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This study integrates the Fuzzy Analytic Hierarchy Process (AHP) with the 
Failure Mode and Effects Analysis (FMEA) to enhance risk prioritisation in 
wood-based manufacturing. Traditional FMEA methods face challenges in 
handling subjective evaluations and complex environments. By 
incorporating fuzzy logic, this study refines the Risk Priority Number (RPN) 
calculation, enabling a more nuanced assessment of failure modes. 
Critical failure points, such as delays in order processing, production, and 
delivery, were identified, highlighting their impact on operational efficiency, 
customer satisfaction, and financial outcomes. Using the Pareto principle, 
it was revealed that addressing the top 20% of the identified risks could 
mitigate approximately 80% of the overall risk exposure. Proposed 
corrective measures, including enhanced employee training, streamlined 
workflows, and improved communication protocols, provide actionable 
strategies to optimise processes and ensure sustainability. Conducted 
within a Croatian wood-manufacturing company, this framework 
demonstrated its efficacy in refining risk assessments and supporting 
continuous improvement. The findings advance risk management 
methodologies and showcase the potential for broader applications in 
dynamic and complex industrial environments. 
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INTRODUCTION 
 

Evaluating organisational performance is critical for continuous advancement and 

long-term success (Mitrea-Curpanaru 2021). Organisations often identify performance 

gaps related to resources, strategies, processes, and motivation through analyses and needs 

assessments (Abu Dabous et al. 2021). Addressing these gaps requires setting measurable 

objectives and implementing continuous improvement technologies (Abu et al. 2019). 

Effective performance management enables organisations to adapt to evolving market 

demands and remain competitive (Mitrea-Curpanaru 2021; Skorupińska et al. 2024). 

Various risk assessment methods have been developed to identify, evaluate, and 

mitigate potential failures in manufacturing. Some widely applied approaches include: 

• Hazard and Operability Study (HAZOP): Identifies process deviations and potential 

hazards (Crawley et al. 2015). 
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• Fault Tree Analysis (FTA) and Event Tree Analysis (ETA): These methods use logic-

based modeling to analyze failure probabilities and potential outcomes (Ericson 2015; 

Bedford and Cooke 2001). 

• Bow-Tie Analysis: Provides a visual representation of risks and control measures (de 

Ruijter and Guldenmund 2016). 

• Lean Six Sigma (LSS): A performance improvement approach that combines Lean 

principles (waste reduction) and Six Sigma techniques (variation minimization) to 

enhance quality (Simanová and Sujová 2022; Skorupińska et al. 2024). 

• Multi-Criteria Decision-Making (MCDM) Methods: Used to evaluate and prioritize 

risks in complex decision environments (Wang et al. 2020; Grošelj et al. 2016). 

Among these, Failure Mode and Effects Analysis (FMEA) has emerged as a widely 

recognized tool due to its structured approach to identifying and prioritizing risks in 

manufacturing (Kushwaha et al. 2020). Originally developed in the aerospace sector in the 

1960s, FMEA was later adopted by the automotive industry to enhance quality and safety 

standards. Over time, it has been implemented across multiple industries, including 

manufacturing, healthcare, energy, and software, to systematically assess and mitigate 

potential failures (Bailey 2017; Abu et al. 2019; Liu et al. 2020; Mohammadfam and 

Gholamizadeh 2021; Talkhooncheh et al. 2021; Yang et al. 2024). 

Despite its advantages, traditional FMEA has limitations, including subjectivity in 

risk evaluation, inconsistent prioritization, and a restricted numerical scale for RPN values 

(Liu et al. 2011). To address these challenges, the Analytic Hierarchy Process (AHP) has 

been integrated with FMEA to introduce a hierarchical structure for risk evaluation. AHP 

enhances risk prioritization by assigning relative weights to risk factors and using pairwise 

comparisons to improve decision-making accuracy (Saaty 1980). AHP has been widely 

applied in multiple industries. In manufacturing, AHP has been used to optimize supplier 

selection and resource allocation in sustainable practices (Gupta et al. 2015; Dweiri et al. 

2016). Within supply chain management, it helped assess and prioritize risks, strengthening 

resilience (Tramarico et al. 2015). In the healthcare sector, AHP aided in environmentally 

responsible supplier selection, ensuring sustainable procurement (Schmidt et al. 2015). 

AHP was also widely used in renewable energy projects, supporting investment and site 

selection (Journals.sagepub.com), while in environmental risk assessment, it helped 

evaluate environmental impacts and guide risk mitigation strategies (Topuz and van Gestel 

2016). Additionally, AHP played a role in consumer decision-making, identifying key 

consumer preferences in purchasing and informing marketing strategies (Oblak et al. 2017; 

Sharma and Joshi 2019). By incorporating AHP, FMEA's risk prioritization process is 

refined, making it a more effective tool for complex risk environments (Liu et al. 2015; 

Abdelgawad and Fayek 2010). 

In the wood-based industry, production complexities and material variability 

require advanced risk assessment tools. FMEA systematically identifies risks and failure 

modes in critical processes such as drying, cutting, and finishing, enabling early 

intervention to reduce defects, optimize production, and support sustainability goals (Badiu 

et al. 2015; Boran and Gökler 2019; Senthilkannan and Parameshwaran 2019; Lv et al. 

2020; Basuki et al. 2021; Urbina et al. 2022; Prasmana and Hidayat 2023; Zahra et al. 

2024). 

However, traditional FMEA struggles with uncertainties, particularly in high-

variability industries such as wood manufacturing (Lo et al. 2018, 2019; Li et al. 2021; Liu 

et al. 2019). To address these challenges, a hybrid approach combining fuzzy logic and 
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AHP has been introduced, enabling expert-driven weight adjustments and more refined 

RPN calculations (Grošelj and Dolinar 2023). By incorporating fuzzy linguistic scales, this 

advanced framework enhances decision-making accuracy in dynamic production 

environments, such as wood processing (Wu et al. 2020; Więckowski and Sałabun 2024). 

