

40 mL of antibiotic solution at a concentration of 200 mg/L, and LSC was used as a control. 

The adsorption test was carried out at 25 °C until the adsorption equilibrium, and the 

supernatant was filtered through 0.22 μm filter membrane. The concentration was 

determined by UV spectrophotometer. 

 

Adsorption of Heavy Metal Ions Cr (VI) 
In order to explore the adsorption capacity of LSC-Si(+)-20 on heavy metal ions, it 

was applied to the adsorption of Cr6+. 10 mg of LSC-Si(+)-20 was mixed with 60 mL of 

Cr6+ at a concentration of 100 mg/L, and LSC  was used as a control. The adsorption test 

was carried out at 25 °C until the adsorption equilibrium, and the supernatant was filtered 

through 0.22 μm filter membrane.  

The concentration of Cr6+ before and after adsorption was determined by dibenzoyl 

dihydrazine spectrophotometry at 540 nm. 
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Batch Adsorption Experiments 
In experiments of equilibrium adsorption isotherm, LSC-Si(-), LSC, LSC-Si(+)-5, 

LSC-Si(+)-10, LSC-Si(+)-20, LSC-Si(+)-25 (10 mg) and CIP solution (C0=50-300 mg/L, 80 

mL) were placed in a 250 mL Erlenmeyer flask and shaken for 12 h by an incubator at the 

constant temperature of 298 K. In kinetic adsorption tests, the absorption was measured at 

different time intervals (1-360 min) after 200 mL of CIP solution (100 mg/L) at 298 K was 

mixed with 50 mg LSC-Si(-), LSC, LSC-Si(+)-5, LSC-Si(+)-10, and LSC-Si(+)-20, 

respectively.  

Adsorption thermodynamic tests were carried out using an adsorbent of 10 mg 

(LSC and LSC-Si(+)-5) and CIP solution (40 mL) comprising 150 mg/L at temperatures 

ranging from 298 to 318 K. Following the adsorption, the obtained mixture was filtered 

with the help of syringe filter (0.22 μm). Afterwards, the residual CIP solution 

concentration was determined using a UV–vis spectrophotometer at a specific wavelength 

of 278 nm. All of the adsorption tests were conducted in triplicate, and their average value 

was determined. 

Equation 1 was used to calculate the adsorption capacity of the prepared adsorbent, 

  𝑄𝑒 =
(𝐶0−𝐶𝑡)×𝑉

𝑊
                                                                                          (1) 

where Qe (mg/g), C0 (mg/L), Ct (mg/L), V (L), and W (mg) values represent the adsorption 

capacity at time t (min), initial CIP concentration, residual CIP concentration at t, volume 

of solution, and mass of the adsorbent, respectively. 

The Langmuir (Eq. 2) and Freundlich (Eq. 3) isotherm models and separation factor 

(Eq. 4) are presented as follows, 

𝑄𝑒 =
𝑄𝑚𝑎𝑥𝐾𝐿𝐶𝑒

1+𝐾𝐿𝐶𝑒
                                                                                       (2) 

𝑄𝑒 = 𝐾𝐹𝐶𝑒
1/𝑛

                                                                                         (3) 

𝑅𝐿 =
1

1+𝐾𝐿 𝐶0 
                                                                                          (4) 

where Qe (mg/g), Qmax (mg/g), Ce (mg/L), KL and KF (L/mg), and n stand for the equilibrium 

adsorption capacity (mg/g), the maximum adsorption capacity, the equilibrium 

concentration, the Langmuir constants, and Freundlich constants indicating the adsorption 

capacity as well as intensity, respectively. 

Equations 5 and 6 represent the pseudo-first-order, and pseudo-second-order 

kinetic models, 

𝑄𝑡 = 𝑄𝑒(1 − 𝑒−𝑘1𝑡)                                                                                   (5) 

𝑄t =
𝑘2𝑄e

2𝑡

1+𝑘2𝑄e𝑡
                                                                                               (6) 

where k1 and k2 are the adsorption rate constant (L/min) and the rate constant (g/mg⋅min), 

respectively. 

The intraparticle diffusion model (Eq. 7) is described as follows, 

𝑄𝑡 = 𝐾𝑖𝑡0.5 + 𝐶𝑖                                                                                         (7) 

where ki is the rate constant (mg/g⋅min0.5) and Ci is the intercept relating to the boundary 

layer thickness. 

