PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Predictive Modeling of the Softness of Facial Tissue Products:
A Spectral Analysis Approach
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Softness is a critical yet subjective characteristic of hygiene paper
products such as facial tissues. In this study, softness values were
obtained from the authors’ previous research using the Interval Scale
Value (ISV) method, involving panelists’ round-robin pairwise
comparisons. A machine-learning approach was developed to predict
softness from one-dimensional power spectral density (1D-PSD) spectra
of surface roughness profiles. Using seven commercial samples and an
optimized multilayer perceptron model, a achieved high predictive
performance (R? = 0.860) was achieved without additional measurements
such as tensile modulus or surface friction. This work highlights the
potential of combining spectral analysis and machine learning for objective
softness evaluation.
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INTRODUCTION

Softness is regarded as a crucial characteristic of paper products for hygiene, such
as bathroom and facial tissues. Softness, being inherently subjective, has often been
considered difficult to assess through objective testing methods. However, ongoing efforts
to develop such methods persist, given their significant advantages when successfully
implemented. Subjective methods, by contrast, are retrospective in nature and may not
provide the proactive insights needed for tissue manufacturers to innovate effectively (Ko
etal.2017).

Given their subjectiveness, softness attributes have been generally believed to be
impossible to evaluate using objective softness test methods. Despite such challenges, there
has been a persistent drive to create testing methods, valued for their advantages such as
cost efficiency, time saving (e.g., faster time to market), improved quality and process
control, and valuable insights and direction for product development (Ko et al. 2015, 2016;
Lee et al. 2017, 2023; Kweon et al. 2024).

Building on the pioneering work of Hollmark (1983) and Hollmark and Ampulski
(2004), significant progress has been achieved in developing physical softness models for
hygiene paper products. Ramasubramanian (2001) also provided a comprehensive review
of this topic. Subjective softness primarily comprises two main components: bulk softness
and surface softness (Ampulski ef al. 1991; Beuther et al. 2012; Ko et al. 2018). For bulk
softness measurements, the tensile modulus (7M) has been defined as the slope between
two specific points on a load—elongation curve (Ko et al. 2015). Meanwhile, surface
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softness has been assessed using a surface profilometer to measure surface roughness and
friction (Ko et al. 2015, 2017, 2018).

Lee et al. (2023) proposed predictive models for evaluating the softness of facial
tissue products. The 3-P geometric mean (GM) model for facial tissue products was
identified, which integrated TM, surface roughness, and surface friction. These models
were normalized to quantify the contributions of bulk and surface softness. The analysis
revealed that surface roughness contributed ~50% to the overall softness, with surface
friction and 7M accounting for 20% and 30%, respectively. Overall, the major component
of softness for facial tissue products was surface roughness.

The surface roughness of paper products spans multiple scales, including the
microscale (e.g., individual fibers), the intermediate scale (such as creping), and the
macroscale, which reflects post-converting processes like printing and embossing (Kajanto
et al. 1998; Lee et al. 2023). For the tissue paper products which physical and mechanical
properties are dependent on creping and embossing process (Pawlak ef al. 2022). Thus, it
can be hypothesized that the dominant contributor to the surface roughness of facial tissue
products is the macroscale roughness.

Advancements in mathematical algorithms have facilitated the expansion of
predictive modeling techniques as alternatives to conventional chemical analysis for
characterizing various materials, including pulp and paper products (Kim et al. 2023;
Hwang et al. 2024). Moreover, in the context of physical analyses such as surface
characterization, predictive models have demonstrated notable potential and superior
performance (Boidi ef al. 2020; Hasan and Karabacak 2023; Motamedi ef a/. 2023). In this
respect, Aguilar et al. (2009) employed the friction noise generated by a small brush sliding
over the surface of a paper to assess surface roughness. The recorded noise was analyzed
using a signal-processing algorithm based on the frequency domain. This approach,
combined with an artificial neural network model, enabled the measurement of surface
roughness in tissue papers.

