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softness evaluation. 
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INTRODUCTION 
 

Softness is regarded as a crucial characteristic of paper products for hygiene, such 

as bathroom and facial tissues. Softness, being inherently subjective, has often been 

considered difficult to assess through objective testing methods. However, ongoing efforts 

to develop such methods persist, given their significant advantages when successfully 

implemented. Subjective methods, by contrast, are retrospective in nature and may not 

provide the proactive insights needed for tissue manufacturers to innovate effectively (Ko 

et al. 2017). 

Given their subjectiveness, softness attributes have been generally believed to be 

impossible to evaluate using objective softness test methods. Despite such challenges, there 

has been a persistent drive to create testing methods, valued for their advantages such as 

cost efficiency, time saving (e.g., faster time to market), improved quality and process 

control, and valuable insights and direction for product development (Ko et al. 2015, 2016; 

Lee et al. 2017, 2023; Kweon et al. 2024). 

Building on the pioneering work of Hollmark (1983) and Hollmark and Ampulski 

(2004), significant progress has been achieved in developing physical softness models for 

hygiene paper products. Ramasubramanian (2001) also provided a comprehensive review 

of this topic. Subjective softness primarily comprises two main components: bulk softness 

and surface softness (Ampulski et al. 1991; Beuther et al. 2012; Ko et al. 2018). For bulk 

softness measurements, the tensile modulus (TM) has been defined as the slope between 

two specific points on a load–elongation curve (Ko et al. 2015). Meanwhile, surface 
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softness has been assessed using a surface profilometer to measure surface roughness and 

friction (Ko et al. 2015, 2017, 2018).  

Lee et al. (2023) proposed predictive models for evaluating the softness of facial 

tissue products. The 3-P geometric mean (GM) model for facial tissue products was 

identified, which integrated TM, surface roughness, and surface friction. These models 

were normalized to quantify the contributions of bulk and surface softness. The analysis 

revealed that surface roughness contributed ~50% to the overall softness, with surface 

friction and TM accounting for 20% and 30%, respectively. Overall, the major component 

of softness for facial tissue products was surface roughness. 

The surface roughness of paper products spans multiple scales, including the 

microscale (e.g., individual fibers), the intermediate scale (such as creping), and the 

macroscale, which reflects post-converting processes like printing and embossing (Kajanto 

et al. 1998; Lee et al. 2023). For the tissue paper products which physical and mechanical 

properties are dependent on creping and embossing process (Pawlak et al. 2022). Thus, it 

can be hypothesized that the dominant contributor to the surface roughness of facial tissue 

products is the macroscale roughness. 

Advancements in mathematical algorithms have facilitated the expansion of 

predictive modeling techniques as alternatives to conventional chemical analysis for 

characterizing various materials, including pulp and paper products (Kim et al. 2023; 

Hwang et al. 2024).  Moreover, in the context of physical analyses such as surface 

characterization, predictive models have demonstrated notable potential and superior 

performance (Boidi et al. 2020; Hasan and Karabacak 2023; Motamedi et al. 2023). In this 

respect, Aguilar et al. (2009) employed the friction noise generated by a small brush sliding 

over the surface of a paper to assess surface roughness. The recorded noise was analyzed 

using a signal-processing algorithm based on the frequency domain. This approach, 

combined with an artificial neural network model, enabled the measurement of surface 

roughness in tissue papers. 

This study aims to develop a machine-learning-based technique for measuring the 

softness of facial tissue products. To this end, a method is proposed to treat random 

roughness profiles of tissue as distinct features using spectral analysis. This article 

introduces a novel approach to surface characterization and softness measurement, 

emphasizing cost-effectiveness and rapid analysis. 

 

 

EXPERIMENTAL 
 
Materials 

The physical properties of seven commercial two-ply facial tissue samples and 

their interval scale value (ISV) of softness are presented in Table 1. Thurstone (1994) 

introduced the ISV, which is derived through pair-comparison testing. The ISV plays a 

critical role in developing physical models for predicting subjective evaluations. Unlike 

ranking or rating scales, which are neither linear nor continuous on equal intervals (Ko et 

al. 2018; Lee et al. 2017), the ISV provides a linear and continuous scale with equal 

intervals, similar to physical measurements such as length or weight. Statistically, the ISV 

corresponds to the Z-value of normal deviates and functions similarly to a physical 

measurement. 

