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Paper Fingerprint by Forming Fabric: A Univariate
Feature Selection Approach Using Periodic Marks
Analysis
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Evidence by which to confirm the location and approximate manufacturing
date of document paper is a critical task in forensic investigations,
particularly in cases involving suspected forgery or document
manipulation. In this study, periodic marks formed during the papermaking
process were analyzed using light-transmitted images captured by a two-
dimensional lab formation sensor. Step and angle data from the top five
intensity peaks were extracted and used to train tree-based classification
models. To handle directional symmetry, a modulo 180° transformation
was applied to the angle data. The random forest (RF) classifier
outperformed decision tree (DT) and extreme gradient boosting (XGB)
models, achieving the highest F1 score. Feature importance analysis
revealed that the step and angle at the third intensity level were the most
discriminative features, likely reflecting structural characteristics of forming
fabrics or drainage patterns. A simplified univariate strategy using these
features also showed potential for estimating production periods. However,
differences between the top and bottom surfaces—particularly in twin-wire
systems—introduced classification bias, highlighting the need to
separately classify paper sides in forensic datasets. Overall, this study
demonstrates the feasibility and limitations of using periodic mark analysis
for document dating.
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INTRODUCTION

Evidence related to manufacturing dates and locations is essential for detecting
added or substituted pages in forged documents. Determining the date of a document helps
establish the period during which a tax document or other official document was produced.
This is performed by comparing the date of the document with the earliest availability of
the paper on which it is printed. The materials used in the document must have been
available before or on the date of the document; otherwise, if the date of the document is
earlier than the availability of its paper, this anachronism indicates backdating (Ellen et al.
2018). To facilitate this analysis, an accessible reference database is required (Jeong et al.
2024a, b).
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Conventional paper analysis methods focus on evaluating physical and optical
characteristics, such as tensile strength, thickness, basis weight, ash content, color, and
fluorescence (Grant 1973). In addition, techniques such as X-ray diffraction (Foner and
Adan 1983), elemental analysis (Spence et al. 2002), infrared spectroscopy (Hwang et al.
2024; Lee et al. 2024a, b; Lee et al. 2025a), Raman spectroscopy (Kuptsov 1994), image
analysis (Miyata et al. 2002), and pyrolysis gas chromatography (Ebara et al. 1982) have
been applied. However, these methods typically face challenges in accurately identifying
the manufacturing date of paper. For example, physical testing methods are limited by their
destructive nature, which may damage the documents. Nondestructive techniques, such as
spectroscopy analysis, also have limitations, for example, documents may be contaminated,
and the aging characteristics of paper can change depending on storage conditions
(Havlinova et al. 2009; Matachowska et al. 2021).

To address these limitations, light-transmitted image analysis methods based on fast
Fourier transformation have been developed (Miyata et al. 2002; Comte et al. 2006; Berger
and Ramos 2012). Berger (2009) captured light-transmitted images of office paper and then
performed frequency analysis using the two-dimensional (2D) power spectrum technique.
This method measures similarity through correlation and shows promise in distinguishing
common office papers. Jeong et al. (2024a,b) performed classification analysis to
discriminate manufacturers using periodic marks from the forming fabrics used during the
papermaking process. Light-transmitted images were captured using a 2D lab formation
sensor (Techpap, France), and the images were then transformed into Fourier transform-
based images. From these images, periodic marks were derived from the weaving patterns
of the forming fabric and drainage marks depending on the paper machines.

These periodic patterns primarily originate from the forming fabric, an endless
woven belt composed of synthetic monofilaments. It has two distinct sides—a forming
surface and a wearing surface—with typical filament spacings of 0.3 to 0.6 mm (Adanur
2017). During the paper formation process, the fiber suspension (headbox jet) is delivered
onto the forming surface, where water drainage and fiber deposition inevitably imprint the
mesh structure onto the paper surface. These imprints are known as weave marks or wire
marks. In addition to weave marks, other periodic marks arise throughout the papermaking
process due to mechanical interactions in various machine sections. These include: (1)
drainage marks from variations in dewatering in the wire section, (2) shadow marks from
suction rolls, (3) press felt marks from the press section, (4) groove marks from shoe press
belts, and (5) canvas and dryer fabric marks from the drying section. Because such periodic
marks are consistently and uniquely introduced during paper manufacturing, they serve as
valuable forensic features. They have been widely documented for applications in paper
origin discrimination and manufacturing date estimation (Berger 2009; Jeong et al. 2024a,
b; Lee et al. 2024c¢; Lee et al. 2025b).