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et. al. (2025). “Spherical porous carbon,” BioResources 20(2), 4229-4249.  4234 

The thermal changes during the adsorption process were assessed using 

thermodynamic parameters. In this regard, the Gibbs energy change (ΔG◦, kJ/mol) is 

represented by Eq. 8, while the enthalpy change (ΔH◦, kJ/mol) and entropy change (ΔS◦, 

J/mol•K) were calculated by Eqs. 9 through 11 (Lima et al. 2019), 

𝛥𝐺◦ = 𝛥𝐻◦ −  𝑇𝛥𝑆◦                                                                               (8) 

𝛥𝐺◦ = − 𝑅𝑇𝑙𝑛𝐾𝐶                                                                                       (9) 

𝐾𝐶 =
𝑄𝑒

𝐶𝑒
K                                                                                                  (10) 

𝑙𝑛
𝐶𝐴𝑐

𝐶𝑒
= −

𝛥𝐻◦

𝑅𝑇
+

𝛥𝑆◦

𝑅
                                                                                 (11) 

where Kc is the equilibrium constant. R (8.314 J/K•mol) represents the universal gas 

constant, while the T (K) indicates the absolute temperature. 

 
Regeneration Performance of LSC-Si(+)-20 

The recoverability of the adsorbent is very important for practical applications (Hou 

et al. 2021). Since the solution recovery method consumes a large amount of solvents and 

improper treatment can easily lead to secondary pollution of water resources by acidity or 

alkalinity, the pyrolysis method was used to recover LSC-Si(+)-20, the specific operation 

is: the adsorbed porous carbon was heated to 700 °C at a rate of 10 °C/min under an N2 

atmosphere and pyrolyzed at this constant temperature for 60 min. 

 

 
RESULTS AND DISCUSSION 
 

Effect of SiO2 on the Properties of Lignin Spherical Porous Carbon 
Si-O-C represents the characteristic peak of SiO2. As shown in Fig 1a, the Si-O-C 

peak in LSC-Si(-) was notably weaker compared to that in LSC, indicating significant 

removal of SiO2.  

As indicated in Fig. 1 (b), LSC demonstrated superior adsorption capacity for CIP 

compared to LSC-Si(-). It is evident that the presence of SiO2 enhanced the adsorption 

capacity of LSC for CIP. Comparison of the SEM images in Fig 1 (c) and (e) reveals that 

the structure of LM was more regular and smoother than that of LM-Si(-), exhibiting better 

dispersion. From Figs. 1 (d) and (f), it was observed that the spherical structures of both 

LSC and LSC-Si(-) exhibited varying degrees of fusion and collapse, with the structure of 

LSC-Si(-) being more severely compromised. 

SiO2 enhanced the adsorption capacity of CIP by LSC. The primary reason may be 

that SiO2 forms hydrogen bonds with lignin and adheres to the surface of LSC (Zhong et 

al. 2015). Due to the polar nature of the Si-O bond, Si-O-C groups exhibit distinct charge 

distribution, facilitating the adsorption of CIP by LSC. Simultaneously, SiO2 in solution 

forms hydrogen-bonded adsorption with CIP, demonstrating significant adsorption 

capacity for CIP (Valetti et al. 2017). A second reason might be that lignin, with its low 

thermal decomposition temperature, is susceptible to collapse during high-temperature 

pyrolysis, while SiO2, possessing robust substrate strength and mechanical stress 

resistance, serves as a hard template agent supporting the lignin carbon skeleton. This 

prevents aggregation and collapse of LSC, thus enhancing its spherical structural stability. 
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Fig. 1. LSC and LSC-Si(-): (a) Si 2p spectra. (b) Comparison of adsorption rates for CIP. SEM image 
of LM(c), LSC (d), LM-Si(-) (e) , LSC-Si(-) (f)  

 
Preparation of Lignin Spherical Activated Carbon Loaded with SiO2 

As shown in Fig. 2(a), the turbidity of both BL and BL with 10 g/L Na2SiO3·9H2O 

(BL-Na2SiO3-10) exhibited an increasing and then decreasing trend during acid titration. 