In brief, the ISV softness can be determined by a subgrouping approach known as 

the Ko-method (Ko et al. 2017). In this method, the full sample set is divided into 
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overlapping subgroups linked by anchor samples, thereby significantly reducing the 

number of pairwise comparisons required. For example, for seven samples, the full round-

robin pair-comparison would require 21 comparisons; however, using the Ko-method, 

subgroup one may include samples 1 to 4, and subgroup two samples 4 to 7, with sample 

4 serving as the anchor. Additionally, the Ko-method improves data reliability by avoiding 

pairings with preference values below 20% or above 80%, which addresses the sensitivity 

of ISV to extreme preference values. 

ISV softness and predicted ISV softness were investigated in previous work (Lee 

et al. 2023). The ISV softness for the seven facial tissue samples was obtained using the 

aforementioned subgrouping pair-comparison method. Before dividing the samples into 

two subgroups, a ranking procedure was conducted to identify the anchor sample, with FT4 

being selected as it ranked centrally among the samples. Following subgrouping, pairwise 

comparisons were conducted by 100 untrained panelists (Ko et al. 2016; 2017; 2018; Lee 

et al. 2017; Lee et al. 2023). The predicted ISV softness of the facial tissue was derived 

from GM models.  

FT8 and FT9, which did not evaluate the ISV softness, were used to predict the 

ISV softness using the machine-learning-based softness prediction model. 

 
Table 1. Physical Properties of Facial Tissues and ISV Softness (Y. J. Lee et al. 
2023) 

Sample 
Basis 

Weight 
(g/m2) 

Thickness 
(mm) 

Density 
(g/cm3) 

ISV 
Softness 

Predicted ISV 
Softness from 
3-P Models 
(TM, RMAD, 
and FMAD) 

Predicted ISV 
Softness from 

2-P Models 
(TM and 
RMAD) 

FT1 22.9 0.077 0.30 1.69 1.53 1.32 

FT2 20.5 0.076 0.27 0.53 0.35 0.48 

FT3 14.7 0.046 0.32 0.64 0.36 0.00 

FT4 15.6 0.063 0.25 0.53 0.85 0.76 

FT5 13.7 0.051 0.27 0.15 0.00 0.19 

FT6 12.9 0.055 0.23 0.23 0.48 0.17 

FT7 13.6 0.053 0.26 0.00 0.27 0.31 

FT8 13.9 0.050 0.27 — — — 

FT9 15.4 0.066 0.23 — — — 

 
Surface Roughness Testing 

The samples were conditioned for longer than 48 h at a temperature of 23 ± 1°C 

and a relative humidity (RH) of 50% ± 2%, according to ISO standard 187, before surface 

roughness testing. 

For the surface roughness testing, a Kawabata surface tester (Model: KES-SESRU, 

Kato Tech, Kyoto, Japan) was used. Generally, for the surface characterization of tissue 

paper products, a U-tube stylus is used. However, an excessively large contact area of the 

stylus is unsuitable for spectral analysis (Wu 2000). To solve this issue, 1.0R conical-

shaped styluses were tested (Park et al. 2021; Moon et al. 2022; Lee et al. 2023). These 

styluses maintain minimal contact with the sample surface because their contact area is 

small and approximately circular in shape. 

The testing conditions were as follows: scan length, 20 mm; scan speed, 1 mm/s; 

and data acquisition rate, 1000 Hz (or 1000 points/s). For each sample, 10 measurements 
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were taken in the machine direction. The testing was performed at 23 ± 1°C and at an RH 

of 50 ± 2%. These conditions were successfully applied to the surface characterization of 

tissue products (Lee et al. 2023). Consequently, the surface roughness profile shown in 

Fig. 1a was obtained. 

 
Determination of the Surface Roughness of Facial Tissues 

From the surface roughness profile in Fig. 1a, the average of the surface roughness 

(Ra) and the mean absolute deviation (RMAD) from Ra were calculated using Eqs. 1 and 2,  

𝑅𝑎  =  
1

𝑁
∑ |𝑅𝑖|𝑁

1         (1) 

𝑅𝑀𝐴𝐷 =  
1

𝑁
∑ ||𝑅𝑖| − 𝑅𝑎|𝑁

1        (2) 

where Ra is the roughness average (μm), Ri is the roughness (μm) at scanning point i, and 

N is the number of data points in the scan length. 