Additionally, the Pareto Principle has been applied to prioritize critical risks, thus 

ensuring optimized resource allocation and reduced overall risk exposure (Keskin Çıtıroğlu 

et al. 2022). This principle helps focus risk management efforts on the most significant 

failure modes, improving the efficiency of preventive measures. 

 

Study Objectives 
This study aims to enhance risk assessment in wood-based manufacturing by 

leveraging a Fuzzy AHP-FMEA approach, thereby improving risk prioritization and 

decision-making accuracy. The specific objectives are to: 

• Identify critical failure points: Use FMEA to address high-risk areas that impact 

productivity, quality, and safety. 

• Enhance risk prioritisation: Integrate fuzzy AHP with FMEA to manage subjective 

evaluations in complex environments. 

• Optimize production and safety: Recommend actions to improve efficiency, reduce 

costs, and enhance safety. 

By integrating structured risk assessment methods with continuous improvement 

methodologies, this study seeks to advance risk management practices in the wood-based 

industry, ultimately supporting sustainability and efficiency goals. 
 

Theoretical Background: FMEA And Fuzzy AHP 
Effective performance management and risk assessment are critical in wood-based 

manufacturing, where complex processes and variable materials pose operational 

challenges (Susilawati 2021). Issues such as equipment downtime, skill shortages, and 

material inconsistencies increase risks and reduce efficiency if not addressed (Susilawati 

2021). For example, regular CNC machine maintenance in a Malaysian furniture factory 

reduced downtime and stabilised production. Similarly, Badiu et al. (2015) highlighted the 

role of maintenance and quality control in reclaimed wood furniture production. Risk 

assessment integrated with performance management enhances operational stability, as 

demonstrated by Kulińska and Matulewski (2022), who showed that better training and 

logistic planning mitigate supply chain risks. 

Among the various tools used to strengthen risk assessment and operational 

efficiency, FMEA stands out as a systematic approach to identifying and prioritising risks 

through RPNs (Sartor and Cescon 2019). It has been applied in the wood manufacturing 

sector to reduce defects (Prasmana and Hidayat 2023), minimise waste (Suhardi et al. 

2021), and optimise processes such as varnishing (Kholil 2024). For example, integrating 

FMEA with Lean Manufacturing reduced defects by 20% in Peruvian wood furniture 

production (Urbina et al. 2022). Advanced FMEA models, such as ANFIS-Taguchi (Boran 

and Gökler 2019) and fuzzy FMEA (Jatwa and Sukhwani 2022), further expand their 

capabilities for complex risk scenarios. 

Despite its advantages, FMEA faces limitations such as subjective evaluations, 

inconsistent risk implications, and scale constraints (Liu et al. 2011; Li and Chen 2019). 

The limited range (120 unique values out of 1000) can lead to redundancy and 

misinterpretation (Liu et al. 2013; Chang et al. 2014). By integrating a hierarchical 
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structure for evaluating and prioritizing risk factors, AHP reduces inconsistencies in 

subjective judgments, enhancing decision-making accuracy (Saaty 1980). AHP structures 

complex decision problems into hierarchical levels, allowing for a systematic evaluation 

of risk factors. Its pairwise comparison method enables experts to assess the relative 

importance of risks rather than assigning fixed numerical scores, reducing subjectivity 

(Saaty 1980). Additionally, AHP calculates weighted priorities, improving the precision of 

failure mode rankings based on their actual impact (Liu et al. 2015). The Consistency Ratio 

(CR) further enhances decision-making by verifying the logical coherence of expert 

judgments, minimizing biases (Wang et al. 2020).  

The integration of AHP with FMEA significantly improves risk prioritization by 

addressing the limitations of the traditional RPN approach. While conventional FMEA 

assigns equal weight to severity, occurrence, and detection scores, AHP introduces 

customized weightings, ensuring a more precise and industry-specific risk assessment (Liu 

et al. 2015; Wang et al. 2020). By incorporating a hierarchical structure and weighted 

prioritization, the AHP-FMEA hybrid model enhances decision-making, particularly in 

complex industrial environments such as wood-based manufacturing, where risks stem 

from material variability, equipment reliability, and supply chain disruptions. 

To further overcome the limitations of FMEA, fuzzy logic can be used together 

with AHP and FMEA to increase the reliability of expert judgement by reflecting the way 

humans naturally think and make decisions. Fuzzy logic was developed by Zadeh (1965) 

to deal with uncertainties and ambiguities that often occur in real-life situations. Compared 

to classical logic, which relies on binary true-or-false values, fuzzy logic allows for partial 

truths, which increases its flexibility and makes it particularly suitable for modelling 

complex systems where information is imprecise or subjective. Fuzzy numbers enhance 

risk assessment by converting linguistic variables (e.g., ‘low,’ ‘medium,’ ‘high’) into 

numerical intervals using membership functions. The main advantages of fuzzy logic 

include its ability to capture linguistic and qualitative information, simplify complex 

decision-making processes, and improve the accuracy of evaluations by taking 

uncertainties into account. By integrating fuzzy logic into methods including FMEA and 

AHP, decision-making under uncertainty becomes more reliable. In particular, in 

environmental risk assessment, fuzzy numbers help quantify uncertainties in evaluating the 

risks associated with engineered nanomaterials, improving the accuracy of risk 

prioritization and mitigation strategies (Topuz and van Gestel 2016). Susilawati et al. 

(2015) highlighted fuzzy logic’s effectiveness in managing uncertainty in industrial 

processes, building on Zadeh’s (1965) foundational work. 

Integrating fuzzy logic with AHP and FMEA reduces uncertainty and refines RPN 

calculations, enhancing risk assessment accuracy. For instance, Abdelgawad and Fayek 

(2010) introduced a framework that uses fuzzification, inference rules, and defuzzification 

to enhance risk assessment. Fuzzy AHP complements this by aggregating criteria such as 

cost, time, and quality into a single priority metric, which has been shown to be effective 

in dynamic industries. This combined methodology has been applied also to improve 

supplier selection (Ramadhanti and Pulansari 2022), CNC router optimisation (Camci and 

Temur 2018), and wood decay management (Feili et al. 2018). 