This study aims to develop a machine-learning-based technique for measuring the
softness of facial tissue products. To this end, a method is proposed to treat random
roughness profiles of tissue as distinct features using spectral analysis. This article
introduces a novel approach to surface characterization and softness measurement,
emphasizing cost-effectiveness and rapid analysis.

EXPERIMENTAL

Materials

The physical properties of seven commercial two-ply facial tissue samples and
their interval scale value (ISV) of softness are presented in Table 1. Thurstone (1994)
introduced the ISV, which is derived through pair-comparison testing. The ISV plays a
critical role in developing physical models for predicting subjective evaluations. Unlike
ranking or rating scales, which are neither linear nor continuous on equal intervals (Ko et
al. 2018; Lee et al. 2017), the ISV provides a linear and continuous scale with equal
intervals, similar to physical measurements such as length or weight. Statistically, the ISV
corresponds to the Z-value of normal deviates and functions similarly to a physical
measurement.

In brief, the ISV softness can be determined by a subgrouping approach known as
the Ko-method (Ko et al. 2017). In this method, the full sample set is divided into
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overlapping subgroups linked by anchor samples, thereby significantly reducing the
number of pairwise comparisons required. For example, for seven samples, the full round-
robin pair-comparison would require 21 comparisons; however, using the Ko-method,
subgroup one may include samples 1 to 4, and subgroup two samples 4 to 7, with sample
4 serving as the anchor. Additionally, the Ko-method improves data reliability by avoiding
pairings with preference values below 20% or above 80%, which addresses the sensitivity
of ISV to extreme preference values.

ISV softness and predicted ISV softness were investigated in previous work (Lee
et al. 2023). The ISV softness for the seven facial tissue samples was obtained using the
aforementioned subgrouping pair-comparison method. Before dividing the samples into
two subgroups, a ranking procedure was conducted to identify the anchor sample, with FT4
being selected as it ranked centrally among the samples. Following subgrouping, pairwise
comparisons were conducted by 100 untrained panelists (Ko ef al. 2016; 2017; 2018; Lee
et al. 2017; Lee et al. 2023). The predicted ISV softness of the facial tissue was derived
from GM models.

FT8 and FT9, which did not evaluate the ISV softness, were used to predict the
ISV softness using the machine-learning-based softness prediction model.

Table 1. Physical Properties of Facial Tissues and ISV Softness (Y. J. Lee et al.
2023)

Predicted ISV Predicted ISV
Basis . . Softness from Softness from
Sample | Weight | |hickness De/“s'gy 5 'ﬂSV 3-P Models | 2-P Models
(g/m?) (mm) | (g/em®) | Softness | 7/ purap. (TM and
and FMAD) RMAD)
FT1 22.9 0.077 0.30 1.69 1.53 1.32
FT2 20.5 0.076 0.27 0.53 0.35 0.48
FT3 14.7 0.046 0.32 0.64 0.36 0.00
FT4 15.6 0.063 0.25 0.53 0.85 0.76
FT5 13.7 0.051 0.27 0.15 0.00 0.19
FT6 12.9 0.055 0.23 0.23 0.48 0.17
FT7 13.6 0.053 0.26 0.00 0.27 0.31
FT8 13.9 0.050 0.27 — — —
FT9 15.4 0.066 0.23 — — —

Surface Roughness Testing

The samples were conditioned for longer than 48 h at a temperature of 23 + 1°C
and a relative humidity (RH) of 50% =+ 2%, according to ISO standard 187, before surface
roughness testing.

For the surface roughness testing, a Kawabata surface tester (Model: KES-SESRU,
Kato Tech, Kyoto, Japan) was used. Generally, for the surface characterization of tissue
paper products, a U-tube stylus is used. However, an excessively large contact area of the
stylus is unsuitable for spectral analysis (Wu 2000). To solve this issue, 1.0R conical-
shaped styluses were tested (Park et al. 2021; Moon et al. 2022; Lee et al. 2023). These
styluses maintain minimal contact with the sample surface because their contact area is
small and approximately circular in shape.