 
Power Spectral Density of Surface Roughness Profile 
Detrending 

Detrending raw data involves removing low-order polynomial terms from the 

profile to reduce the high-frequency artifacts introduced into the power spectral density 

(PSD) by endpoint discontinuities. Surface profiles with substantial tilt or curvature must 

be flattened or “pre-whitened” by eliminating these low-order polynomial components 

(Blackman and Tukey 1959). Detrending is commonly applied in fast Fourier transform 

(FFT) processing (Borchers 2022) and can be accomplished by removing the mean value 

or a (piecewise) linear trend from a vector or from each column of a matrix. The 

mathematical expression for this process is defined in Eq. 3. 

𝑍̅(𝑥𝑛) = 𝑍(𝑥𝑛) − [𝑎 + 𝑏𝑥𝑛 + 𝑐𝑥𝑛
2 + ⋯ ]     (3) 

where 𝑍(𝑥𝑛) represents the raw data, and the coefficients are computed using a simple 

least-squares fit to the data points. In this study, surface roughness profiles were detrended 

by computing the least-squares fit of a straight line (or a composite line for piecewise linear 

trends) to the data. This fitted function was then subtracted from the original data. Finally, 

the process involved removing either the mean value or the (piecewise) linear trend from 

each vector or column in the data matrix to ensure a consistent baseline for further analysis. 

Figure 1b shows the detrended surface roughness profile of Fig. 1a. 

 

Windowing 

For the analysis of random roughness profiles, a window function is necessary to 

handle the finite-length data set effectively (Kay 1988). The Welch window function 

(Welch 1967) is particularly suitable for spectral analysis because it ensures that a 

windowed signal has a seamless periodic extension, which is essential for discrete Fourier 

transform (DFT). When the “periodic” option is specified, the function generates a window 

of length n + 1, returning only the first n points to achieve this periodic alignment. The 

Welch window, defined as a polynomial window with a single parabolic segment, is 

calculated as shown in Eq. 4. 

𝑤(𝑘)  =  1 − (
𝑘

𝑁−1
)

2
, 𝑛 =  0, 1, … , 𝑛 − 1     (4) 

In this equation, 𝑘 represents the position index of each sample in the window, ranging 
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from 0 to 𝑛 − 1, with 𝑤(𝑘) applying a parabolic weight to each sample based on its 

position. This periodic window, wrapping around the cyclic interval 0, 1, …, 𝑚 − 1, is 

specifically designed for DFT applications, where m represents the window length and 

must be an integer greater than 1. In the formula, 𝑁 represents n/2, setting the basis for the 

parabolic taper. 

Figure 1c illustrates the Welch-windowed surface roughness profile derived from 

the detrended surface roughness profile shown in Fig. 1b. To prepare nonperiodic surface 

roughness data for Fourier transformation, they are multiplied by a periodic window 

function. This windowing process in the Fourier domain effectively acts as a low-pass 

filter, mitigating the high-frequency noise commonly observed at terrain edges. 

 

One-dimensional PSD 

The PSD was computed to analyze the distribution of power across different spatial 

frequencies in the roughness profile of facial tissue products (Krim and Palasantzas 1995). 

The transformation from the spatial domain to the frequency domain was achieved using 

FFT, as expressed in Eq. 5, 

𝐹(𝑘) = ∑ 𝑍̅(𝑛)𝑤(𝑛) ∙ 𝑒−
𝑖2𝜋𝑘𝑛

𝑁 , 𝑘 = 0, 1,∙∙∙, 𝑁 − 1𝑁−1
𝑛=0    (5) 

where 𝐹(𝑘) is the FFT result at the frequency index k, representing the amplitude and 

phase of the kth frequency component, 𝑍̅(𝑛) is the detrended roughness profile, 𝑤(𝑛) is 

the Welch window function, and 𝑒−
𝑖2𝜋𝑘𝑛

𝑁  is the complex exponential term representing the 

Fourier basis function for frequency k. 