Building on this foundation, the fuzzy AHP-FMEA framework embeds fuzzy 

weights into FMEA criteria for more realistic RPNs (Grošelj and Dolinar 2023). Sensitivity 

analysis further strengthens these assessments by evaluating how parameter variations 

affect rankings, addressing uncertainties in high-variability industries (Wu et al. 2020; 

Więckowski and Sałabun 2024). Its success across industries, such as the assessment of 
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submersible pump risk (Bhattacharjee et al. 2022), the robustness of the petrochemical 

ranking (Fatollah et al. 2022), and tailored risk prioritisation in wood manufacturing, 

highlights its versatility and value in supporting sustainability goals (Senthilkannan and 

Parameshwaran 2019). 

By integrating fuzzy logic, AHP, and sensitivity analysis, the fuzzy AHP-FMEA 

framework provides reliable, nuanced risk assessments, making it indispensable for 

industries balancing quantitative data with expert insights. 

 

 

EXPERIMENTAL 
 
Materials 

This study examined a mid-sized company operating in Croatia’s wood-processing 

sector, specializing in the supply and processing of panel materials and hardware for 

furniture production and interior design. The company plays a vital role in the industry by 

offering a diverse selection of materials, including chipboards, MDF boards, veneer panels, 

and high-quality flooring solutions. It also provides specialized processing services such 

as custom cutting, edging, and CNC machining, catering to furniture manufacturers, 

interior designers, and construction firms. With multiple regional distribution centers and 

a technologically advanced production facility, the company ensures efficient material 

supply and processing capabilities. Its integrated approach, encompassing both raw 

material distribution and high-precision machining, supports the evolving needs of the 

wood-processing and furniture manufacturing industries. Additionally, its collaborations 

with leading global suppliers strengthen its position as a key provider of materials and 

technical solutions in the region. 

 

Failure Mode and Effects Analysis (FMEA) 
Failure Mode and Effects Analysis (FMEA) is a structured method for identifying 

potential failures in a product or process, assessing their impact, and implementing 

preventive actions. Developed by the U.S. military in the 1940s, FMEA has become a 

standard tool across industries to enhance safety and reliability. Its flexibility has led to 

widespread adoption in manufacturing, healthcare, and software development, supporting 

proactive risk mitigation and improving operational efficiency (Parsana et al. 2014; 

Kushwaha et al. 2020; Klarić et al.  2025). 

The FMEA process involves a team that systematically analyses each component 

for potential failure modes, evaluates their effects on the system, and estimates the severity, 

occurrence, and detection likelihood of each. Traditional FMEA produces RPNs by 

multiplying three risk factor ratings, each assessed on a scale of 1 to 10 (Kushwaha et al. 

2020; Table 1), with higher RPN values indicating riskier PFMs: 

𝑅𝑃𝑁𝑖 = 𝑆𝑖 ⋅ 𝑂𝑖 ⋅ 𝐷𝑖 , 𝑖 = 1, . . . , 𝑛.      (1) 

For PFM i, (i=1,…,n), Si represents the severity rating, indicating the strength of 

the impact of a PFM on production results. Higher severity levels correspond to PFMs that 

are more likely to cause significant disruptions to the production process. Oi denotes the 

PFM i occurrence score, reflecting its frequency of occurrence. Di is the detection rating, 

measuring the likelihood of identifying the PFM i before it affects the production process. 

Higher detection scores signify PFMs that are harder to detect. The RPN facilitates risk 

prioritisation, enabling targeted interventions such as redesigns or enhanced testing. 
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However, the traditional RPN calculation method has several drawbacks (Sankar and 

Prahbu 2001; Liu et al. 2011; Li and Chen 2019), including: 

• Issues with the RPN Formula: The formula to calculate RPN lacks justification for 

multiplying S, O, D. The resulting distribution (1 to 1000) is noncontinuous, with gaps, 

a heavy skew toward the lower end, and differences between values that lack meaning. 

Additionally, different combinations of S, O, D can produce identical RPNs, obscuring 

distinct risk effects. To address this, the fuzzy AHP-FMEA model uses a weighted 

arithmetic mean. 

• Equal Weighting of Risk Factors: Traditional RPN assumes equal importance for S, O, 

D, which may not hold true. Although some studies consider their relative importance, 

they often assume uniform weighting across all PFMs (Hu et al. 2009; Wang et al. 

2021), which is also not necessarily accurate. The fuzzy AHP-FMEA model assigns 

different weights to S, O, D for each PFM. 

• Scale Limitations: The 1-to-10 scale makes it difficult to accurately evaluate PFMs for 

risk factors. The fuzzy AHP-FMEA model overcomes this by using a linguistic scale, 

which aligns better with human reasoning and simplifies the evaluation process. 

 

Fuzzy AHP-FMEA Model  
The Fuzzy AHP-FMEA model consists of four steps (Fig. 1). In the present work, 

Step 1 involved a structured expert evaluation to define process steps and identify potential 

failure modes (PFMs). A group of experts, including managers, engineers, and executives 

familiar with the company’s work processes, participated in a series of workshops. 

Through process flow analysis and group discussions, the experts identified six key process 

steps representing critical stages in production. Subsequently, they defined 17 PFMs based 

on historical performance data, expert experience, and risk assessment brainstorming. Each 

PFM was then evaluated using the FMEA criteria—severity (S), occurrence (O), and 

detection (D)—forming the foundation for further analysis in the Fuzzy AHP-FMEA 

framework. 

In Step 2, the identified PFMs were evaluated concerning the three risk factors S, 

O, D using a linguistic scale (Table 1). These assessments were then converted into 

triangular fuzzy numbers 𝑆̃𝑖 , 𝑂̃𝑖 , 𝐷̃𝑖 , 𝑖 = 1, . . . , 𝑛. Three experts from Step 1 collaboratively 

evaluated the 17 PFMs based on these factors. 

