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Optimising Risk Management in Wood-based
Manufacturing: A Fuzzy AHP-FMEA Framework
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This study integrates the Fuzzy Analytic Hierarchy Process (AHP) with the
Failure Mode and Effects Analysis (FMEA) to enhance risk prioritisation in
wood-based manufacturing. Traditional FMEA methods face challenges in
handling subjective evaluations and complex environments. By
incorporating fuzzy logic, this study refines the Risk Priority Number (RPN)
calculation, enabling a more nuanced assessment of failure modes.
Critical failure points, such as delays in order processing, production, and
delivery, were identified, highlighting their impact on operational efficiency,
customer satisfaction, and financial outcomes. Using the Pareto principle,
it was revealed that addressing the top 20% of the identified risks could
mitigate approximately 80% of the overall risk exposure. Proposed
corrective measures, including enhanced employee training, streamlined
workflows, and improved communication protocols, provide actionable
strategies to optimise processes and ensure sustainability. Conducted
within a Croatian wood-manufacturing company, this framework
demonstrated its efficacy in refining risk assessments and supporting
continuous improvement. The findings advance risk management
methodologies and showcase the potential for broader applications in
dynamic and complex industrial environments.
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INTRODUCTION

Evaluating organisational performance is critical for continuous advancement and
long-term success (Mitrea-Curpanaru 2021). Organisations often identify performance
gaps related to resources, strategies, processes, and motivation through analyses and needs
assessments (Abu Dabous et al. 2021). Addressing these gaps requires setting measurable
objectives and implementing continuous improvement technologies (Abu et al. 2019).
Effective performance management enables organisations to adapt to evolving market
demands and remain competitive (Mitrea-Curpanaru 2021; Skorupinska et al. 2024).

Various risk assessment methods have been developed to identify, evaluate, and
mitigate potential failures in manufacturing. Some widely applied approaches include:

e Hazard and Operability Study (HAZOP): Identifies process deviations and potential
hazards (Crawley et al. 2015).
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e Fault Tree Analysis (FTA) and Event Tree Analysis (ETA): These methods use logic-
based modeling to analyze failure probabilities and potential outcomes (Ericson 2015;
Bedford and Cooke 2001).

e Bow-Tie Analysis: Provides a visual representation of risks and control measures (de
Ruijter and Guldenmund 2016).

e Lean Six Sigma (LSS): A performance improvement approach that combines Lean
principles (waste reduction) and Six Sigma techniques (variation minimization) to
enhance quality (Simanova and Sujova 2022; Skorupinska et al. 2024).

e Multi-Criteria Decision-Making (MCDM) Methods: Used to evaluate and prioritize
risks in complex decision environments (Wang et al. 2020; Grosel;j et al. 2016).

Among these, Failure Mode and Effects Analysis (FMEA) has emerged as a widely
recognized tool due to its structured approach to identifying and prioritizing risks in
manufacturing (Kushwaha et al. 2020). Originally developed in the aerospace sector in the
1960s, FMEA was later adopted by the automotive industry to enhance quality and safety
standards. Over time, it has been implemented across multiple industries, including
manufacturing, healthcare, energy, and software, to systematically assess and mitigate
potential failures (Bailey 2017; Abu et al. 2019; Liu et al. 2020; Mohammadfam and
Gholamizadeh 2021; Talkhooncheh et al. 2021; Yang et al. 2024).

Despite its advantages, traditional FMEA has limitations, including subjectivity in
risk evaluation, inconsistent prioritization, and a restricted numerical scale for RPN values
(Liu et al. 2011). To address these challenges, the Analytic Hierarchy Process (AHP) has
been integrated with FMEA to introduce a hierarchical structure for risk evaluation. AHP
enhances risk prioritization by assigning relative weights to risk factors and using pairwise
comparisons to improve decision-making accuracy (Saaty 1980). AHP has been widely
applied in multiple industries. In manufacturing, AHP has been used to optimize supplier
selection and resource allocation in sustainable practices (Gupta et al. 2015; Dweiri et al.
2016). Within supply chain management, it helped assess and prioritize risks, strengthening
resilience (Tramarico et al. 2015). In the healthcare sector, AHP aided in environmentally
responsible supplier selection, ensuring sustainable procurement (Schmidt et al. 2015).
AHP was also widely used in renewable energy projects, supporting investment and site
selection (Journals.sagepub.com), while in environmental risk assessment, it helped
evaluate environmental impacts and guide risk mitigation strategies (Topuz and van Gestel
2016). Additionally, AHP played a role in consumer decision-making, identifying key
consumer preferences in purchasing and informing marketing strategies (Oblak et al. 2017;
Sharma and Joshi 2019). By incorporating AHP, FMEA's risk prioritization process is
refined, making it a more effective tool for complex risk environments (Liu et al. 2015;
Abdelgawad and Fayek 2010).

In the wood-based industry, production complexities and material variability
require advanced risk assessment tools. FMEA systematically identifies risks and failure
modes in critical processes such as drying, cutting, and finishing, enabling early
intervention to reduce defects, optimize production, and support sustainability goals (Badiu
et al. 2015; Boran and Gokler 2019; Senthilkannan and Parameshwaran 2019; Lv et al.
2020; Basuki et al. 2021; Urbina et al. 2022; Prasmana and Hidayat 2023; Zahra et al.
2024).