The PSD, 𝑃(𝑓), for a given frequency f is mathematically defined as in Eq. 6, 

𝑃(𝑓) =
|𝐹(𝑓)|2

∆𝑓
         (6) 

where ∆𝑓 is the frequency bin width, calculated as ∆𝑓 =
1

𝑇
. Here, T is the total duration of 

the sampled data. |𝐹(𝑓)|2 is the squared magnitude of the FFT result, representing the 

power at frequency f. The resulting one-dimensional PSD (1D-PSD) plot is shown in Fig. 

1d, where the log–log scale reveals frequency-dependent roughness characteristics. 
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Fig. 1. Roughness profile conversion to the 1D-PSD spectrum (a, roughness profile; b, detrended 
roughness profile; c, Welch-windowed roughness profile; d, 1D-PSD of the roughness profile) 

 
Principal Component Analysis of 1D-PSD spectra 

Principal component analysis (PCA) was conducted to uncover hidden patterns and 

structures within the 1D-PSD spectra of the facial tissue. The high-dimensional 1D-PSD 

spectra were transformed into new orthogonal principal components (PCs), and the results 

were visualized in a two-dimensional space using the first two PCs. 
 
Multilayer Perceptron for Predicting the ISV Softness of Facial Tissues 
Dataset splitting 

Figure 2 shows a diagram for predicting the ISV softness of facial tissues using 

multilayer perceptron (MLP). For the construction of MLP models, the 1D-PSD spectra of 

the tissue products were utilized. The dataset was independently divided into training and 

test sets at a ratio of 7:3, and these subsets were used for model construction and evaluation. 
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Fig. 2. Diagram for predicting the ISV softness of facial tissue products using MLP models 

 

MLP regressors 

MLP regressors were trained using backpropagation, with no activation function 

applied in the output layer. A sigmoid activation function was employed in the hidden 

layers. The squared error was used as the loss function, and the model was optimized using 

stochastic-gradient-descent-based optimizers, specifically SGD and Adam. Various 

network architectures, as detailed in Table 2, were tested with logarithmic learning rates 

ranging from 0.0001 to 0.1 to identify the optimal network configuration for the MLP. The 

maximum number of iterations was set to 1000. Hyperparameters, including the network 

architectures, optimizers, and learning rates, were optimized through a grid search with 

threefold cross-validation. 

 
Table 2. Tested Network Architectures of MLP Regressors 

Three-layer MLP Four-layer MLP 

Input 
layer 

Hidden layers Output 
layer 

Input 
layer 

Hidden layers Output 
layer 1st 2nd 1st 2nd 3rd 

1941 

16 16 

1 1941 

16 16 16 

1 

32 32 32 32 32 

64 64 64 64 64 

128 128 128 128 128 

256 256 256 256 256 

512 512 512 512 512 

 

Evaluation metrics 
The coefficient of determination (R2) and the root-mean-square error were used as 

performance metrics for the MLP models, as expressed in Eqs. 7 and 8, respectively. 

𝑅2 = 1 −
∑ (𝐼𝑆𝑉𝑖−𝐼𝑆𝑉𝑖̂ )2

𝑖

∑ (𝐼𝑆𝑉𝑖−𝜇)2
𝑖

        (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐼𝑆𝑉𝑖

̂ − 𝐼𝑆𝑉𝑖)
2𝑛

𝑖=1       (8) 
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where 𝐼𝑆𝑉𝑖  and 𝐼𝑆𝑉𝑖  are the analyzed and predicted ISV softness of the ith observation, 

respectively. The parameter µ denotes the overall mean, whereas n refers to the total 

number of observations. All processes were performed using R software (R Core Team, 

ver. 4.4.1, Auckland, New Zealand), including the data preprocessing and predictive 

modeling of softness. 

 
Prediction of ISV Softness for Facial Tissues 

FT8 and FT9, which did not evaluate the ISV softness, were used to predict the 

ISV softness using the constructed MLP model. The surface roughness profiles of FT8 and 

FT9 were obtained using the same method as for FT1 to FT7. Subsequently, their 1D-PSD 

spectra were used to predict the ISV softness using the MLP model. PCA was also 

performed to observe the relationship between existing data and these samples (FT8 and 

FT9). 