The testing conditions were as follows: scan length, 20 mm; scan speed, 1 mm/s;
and data acquisition rate, 1000 Hz (or 1000 points/s). For each sample, 10 measurements
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were taken in the machine direction. The testing was performed at 23 + 1°C and at an RH
of 50 &+ 2%. These conditions were successfully applied to the surface characterization of
tissue products (Lee et al. 2023). Consequently, the surface roughness profile shown in
Fig. 1a was obtained.

Determination of the Surface Roughness of Facial Tissues
From the surface roughness profile in Fig. 1a, the average of the surface roughness
(R.) and the mean absolute deviation (RMAD) from R. were calculated using Egs. 1 and 2,

1
R, = ~XYIRil (1
1
RMAD = —3Y[IRi| — R (2)

where R, is the roughness average (um), R; is the roughness (um) at scanning point 7, and
N is the number of data points in the scan length.

Power Spectral Density of Surface Roughness Profile
Detrending

Detrending raw data involves removing low-order polynomial terms from the
profile to reduce the high-frequency artifacts introduced into the power spectral density
(PSD) by endpoint discontinuities. Surface profiles with substantial tilt or curvature must
be flattened or “pre-whitened” by eliminating these low-order polynomial components
(Blackman and Tukey 1959). Detrending is commonly applied in fast Fourier transform
(FFT) processing (Borchers 2022) and can be accomplished by removing the mean value
or a (piecewise) linear trend from a vector or from each column of a matrix. The
mathematical expression for this process is defined in Eq. 3.

Z(x,) =Z(x,) — [a+ bx,, + cx2 + -] (3)

where Z(x,,) represents the raw data, and the coefficients are computed using a simple
least-squares fit to the data points. In this study, surface roughness profiles were detrended
by computing the least-squares fit of a straight line (or a composite line for piecewise linear
trends) to the data. This fitted function was then subtracted from the original data. Finally,
the process involved removing either the mean value or the (piecewise) linear trend from
each vector or column in the data matrix to ensure a consistent baseline for further analysis.
Figure 1b shows the detrended surface roughness profile of Fig. 1a.

Windowing

For the analysis of random roughness profiles, a window function is necessary to
handle the finite-length data set effectively (Kay 1988). The Welch window function
(Welch 1967) is particularly suitable for spectral analysis because it ensures that a
windowed signal has a seamless periodic extension, which is essential for discrete Fourier
transform (DFT). When the “periodic” option is specified, the function generates a window
of length n + 1, returning only the first n points to achieve this periodic alignment. The
Welch window, defined as a polynomial window with a single parabolic segment, is
calculated as shown in Eq. 4.

w(k) = 1—(%)2,71 =0,1..,n—1 (4)

In this equation, k represents the position index of each sample in the window, ranging
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from 0 to n — 1, with w(k) applying a parabolic weight to each sample based on its
position. This periodic window, wrapping around the cyclic interval 0, 1, ..., m —1, is
specifically designed for DFT applications, where m represents the window length and
must be an integer greater than 1. In the formula, N represents n/2, setting the basis for the
parabolic taper.

Figure 1c illustrates the Welch-windowed surface roughness profile derived from
the detrended surface roughness profile shown in Fig. 1b. To prepare nonperiodic surface
roughness data for Fourier transformation, they are multiplied by a periodic window
function. This windowing process in the Fourier domain effectively acts as a low-pass
filter, mitigating the high-frequency noise commonly observed at terrain edges.

One-dimensional PSD

The PSD was computed to analyze the distribution of power across different spatial
frequencies in the roughness profile of facial tissue products (Krim and Palasantzas 1995).
The transformation from the spatial domain to the frequency domain was achieved using
FFT, as expressed in Eq. 5,

_ i2mwkn
F(k)=YNZmwn)-e~ v ,k=0,1,,N—1 (5)
where F (k) is the FFT result at the frequency index k, representing the amplitude and
phase of the kth frequency component, Z(n) is the detrended roughness profile, w(n) is

i2mwkn

the Welch window function, and e ~  is the complex exponential term representing the
Fourier basis function for frequency &.
The PSD, P(f), for a given frequency f'is mathematically defined as in Eq. 6,