Step 3 involves evaluating the importance of risk factors for each PFM, identified 

in Step 1, and deriving their weights. A group of five external experts—managers and 

engineers with experience in wood-based manufacturing—was selected to compare the risk 

factors S, O, D for each PFM using a fuzzy linguistic AHP scale (Table 2). This process 

yielded fuzzy weights for the risk factors, denoted as  𝑤̃𝑆𝑖
, 𝑤̃𝑂𝑖

, 𝑤̃𝐷𝑖
, 𝑖 = 1, . . . , 𝑛. 

In Step 4 scores were aggregated for PFMs from Step 2 and the weights of S, O, D 

from Step 3 using the weighted arithmetic mean to obtain final fuzzy weights of PFMs. 

𝑤̃𝑖 = 𝑤̃𝑆𝑖
𝑆̃𝑖 + 𝑤̃𝑂𝑖

𝑂̃𝑖 + 𝑤̃𝐷𝑖
𝐷̃𝑖 , 𝑖 = 1, . . . , 𝑛.     (2) 

Finally, Eq. 5 was used to defuzzify the weights. All calculations were performed 

in Excel. 
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Fig. 1. Flowchart of the Fuzzy AHP-FMEA model 

 

Table 1. Exact Value Scale, Linguistic Scale and TFNs for the Evaluation of 
PFMs Concerning Severity, Occurrence and Detection 

Exact Values Severity Occurrence Detection TFNs 

1 None Nearly impossible Almost certain (1,1,2) 

2 Very minor Remote Very high (1,2,3) 

3 Minor Low High (2,3,4) 

4 Low Relatively low Moderate high (3,4,5) 

5 Moderate Moderate Moderate (4,5,6) 

6 Significant Moderately high Low (5,6,7) 

7 Major High Very Low (6,7,8) 

8 Extreme Repeated failures Remote (7,8,9) 

9 Hazardous Very high Very remote (8,9,10) 

10 Very hazardous Almost certain Almost impossible (9,10,10) 

 
Fuzzy Analytic Hierarchy Process (AHP) 

The fuzzy sets introduced by Zadeh (1965) were designed to better adapt the 

evaluation of objects to the human thought process and intuition. In MCDM methods, 

triangular fuzzy numbers (TFNs) can substitute exact values to handle uncertainty and 

vagueness more effectively during the evaluation process. The TFN is defined as a triplet 

(l, m, u), where m represents the most probable value, l is the minimum possible value, and 

u is the maximum possible value. Its membership function is described by an Eq. 3 and 

presented in Fig. 2. 
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𝜇(𝑥) = {

𝑥−𝑙

𝑚−𝑙
, 𝑙 ≤ 𝑥 ≤ 𝑚

𝑢−𝑥

𝑢−𝑚
, 𝑚 < 𝑥 ≤ 𝑢

0, otherwise

       (3) 

 
Fig. 2. Membership function of TFN 
 

The simplified fuzzy arithmetic operations for TFNs are outlined below. Let 𝑥̃1 =
(𝑙1, 𝑚1, 𝑢1) and 𝑥̃2 = (𝑙2, 𝑚2, 𝑢2) represent two TFNs. Then:  

𝑥̃1 ⊕ 𝑥̃2 = (𝑙1 + 𝑙2, 𝑚1 + 𝑚2, 𝑢1 + 𝑢2) 
𝑥̃1 ⊖ 𝑥̃2 = (𝑙1 − 𝑢2, 𝑚1 − 𝑚2, 𝑢1 − 𝑙2) 
𝑥̃1 ⊗ 𝑥̃2 = (𝑙1𝑙2, 𝑚1𝑚2, 𝑢1𝑢2) 

𝑥̃1 ⊘ 𝑥̃2 = (
𝑙1

𝑢2
,

𝑚1

𝑚2
,

𝑢1

𝑙2
)       (4) 

To obtain the precise value for TFN 𝑥̃ = (𝑙, 𝑚, 𝑢), the defuzzification process was 

applied using Eq. 5.  

𝑥 =
𝑙+4𝑚+𝑢

6
         (5) 

TFNs provide a means to account for uncertainties in expert assessments in AHP. 

AHP is a well-known MCDM method (Saaty 1980) that determines the priorities 

of objects by pairwise comparisons. In fuzzy AHP, expert judgments (k=1,…, s) are 

expressed using a linguistic scale.  

 
Table 2. Saaty’s Scale, Linguistic Scale and Corresponding TFNs of the AHP 
Method (Pitchipoo et al. 2013)  
 

Saaty's Scale Linguistic Preferences Corresponding Fuzzy Preference 

1 Equally preferred (1,1,1) 

2 Equally to moderately preferred (1,2,3) 

3 Moderately preferred (2,3,4) 

4 Moderately to strongly preferred (3,4,5) 

5 Strongly preferred (4,5,6) 

6 Strongly to very strongly preferred (5,6,7) 

7 Very strongly preferred (6,7,8) 

8 Very strongly to extremely preferred (7,8,9) 

9 Extremely preferred (9,9,9) 

 

The corresponding TFNs (Table 2) are collected in the following fuzzy pairwise 

comparison matrices: 

 𝐴̃(𝑘) = (𝑎̃𝑖𝑗
(𝑘)

)
𝑛𝑥𝑛

= (𝑙𝑖𝑗
(𝑘)

, 𝑚𝑖𝑗
(𝑘)

, 𝑢𝑖𝑗
(𝑘)

)
𝑛𝑥𝑛

.  

0

0.2

0.4

0.6

0.8

1

l m u

µ
(x

)
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The reciprocal values 𝑎̃𝑗𝑖
(𝑘)

=
1

𝑎̃
𝑖𝑗
(𝑘) = (

1

𝑢
𝑖𝑗
(𝑘) ,

1

𝑚
𝑖𝑗
(𝑘) ,

1

𝑙
𝑖𝑗
(𝑘)) were used for reciprocal 

pairwise comparisons. 