 
 
RESULTS AND DISCUSSION 
 
Determination of the Surface Roughness of Facial Tissue Products 

Table 3 presents the results for Ra and RMAD of the facial tissue products. In 

previous research (Park et al. 2021; Y. J. Lee et al. 2023), the surface profile parameter 

RMAD was considered to be more stable and reliable. The findings in Table 3 aligned with 

these observations, as RMAD and its coefficient of variation (COV) were significantly 

lower than those of Ra. This supports the argument that RMAD is a more accurate measure 

of the true surface profile as it is less influenced by testing conditions compared with Ra. 

 

Table 3. Results for Ra and RMAD of Facial Tissues (Y. J. Lee et al. 2023) 

Stylus 1.0R Conical Stylus U-Tube Stylus 

Sample 
Ra (μm) RMAD (μm) Ra (μm) RMAD (μm) 

Avg. COV (%) Avg. COV (%) Avg. COV (%) Avg. COV (%) 

FT1 2.49 23.5 1.44 14.4 2.18 22.9 1.33 14.3 

FT2 2.53 18.2 1.47 12.1 2.25 11.6 1.38 7.5 

FT3 3.95 14.7 2.30 6.3 4.14 11.8 2.59 7.1 

FT4 3.17 14.2 1.82 7.4 3.03 15.5 1.84 8.2 

FT5 2.69 10.0 1.52 6.4 2.78 15.2 1.73 7.3 

FT6 3.03 19.8 1.77 14.3 3.13 10.1 1.85 5.9 

FT7 3.77 21.8 2.23 8.2 3.77 12.2 2.24 4.3 

 

Figure 3 compares the U-tube stylus and the 1.0R conical stylus for surface 

roughness characterization. The regression equations presented in the figure demonstrate a 

high correlation, with an R2 value approaching 0.95. Notably, for RMAD, as shown in Fig. 

3b, the slopes were greater than one, indicating that the 1.0R conical stylus detected surface 

structures with higher sensitivity. This difference can be attributed to the distinct contact 

areas of each stylus. The U-tube stylus, with a width of 0.5 mm and length of 5 mm, has a 

relatively large contact area with the sample surface, which may reduce its sensitivity to 

fine surface features. In contrast, the 1.0R conical stylus has a much smaller, approximately 

circular contact area, resulting in higher sensitivity to subtle surface variations. This design 

enhances its ability to detect subtle variations in surface roughness (Park et al. 2021; Moon 

et al. 2022; Lee et al. 2023). 
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Fig. 3. U-tube stylus vs. 1.0R conical stylus for surface roughness characterization (a, Ra; b, RMAD) 
of facial tissue products 

 
1D-PSD Spectra for the Surface Roughness Profiles of Facial Tissues 

Figure 4 illustrates the 1D-PSD spectra for the surface roughness profiles of the 

facial tissue products, whereas Table 4 provides the surface roughness contributions across 

different wavelength regions. The analysis revealed that most of the surface roughness 

contributions originated from the 100- to 1,000-μm region, which corresponded to the 

medium scale, with contributions approaching almost 100%, indicating that intermediate 

and macroscale features such as creping and embossing dominated the surface texture. 

These features produce relatively shallow amplitude variations (Ra = 2 to 4 µm), yet span 

large spatial wavelengths, resulting in a surface profile characterized by broad undulations 

with moderate vertical depth. 

 
 

Fig. 4. 1D-PSD spectra for the surface roughness profiles of facial tissue products in the 
frequency domain 
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Table 4. Contribution of Surface Roughness Across Different Wavelength Ranges 
for Facial Tissue Products 

Sample 
Contribution of Surface Roughness, % 

1 mm≥ 100 to 1,000 μm 10 to 100 μm ≤10 μm 

FT1 — 99.3 0.7 — 

FT2 — 98.5 1.5 — 

FT3 — 99.7 0.2 — 

FT4 — 99.6 0.3 — 

FT5 — 99.5 0.5 — 

FT6 — 99.6 0.4 — 

FT7 — 99.8 0.2 — 

 

Figure 5 illustrates this concept by comparing two sinusoidal surface profiles: one 

with larger amplitude variations and another with smaller amplitude but higher frequency. 