When the pH dropped below 7, the turbidity of BL-Na2SiO3-10 was significantly 

higher than that of BL, whereas the turbidity of the 10 g/L Na2SiO3·9H2O solution 

remained relatively unchanged during titration. As depicted in Fig. 2(b), the presence of 

Si-O-Si bonds in LSC-Si(+)-10 indicated successful SiO2 loading onto LSC. This suggests 

that the co-precipitation of SiO2 and lignin occurred during acidification, coinciding with 

the pH reduction during titration. In the SiO2 molecule, the oxygen atoms, possessing 

higher electronegativity than the silicon atoms, attract the surrounding hydrogen atoms. 

Consequently, hydrogen bonds form between SiO2 and lignin molecules, leading to co-

precipitation and the formation of lignin/ SiO2 composites. According to the XRD image 
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in Fig. 2(c), LSC-Si(+)-10 exhibited an amorphous carbon structure along with an 

amorphous SiO2 surface. As shown in Fig. 2(d), the adsorption amount on LSC-Si(+)-10 

was significantly higher than that of LSC, indicating that SiO2 loading on the surface of 

LSC enhanced its CIP adsorption capacity.  
 

  
    
Fig. 2. (a) Turbidity curves of BL, BL-Na2SiO3-10 and 10 g/L Na2SiO3·9H2O with pH, (b) Si 2p 
spectra of LSC-Si(+)-10 and LSC, (c) XRD pattern of LSC-Si(+)-10, (d) Comparison of adsorption 
capacities of LSC-Si(+)-10 and LSC 

 

In summary, the incorporation of Na2SiO3·9H2O successfully loaded SiO2 onto 

LSC, enhancing its adsorption capacity for CIP. On the surface of LSC-Si(+)-10, Si-O-Si 

groups form numerous Si-O-Si bonds, and multiple groups contributed to a three-

dimensional network structure through shared oxygen atoms. This structure significantly 

influences the material transport, pore structure, and surface chemistry of LSC-Si(+)-10, 

thereby enhancing the surface’s activity and adsorption capacity.  

 
Effect of Different Silica Contents on the Properties of LSC-Si(+) 
FTIR and XPS 

From the FTIR spectra shown in Fig. 3, the characteristic SiO2 peaks of LM- Si(+) 

(at 972 cm-1) became more prominent with increasing Na2SiO3·9H2O addition. Elemental 

analyses in Table 1 reveal that the Si and O content in LSC-Si(+) increased with higher 

Na2SiO3·9H2O additions, whereas the carbon content slightly decreased. However, carbon 

remained the dominant element, indicating that the hybrid materials, even with 

experimental Na2SiO3·9H2O additions, are primarily lignin-carbon based. The Si content 
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in LSC-Si(+)-25 was notably higher, correlating with the concentration of Na2SiO3·9H2O 

solution; a higher concentration results in more SiO2 co-precipitated and loaded onto the 

lignin. 

 

 
Fig. 3. FTIR spectroscopy of LM-Si(+) with different SiO2 content 
 

Table 1. Elemental Analysis of LSC-Si(+) with Different SiO2 Content 

Element 
PP At. % 

LSC-Si(+) LSC-Si(+)-5 LSC-Si(+)-10 LSC-Si(+)-20 LSC-Si(+)-25 

C 1s 93.17 87.91 81.37 76.36 55.04 

O 1s 4.87 8.78 10.09 12.24 19.18 

Si 2p 0.75 2.15 7.15 9.72 23.79 

N 1s 1.20 1.16 1.39 1.68 1.99 

 

SEM, BET, and adsorption of CIP 

Comparing Figs. 4(a), (b), and (c) with Figs. 2(d) and (f), it becomes evident that 

with Na2SiO3·9H2O additions of up to 20 g/L, the increased silicon content promoted the 

formation of a more regular and stable spherical structure in LSC, without noticeable 

collapse. This observation suggests that SiO2 served as a stabilizer, preserving the spherical 

structure of lignin microspheres throughout the carbonization process. However, when 

Na2SiO3·9H2O additions reached 25 g/L, excessive SiO2 loading on the lignin surface 

hindered its ability to condense into a spherical structure during the hydrothermal reaction. 