To derive the priorities from the fuzzy pairwise comparison matrix 𝐴̃, geometric 

mean (Buckley 1985) can be applied as follows. 

𝑣̃𝑖 = (𝑎̃𝑖1 ⊗ 𝑎̃𝑖2 ⊗ ⋯ ⊗ 𝑎̃𝑖𝑛)
1
𝑛 

𝑤̃𝑖 =
𝑣̃𝑖

∑ 𝑣̃𝑖
𝑛
𝑖=1

, 𝑖 = 1, . . . , 𝑛       (6) 

and Eq. 5 can be used to defuzzify the fuzzy weights. The consistency of fuzzy pairwise 

comparison matrix 𝐴̃ should be determined by the consistency ratio CR of precise matrix 

of middle values 𝑀 = (𝑚𝑖𝑗)
𝑛𝑥𝑛

 (Milošević et al. 2020):  

CR=
𝐶𝐼

𝑅𝐼
, CI=

(𝜆𝑚𝑎𝑥−𝑛)

(𝑛−1)
         (7) 

Using Eq. 7, CR is calculated from the consistency index (CI), derived from the maximum 

eigenvalue 𝜆𝑚𝑎𝑥 and the random index (RI). The fuzzy pairwise comparison matrix 𝐴̃ is 

considered acceptably consistent if CR<0.1. 

To aggregate individual fuzzy pairwise comparison matrices into group fuzzy 

pairwise comparison matrix 𝐴̃𝑔𝑟𝑜𝑢𝑝 , a max-min method is used (Kuo et al. 2002): 

𝐴̃𝑔𝑟𝑜𝑢𝑝 = (𝑎̃𝑖𝑗
𝑔𝑟𝑜𝑢𝑝

)
𝑛𝑥𝑛

;  𝑎̃𝑖𝑗
𝑔𝑟𝑜𝑢𝑝

= (𝑙𝑖𝑗
𝑔

, 𝑚𝑖𝑗
𝑔

, 𝑢𝑖𝑗
𝑔

) 

𝑙𝑖𝑗
𝑔

= 𝑚𝑖𝑛
𝑘=1,...,𝑠

𝑙𝑖𝑗
(𝑘)

, 𝑚𝑖𝑗
𝑔

= (∏ 𝑚𝑖𝑗
(𝑘)𝑠

𝑘=1 )

1

𝑠
, 𝑢𝑖𝑗

𝑔
= 𝑚𝑎𝑥

𝑘=1,...,𝑠
𝑢𝑖𝑗

(𝑘)
   (8) 

 

Integration of the Pareto Principle 
The Pareto Principle, often referred to as the 80/20 rule, was incorporated into the 

prioritization process to focus on the most significant failure modes driving the majority of 

risks. This targeted approach ensures that corrective actions address high-impact areas, 

enabling effective risk mitigation. Guided by the principle, the analysis concentrated on 

the top-scoring PFMs within each process step, ensuring that efforts were directed toward 

the most critical risks. 

Similar to the methodology of Keskin Çıtıroğlu et al. (2022), the Pareto Principle 

was applied alongside FMEA to systematically identify and rank the most significant risks, 

emphasizing areas requiring immediate attention. When combined with the fuzzy AHP-

FMEA methodology, this approach created a robust framework for identifying and 

prioritizing critical risks, optimizing resource allocation, and achieving comprehensive risk 

mitigation. 

 
 
RESULTS AND DISCUSSION 
 

This section presents the outcomes of the fuzzy AHP-FMEA analysis. The results 

identified six key process steps and 17 PFMs (labelled D1 to D17) impacting wood 

manufacturing processes. These PFMs and their potential effects on production efficiency, 

customer satisfaction, and operational costs are summarised in Table 3. 
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Table 3. Process Steps, PFMs, and Potential Effects of Failure 

Process Step PMFs Potential Effects of Failure 

Employee 
education (EE) 

D1 – Lack of knowledge of information 
system 

Data loss, errors in product design 
or manufacturing process 

D2 – Insufficient CNC operators 
Delayed delivery, increased costs, 
reduced customer satisfaction 

D3 – Delays in technical preparation 
Delayed production and delivery, 
increased costs, reduced customer 
satisfaction 

Occupational 
safety (OS) 

D4 – Workplace injuries affecting 
productivity 

Injuries to employees reduced 
productivity. Legal and financial 
liabilities, negative impact on 
company image 

Distribution and 
logistics (DL) 

D5 – Incorrect marking of completed 
orders 

Incorrect shipment Customer 
complaints, increased costs 

D6 – Delayed deliveries and damaged 
products 

Customer complaints, increased 
costs 

Production 
planning and 
execution (PPE) 

D7 – Incorrect order processing upon 
receipt 

Delay in delivery 

D8 – Delay in sending work orders to 
production 

Delay in production and delivery 

D9 – Insufficient workforce for task 
execution 

Delay in production and delivery 

D10 – Improper packaging of semi-final 
products 

Customer complaints, increased 
costs, damaged product during 
transport 

D11 – Equipment failure causing 
downtime 

Delays in production, increased 
costs 

Supply chain 
management 
(SCM) 

D12 – Shortage of edge strips 
Delays in production missed 
deadlines, and unhappy customers 

D13 – Production delays and missed 
deadlines 

Delayed order fulfilment and 
unhappy customers 

D14 – Delayed customer deliveries 
Delayed order fulfilment and 
unhappy customers 

D15 – Incorrect material delivery to the 
production site 

Material sub9stitution during loading 

D16– Errors in material receipt and 
storage 

Wrong materials, product defects, 
increased costs, delayed 
production, lower customer 
satisfaction 

Internal 
communication 
(IC) 

D17 – Material damage and delayed 
deliveries 

Delayed delivery, increased costs, 
reduced customer satisfaction 

 