This demonstrates that even when the average roughness is low, the actual surface profile 

may contain components with significant amplitude variations across different spatial 

scales. This phenomenon has been recently emphasized in the authors’ own research (Lee 

et al. 2025). Therefore, this highlights that absolute texture parameters may not fully 

represent all aspects of the surface morphology. 

 
Fig. 5. Conceptual illustration of surface profiles with varying amplitude and spatial wavelength, 
demonstrating how broad undulations with moderate vertical depth can produce low average 
roughness values 

Surface roughness of tissue products can be attributed to multiple sources operating 

at different length scales (Kajanto et al. 1998). At the microscale (10 to 100 μm), free fiber 

ends and fiber morphology predominantly influence roughness, giving rise to high-

frequency, high-resolution features. At the mesoscale (100 to 1,000 μm), processes such as 

creping and small-scale printing contribute significantly, resulting in intermediate-

frequency characteristics. At the macroscale (greater than 1,000 μm), embossing, large-

scale printing, and fabric patterns prevail, producing low-frequency, low-resolution surface 

features. Understanding these contributions from each scale is crucial for accurately 

characterizing and optimizing the surface properties of tissue and towel products. 

In the case of facial tissue, surface roughness is primarily attributed to the medium 

scale, primarily reflecting the effects of the creping process. A smaller portion of the 

surface roughness originated from the microscale, which is associated with fiber-level 

morphology. Based on the data in Table 4, contributions from macroscale features 
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exceeding 1 mm were found to be insignificant in the surface roughness of facial tissue 

products. Additionally, high-frequency features below 10 μm contributed negligibly to the 

characterization of surface roughness in the facial tissue products. Therefore, both 

macroscale features and high-frequency components smaller than 10 μm should be 

excluded from the 1D-PSD analysis of facial tissue, a process referred to as applying a 

“cutoff” (Jacobs et al. 2017). 

Table 5 presents the contributions of surface roughness within the wavelength 

range of 100 to 1,000 μm for facial tissues, further segmented into four wavelength 

intervals: 750 to 1,000 μm, 500 to 750 μm, 250 to 500 μm, and 100 to 250 μm. The results 

indicated that surface roughness primarily originated from the 750- to 1,000-μm segment, 

accounting for ~73 to 84% of the total contribution across all samples. This finding 

underscores the dominant influence of larger-scale features within the medium scale on the 

surface roughness of the facial tissue products. 

The 500- to 750-μm interval accounted for 14.7 to 23.9% of the total surface 

roughness contribution, highlighting its secondary role in shaping the surface 

characteristics of the studied tissue products. In contrast, contributions from the 250- to 

500-μm and 100- to 250-μm intervals were minimal, collectively contributing less than 5% 

across all samples. Notably, the 100- to 250-μm interval occasionally exhibited negligible 

contributions, as observed in FT3. 

These results further emphasized that the medium-scale roughness of facial tissue 

products is predominantly influenced by features in the upper range of the 100- to 1,000-

μm spectrum, such as creping patterns. Smaller-scale features, although present, 

contributed minimally to the overall surface roughness profile. This analysis provides 

valuable insights into scale-specific contributions to surface roughness and supports the 

optimization of manufacturing processes to achieve desired surface properties. 

 
Table 5. Surface Roughness Contribution Within the Wavelength Range of 100 to 
1,000 μm for Facial Tissues 

Sample 

Contribution of Surface Roughness (%) 

750 to 1000 μm 500 to 750 μm 250 to 500 μm 100 to 250 μm 

FT1 77.1 21.1 1.8 0.1 

FT2 78.4 18.8 2.6 0.2 

FT3 83.6 15.7 0.7 — 

FT4 79.6 18.6 1.6 0.2 

FT5 73.3 23.9 2.6 0.1 

FT6 79.8 18.2 1.9 0.1 

FT7 84.0 14.7 1.2 0.1 

 
Figure 6 shows the 1D-PSD spectra for the surface roughness profiles of facial 

tissues within the wavelength range of 100 to 1,000 μm. Table 6 presents the average 1D-

PSD of the surface roughness profiles for the facial tissues within the wavelength range of 

100 to 1,000 μm. 
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Fig. 6. 1D-PSD spectra for the surface roughness profiles of facial tissues in the frequency 
domain within the wavelength range of 100 to 1,000 μm 