As illustrated in Figs. 5(a) and (b), with the increase of SiO2 loading, the specific 

surface areas of LSC-Si(+)-5, LSC-Si(+)-10, and LSC-Si(+)-20 showed no significant change; 

however, their adsorption capacities for CIP significantly increased. Meantime, the specific 

surface area of LSC-Si(+)-25 decreased significantly, and its adsorption capacity 

significantly decreased. This indicates that pore adsorption was not the sole factor 

determining the CIP adsorption capacity of LSC. The presence of a moderate amount of 

SiO2 can significantly enhance the adsorption capacity.  
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Fig. 4. SEM image of LSC-Si(+)-5 (a), LSC-Si(+)-10 (b), LSC-Si(+)-20 (c), LSC-Si(+)-25 (d) 

 

To further verify the impact of SiO2 on the adsorption capacity of CIP by LSC-Si(+), 

the adsorption capacities of LSC-Si(+) before and after desilication were compared (refer to 

Table S1 and Fig S1). These comparisons substantiate that the presence of a moderate 

amount of SiO2 can significantly enhance the adsorption capacity. Given the morphology 

and adsorption capacity of the activated carbon, LSC-Si(+)-20 was selected for further 

investigation of its adsorption performance, with LSC serving as a comparison.  

The adsorption capacities of LSC-Si(+)-20 and LSC for CIP, TC, and SDZ are 

displayed in Fig. 5(c). It is evident that the adsorption capacity of LSC-Si(+)-20 for the three 

antibiotics surpassed that of LSC. Furthermore, LSC-Si(+)-20 exhibited a higher adsorption 

capacity compared to other porous carbons (Jang et al. 2018; Canevesi et al. 2020; He et 

al. 2020; Meng et al. 2020; Geng et al. 2021). To further explore the adsorption 

characteristics of LSC-Si(+)-20, CIP was selected as the target adsorbent for a series of 

experiments.  

The influence of pH on the adsorption activity of CIP by LSC-Si(+)-20 was 

explored. As indicated in Fig S1, the point of zero charge (pHpzc) was found to be 7.5 for 

LSC and 6.5 for LSC-Si(+)-20. This reduction in pHpzc for LSC-Si(+)-20, compared to LSC, 

is attributable to the surface loading of SiO2, which has a pHpzc of 2.5.  
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Fig. 5. Comparison of specific surface area (a) and CIP adsorption capacity (b) of porous carbon 
predesiliconization and after desilication, (c) Antibiotic diversity adsorption by LSC-Si(+)-20 

 
Adsorption Capacity of LSC-Si(+)-20 
 Adsorption kinetics  

Figure 6(a) presents the adsorption kinetics data. For LSC-Si(+)-20, the removal 

efficiency of CIP increased significantly within the first few min, reaching adsorption 

equilibrium after 60 min.  

To elucidate the adsorption behavior of CIP on the adsorbent, the pseudo-primary 

kinetic model (PFOM), pseudo-secondary kinetic model (PSOM), and intra-particle 

diffusion model (IPDM) were employed to determine the controlling mechanisms of 

adsorption type and rate (Liu et al. 2022). The fitting results of these three models are 

displayed in Tables 2 and 3. Clearly, the PFOM (R2 > 0.9659) and PSOM (R2 > 0.9837) 

accurately described the adsorption behavior of CIP on LSC-Si(+)-20. Simultaneously, the 

experimental results are significant for PSOM, suggesting that CIP adsorption on the 

studied samples is predominantly driven by chemical processes (Meng et al. 2020; Wang 

et al. 2020).  

0

50

100

150

200

250

300

350

400

450

Q
e

 (
m

g
/g

)

LSC LSC-Si(+)-5 LSC-Si(+)-10 LSC-Si(+)-20 LSC-Si(+)-25

0

500

1000

1500

2000

2500

Q
u

a
n

ti
ty

 A
d

s
o

rb
e

d
 (

c
m

3
/g

 S
T

P
)

LSC LSC-Si(+)-5 LSC-Si(+)-10 LSC-Si(+)-20 LSC-Si(+)-25

567.58
615.62

407.65

719.58 702.41

508.02

CIP SDZ TC

0

150

300

450

600

750

900

Q
e
 (

m
g

/g
)

Different kinds of antibiotics

 LSC

 Si-LSC(+)-20

(a) 

(c) 

(b) 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et. al. (2025). “Spherical porous carbon,” BioResources 20(2), 4229-4249.  4240 

Fig. 6. Comparison of CIP adsorption properties of LSC and LSC-Si(+)-20, (a) influence of contact 
time and adsorption evaluation, (b) IPDM and (c) adsorption isotherm curves 
 