Based on these findings, Table 4 compares the rankings derived from the Fuzzy 

AHP-FMEA model, traditional RPN, and the Fuzzy method with average S, O, D weights, 

highlighting critical differences in prioritisation. For example, D13 (production delays and 

missed deadlines) and D14 (delayed customer deliveries), ranked equally (3rd) in the 

traditional RPN, were elevated to second and third places, respectively, in the fuzzy model 

due to their significant impact on production schedules and customer satisfaction. In 

contrast, D17 (material damage and delayed deliveries), ranked 6th in traditional RPN, was 

deprioritized to 12th in the fuzzy framework, reflecting its more localised impact compared 

to other PFMs. 
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Table 4. Comparison of Fuzzy AHP-FMEA, Traditional RPN, and Fuzzy WAM 
Rankings 

 Fuzzy AHP-
FMEA 

Rank 
Traditional 

RPN 
Rank 

Average S, 
O, D 

Weights 
Rank 

D1 6.07 14 144 10 6.04 14 

D2 5.26 16 160 9 7.16 13 

D3 7.60 10 45 17 7.26 11 

D4 7.86 8 54 16 7.17 12 

D5 4.97 17 75 14 4.93 17 

D6 8.68 4 378 3 8.55 3 

D7 9.36 1 420 1 9.11 1 

D8 8.10 6 180 8 7.84 6 

D9 7.89 7 135 13 7.64 7 

D10 7.66 9 224 7 7.47 10 

D11 8.18 5 63 15 7.58 9 

D12 6.22 13 144 10 5.96 15 

D13 8.84 2 378 3 8.55 3 

D14 8.81 3 378 3 8.59 2 

D15 5.58 15 140 12 5.56 16 

D16 7.58 11 392 2 7.59 8 

D17 6.70 12 324 6 8.39 5 

 

The analysis identified D7 (incorrect order processing upon receipt) as the most 

critical PFM (9.36), highlighting its potential to disrupt workflows and delay delivery 

schedules. Similarly, D6 (delayed deliveries and damaged products) (8.68) underscored the 

importance of logistics in maintaining material quality, while D11 (equipment failure 

causing downtime) (8.18) revealed vulnerabilities in machinery-dependent operations. 

 

 
Fig. 3. Comparison between traditional RPN and Fuzzy AHP-FMEA 
 

At the lower end of the spectrum, PFMs such as D5 (incorrect marking of 

completed orders) (4.97) and D2 (insufficient CNC operators) (5.26) exhibited more 

localised impacts and were deprioritized in the fuzzy model compared to risks affecting the 

entire production chain. The fuzzy AHP-FMEA framework refined risk prioritisation by 

aligning the identified risks with the operational needs of the wood manufacturing sector. 
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To better assess the advantages of fuzzy AHP-FMEA approach compared to 

traditional RPN and to highlight critical distinctions in prioritisation, Fig. 3 provides a 

graphical representation of the comparison between the results of two methodologies, 

categorising PFMs into three importance levels: very important (values above 8.5), 

medium importance (7.0 to 8.5), and low importance (below 7.0). 

Some alignment was observed between the two methodologies (green dots). For 

example, D7 (incorrect order processing upon receipt) was ranked as the most critical PFM 

(Rank 1) in both models, reflecting consistency in recognising its significant impact on 

production workflows and delivery schedules. However, discrepancies were noted: red 

dots represent PFMs, such as D17 (material damage and delayed deliveries), which were 

identified as medium risk in the fuzzy model but were assigned lower rankings by the 

traditional RPN. Conversely, blue dots represent PFMs, such as D4 (workplace injuries 

affecting productivity), that were assigned higher rankings in the traditional RPN despite 

their lower operational impact in the fuzzy model. 

Expanding on the observations of Fig. 3, Fig. 4 examines the influence of weighting 

methodologies in the fuzzy AHP-FMEA framework. It compares rankings obtained using 

specific weights for S, O, D with those calculated using average weights. This analysis 

highlights how tailored weight assignments can significantly impact PFM prioritisation. 

The average weights applied for the comparison were 0.445, 0.663, and 0.972 for S; 0.089, 

0.149, and 0.261 for O; and 0.110, 0.188, and 0.327 for D. 

The results showed that PFMs such as D17 (material damage and delayed 

deliveries) and D2 (insufficient CNC operators) received significantly higher rankings 

when specific weights were applied, reflecting notable differences between their individual 

weights and the averages. Conversely, PFMs with less variability in their individual 

weights, such as D7 (incorrect order processing) and D13 (production delays and missed 

deadlines), retained similar rankings under both approaches, demonstrating consistency in 

prioritisation.  

 

 
Fig. 4. Comparison between Fuzzy AHP-FMEA considering different weights of S, O, D and 
average weights of S, O, D 
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Figure 5 illustrates how PFMs were distributed across process steps and identified 

their criticality. Applying the Pareto principle, the analysis pinpointed the top 20% of the 

factors with the highest scores in each category, which accounted for a significant portion 

of the associated risks within each step of the process, as indicated by the red line. 

 

 
Fig. 5. PFMs united by Process steps  

 

In the context of wood-based manufacturing, the analysis revealed the most critical 

PFMs within each category, which posed significant risks to production efficiency, product 

quality, and enhanced productivity: 

• SCM: D13 (production delays and missed deadlines) and D14 (delayed customer 

deliveries) were identified as critical due to their potential to disrupt schedules, delay 

timelines, and harm customer satisfaction, ultimately leading to financial losses. 

• PPE: D7 (incorrect order processing) emerged as a major risk, as errors in order 

management propagated through subsequent production stages, causing inefficiencies 

in cutting, assembly, and finishing operations. 

• DL: D6 (delayed deliveries and damaged products) presented serious challenges, 

particularly due to its impact on material waste, transportation costs, and customer trust. 

• EE: D3 (delays in technical preparation) impacted design accuracy and production 

timelines 

• OS: D4 (workplace injuries affecting productivity) highlighted the importance of safety 

training. 