However, traditional FMEA struggles with uncertainties, particularly in high-
variability industries such as wood manufacturing (Lo et al. 2018, 2019; Li et al. 2021; Liu
et al. 2019). To address these challenges, a hybrid approach combining fuzzy logic and
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AHP has been introduced, enabling expert-driven weight adjustments and more refined
RPN calculations (Groselj and Dolinar 2023). By incorporating fuzzy linguistic scales, this
advanced framework enhances decision-making accuracy in dynamic production
environments, such as wood processing (Wu et al. 2020; Wieckowski and Satabun 2024).

Additionally, the Pareto Principle has been applied to prioritize critical risks, thus
ensuring optimized resource allocation and reduced overall risk exposure (Keskin Citiroglu
et al. 2022). This principle helps focus risk management efforts on the most significant
failure modes, improving the efficiency of preventive measures.

Study Objectives
This study aims to enhance risk assessment in wood-based manufacturing by

leveraging a Fuzzy AHP-FMEA approach, thereby improving risk prioritization and

decision-making accuracy. The specific objectives are to:

e Identify critical failure points: Use FMEA to address high-risk areas that impact
productivity, quality, and safety.

e Enhance risk prioritisation: Integrate fuzzy AHP with FMEA to manage subjective
evaluations in complex environments.

e Optimize production and safety: Recommend actions to improve efficiency, reduce
costs, and enhance safety.

By integrating structured risk assessment methods with continuous improvement
methodologies, this study seeks to advance risk management practices in the wood-based
industry, ultimately supporting sustainability and efficiency goals.

Theoretical Background: FMEA And Fuzzy AHP

Effective performance management and risk assessment are critical in wood-based
manufacturing, where complex processes and variable materials pose operational
challenges (Susilawati 2021). Issues such as equipment downtime, skill shortages, and
material inconsistencies increase risks and reduce efficiency if not addressed (Susilawati
2021). For example, regular CNC machine maintenance in a Malaysian furniture factory
reduced downtime and stabilised production. Similarly, Badiu et al. (2015) highlighted the
role of maintenance and quality control in reclaimed wood furniture production. Risk
assessment integrated with performance management enhances operational stability, as
demonstrated by Kulinska and Matulewski (2022), who showed that better training and
logistic planning mitigate supply chain risks.

Among the various tools used to strengthen risk assessment and operational
efficiency, FMEA stands out as a systematic approach to identifying and prioritising risks
through RPNs (Sartor and Cescon 2019). It has been applied in the wood manufacturing
sector to reduce defects (Prasmana and Hidayat 2023), minimise waste (Suhardi et al.
2021), and optimise processes such as varnishing (Kholil 2024). For example, integrating
FMEA with Lean Manufacturing reduced defects by 20% in Peruvian wood furniture
production (Urbina et al. 2022). Advanced FMEA models, such as ANFIS-Taguchi (Boran
and Gokler 2019) and fuzzy FMEA (Jatwa and Sukhwani 2022), further expand their
capabilities for complex risk scenarios.

Despite its advantages, FMEA faces limitations such as subjective evaluations,
inconsistent risk implications, and scale constraints (Liu et al. 2011; Li and Chen 2019).
The limited range (120 unique values out of 1000) can lead to redundancy and
misinterpretation (Liu et al. 2013; Chang et al. 2014). By integrating a hierarchical

Peri¢ et al. (2025). “Wood industry risk management,” BioResources 20(2), 2979-3001. 2981



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

structure for evaluating and prioritizing risk factors, AHP reduces inconsistencies in
subjective judgments, enhancing decision-making accuracy (Saaty 1980). AHP structures
complex decision problems into hierarchical levels, allowing for a systematic evaluation
of risk factors. Its pairwise comparison method enables experts to assess the relative
importance of risks rather than assigning fixed numerical scores, reducing subjectivity
(Saaty 1980). Additionally, AHP calculates weighted priorities, improving the precision of
failure mode rankings based on their actual impact (Liu et al. 2015). The Consistency Ratio
(CR) further enhances decision-making by verifying the logical coherence of expert
judgments, minimizing biases (Wang et al. 2020).

The integration of AHP with FMEA significantly improves risk prioritization by
addressing the limitations of the traditional RPN approach. While conventional FMEA
assigns equal weight to severity, occurrence, and detection scores, AHP introduces
customized weightings, ensuring a more precise and industry-specific risk assessment (Liu
et al. 2015; Wang et al. 2020). By incorporating a hierarchical structure and weighted
prioritization, the AHP-FMEA hybrid model enhances decision-making, particularly in
complex industrial environments such as wood-based manufacturing, where risks stem
from material variability, equipment reliability, and supply chain disruptions.

To further overcome the limitations of FMEA, fuzzy logic can be used together
with AHP and FMEA to increase the reliability of expert judgement by reflecting the way
humans naturally think and make decisions. Fuzzy logic was developed by Zadeh (1965)
to deal with uncertainties and ambiguities that often occur in real-life situations. Compared
to classical logic, which relies on binary true-or-false values, fuzzy logic allows for partial
truths, which increases its flexibility and makes it particularly suitable for modelling
complex systems where information is imprecise or subjective. Fuzzy numbers enhance
risk assessment by converting linguistic variables (e.g., ‘low,” ‘medium,” ‘high’) into
numerical intervals using membership functions. The main advantages of fuzzy logic
include its ability to capture linguistic and qualitative information, simplify complex
decision-making processes, and improve the accuracy of evaluations by taking
uncertainties into account. By integrating fuzzy logic into methods including FMEA and
AHP, decision-making under uncertainty becomes more reliable. In particular, in
environmental risk assessment, fuzzy numbers help quantify uncertainties in evaluating the
risks associated with engineered nanomaterials, improving the accuracy of risk
prioritization and mitigation strategies (Topuz and van Gestel 2016). Susilawati et al.
(2015) highlighted fuzzy logic’s effectiveness in managing uncertainty in industrial
processes, building on Zadeh’s (1965) foundational work.