P(f) = O ©)

where Af is the frequency bin width, calculated as Af = % Here, T is the total duration of

the sampled data. |F(f)|? is the squared magnitude of the FFT result, representing the
power at frequency f. The resulting one-dimensional PSD (1D-PSD) plot is shown in Fig.
1d, where the log—log scale reveals frequency-dependent roughness characteristics.
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Fig. 1. Roughness profile conversion to the 1D-PSD spectrum (a, roughness profile; b, detrended
roughness profile; ¢, Welch-windowed roughness profile; d, 1D-PSD of the roughness profile)

Principal Component Analysis of 1D-PSD spectra

Principal component analysis (PCA) was conducted to uncover hidden patterns and
structures within the 1D-PSD spectra of the facial tissue. The high-dimensional 1D-PSD
spectra were transformed into new orthogonal principal components (PCs), and the results
were visualized in a two-dimensional space using the first two PCs.

Multilayer Perceptron for Predicting the ISV Softness of Facial Tissues
Dataset splitting

Figure 2 shows a diagram for predicting the ISV softness of facial tissues using
multilayer perceptron (MLP). For the construction of MLP models, the 1D-PSD spectra of
the tissue products were utilized. The dataset was independently divided into training and
test sets at a ratio of 7:3, and these subsets were used for model construction and evaluation.
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Fig. 2. Diagram for predicting the ISV softness of facial tissue products using MLP models

MLP regressors

MLP regressors were trained using backpropagation, with no activation function
applied in the output layer. A sigmoid activation function was employed in the hidden
layers. The squared error was used as the loss function, and the model was optimized using
stochastic-gradient-descent-based optimizers, specifically SGD and Adam. Various
network architectures, as detailed in Table 2, were tested with logarithmic learning rates
ranging from 0.0001 to 0.1 to identify the optimal network configuration for the MLP. The
maximum number of iterations was set to 1000. Hyperparameters, including the network
architectures, optimizers, and learning rates, were optimized through a grid search with
threefold cross-validation.

Table 2. Tested Network Architectures of MLP Regressors

Three-layer MLP Four-layer MLP

Input Hidden layers Output Input Hidden layers Output

layer 1st 2nd layer layer 1st 2nd 3rd layer
16 16 16 16 16
32 32 32 32 32
64 64 64 64 64

1941 128 128 1 1941 128 128 128 1
256 256 256 256 256
512 512 512 512 512

Evaluation metrics
The coefficient of determination (R*) and the root-mean-square error were used as
performance metrics for the MLP models, as expressed in Eqs. 7 and 8, respectively.

2 _ 4 _ EUSViISny?
k= LiUsvi—p)? (7
RMSE = \/%Z?zl(lﬁ/l —Is1;)° )
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where ISV; and ISV; are the analyzed and predicted ISV softness of the i observation,
respectively. The parameter u denotes the overall mean, whereas n refers to the total
number of observations. All processes were performed using R software (R Core Team,
ver. 4.4.1, Auckland, New Zealand), including the data preprocessing and predictive
modeling of softness.

Prediction of ISV Softness for Facial Tissues

FT8 and FT9, which did not evaluate the ISV softness, were used to predict the
ISV softness using the constructed MLP model. The surface roughness profiles of FT8 and
FT9 were obtained using the same method as for FT1 to FT7. Subsequently, their 1D-PSD
spectra were used to predict the ISV softness using the MLP model. PCA was also
performed to observe the relationship between existing data and these samples (FT8 and
FT9).

RESULTS AND DISCUSSION

Determination of the Surface Roughness of Facial Tissue Products

Table 3 presents the results for R, and RMAD of the facial tissue products. In
previous research (Park et al. 2021; Y. J. Lee et al. 2023), the surface profile parameter
RMAD was considered to be more stable and reliable. The findings in Table 3 aligned with
these observations, as RMAD and its coefficient of variation (COV) were significantly
lower than those of R.. This supports the argument that RMAD is a more accurate measure
of the true surface profile as it is less influenced by testing conditions compared with Ra.