Table 2. The Fitting Parameters of PFOM and PSOM of CIP Adsorption  

 
PFOM PSOM 

Q max, exp 

mg/g Qe K1 
R2 

Qe K2 
R2 

mg/g 1/h mg/g g/(mg· min) 

LSC 350.67 0.0491 0.9371 388.46 0.00017 0.9880 382.29 

LSC-Si(+)-20 391.04 0.1499 0.9659 418.60 0.00056 0.9837 400.00 

 

Table 3. The Fitting Parameters of IPDM of CIP Adsorption 

Adsorbents 

IPDM 

Step 1 Step 2 Step 3 

K1d C1d R2 K2d C2d R2 K3d C3d R2 

LSC 44.38 12.95 0.9982 20.38 146.83 0.9966 4.88 291.23 0.9853 

LSC-Si(+)-20 93.44 5.28 0.9969 23.22 242.79 0.9303 0 400 -- 

 

Continuous adsorption and desorption, as well as intraparticle diffusion are key 

steps in the adsorption (Hubbe et al. 2019). As illustrated in Fig. 6(b), due to the high 

concentration of CIP in the aqueous phase, the initial step involves the diffusion of CIP 

molecules to the surface of LSC-Si(+)-20 and subsequent occupation of active sites (Tian et 

al. 2023). The second step involves the dispersion of CIP molecules into the LSC-Si(+)-20 
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structure; as their concentration diminishes, adsorption eventually reaches equilibrium (Wu 

et al. 2016; Liu et al. 2017). 

Adsorption isotherm 

Analyzing the isotherm models of adsorbents is crucial, as it provides further 

insight into the interactions between the adsorbents and CIP. The adsorption isotherm data 

for CIP were nonlinearly fitted using the Langmuir and Freundlich models, with the results 

and model parameters displayed in Fig. 6(c) and Table. 4. The R2 values for the isotherm 

models exceeded 0.95, suggesting that these models adequately characterize the adsorption 

process. For these adsorbents, the CIP adsorption process demonstrated monolayer 

chemisorption, characterized by homogeneous adsorption sites and significant electrostatic 

interactions, as evidenced by the higher R2 values for the Langmuir model compared to the 

Freundlich model. Additionally, the Freundlich constant (1/n) being less than 1 indicates 

that the adsorption of CIP on these adsorbents was nonlinear and likely involves physical 

adsorption (Wang et al. 2020).  

The viability of the adsorption process is effectively characterized by the 

equilibrium parameter (RL). LSC-Si(+)-20 and LSC exhibited favorable adsorption 

behavior, as indicated by their RL values (0.0082 and 0.0048, respectively), which fall 

within the 0 to 1.0 range (Xia et al. 2021). Under the experimental conditions, the 

maximum adsorption capacity (Qmax) for LSC-Si(+)-20 was recorded at 794 mg/g. 

Comparing the adsorption performance of other porous adsorbents for CIP (ranging from 

10.4 to 600 mg/g), LSC-Si(+)-20 demonstrated a superior adsorption capacity for CIP (Peng 

et al. 2017; Zhang et al. 2017; Kong et al. 2020; Li et al. 2020; Wang et al. 2020; Velusamy 

et al. 2021; Atugoda et al. 2021; Ma 2021; Sayin et al. 2021; Theamwong et al. 2021; Tang 

et al. 2022; Wang et al. 2022). 

 
Table 4. Adsorption Isothermal Parameters of LSC and LSC-Si(+)-20 

Adsorbents 

Langmuir Freundlich 
Qmax,exp 
mg/g 

Qm KL 
R2 RL 

KF 
1/nF R2 

mg/g L/mg mg/g 

LSC 605.12 2.3879 0.9972 0.0082 359.01 0.1070 0.9880 611.79 

LSC-Si(+)-20 786.51 2.4067 0.9983 0.0048 428.73 0.1276 0.9686 793.61 

 

Thermodynamics of the antibiotics adsorption behavior 

The thermodynamic parameters derived from the equations are summarized in 

Table 5. The negative ΔG° values of CIP at 298, 308, and 318 K indicate the spontaneous 

and feasible nature of adsorption across these temperatures. As the temperature increased, 

the absolute value of ΔG° for LSC-Si(+)-20 also increased, suggesting that higher 

temperatures enhance antibiotic adsorption due to a greater driving force between the 

solution and solid phase (Zhang et al. 2015). The positive ΔH values suggest that the 

adsorption of target antibiotics is endothermic, aligning with the observed increase in 

adsorption at higher temperatures. The corresponding ΔS° values for LSC-Si(+)-20 were 