Integrating fuzzy logic with AHP and FMEA reduces uncertainty and refines RPN
calculations, enhancing risk assessment accuracy. For instance, Abdelgawad and Fayek
(2010) introduced a framework that uses fuzzification, inference rules, and defuzzification
to enhance risk assessment. Fuzzy AHP complements this by aggregating criteria such as
cost, time, and quality into a single priority metric, which has been shown to be effective
in dynamic industries. This combined methodology has been applied also to improve
supplier selection (Ramadhanti and Pulansari 2022), CNC router optimisation (Camci and
Temur 2018), and wood decay management (Feili et al. 2018).

Building on this foundation, the fuzzy AHP-FMEA framework embeds fuzzy
weights into FMEA criteria for more realistic RPNs (Groselj and Dolinar 2023). Sensitivity
analysis further strengthens these assessments by evaluating how parameter variations
affect rankings, addressing uncertainties in high-variability industries (Wu et al. 2020;
Wieckowski and Satabun 2024). Its success across industries, such as the assessment of
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submersible pump risk (Bhattacharjee et al. 2022), the robustness of the petrochemical
ranking (Fatollah et al. 2022), and tailored risk prioritisation in wood manufacturing,
highlights its versatility and value in supporting sustainability goals (Senthilkannan and
Parameshwaran 2019).

By integrating fuzzy logic, AHP, and sensitivity analysis, the fuzzy AHP-FMEA
framework provides reliable, nuanced risk assessments, making it indispensable for
industries balancing quantitative data with expert insights.

EXPERIMENTAL

Materials

This study examined a mid-sized company operating in Croatia’s wood-processing
sector, specializing in the supply and processing of panel materials and hardware for
furniture production and interior design. The company plays a vital role in the industry by
offering a diverse selection of materials, including chipboards, MDF boards, veneer panels,
and high-quality flooring solutions. It also provides specialized processing services such
as custom cutting, edging, and CNC machining, catering to furniture manufacturers,
interior designers, and construction firms. With multiple regional distribution centers and
a technologically advanced production facility, the company ensures efficient material
supply and processing capabilities. Its integrated approach, encompassing both raw
material distribution and high-precision machining, supports the evolving needs of the
wood-processing and furniture manufacturing industries. Additionally, its collaborations
with leading global suppliers strengthen its position as a key provider of materials and
technical solutions in the region.

Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a structured method for identifying
potential failures in a product or process, assessing their impact, and implementing
preventive actions. Developed by the U.S. military in the 1940s, FMEA has become a
standard tool across industries to enhance safety and reliability. Its flexibility has led to
widespread adoption in manufacturing, healthcare, and software development, supporting
proactive risk mitigation and improving operational efficiency (Parsana et al. 2014;
Kushwaha et al. 2020; Klari¢ et al. 2025).

The FMEA process involves a team that systematically analyses each component
for potential failure modes, evaluates their effects on the system, and estimates the severity,
occurrence, and detection likelihood of each. Traditional FMEA produces RPNs by
multiplying three risk factor ratings, each assessed on a scale of 1 to 10 (Kushwaha et al.
2020; Table 1), with higher RPN values indicating riskier PFMs:

RPNi:Si'Oi'Di,izl,...,n. (1)

For PEM i, (i=1,...,n), Si represents the severity rating, indicating the strength of
the impact of a PFM on production results. Higher severity levels correspond to PFMs that
are more likely to cause significant disruptions to the production process. Oi denotes the
PFM i occurrence score, reflecting its frequency of occurrence. Di is the detection rating,
measuring the likelihood of identifying the PFM i before it affects the production process.
Higher detection scores signify PFMs that are harder to detect. The RPN facilitates risk
prioritisation, enabling targeted interventions such as redesigns or enhanced testing.
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However, the traditional RPN calculation method has several drawbacks (Sankar and

Prahbu 2001; Liu et al. 2011; Li and Chen 2019), including:

e Issues with the RPN Formula: The formula to calculate RPN lacks justification for
multiplying S, O, D. The resulting distribution (1 to 1000) is noncontinuous, with gaps,
a heavy skew toward the lower end, and differences between values that lack meaning.
Additionally, different combinations of S, O, D can produce identical RPNs, obscuring
distinct risk effects. To address this, the fuzzy AHP-FMEA model uses a weighted
arithmetic mean.

e Equal Weighting of Risk Factors: Traditional RPN assumes equal importance for S, O,
D, which may not hold true. Although some studies consider their relative importance,
they often assume uniform weighting across all PFMs (Hu et al. 2009; Wang et al.
2021), which is also not necessarily accurate. The fuzzy AHP-FMEA model assigns
different weights to S, O, D for each PFM.

e Scale Limitations: The 1-to-10 scale makes it difficult to accurately evaluate PFMs for
risk factors. The fuzzy AHP-FMEA model overcomes this by using a linguistic scale,
which aligns better with human reasoning and simplifies the evaluation process.