Table 3. Results for R; and RMAD of Facial Tissues (Y. J. Lee et al. 2023)

Stylus 1.0R Conical Stylus U-Tube Stylus
Sample Ra (um) RMAD (um) Ra (Um) RMAD (um)
Avg. | COV (%) | Avg. | COV (%) | Avg. | COV (%) | Avg. | COV (%)

FT1 2.49 23.5 1.44 14.4 2.18 22.9 1.33 14.3
FT2 2.53 18.2 1.47 12.1 2.25 11.6 1.38 7.5
FT3 3.95 14.7 2.30 6.3 4.14 11.8 2.59 7.1
FT4 3.17 14.2 1.82 7.4 3.03 15.5 1.84 8.2
FT5 2.69 10.0 1.52 6.4 2.78 15.2 1.73 7.3
FT6 3.03 19.8 1.77 14.3 3.13 10.1 1.85 5.9
FT7 3.77 21.8 2.23 8.2 3.77 12.2 2.24 4.3

Figure 3 compares the U-tube stylus and the 1.0R conical stylus for surface
roughness characterization. The regression equations presented in the figure demonstrate a
high correlation, with an R? value approaching 0.95. Notably, for RMAD, as shown in Fig.
3b, the slopes were greater than one, indicating that the 1.0R conical stylus detected surface
structures with higher sensitivity. This difference can be attributed to the distinct contact
areas of each stylus. The U-tube stylus, with a width of 0.5 mm and length of 5 mm, has a
relatively large contact area with the sample surface, which may reduce its sensitivity to
fine surface features. In contrast, the 1.0R conical stylus has a much smaller, approximately
circular contact area, resulting in higher sensitivity to subtle surface variations. This design
enhances its ability to detect subtle variations in surface roughness (Park et al. 2021; Moon
et al. 2022; Lee et al. 2023).
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Fig. 3. U-tube stylus vs. 1.0R conical stylus for surface roughness characterization (a, Ra; b, RMAD)
of facial tissue products

1D-PSD Spectra for the Surface Roughness Profiles of Facial Tissues

Figure 4 illustrates the 1D-PSD spectra for the surface roughness profiles of the
facial tissue products, whereas Table 4 provides the surface roughness contributions across
different wavelength regions. The analysis revealed that most of the surface roughness
contributions originated from the 100- to 1,000-um region, which corresponded to the
medium scale, with contributions approaching almost 100%, indicating that intermediate
and macroscale features such as creping and embossing dominated the surface texture.
These features produce relatively shallow amplitude variations (Ra = 2 to 4 um), yet span
large spatial wavelengths, resulting in a surface profile characterized by broad undulations
with moderate vertical depth.

o
10 mm~ 1~10 mm 100~1000 pm 10~100 pm ~10 ym

=y

b L=

10

Log (1D-PSD, pm?/Hz)
8
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-14
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-1 0 1 2
Log (Frequency, Hz)

Fig. 4. 1D-PSD spectra for the surface roughness profiles of facial tissue products in the
frequency domain

Lee et al. (2025). “Softness from roughness spectra,” BioResources 20(3), 6457-6475. 6465



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

Table 4. Contribution of Surface Roughness Across Different Wavelength Ranges
for Facial Tissue Products

| Contribution of Surface Roughness, %

Sample 1 mms 100 to 1,000 ym 10 to 100 um <10 ym
FT1 — 99.3 0.7 —
FT2 — 98.5 1.5 —
FT3 — 99.7 0.2 —
FT4 — 99.6 0.3 —
FT5 — 99.5 0.5 —
FT6 — 99.6 0.4 —
FT7 — 99.8 0.2 —

Figure 5 illustrates this concept by comparing two sinusoidal surface profiles: one
with larger amplitude variations and another with smaller amplitude but higher frequency.
This demonstrates that even when the average roughness is low, the actual surface profile
may contain components with significant amplitude variations across different spatial
scales. This phenomenon has been recently emphasized in the authors’ own research (Lee
et al. 2025). Therefore, this highlights that absolute texture parameters may not fully
represent all aspects of the surface morphology.