359 kJ/(mol·K), indicating a reduction in the degree of freedom at the interface between 

the solid and solution phases upon adsorption of target antibiotics onto LSC-Si(+)-20 (Peng 

et al. 2015). 
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Table 5. Thermodynamic Parameters for the Adsorption of CIP onto LSC and 
LSC-Si(+)-20 

Adsorbent  
ΔG◦ (kJ/mol)  

ΔH◦ (kJ/mol) ΔS◦ (kJ/(mol·K)) 
298 K 308 K 318 K 

LSC -6.92 -8.15 -9.60 33.03 133.93 

LSC-Si(+)-20 -8.72 -12.03 -15.49 92.20 338.59 

 

Regeneration performance of LSC-Si(+)-20 

Adsorption experiments involved mixing 10 mg of LSC-Si(+)-20 with 40 mL of an 

antibiotic solution at a concentration of 200 mg/L at 298 K. The mixture was oscillated at 

298 K for 12 h to facilitate adsorption. Subsequently, the adsorbed porous carbon was 

heated to 700 °C at a rate of 10 °C/min under an N2 atmosphere and pyrolyzed at this 

constant temperature for 60 min. Figure 7 illustrates that although the adsorption amount 

of CIP by LSC-Si(+)-20 decreased, it retained a high adsorption capacity after five cycles. 

In conclusion, LSC-Si(+)-20 demonstrates substantial regeneration capacity and offers 

economic advantages. This confirms that LSC-Si(+)-20 holds considerable potential for 

widespread application in antibiotic wastewater adsorption. 

 

 
Fig. 7. Regeneration performance of CIP adsorption by LSC-Si(+)-20 
 

Adsorption mechanism 

Figure 8 depicts the potential mechanism of CIP adsorption by LSC-Si(+)-20. LSC-

Si(+)-20, a heterogeneous adsorbent, which comprises LSC and SiO2. LSC-Si(+)-20's high 

adsorption capacity for CIP is partly attributable to its large specific surface area (1846.74 

m²/g) and the abundance of oxygen-containing functional groups that provide numerous 

favorable active sites (Wen et al. 2018). Additionally, it relates to the adsorption properties 

of the surface-loaded SiO2. In solution, SiO2 exhibits both hydrogen bonding and 

electrostatic adsorption with CIP. In aqueous solutions, the electrostatic interactions 

between LSC-Si(+)-20 and CIP effectively remove CIP, representing one of the adsorption 

mechanisms. Given the low solubility of the target antibiotic, the hydrophobic effect likely 

serves as the primary adsorption mechanism (Peng et al. 2015). The nitrogen atom in CIP’s 
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piperazine group can be expected to form a hydrogen bond with the hydroxyl group of 

LSC-Si(+)-20 (Qiang et al. 2013). The delocalized π bond of the fluorine atom on CIP’s 

benzene ring strongly retrieves electrons from the aryl ring, classifying it as a π-electron 

acceptor (Chen et al. 2015). Therefore, the adsorption process of CIP on LSC-Si(+)-20 may 

be facilitated by electrostatic interactions, hydrophobic effects, hydrogen bonding, and π-

π interactions. 

 

 
 

Fig. 8. Schematic diagram of LSC-Si(+)-20 adsorption of CIP 
 

 
CONCLUSIONS 
 

1. The presence of silicon enhances the adsorption capacity of lignin-based spherical 

carbon (LSC). Sodium silicate was added to the black liquor (BL), and SiO2 was 

successfully loaded onto LSC through hydrogen-bonding co-precipitation with lignin 

under acidic conditions. SiO2 serves as a stabilizer, maintaining the spherical structure 

of LSC and significantly enhancing its adsorption capacity.  

2. A composite named LSC-Si(+)-20 demonstrated the best adsorption performance, with 

notable capacities for ciprofloxacin (CIP) (794 mg/g), tetracycline hydrochloride (TC) 

(508 mg/g), sulfadiazine (SDZ) (702 mg/g), and Cr6+ (406 mg/g).  

3. LSC-Si(+)-20 possessed excellent physicochemical stability and good recyclability; it 

retained a high adsorption capacity after five cycles of recycling, offering new insights 

into addressing antibiotic pollution in water bodies. 
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