Fuzzy AHP-FMEA Model

The Fuzzy AHP-FMEA model consists of four steps (Fig. 1). In the present work,
Step 1 involved a structured expert evaluation to define process steps and identify potential
failure modes (PFMSs). A group of experts, including managers, engineers, and executives
familiar with the company’s work processes, participated in a series of workshops.
Through process flow analysis and group discussions, the experts identified six key process
steps representing critical stages in production. Subsequently, they defined 17 PFMs based
on historical performance data, expert experience, and risk assessment brainstorming. Each
PFM was then evaluated using the FMEA criteria—severity (S), occurrence (O), and
detection (D)—forming the foundation for further analysis in the Fuzzy AHP-FMEA
framework.

In Step 2, the identified PFMs were evaluated concerning the three risk factors S,
O, D using a linguistic scale (Table 1). These assessments were then converted into
triangular fuzzy numbers S;, 0;,D;,i = 1,...,n. Three experts from Step 1 collaboratively
evaluated the 17 PFMs based on these factors.

Step 3 involves evaluating the importance of risk factors for each PFM, identified
in Step 1, and deriving their weights. A group of five external experts—managers and
engineers with experience in wood-based manufacturing—uwas selected to compare the risk
factors S, O, D for each PFM using a fuzzy linguistic AHP scale (Table 2). This process
yielded fuzzy weights for the risk factors, denoted as wg,, Wy, Wp,,i = 1,...,n.

In Step 4 scores were aggregated for PFMs from Step 2 and the weights of S, O, D
from Step 3 using the weighted arithmetic mean to obtain final fuzzy weights of PFMs.

W; = Ws,S; + W,0; + Wp,Dyyi = 1,...,n. )

Finally, Eq. 5 was used to defuzzify the weights. All calculations were performed
in Excel.
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Fig. 1. Flowchart of the Fuzzy AHP-FMEA model

Table 1. Exact Value Scale, Linguistic Scale and TFNSs for the Evaluation of
PFMs Concerning Severity, Occurrence and Detection

Exact Values Severity Occurrence Detection TFNs
1 None Nearly impossible Almost certain (1,1,2
2 Very minor Remote Very high (1,2,3)
3 Minor Low High (2,3,4)
4 Low Relatively low Moderate high (3,4,5)
5 Moderate Moderate Moderate (4,5,6)
6 Significant Moderately high Low (5,6,7)
7 Major High Very Low (6,7,8)
8 Extreme Repeated failures Remote (7,8,9)
9 Hazardous Very high Very remote (8,9,10)
10 Very hazardous Almost certain Almost impossible (9,10,10)

Fuzzy Analytic Hierarchy Process (AHP)

The fuzzy sets introduced by Zadeh (1965) were designed to better adapt the
evaluation of objects to the human thought process and intuition. In MCDM methods,
triangular fuzzy numbers (TFNs) can substitute exact values to handle uncertainty and
vagueness more effectively during the evaluation process. The TFN is defined as a triplet
(1, m, u), where m represents the most probable value, | is the minimum possible value, and
u is the maximum possible value. Its membership function is described by an Eq. 3 and
presented in Fig. 2.
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Fig. 2. Membership function of TFN

The simplified fuzzy arithmetic operations for TFNs are outlined below. Let ¥; =
(1, my,uy) and X, = (I, m,, u,) represent two TFNs. Then:

fl @ 22 = (ll + lz,ml + mz,ul + uz)
X O %, = (g —up,my —my,uy — 1)
¥ Q %, = (Ll mymy, uquy)
% o= (ot
xl@xZ_(uz'mz'lz) (4)
To obtain the precise value for TFN X = (I, m, u), the defuzzification process was
applied using Eq. 5.
l+4m+u
= (5)
TFNSs provide a means to account for uncertainties in expert assessments in AHP.
AHP is a well-known MCDM method (Saaty 1980) that determines the priorities
of objects by pairwise comparisons. In fuzzy AHP, expert judgments (k=1,..., s) are
expressed using a linguistic scale.

Table 2. Saaty’s Scale, Linguistic Scale and Corresponding TFNs of the AHP
Method (Pitchipoo et al. 2013)

Saaty's Scale Linguistic Preferences Corresponding Fuzzy Preference
1 Equally preferred (1,1,1)
2 Equally to moderately preferred (1,2,3)
3 Moderately preferred (2,3,4)
4 Moderately to strongly preferred (3,4,5)
5 Strongly preferred (4,5,6)
6 Strongly to very strongly preferred (5,6,7)
7 Very strongly preferred (6,7,8)
8 Very strongly to extremely preferred (7,8,9)
9 Extremely preferred (9,9,9)

The corresponding TFNs (Table 2) are collected in the following fuzzy pairwise
comparison matrices:

309 = (&) = (P miPal?),
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The reciprocal values aj(lk) = _1,_() = <%%l%@) were used for reciprocal
l] ij ij ij
pairwise comparisons.
To derive the priorities from the fuzzy pairwise comparison matrix A, geometric
mean (Buckley 1985) can be applied as follows.