Height

Position
Fig. 5. Conceptual illustration of surface profiles with varying amplitude and spatial wavelength,

demonstrating how broad undulations with moderate vertical depth can produce low average
roughness values

Surface roughness of tissue products can be attributed to multiple sources operating
at different length scales (Kajanto ef al. 1998). At the microscale (10 to 100 um), free fiber
ends and fiber morphology predominantly influence roughness, giving rise to high-
frequency, high-resolution features. At the mesoscale (100 to 1,000 um), processes such as
creping and small-scale printing contribute significantly, resulting in intermediate-
frequency characteristics. At the macroscale (greater than 1,000 um), embossing, large-
scale printing, and fabric patterns prevail, producing low-frequency, low-resolution surface
features. Understanding these contributions from each scale is crucial for accurately
characterizing and optimizing the surface properties of tissue and towel products.

In the case of facial tissue, surface roughness is primarily attributed to the medium
scale, primarily reflecting the effects of the creping process. A smaller portion of the
surface roughness originated from the microscale, which is associated with fiber-level
morphology. Based on the data in Table 4, contributions from macroscale features
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exceeding 1 mm were found to be insignificant in the surface roughness of facial tissue
products. Additionally, high-frequency features below 10 um contributed negligibly to the
characterization of surface roughness in the facial tissue products. Therefore, both
macroscale features and high-frequency components smaller than 10 um should be
excluded from the 1D-PSD analysis of facial tissue, a process referred to as applying a
“cutoff” (Jacobs et al. 2017).

Table 5 presents the contributions of surface roughness within the wavelength
range of 100 to 1,000 um for facial tissues, further segmented into four wavelength
intervals: 750 to 1,000 pm, 500 to 750 pm, 250 to 500 pm, and 100 to 250 um. The results
indicated that surface roughness primarily originated from the 750- to 1,000-pum segment,
accounting for ~73 to 84% of the total contribution across all samples. This finding
underscores the dominant influence of larger-scale features within the medium scale on the
surface roughness of the facial tissue products.

The 500- to 750-um interval accounted for 14.7 to 23.9% of the total surface
roughness contribution, highlighting its secondary role in shaping the surface
characteristics of the studied tissue products. In contrast, contributions from the 250- to
500-um and 100- to 250-um intervals were minimal, collectively contributing less than 5%
across all samples. Notably, the 100- to 250-um interval occasionally exhibited negligible
contributions, as observed in FT3.

These results further emphasized that the medium-scale roughness of facial tissue
products is predominantly influenced by features in the upper range of the 100- to 1,000-
um spectrum, such as creping patterns. Smaller-scale features, although present,
contributed minimally to the overall surface roughness profile. This analysis provides
valuable insights into scale-specific contributions to surface roughness and supports the
optimization of manufacturing processes to achieve desired surface properties.

Table 5. Surface Roughness Contribution Within the Wavelength Range of 100 to
1,000 pm for Facial Tissues

Contribution of Surface Roughness (%)
Sample | 750t01000pm | 500to750um | 250t0500um | 100 to 250 um
FT1 771 211 18 0.1
FT2 78.4 18.8 26 02
FT3 83.6 15.7 07 —
FT4 79.6 18.6 1.6 02
FT5 73.3 23.9 26 0.1
FT6 79.8 18.2 1.9 0.1
FT7 84.0 14.7 1.2 0.1

Figure 6 shows the 1D-PSD spectra for the surface roughness profiles of facial
tissues within the wavelength range of 100 to 1,000 um. Table 6 presents the average 1D-
PSD of the surface roughness profiles for the facial tissues within the wavelength range of
100 to 1,000 pm.
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Fig. 6. 1D-PSD spectra for the surface roughness profiles of facial tissues in the frequency
domain within the wavelength range of 100 to 1,000 um

Table 6. Average 1D-PSD of Surface Roughness Profiles for Facial Tissues Within
the Wavelength Range of 100 to 1,000 pm