 
Table 6. Average 1D-PSD of Surface Roughness Profiles for Facial Tissues Within 
the Wavelength Range of 100 to 1,000 μm 

Sample 

Average 1D-PSD (μm2/Hz) in the wavelength of 10 to 100 μm 

750 to 1000 μm 500 to 750 μm 250 to 500 μm 100 to 250 μm 

FT1 −4.81 −5.13 −6.05 −6.85 

FT2 −4.76 −5.12 −5.76 −6.36 

FT3 −4.52 −5.06 −6.18 −6.83 

FT4 −4.70 −5.09 −5.90 −6.31 

FT5 −4.90 −5.18 −5.91 −6.66 

FT6 −4.70 −5.12 −5.97 −6.88 

FT7 −4.66 −5.13 −5.98 −6.72 

 
Figure 7 illustrates the correlation between the normalized (min–max 

normalization) average 1D-PSD and the surface roughness metrics, with Fig. 7a 

representing Ra and Fig. 7b representing RMAD. There was a significant correlation 

between the 1D-PSD values in the wavelength range of 750 to 1000 μm and the surface 

roughness parameters, with R2 values of 0.659 for Ra and 0.737 for RMAD. These findings 

indicated that the surface roughness characteristics in this range were predominantly 

influenced by medium-scale features, such as creping effects, which played a key role in 

defining the roughness profile of the facial tissue products. 

Furthermore, the slightly higher correlation between 1D-PSD and RMAD 

compared with that with Ra suggests that RMAD is a more accurate measure of the true 

surface profile, as discussed previously. This reinforces the utility of RMAD as a reliable 

parameter for surface roughness characterization. 

In contrast, the contributions from other wavelength ranges, such as 500 to 750 μm, 

250 to 500 μm, and 100 to 250 μm, showed weaker correlations with the roughness metrics. 

This suggests that the fine-scale features within these regions do not significantly influence 

the overall roughness. 
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Fig. 7. Correlation between the normalized average 1D-PSD and surface roughness metrics: (a) 
Ra and (b) RMAD 

 
PCA of 1D-PSD Spectra 

Figure 8 shows the PCA score plots of the first two PCs in the wavelength range 

of 10 to 1,000 μm (Fig. 8a) and 100 to 1,000 μm (Fig. 8b). The PCA score plots in Fig. 8 

insightfully visualize the 1D-PSD spectra. Although the surface roughness contributions 

were primarily observed in the wavelength range of 100 to 1,000 μm, as previously 

analyzed, the PCA results revealed an interesting phenomenon: when the full wavelength 

range (10 to 1,000 μm) was considered, better clustering characteristics among the samples 

were observed. 

This discrepancy suggests that although roughness contributions primarily 

originate from medium-scale features (100 to 1,000 μm), the inclusion of microscale 

features (10 to 100 μm) in the PCA analysis provides subtle differences that enhance the 

separation and clustering of the samples in the multidimensional space. This finding 

implies that microscale features, although contributing minimally to the overall roughness, 

may carry unique information that aids in distinguishing samples more effectively. 

In practical terms, it is beneficial to consider a broader wavelength range in 

machine learning model construction, even when the primary contribution is localized to a 

specific region, such as 100 to 1,000 μm. 
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Fig. 8. PCA score plots of the first two PCs in the wavelength range of 10 to 1,000 μm (a) and 
100 to 1,000 μm (b) 

 
MLP for Predicting the Softness of Facial Tissues 

As discussed in the PCA results, the 1D-PSD spectra in the wavelength range of 

10 to 1,000 μm were used in the MLP regression model to predict the ISV softness of facial 

tissues. Although the primary roughness contribution originated from medium-scale 

features (100 to 1,000 μm), the inclusion of microscale features (10 to 100 μm) introduced 

subtle differences that enhanced sample differentiation in complex tasks. 

Figure 9 illustrates the optimized MLP architecture for predicting the ISV softness 

of facial tissues, which was determined through a grid search. The 1D-PSD spectra in the 

wavelength range of 10 to 1,000 μm comprised 1,981 input variables. The finalized model 

consisted of three hidden layers, each employing a sigmoid activation function, with each 

hidden layer containing 16 nodes. The SGD optimizer was selected, and the optimal 

learning rate was set to 0.1. 