1
v; = (di} Qdi; ® + Q G
W=t—,i=1,..,n (6)

i=1Yi

and Eq. 5 can be used to defuzzify the fuzzy weights. The consistency of fuzzy pairwise
comparison matrix A should be determined by the consistency ratio CR of precise matrix
of middle values M = (m;;) _ (Milosevi¢ et al. 2020):

_ g _ Amax—n)
CR=7, Cl=""pe ()

Using Eq. 7, CR is calculated from the consistency index (Cl), derived from the maximum
eigenvalue A,,,, and the random index (RI). The fuzzy pairwise comparison matrix A4 is
considered acceptably consistent if CR<0.1.

To aggregate individual fuzzy pairwise comparison matrices into group fuzzy
pairwise comparison matrix A97°%?  a max-min method is used (Kuo et al. 2002):

ggroup — (H9TOUD . ~group

A ( noen’ (lu’ Lj’

g _ & g ( (k)) — ()

Ly = min L7 my = (Thamyy” ) w = max uy (8)

Integration of the Pareto Principle

The Pareto Principle, often referred to as the 80/20 rule, was incorporated into the
prioritization process to focus on the most significant failure modes driving the majority of
risks. This targeted approach ensures that corrective actions address high-impact areas,
enabling effective risk mitigation. Guided by the principle, the analysis concentrated on
the top-scoring PFMs within each process step, ensuring that efforts were directed toward
the most critical risks.

Similar to the methodology of Keskin Citiroglu et al. (2022), the Pareto Principle
was applied alongside FMEA to systematically identify and rank the most significant risks,
emphasizing areas requiring immediate attention. When combined with the fuzzy AHP-
FMEA methodology, this approach created a robust framework for identifying and
prioritizing critical risks, optimizing resource allocation, and achieving comprehensive risk
mitigation.

RESULTS AND DISCUSSION

This section presents the outcomes of the fuzzy AHP-FMEA analysis. The results
identified six key process steps and 17 PFMs (labelled D1 to D17) impacting wood
manufacturing processes. These PFMs and their potential effects on production efficiency,
customer satisfaction, and operational costs are summarised in Table 3.
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Table 3. Process Steps, PFMs, and Potential Effects of Failure

Process Step

PMFs

Potential Effects of Failure

Employee
education (EE)

D1 - Lack of knowledge of information
system

Data loss, errors in product design
or manufacturing process

D2 — Insufficient CNC operators

Delayed delivery, increased costs,
reduced customer satisfaction

D3 - Delays in technical preparation

Delayed production and delivery,
increased costs, reduced customer
satisfaction

Occupational
safety (OS)

D4 — Workplace injuries affecting
productivity

Injuries to employees reduced
productivity. Legal and financial
liabilities, negative impact on
company image

Distribution and
logistics (DL)

D5 — Incorrect marking of completed
orders

Incorrect shipment Customer
complaints, increased costs

D6 — Delayed deliveries and damaged
products

Customer complaints, increased
costs

Production
planning and
execution (PPE)

D7 — Incorrect order processing upon
receipt

Delay in delivery

D8 — Delay in sending work orders to
production

Delay in production and delivery

D9 - Insufficient workforce for task
execution

Delay in production and delivery

D10 — Improper packaging of semi-final
products

Customer complaints, increased
costs, damaged product during
transport

D11 — Equipment failure causing
downtime

Delays in production, increased
costs

D12 — Shortage of edge strips

Delays in production missed
deadlines, and unhappy customers

D13 — Production delays and missed
deadlines

Delayed order fulfilment and
unhappy customers

Delayed order fulfilment and

communication
(IC)

D17 — Material damage and delayed
deliveries

Supply chain D14 — Delayed customer deliveries
unhappy customers
management D15 - Incorrect material delivery to the
(SCM) . . y Material sub9stitution during loading
production site
Wrong materials, product defects,
D16— Errors in material receipt and increased costs, delayed
storage production, lower customer
satisfaction
Internal

Delayed delivery, increased costs,
reduced customer satisfaction

Based on these findings, Table 4 compares the rankings derived from the Fuzzy
AHP-FMEA model, traditional RPN, and the Fuzzy method with average S, O, D weights,
highlighting critical differences in prioritisation. For example, D13 (production delays and
missed deadlines) and D14 (delayed customer deliveries), ranked equally (3") in the
traditional RPN, were elevated to second and third places, respectively, in the fuzzy model
due to their significant impact on production schedules and customer satisfaction. In
contrast, D17 (material damage and delayed deliveries), ranked 6™ in traditional RPN, was
deprioritized to 12" in the fuzzy framework, reflecting its more localised impact compared

to other PFMs.
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Table 4. Comparison of Fuzzy AHP-FMEA, Traditional RPN, and Fuzzy WAM
Rankings

-, Average S,
FUTZZI\%?AHP' Rank Tragll;[’ﬁnal Rank O,D Rank
Weights
D1 6.07 14 144 10 6.04 14
D2 5.26 16 160 9 7.16 13
D3 7.60 10 45 17 7.26 11
D4 7.86 8 54 16 7.17 12
D5 4.97 17 75 14 4.93 17
D6 8.68 4 378 3 8.55 3
D7 9.36 1 420 1 9.11 1
D8 8.10 6 180 8 7.84 6
D9 7.89 7 135 13 7.64 7
D10 7.66 9 224 7 7.47 10
D11 8.18 5 63 15 7.58 9
D12 6.22 13 144 10 5.96 15
D13 8.84 2 378 3 8.55 3
D14 8.81 3 378 3 8.59 2
D15 5.58 15 140 12 5.56 16
D16 7.58 11 392 2 7.59 8
D17 6.70 12 324 6 8.39 5

The analysis identified D7 (incorrect order processing upon receipt) as the most
critical PFM (9.36), highlighting its potential to disrupt workflows and delay delivery
schedules. Similarly, D6 (delayed deliveries and damaged products) (8.68) underscored the
importance of logistics in maintaining material quality, while D11 (equipment failure
causing downtime) (8.18) revealed vulnerabilities in machinery-dependent operations.