Distinguishing paper manufacturers and products can support forensic
investigations involving document alterations, such as detecting substituted pages or
inserted content in multipage documents (Berger and Ramos 2012; Comte et al. 2006;
Miyata et al. 2002). While various analytical techniques for paper source identification
have been extensively reported, these approaches do not offer the same level of forensic
resolution as methods aimed at determining the manufacturing date of a document. In
contrast, studies focused on document dating remain relatively limited, primarily due to
the inherent challenges associated with such analyses. These challenges include potential
contamination, as well as the fact that the aging behavior of paper is highly sensitive to
storage conditions, making it difficult to establish consistent chronological markers.
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In the authors’ previous studies on forensic document dating, periodic marks were
analyzed using a 2D lab formation sensor (Lee ef al. 2024c). To the best of the authors’
knowledge, periodic marks and ash content are intrinsic characteristics of paper that remain
stable under environmental exposure and are resistant to post-manufacturing tampering,
thereby serving as robust forensic markers (Choi et al. 2018). Nevertheless, ash content
analysis often requires a relatively large sample size and may involve destructive
procedures (Choi et al. 2018). In the authors’ earlier work, an artificial neural network
(ANN) classifier was developed using features derived from periodic surface patterns,
achieving a high classification performance with an F1 score of 0.951.

Although this analytical approach is highly effective, ANN models are inherently
prone to overfitting and are known to exhibit limited extrapolation capabilities (Rhein et
al. 2024). Furthermore, neural networks often function as “black box” models, offering
little interpretability with respect to the meaning or significance of individual weights
(Lundberg and Lee 2017). Most importantly, machine learning—based training and
prediction processes are often not user-friendly, requiring specialized expertise and
computational resources that may limit their accessibility in practical forensic settings.

The objective of this study was to develop user-friendly methods, such as univariate
approaches, for paper differentiation. Previous studies have primarily employed
multivariate and ANN-based classification models. In this study, a 2D lab formation sensor
was used to extract features related to periodic marks on the paper surface. Feature
importance was then evaluated using a random forest (RF) model to identify the most
relevant periodic mark characteristics. Ultimately, the aim is to identify key periodic mark
features that are critical for forensic document dating and to propose a method for
constructing a database that integrates these features using an accessible, user-friendly
analytical approach.

EXPERIMENTAL

Materials

The information on the printing paper used in this study is presented in Table 1. For
document paper dating, 12 products were collected, all from the same manufacturer but
differing by production date. The “H” product was typical office paper in A4 size (210 mm
% 297 mm).

Table 1. Information on Printing Paper with Different Manufacturing Dates

NO. Product Code Manufacturing Date Grammage (g/m?)
1 H202009 Sep 19", 2020
2 H202012 Dec 13", 2020
3 H202103 Mar 01%t, 2021
4 i H202106 Jun 02M, 2021
5 '; t H202109 Sep 07%, 2021
6 F;:gm“; H202112 Dec 17", 2021 80
7 Paper H202204 Apr 27, 2022
8 Company H202206 Jun 30™, 2022
9 H202210 Oct 18", 2022
10 H202301 Jan 28", 2023
11 H202304 Apr 10, 2023
12 H202307 Jul 19", 2023
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Dataset

A 2D lab formation sensor (2D-F sensor) was used to scan the printing paper. The
data collection process was repeated, with 50 samples collected for each product. In
addition, measurements were performed randomly without distinguishing between the top
and bottom sides. The 2D-F sensor generated light-transmitted images automatically,
which were then analyzed using a fast Fourier transform algorithm to examine three distinct
factors in the images, i.e., intensity, angle, and step (Jeong et al. 2024a,b; Lee et al. 2024c;
Lee et al. 2025b). Figure 1 illustrates the principles for calculating the intensity, step, and
angle from the light-transmitted images. The intensity refers to the brightness of periodic
marks on paper. The term “angle” indicates the orientation of the linear repetitive marks
within the plane of the paper, while “step” refers to the spacing between these marks,
measured in millimeters.