Average 1D-PSD (um?/Hz) in the wavelength of 10 to 100 ym
Sample | 750 t6 1000 um 500 to 750 pm 250 to 500 pm 100 to 250 pm
FT1 —4.81 -5.13 —6.05 -6.85
FT2 —4.76 -5.12 —5.76 —6.36
FT3 —4.52 -5.06 -6.18 -6.83
FT4 -4.70 -5.09 -5.90 —6.31
FT5 —4.90 -5.18 -5.91 —6.66
FT6 —4.70 -5.12 -5.97 —6.88
FT7 —4.66 -5.13 -5.98 —6.72
Figure 7 illustrates the correlation between the normalized (min—max

normalization) average 1D-PSD and the surface roughness metrics, with Fig. 7a
representing R, and Fig. 7b representing RMAD. There was a significant correlation
between the 1D-PSD values in the wavelength range of 750 to 1000 um and the surface
roughness parameters, with R? values of 0.659 for R, and 0.737 for RMAD. These findings
indicated that the surface roughness characteristics in this range were predominantly
influenced by medium-scale features, such as creping effects, which played a key role in
defining the roughness profile of the facial tissue products.

Furthermore, the slightly higher correlation between 1D-PSD and RMAD
compared with that with R, suggests that RMAD is a more accurate measure of the true
surface profile, as discussed previously. This reinforces the utility of RMAD as a reliable
parameter for surface roughness characterization.

In contrast, the contributions from other wavelength ranges, such as 500 to 750 pum,
250to0 500 pm, and 100 to 250 pm, showed weaker correlations with the roughness metrics.
This suggests that the fine-scale features within these regions do not significantly influence
the overall roughness.
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Fig. 7. Correlation between the normalized average 1D-PSD and surface roughness metrics: (a)
Ra and (b) RMAD

PCA of 1D-PSD Spectra

Figure 8 shows the PCA score plots of the first two PCs in the wavelength range
of 10 to 1,000 um (Fig. 8a) and 100 to 1,000 um (Fig. 8b). The PCA score plots in Fig. 8
insightfully visualize the 1D-PSD spectra. Although the surface roughness contributions
were primarily observed in the wavelength range of 100 to 1,000 um, as previously
analyzed, the PCA results revealed an interesting phenomenon: when the full wavelength
range (10 to 1,000 um) was considered, better clustering characteristics among the samples
were observed.

This discrepancy suggests that although roughness contributions primarily
originate from medium-scale features (100 to 1,000 um), the inclusion of microscale
features (10 to 100 um) in the PCA analysis provides subtle differences that enhance the
separation and clustering of the samples in the multidimensional space. This finding
implies that microscale features, although contributing minimally to the overall roughness,
may carry unique information that aids in distinguishing samples more effectively.

In practical terms, it is beneficial to consider a broader wavelength range in
machine learning model construction, even when the primary contribution is localized to a
specific region, such as 100 to 1,000 um.
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Fig. 8. PCA score plots of the first two PCs in the wavelength range of 10 to 1,000 um (a) and
100 to 1,000 um (b)

MLP for Predicting the Softness of Facial Tissues

As discussed in the PCA results, the 1D-PSD spectra in the wavelength range of
10 to 1,000 pm were used in the MLP regression model to predict the ISV softness of facial
tissues. Although the primary roughness contribution originated from medium-scale
features (100 to 1,000 um), the inclusion of microscale features (10 to 100 um) introduced
subtle differences that enhanced sample differentiation in complex tasks.

Figure 9 illustrates the optimized MLP architecture for predicting the ISV softness
of facial tissues, which was determined through a grid search. The 1D-PSD spectra in the
wavelength range of 10 to 1,000 pm comprised 1,981 input variables. The finalized model
consisted of three hidden layers, each employing a sigmoid activation function, with each
hidden layer containing 16 nodes. The SGD optimizer was selected, and the optimal
learning rate was set to 0.1.