450
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400 D14
® D16 D13
350 D6
Z .0 D17 ®
o
4
= 250
D10
c
S 200 53 o6
S 1
g 150 D12 °®
= 100 D15 D1 D9
D5 D3 Dll.
50 o®
D4
0

0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
Fuzzy AHP-FMEA

Fig. 3. Comparison between traditional RPN and Fuzzy AHP-FMEA

At the lower end of the spectrum, PFMs such as D5 (incorrect marking of
completed orders) (4.97) and D2 (insufficient CNC operators) (5.26) exhibited more
localised impacts and were deprioritized in the fuzzy model compared to risks affecting the
entire production chain. The fuzzy AHP-FMEA framework refined risk prioritisation by
aligning the identified risks with the operational needs of the wood manufacturing sector.

Peri¢ et al. (2025). “Wood industry risk management,” BioResources 20(2), 2979-3001. 2989



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

To better assess the advantages of fuzzy AHP-FMEA approach compared to
traditional RPN and to highlight critical distinctions in prioritisation, Fig. 3 provides a
graphical representation of the comparison between the results of two methodologies,
categorising PFMs into three importance levels: very important (values above 8.5),
medium importance (7.0 to 8.5), and low importance (below 7.0).

Some alignment was observed between the two methodologies (green dots). For
example, D7 (incorrect order processing upon receipt) was ranked as the most critical PFM
(Rank 1) in both models, reflecting consistency in recognising its significant impact on
production workflows and delivery schedules. However, discrepancies were noted: red
dots represent PFMs, such as D17 (material damage and delayed deliveries), which were
identified as medium risk in the fuzzy model but were assigned lower rankings by the
traditional RPN. Conversely, blue dots represent PFMs, such as D4 (workplace injuries
affecting productivity), that were assigned higher rankings in the traditional RPN despite
their lower operational impact in the fuzzy model.

Expanding on the observations of Fig. 3, Fig. 4 examines the influence of weighting
methodologies in the fuzzy AHP-FMEA framework. It compares rankings obtained using
specific weights for S, O, D with those calculated using average weights. This analysis
highlights how tailored weight assignments can significantly impact PFM prioritisation.
The average weights applied for the comparison were 0.445, 0.663, and 0.972 for S; 0.089,
0.149, and 0.261 for O; and 0.110, 0.188, and 0.327 for D.

The results showed that PFMs such as D17 (material damage and delayed
deliveries) and D2 (insufficient CNC operators) received significantly higher rankings
when specific weights were applied, reflecting notable differences between their individual
weights and the averages. Conversely, PFMs with less variability in their individual
weights, such as D7 (incorrect order processing) and D13 (production delays and missed
deadlines), retained similar rankings under both approaches, demonstrating consistency in
prioritisation.
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Fig. 4. Comparison between Fuzzy AHP-FMEA considering different weights of S, O, D and
average weights of S, O, D
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Figure 5 illustrates how PFMs were distributed across process steps and identified
their criticality. Applying the Pareto principle, the analysis pinpointed the top 20% of the
factors with the highest scores in each category, which accounted for a significant portion
of the associated risks within each step of the process, as indicated by the red line.
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Fig. 5. PFMs united by Process steps

In the context of wood-based manufacturing, the analysis revealed the most critical

PFMs within each category, which posed significant risks to production efficiency, product

quality, and enhanced productivity:

e SCM: D13 (production delays and missed deadlines) and D14 (delayed customer
deliveries) were identified as critical due to their potential to disrupt schedules, delay
timelines, and harm customer satisfaction, ultimately leading to financial losses.

e PPE: D7 (incorrect order processing) emerged as a major risk, as errors in order
management propagated through subsequent production stages, causing inefficiencies
in cutting, assembly, and finishing operations.

e DL: D6 (delayed deliveries and damaged products) presented serious challenges,
particularly due to its impact on material waste, transportation costs, and customer trust.

e EE: D3 (delays in technical preparation) impacted design accuracy and production
timelines

o OS: D4 (workplace injuries affecting productivity) highlighted the importance of safety
training.

e IC: D17 (material damage and delayed deliveries) underscored the need for improved
material handling protocols and enhanced interdepartmental communication to prevent
delays and ensure seamless workflows.

« SCM category has the highest value of the 80™ percentile, indicated by the highest
value of the red line.
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Table 5. Proposed Corrective and Preventive Measures for PFMs

bioresources.cnr.ncsu.edu

Process
Step

PFM

Proposed Measures

Measure
Type

EE

D1

Provide constant education to existing and new employees.
Improve the documentation of the information system.

Preventive

D2

Train employees to operate multiple machines, including
CNC training. Increase the number of CNC operators.