@ Lighttransmitted'image /\/\

@ Fast Fourier transform 1l

(B~

(3 Data acquisition

Fig. 1. Principles for calculating intensity, step, and angle from light-transmitted images

The step and angle data of the periodic marks were measured at the highest 10
intensities, creating a 1 x 30 array from each measurement. However, the authors noted
that the intensity data varied for each measurement. For this reason, intensity values were
removed from the dataset. The data scanned from a single paper product were represented
as a 50 (samples) x 20 (variables) matrix, resulting in 600 (50 (samples) x 12 (products))
data points.

Data Preprocessing

Angles can be considered symmetric within the same step (e.g., 60° and 240°), and
they are treated as equivalent. Therefore, all angle data were converted by modulo 180
transformation, as defined in Eq. 1.

6' = 0 mod 180 (1)

The usefulness of such angular transformations for capturing the directional
characteristics of periodic marks has already been demonstrated in prior studies (Jeong et
al. 2024a,b; Lee et al. 2024c), where the absolute value of the sine function, sin 8, was
used to account for symmetry.
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PCA of Step and Angle Data

Principal component analysis (PCA) was performed to reveal the inherent patterns
and hidden features in the high-dimensional dataset. The step and angle data of the periodic
marks on the paper comprised 20-dimensional data. The 20-dimensional data were
projected onto a new seven-dimensional orthogonal space. Finally, the data structure was
visualized in 2D space. The usefulness of PCA based on features of periodic marks on
paper was demonstrated in our previous research (Lee ef al. 2025b). However, that study
relied on intensity data, which can be variable, to differentiate the paper origin.

Before performing PCA, the step and angle data were standardized using Z-score
normalization to scale each variable to have a mean of 0 and a variance of 1. The scaled
value Z; is defined as in Eq. 2,

Z; ="+ 2

o

where x; denotes each observation of a variable x, u denotes the mean of the variable x,
and o denotes the standard deviation of the variable x.

Outlier Detection in Dataset using DBSCAN

The density-based spatial clustering of applications with noise (DBSCAN)
algorithm was used to detect outliers in the dataset (Ester ef al. 1996; Campello ez al. 2013),
which were projected onto the orthogonal coordinate system of principal components
(PCs). The DBSCAN parameters epsilon (eps) and minimum points (minPts) were
empirically set to 5.0 and 7, respectively. Here, “eps” represents the radius within which
neighboring data points exert mutual influence, and “minPts” specifies the minimum
number of data points required to form a cluster. A cluster was established when at least
seven consecutive points were found within a distance of 5.0 from a given data point.

The detected outliers were removed from the dataset, and the classification model
was then trained on the imbalanced dataset.

Classification Models for Forensic Document Dating

For the classification modeling of forensic document dating, tree-based models
were employed. Tree-based models are widely recognized for providing a robust
framework for decision-making processes. In this study, two representative ensemble
methods—random forest (RF) and extreme gradient boosting (XGBoost)—were
constructed, both of which utilize decision trees (DTs) as base learners.

All data processing and classification were carried out in R (R Core Team 2023,
version 4.5.0, Auckland, New Zealand).

Dataset splitting

The dataset was divided into training and test sets at a ratio of 7:3 for training and
evaluation of the classification models to be compared. Stratified random sampling was
used to ensure that the split ratio was maintained across all classes.

Decision tree (DT)

Single DTs (Breiman 2017) were tested to compare their classification performance
with that of the RF model, which is an ensemble learning method. To optimize the DT
model, the complexity parameter (cp), which controls the tree size and complexity, was
carefully tuned. A grid search within the range of 0.001 to 0.1 was performed to identify
the optimal cp value, thereby balancing model accuracy and preventing overfitting. The
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final model was selected based on the cp value that achieved the highest performance in a
threefold cross-validation.