• IC: D17 (material damage and delayed deliveries) underscored the need for improved 

material handling protocols and enhanced interdepartmental communication to prevent 

delays and ensure seamless workflows. 

• SCM category has the highest value of the 80th percentile, indicated by the highest 

value of the red line. 
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Table 5. Proposed Corrective and Preventive Measures for PFMs 

Process 
Step 

PFM Proposed Measures 
Measure 
Type 

EE 

D1 
Provide constant education to existing and new employees. 
Improve the documentation of the information system. 

Preventive 

D2 
Train employees to operate multiple machines, including 
CNC training. Increase the number of CNC operators. 

Preventive 

D3 
Offer technical drawing (CAD/CAM and Corpus) to improve 
product design accuracy and reduce manufacturing process 
errors. Utilise automated software for technical preparation. 

Corrective 

OS D4 

Conduct training on safe work practices and the proper use 
of protective equipment. Perform regular equipment 
inspections and maintenance. 
Implement comprehensive safety protocols and procedures. 
Conduct regular safety audits and risk assessments. 

Preventive 

DL 

D5 
Use appropriate documentation to mark load orders, with 
training in proper documentation procedures. 

Preventive 

D6 
Define delivery conditions and ensure timely communication 
with customers. Establish proper loading and unloading 
procedures and backup plans for delivery delays. 

Corrective 

PPE 

D7 
Accept orders only by e-mail or in person. Update and clarify 
ordering procedures; provide regular employee training. 

Corrective 

D8 
Adhere to the order of production scheduling and monitor 
capacity daily. Adjust production orders to align with 
production sequences. 

Preventive 

D9 
Plan workplace schedules, coordinating production plans 
with job distribution. Review and update workforce allocation 
procedures regularly. 

Preventive 

D10 

Address inadequate pallet packaging by using appropriate 
materials, tools, and production parameters. Maintain 
machines and suction systems; provide employee training on 
proper packaging techniques. 

Preventive 

D11 
Use quality materials and appropriate production parameters 
with regular maintenance of equipment and tools. Develop 
backup plans to mitigate equipment failure. 

Preventive 

SCM 

D12 
Expand the supplier market for edge bands to cover all 
décor. Implement periodic audits and quality checks. 

Preventive 

D13 
Confirm and verify orders with project and procurement 
managers. Enhance communication and coordination with 
suppliers. 

Corrective 

D14 
Organise and maintain timely communication with transport 
companies. Establish multiple transport options and 
alternatives. 

Corrective 

D15 
Scan barcodes on loading orders and enforce relevant 
procedures. Create and implement a standardised loading 
checklist. 

Preventive 

D16 

Organise pallets according to dimensions. Inspect and verify 
the incoming materials. Ensure adequate labelling and 
tracking of materials. Conduct regular inventory audits and 
reconciliations. 

Preventive 

IC D17 

Update and implement procedures for internal 
communication. Provide consistent education and define 
responsibilities clearly. Ensure timely reporting of issues. 
Conduct regular communication meetings and feedback 
sessions. 

Corrective 
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These findings highlighted the importance of addressing high-risk PFMs to reduce 

risks and optimise operations in the wood-based manufacturing sector. To tackle these 

challenges, Table 5 outlines tailored corrective and preventive measures designed to 

address critical risks and drive significant process improvements across the company’s key 

operations. Based on the fuzzy AHP-FMEA analysis, the recommendations prioritise 

targeted corrective actions for high-priority PFMs while emphasizing preventive measures 

to support long-term resilience. 

The corrective measures focus on rectifying inefficiencies in PFMs such as D3 

(delays in technical preparation), D4 (workplace injuries affecting productivity), D6 

(delayed deliveries and damaged products), D7 (incorrect order processing), D13 

(production delays and missed deadlines), D14 (delayed customer deliveries), and D17 

(material damage and delayed deliveries). Proposed actions include improving technical 

preparation with automated tools, enhancing material handling procedures, defining 

delivery protocols, clarifying order processing systems, and optimising supplier 

coordination to meet deadlines. 

Conversely, preventive measures aim to mitigate risks and foster long-term 

resilience by addressing PFMs such as D1 (lack of knowledge of the information system), 

D5 (incorrect marking of completed orders), D8 (delays in sending work orders to 

production), D10 (improper packaging of semi-finished products), D11 (equipment failure 

causing downtime), D12 (shortage of edge strips), and D16 (errors in material receipt and 

storage). Strategies include comprehensive employee training, adherence to safety and 

operational protocols, consistent monitoring of production and logistics, and proactive 

equipment maintenance to minimise disruptions and ensure stability. 

This structured approach provides a robust response to operational risks. Corrective 

measures address urgent issues like delays, order inaccuracies, and material damage, while 

preventive strategies build a foundation for sustainable growth through enhanced 

education, safety, and operational efficiency. 

 
Discussion 

The proposed framework bridges the gap between traditional RPN methods and 

more sophisticated ranking techniques. Unlike conventional models that often prioritise 

computational complexity over interpretability, the fuzzy AHP-FMEA approach balances 

methodological rigour with practical applicability. Furthermore, it assigns tailored weights 

and incorporates linguistic scales, improving the robustness of the prioritisation process. 

This advancement aligns with findings from Liu et al. (2015) and Fattahi et al. (2020), who 

emphasised the value of integrating fuzzy logic to address subjectivity in complex 

industrial settings. Similarly, Abdelgawad and Fayek (2010) demonstrated the application 

of fuzzy FMEA and AHP in construction, highlighting how these methodologies address 

variability and uncertainty, challenges that are critical in both the construction and wood 

manufacturing industries. 

The framework presented here offers unique strengths in its adaptability to the 

complexities of wood manufacturing processes. Furthermore, unlike other approaches such 

as Li et al. (2021), which emphasised normalization algorithms for floating offshore wind 

turbines, this study focusses on the integration of expert-driven weighting processes. While 

normalisation techniques could further enhance ranking precision, the reliance on expert 

input ensures that operational nuances are well captured, which is essential in industries 

with variable production processes such as wood manufacturing. 