Preventive

D3

Offer technical drawing (CAD/CAM and Corpus) to improve
product design accuracy and reduce manufacturing process
errors. Utilise automated software for technical preparation.

Corrective

(0N

D4

Conduct training on safe work practices and the proper use
of protective equipment. Perform regular equipment
inspections and maintenance.

Implement comprehensive safety protocols and procedures.
Conduct regular safety audits and risk assessments.

Preventive

DL

D5

Use appropriate documentation to mark load orders, with
training in proper documentation procedures.

Preventive

D6

Define delivery conditions and ensure timely communication
with customers. Establish proper loading and unloading
procedures and backup plans for delivery delays.

Corrective

PPE

D7

Accept orders only by e-mail or in person. Update and clarify
ordering procedures; provide regular employee training.

Corrective

D8

Adhere to the order of production scheduling and monitor
capacity daily. Adjust production orders to align with
production sequences.

Preventive

D9

Plan workplace schedules, coordinating production plans
with job distribution. Review and update workforce allocation
procedures regularly.

Preventive

D10

Address inadequate pallet packaging by using appropriate
materials, tools, and production parameters. Maintain
machines and suction systems; provide employee training on
proper packaging techniques.

Preventive

D11

Use quality materials and appropriate production parameters
with regular maintenance of equipment and tools. Develop
backup plans to mitigate equipment failure.

Preventive

SCM

D12

Expand the supplier market for edge bands to cover all
décor. Implement periodic audits and quality checks.

Preventive

D13

Confirm and verify orders with project and procurement
managers. Enhance communication and coordination with
suppliers.

Corrective

D14

Organise and maintain timely communication with transport
companies. Establish multiple transport options and
alternatives.

Corrective

D15

Scan barcodes on loading orders and enforce relevant
procedures. Create and implement a standardised loading
checklist.

Preventive

D16

Organise pallets according to dimensions. Inspect and verify
the incoming materials. Ensure adequate labelling and
tracking of materials. Conduct regular inventory audits and
reconciliations.

Preventive

D17

Update and implement procedures for internal
communication. Provide consistent education and define
responsibilities clearly. Ensure timely reporting of issues.
Conduct regular communication meetings and feedback
sessions.

Corrective
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These findings highlighted the importance of addressing high-risk PFMs to reduce
risks and optimise operations in the wood-based manufacturing sector. To tackle these
challenges, Table 5 outlines tailored corrective and preventive measures designed to
address critical risks and drive significant process improvements across the company’s key
operations. Based on the fuzzy AHP-FMEA analysis, the recommendations prioritise
targeted corrective actions for high-priority PFMs while emphasizing preventive measures
to support long-term resilience.

The corrective measures focus on rectifying inefficiencies in PFMs such as D3
(delays in technical preparation), D4 (workplace injuries affecting productivity), D6
(delayed deliveries and damaged products), D7 (incorrect order processing), D13
(production delays and missed deadlines), D14 (delayed customer deliveries), and D17
(material damage and delayed deliveries). Proposed actions include improving technical
preparation with automated tools, enhancing material handling procedures, defining
delivery protocols, clarifying order processing systems, and optimising supplier
coordination to meet deadlines.

Conversely, preventive measures aim to mitigate risks and foster long-term
resilience by addressing PFMs such as D1 (lack of knowledge of the information system),
D5 (incorrect marking of completed orders), D8 (delays in sending work orders to
production), D10 (improper packaging of semi-finished products), D11 (equipment failure
causing downtime), D12 (shortage of edge strips), and D16 (errors in material receipt and
storage). Strategies include comprehensive employee training, adherence to safety and
operational protocols, consistent monitoring of production and logistics, and proactive
equipment maintenance to minimise disruptions and ensure stability.

This structured approach provides a robust response to operational risks. Corrective
measures address urgent issues like delays, order inaccuracies, and material damage, while
preventive strategies build a foundation for sustainable growth through enhanced
education, safety, and operational efficiency.

Discussion

The proposed framework bridges the gap between traditional RPN methods and
more sophisticated ranking techniques. Unlike conventional models that often prioritise
computational complexity over interpretability, the fuzzy AHP-FMEA approach balances
methodological rigour with practical applicability. Furthermore, it assigns tailored weights
and incorporates linguistic scales, improving the robustness of the prioritisation process.
This advancement aligns with findings from Liu et al. (2015) and Fattahi et al. (2020), who
emphasised the value of integrating fuzzy logic to address subjectivity in complex
industrial settings. Similarly, Abdelgawad and Fayek (2010) demonstrated the application
of fuzzy FMEA and AHP in construction, highlighting how these methodologies address
variability and uncertainty, challenges that are critical in both the construction and wood
manufacturing industries.

The framework presented here offers unique strengths in its adaptability to the
complexities of wood manufacturing processes. Furthermore, unlike other approaches such
as Li et al. (2021), which emphasised normalization algorithms for floating offshore wind
turbines, this study focusses on the integration of expert-driven weighting processes. While
normalisation techniques could further enhance ranking precision, the reliance on expert
input ensures that operational nuances are well captured, which is essential in industries
with variable production processes such as wood manufacturing.

Furthermore, expert judgment played a crucial role in improving the reliability of
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this study’s framework. Using the expertise of managers and engineers with deep
knowledge of the wood manufacturing process, the model ensured contextually relevant
weighting of severity, occurrence, and detection factors. This integration of expert insights
not only improved the precision of risk assessments but also aligned priority outcomes with
operational realities.