 

 
Fig. 9. Architecture of the MLP for predicting the ISV softness of facial tissues 
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Figure 10 shows the predicted ISV softness using three models: the MLP model 

trained with 1D-PSD spectra (a), the 3-P model incorporating TM, RMAD, and surface 

friction (b), and the 2-P model utilizing TM and RMAD (c). The results indicated that the 

MLP model significantly outperformed both the 3-P and 2-P models, as evidenced by its 

higher R2 value (0.860). This superior performance was achieved solely using the 

roughness profile data derived from 1D-PSD spectra without requiring additional 

measurements of TM and surface friction. These findings highlight the efficiency and 

practicality of the MLP model as it eliminates the need for labor-intensive and time-

consuming measurements, offering an effective approach for predicting the softness of 

facial tissues. 

However, the R2 value of the MLP model did not reach a perfect 1.0, which may 

be attributed to the absence of friction data and TM in the model. These parameters, being 

integral components of surface and bulk softness, could have provided additional 

explanatory power for capturing variations in ISV softness. Consequently, although the 

MLP model demonstrated strong predictive capabilities, the inclusion of these missing 

variables might further enhance its performance. 

 
 

Fig. 10. Predicted ISV softness from the MLP (a), 3-P (TM, RMAD, and surface friction) (b), and 
2-P (TM, and RMAD) (c) models (Lee et al. 2023) 
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Fig. 11. Predicted ISV softness for FT8 and FT9 (a) and their placement on a PC score plot 
alongside existing facial tissue products (b) 

 
Prediction of ISV Softness for Facial Tissues 

The established MLP model was utilized to predict the ISV softness of FT8 and 

FT9, whose softness values had not been previously evaluated. Figure 11a presents the box 

plots of the predicted ISV softness for these samples. 

For FT8, the box plot shows a median ISV softness of ~0.90, with most predicted 

values ranging between 0.6 and 1.2, indicating some variability in the predictions. In 

contrast, FT9 displays a narrower range of predicted ISV softness, with a median value 

close to 0.80. The interquartile range is small, suggesting consistent predictions for this 

sample, although two significant outliers are observed. 

Figure 11b illustrates the placement of FT8 and FT9, whose ISV softness values 

were not evaluated, on a PC score plot alongside existing facial tissue products (FT1 to 

FT7). 
 
Technical Significance 

The proposed approach achieved satisfactory performance in predicting softness 

values obtained from established pair-comparison tests, without directly relying on sensory 

panel testing (SPT), which requires a trained panel and is both time-consuming and 

resource-intensive. Although tensile modulus (TM) and surface friction measurements 

were not included in this study, the method demonstrated promising predictive capability. 

Future studies will focus on investigating the fractal surface characteristics of tissue 

products using PSD techniques, which can provide additional insights into surface 

complexity and autocorrelation beyond conventional surface parameters. 
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CONCLUSIONS 
 
1. The 1.0R conical stylus was successfully applied to obtain surface roughness profiles, 

showing a high correlation with the U-tube stylus. Additionally, the 1.0R conical stylus 

proved suitable for acquiring the 1D-PSD spectra of facial tissues given its minimal 

contact area. 

2. The 1D-PSD spectra revealed the contributions of surface roughness for facial tissues 

across different wavelength ranges. The 100- to 1,000-μm range was identified as the 

dominant contributor, attributed to the medium-scale roughness primarily influenced 

by creping effects. 

3. The ISV softness represents a linear and continuous measure of subjective softness, 

derived via a pair-comparison testing method known as the Ko-method, ensuring 

objective quantification of tactile perceptions. The MLP model for predicting the ISV 

softness of facial tissues was established and trained using 1D-PSD spectra in the range 

of 10 to 1,000 μm. Although the high-contribution range was primarily 100 to 1,000 μm, 

the inclusion of the 10- to 100-μm range introduced subtle differences that enhanced 

the sample separation and clustering in multidimensional space.  

4. The MLP model demonstrated high predictive performance for the ISV softness of 

facial tissue products using 1D-PSD spectra, achieving an R² value of 0.860 on the test 

dataset. This model outperformed previously developed models (3-P and 2-P models), 

highlighting its efficiency and practicality.  
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