Furthermore, expert judgment played a crucial role in improving the reliability of 
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this study’s framework. Using the expertise of managers and engineers with deep 

knowledge of the wood manufacturing process, the model ensured contextually relevant 

weighting of severity, occurrence, and detection factors. This integration of expert insights 

not only improved the precision of risk assessments but also aligned priority outcomes with 

operational realities. 

The findings also underscored the criticality of addressing high-priority failure 

modes, particularly “incorrect order processing” (D7), “production delays and missed 

deadlines” (D13), and “delayed customer deliveries” (D14). These risks were identified as 

the most impactful, consistent with observations from similar studies (Camci and Temur 

2018; Urbina et al. 2022). Addressing these risks is essential to improve production 

efficiency, maintain product quality, and ensure customer satisfaction. 

Furthermore, the sensitivity analysis revealed the robustness of the fuzzy AHP-

FMEA methodology. Even when the weights for the risk factors varied, the prioritisation 

of critical failure modes remained consistent, strengthening the reliability of the approach. 

For example, “incorrect-order processing" (D7) consistently emerged as the top priority 

across all weighting scenarios, underscoring its potential to disrupt workflows and delay 

delivery schedules.  

The tailored corrective measures proposed in this study specifically address critical 

PFMs such as D3, D4, D6, D7, D13, D14, and D17 aligning with industry needs for 

operational precision and customer responsiveness. For instance, improving order accuracy 

(D7) through updated ordering protocols and training reduces propagation of errors across 

production stages, while enhancing communication protocols (D14) mitigates delivery 

delays and fosters stronger supplier and customer relationships. These targeted actions not 

only resolve immediate bottlenecks but also build resilience against future disruptions. 

Finally, further refinements, such as normalisation and weighting adjustments 

explored in other studies, could complement this robustness by offering additional 

resolution for mid-range risks. However, the stability of prioritisation results in this 

framework underscores its practical value even without these enhancements. 

 

Practical Implications 
The study provides actionable insights for practitioners, including: 

• Enhancing employee training programmes, such as CNC education and technical 

drawing skills, consistent with Susilawati (2021). 

• Strengthening internal communication protocols to address inter-departmental delays, 

as emphasised by Zahra et al. (2024). 

• Improving supply chain management to mitigate risks associated with “production 

delays and missed deadlines” (D13) and “delayed customer deliveries” (D14), echoing 

recommendations from Boran and Gökler (2019). 

The findings from Table 5 further underscore the interconnected nature of risks in 

wood manufacturing. Addressing D13 and D14 through improved supply chain 

management highlights the critical role of logistics and material handling in ensuring 

timely production and delivery. These insights resonate with studies in related fields, such 

as Zahra et al. (2024), which advocate for enhanced interdepartmental coordination to 

mitigate similar risks in high-variability production environments. 

These corrective measures are tailored to the operational context of wood 

manufacturing, making the fuzzy AHP-FMEA framework particularly effective for 

addressing variability in production, logistics, and material handling. Although advanced 
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monitoring tools, as demonstrated in other studies, could augment these interventions, the 

proposed framework already offers substantial practical benefits. 

 

Limitations and Future Directions 
While this study demonstrated the adaptability and utility of the fuzzy AHP-FMEA 

framework, it was conducted within a single wood-based manufacturing company, which 

may limit its generalisability. Expanding its application to multiple companies or 

industries, as demonstrated by Fatollah et al. (2022) in the petrochemical sector, could 

validate its broader utility and uncover additional sector-specific insights. 

Furthermore, integrating economic dimensions, such as cost and profit 

considerations, could enhance the framework's practical relevance, as suggested by Fattahi 

et al. (2020). Future research could also explore integrating advanced automation 

technologies, such as machine learning, to refine weighting calculations and further 

mitigate subjectivity. 

By addressing both the technical and operational aspects of risk management, the 

fuzzy AHP-FMEA framework supports informed decision making and promotes 

continuous improvement. Its adaptability to dynamic and complex industrial settings 

makes it a valuable tool for risk prioritisation and operational enhancement. While this 

framework provides a robust methodology for wood manufacturing, integrating select 

refinements such as normalisation algorithms or predictive technologies could further 

enhance its precision and applicability. 

 

 

CONCLUSIONS 
 

1. The fuzzy analytic hierarchy process-failure mode and effects analysis (AHP-FMEA) 

framework effectively refines traditional risk priority number (RPN)-based risk 

assessments by incorporating tailored weighting and linguistic evaluations, resulting in 

improved prioritisation of failure modes in wood-based manufacturing processes. 

2. Critical potential failure modes (PFMs), such as “incorrect order processing” (D7), 

“production delays and missed deadlines” (D13), and “delayed customer deliveries” 

(D14), were identified as high-priority risks. Addressing these risks is crucial for 

optimising production efficiency, maintaining product quality, and enhancing customer 

satisfaction. 

3. Integration of fuzzy logic with FMEA mitigates limitations related to subjective 

assessments, inconsistent factor weighting, and scale redundancy. This approach offers 

a more nuanced and accurate assessment of risk priorities compared to traditional 

FMEA methods. 

4. The findings of this study emphasised the importance of employee training, internal 

communication, and workflow optimisation as key corrective measures to address 

high-risk PFMs, aligning with broader objectives of operational improvement and 

sustainability in the manufacturing sector. 

5. Applying the Pareto principle revealed that the top 20% of PFMs accounted for 

approximately 80% of the associated risks, underscoring the value of focussing 

resources on the most impactful issues to achieve efficient risk mitigation. 
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6. The study contributes to the literature on risk management in manufacturing by 

demonstrating the applicability and benefits of combining fuzzy AHP and FMEA 

methodologies in a wood-based manufacturing context, providing a model that could 

be adapted to other industries. 
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