The findings also underscored the criticality of addressing high-priority failure
modes, particularly “incorrect order processing” (D7), “production delays and missed
deadlines” (D13), and “delayed customer deliveries” (D14). These risks were identified as
the most impactful, consistent with observations from similar studies (Camci and Temur
2018; Urbina et al. 2022). Addressing these risks is essential to improve production
efficiency, maintain product quality, and ensure customer satisfaction.

Furthermore, the sensitivity analysis revealed the robustness of the fuzzy AHP-
FMEA methodology. Even when the weights for the risk factors varied, the prioritisation
of critical failure modes remained consistent, strengthening the reliability of the approach.
For example, “incorrect-order processing" (D7) consistently emerged as the top priority
across all weighting scenarios, underscoring its potential to disrupt workflows and delay
delivery schedules.

The tailored corrective measures proposed in this study specifically address critical
PFMs such as D3, D4, D6, D7, D13, D14, and D17 aligning with industry needs for
operational precision and customer responsiveness. For instance, improving order accuracy
(D7) through updated ordering protocols and training reduces propagation of errors across
production stages, while enhancing communication protocols (D14) mitigates delivery
delays and fosters stronger supplier and customer relationships. These targeted actions not
only resolve immediate bottlenecks but also build resilience against future disruptions.

Finally, further refinements, such as normalisation and weighting adjustments
explored in other studies, could complement this robustness by offering additional
resolution for mid-range risks. However, the stability of prioritisation results in this
framework underscores its practical value even without these enhancements.

Practical Implications
The study provides actionable insights for practitioners, including:

e Enhancing employee training programmes, such as CNC education and technical
drawing skills, consistent with Susilawati (2021).

e Strengthening internal communication protocols to address inter-departmental delays,
as emphasised by Zahra et al. (2024).

e Improving supply chain management to mitigate risks associated with “production
delays and missed deadlines” (D13) and “delayed customer deliveries” (D14), echoing
recommendations from Boran and Gokler (2019).

The findings from Table 5 further underscore the interconnected nature of risks in
wood manufacturing. Addressing D13 and D14 through improved supply chain
management highlights the critical role of logistics and material handling in ensuring
timely production and delivery. These insights resonate with studies in related fields, such
as Zahra et al. (2024), which advocate for enhanced interdepartmental coordination to
mitigate similar risks in high-variability production environments.

These corrective measures are tailored to the operational context of wood
manufacturing, making the fuzzy AHP-FMEA framework particularly effective for
addressing variability in production, logistics, and material handling. Although advanced
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monitoring tools, as demonstrated in other studies, could augment these interventions, the
proposed framework already offers substantial practical benefits.

Limitations and Future Directions

While this study demonstrated the adaptability and utility of the fuzzy AHP-FMEA
framework, it was conducted within a single wood-based manufacturing company, which
may limit its generalisability. Expanding its application to multiple companies or
industries, as demonstrated by Fatollah et al. (2022) in the petrochemical sector, could
validate its broader utility and uncover additional sector-specific insights.

Furthermore, integrating economic dimensions, such as cost and profit
considerations, could enhance the framework's practical relevance, as suggested by Fattahi
et al. (2020). Future research could also explore integrating advanced automation
technologies, such as machine learning, to refine weighting calculations and further
mitigate subjectivity.

By addressing both the technical and operational aspects of risk management, the
fuzzy AHP-FMEA framework supports informed decision making and promotes
continuous improvement. Its adaptability to dynamic and complex industrial settings
makes it a valuable tool for risk prioritisation and operational enhancement. While this
framework provides a robust methodology for wood manufacturing, integrating select
refinements such as normalisation algorithms or predictive technologies could further
enhance its precision and applicability.

CONCLUSIONS

1. The fuzzy analytic hierarchy process-failure mode and effects analysis (AHP-FMEA)
framework effectively refines traditional risk priority number (RPN)-based risk
assessments by incorporating tailored weighting and linguistic evaluations, resulting in
improved prioritisation of failure modes in wood-based manufacturing processes.

2. Critical potential failure modes (PFMs), such as “incorrect order processing” (D7),
“production delays and missed deadlines” (D13), and “delayed customer deliveries”
(D14), were identified as high-priority risks. Addressing these risks is crucial for
optimising production efficiency, maintaining product quality, and enhancing customer
satisfaction.

3. Integration of fuzzy logic with FMEA mitigates limitations related to subjective
assessments, inconsistent factor weighting, and scale redundancy. This approach offers
a more nuanced and accurate assessment of risk priorities compared to traditional
FMEA methods.

4. The findings of this study emphasised the importance of employee training, internal
communication, and workflow optimisation as key corrective measures to address
high-risk PFMs, aligning with broader objectives of operational improvement and
sustainability in the manufacturing sector.

5. Applying the Pareto principle revealed that the top 20% of PFMs accounted for
approximately 80% of the associated risks, underscoring the value of focussing
resources on the most impactful issues to achieve efficient risk mitigation.
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6. The study contributes to the literature on risk management in manufacturing by
demonstrating the applicability and benefits of combining fuzzy AHP and FMEA
methodologies in a wood-based manufacturing context, providing a model that could
be adapted to other industries.
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