Back propagation (Loss function: SGD)

Loss
(squared error)

Weights J Sigmoid Sigmoid Sigmoid

ISV softness

1D-PSD spectra Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer
(1981) (1981) (16) (18) (16) Mm

Fig. 9. Architecture of the MLP for predicting the ISV softness of facial tissues
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Figure 10 shows the predicted ISV softness using three models: the MLP model
trained with 1D-PSD spectra (a), the 3-P model incorporating TM, RMAD, and surface
friction (b), and the 2-P model utilizing 7M and RMAD (c). The results indicated that the
MLP model significantly outperformed both the 3-P and 2-P models, as evidenced by its
higher R? value (0.860). This superior performance was achieved solely using the
roughness profile data derived from 1D-PSD spectra without requiring additional
measurements of 7M and surface friction. These findings highlight the efficiency and
practicality of the MLP model as it eliminates the need for labor-intensive and time-
consuming measurements, offering an effective approach for predicting the softness of
facial tissues.

However, the R? value of the MLP model did not reach a perfect 1.0, which may
be attributed to the absence of friction data and 7M in the model. These parameters, being
integral components of surface and bulk softness, could have provided additional
explanatory power for capturing variations in ISV softness. Consequently, although the
MLP model demonstrated strong predictive capabilities, the inclusion of these missing
variables might further enhance its performance.
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Fig. 10. Predicted ISV softness from the MLP (a), 3-P (TM, RMAD, and surface friction) (b), and
2-P (TM, and RMAD) (c) models (Lee et al. 2023)
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Fig. 11. Predicted ISV softness for FT8 and FT9 (a) and their placement on a PC score plot
alongside existing facial tissue products (b)

Prediction of ISV Softness for Facial Tissues

The established MLP model was utilized to predict the ISV softness of FT8 and
FT9, whose softness values had not been previously evaluated. Figure 11a presents the box
plots of the predicted ISV softness for these samples.

For FT8, the box plot shows a median ISV softness of ~0.90, with most predicted
values ranging between 0.6 and 1.2, indicating some variability in the predictions. In
contrast, FT9 displays a narrower range of predicted ISV softness, with a median value
close to 0.80. The interquartile range is small, suggesting consistent predictions for this
sample, although two significant outliers are observed.

Figure 11b illustrates the placement of FT8 and FT9, whose ISV softness values
were not evaluated, on a PC score plot alongside existing facial tissue products (FT1 to
FT7).

Technical Significance

The proposed approach achieved satisfactory performance in predicting softness
values obtained from established pair-comparison tests, without directly relying on sensory
panel testing (SPT), which requires a trained panel and is both time-consuming and
resource-intensive. Although tensile modulus (TM) and surface friction measurements
were not included in this study, the method demonstrated promising predictive capability.
Future studies will focus on investigating the fractal surface characteristics of tissue
products using PSD techniques, which can provide additional insights into surface
complexity and autocorrelation beyond conventional surface parameters.
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CONCLUSIONS

1. The 1.0R conical stylus was successfully applied to obtain surface roughness profiles,
showing a high correlation with the U-tube stylus. Additionally, the 1.0R conical stylus
proved suitable for acquiring the 1D-PSD spectra of facial tissues given its minimal
contact area.

2. The 1D-PSD spectra revealed the contributions of surface roughness for facial tissues
across different wavelength ranges. The 100- to 1,000-pum range was identified as the
dominant contributor, attributed to the medium-scale roughness primarily influenced
by creping effects.

3. The ISV softness represents a linear and continuous measure of subjective softness,
derived via a pair-comparison testing method known as the Ko-method, ensuring
objective quantification of tactile perceptions. The MLP model for predicting the ISV
softness of facial tissues was established and trained using 1D-PSD spectra in the range
of 10 to 1,000 um. Although the high-contribution range was primarily 100 to 1,000 pum,
the inclusion of the 10- to 100-um range introduced subtle differences that enhanced
the sample separation and clustering in multidimensional space.

4. The MLP model demonstrated high predictive performance for the ISV softness of
facial tissue products using 1D-PSD spectra, achieving an R* value of 0.860 on the test
dataset. This model outperformed previously developed models (3-P and 2-P models),
highlighting its efficiency and practicality.
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