Random forest (RF)

The RF classifier (Breiman 2001), an ensemble learning technique, helps mitigate
premature convergence to some extent. Ensemble learning combines predictions from
multiple models to improve the accuracy beyond that achievable by individual models. In
this study, DTs (Breiman 2017) were employed as the base learners to construct the RF
model. To increase the diversity among the DTs, the RF model builds them through random
subsampling, without using all input variables, to construct independent trees.
Furthermore, the RF model generates bootstrap samples from the training dataset via
random sampling with replacement. In this process, approximately two-thirds of the
training data (in-bag samples) are used to train the DTs, and the remaining one-third (out-
of-bag (OOB) samples) are used to validate the RF model. The probability that a sample is
not selected from a dataset of size m during random sampling with replacement is
represented by (m—1)/m. When repeated m times, the OOB probability approaches 36.8%,
as shown in Eq. 3.

00B = i 1—i)m— -1~ 0.3678 3
= lim ( —) =e =0 : 3)

For the input variable n_feature used in DT generation, the square root (“sqrt”),
binary logarithm (“log2”), and one-third (“1/3”) of all spectral points were tested. The
number of trees (n_tree) was varied from 10 to 150, and the optimal values for n_feature
and n_tree were selected based on the minimum OOB error identified through the grid
search.

XGBoost (XGB)

The XGB algorithm (Chen and Guestrin 2016) is a tree-based ensemble learning
method that differs fundamentally from the RF approach. While RF builds multiple DTs
independently and aggregates their outputs through majority voting, XGB constructs DTs
sequentially, where each tree attempts to correct the residual errors of the previous trees
through gradient-based optimization. This boosting framework allows XGB to achieve
higher prediction accuracy, especially in cases involving complex, nonlinear patterns.

In this study, DTs were employed as base learners to construct the XGB model. To
enhance generalization performance and prevent overfitting, XGB incorporates several
regularization techniques, including shrinkage (learning rate control), subsampling of rows
and columns, and penalties on tree complexity. Additionally, unlike traditional gradient
boosting, XGB leverages second-order derivatives (i.e., both gradients and Hessians) of
the loss function to improve convergence speed and model stability.

For multiclass classification, the number of boosting rounds (n_rounds) was varied
from 10 to 150, the maximum tree depth (max_depth) was adjusted between 3 and 5, and
the learning rate (eta) was tested in the range of 0.001 to 0.3. Grid search was used to
identify the optimal set of hyperparameters based on the classification accuracy on the
validation dataset.
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Evaluation metric

Accurately evaluating the classification of observations into positive and negative
categories is essential in classification tasks. True positives represent observations
correctly classified as belonging to the positive class, whereas true negatives denote
observations correctly classified as belonging to the negative class. Conversely, false
negatives occur when positive observations are incorrectly classified as negative, and false
positives arise when negative observations are incorrectly classified as positive. These
values enable the calculation of various performance metrics to assess the effectiveness of
classification models in detecting the target class.

The F1 score, which is the harmonic mean of precision (Eq. 4) and recall (Eq. 5),
is a commonly used performance metric in classification problems with class imbalance; it
is defined in Eq. 6.

TP

Presion = ——, 4)
TP+FP
Recall = —X—, (5)
TP+FN

PrecisionxRecall
F1score = 2 X (6)

Precision+Recall’

The weighted F1 score, which was applied to evaluate the performance of the RF
model, accounts for class imbalance by assigning weights to each class (Eq. 7) and
integrating these weights into their respective F1 scores (Eq. 8). This approach enables the
weighted F1 score to assess both individual class performance and overall model
performance, even with imbalanced datasets (Hwang et al. 2024),
_Ni
=

where w; denotes the weight of class, N; denotes the number of samples in the class, and

T; denotes the total number of samples.

Weighted F1; = ¥, w; X F1;. (8)

Feature Importance Measures from the Random Forest Model

The importance of order in the step and angle data was assessed using the mean
decrease impurity method (Louppe et al. 2013). This approach identifies variables that are
significant in the decision making of the RF model to confirm the manufacturing date and
location of printing paper. The DTs contribute to understanding the role of each variable
and offer transparency and insight into the decision-making process of the classification
model. This process, called feature importance measurement, is defined as follows,

I(nj) = w;C; — wy,;Cr; — Wr,Cr;» 9)
where n; denotes the parent node, L; and R; denote the left and right child nodes branched
from n;, w; denotes the node weight or sample count, and C; denotes the impurity of n;.
The importance of variable i in a DT is defined as follows,

Xjl(nj)

I(f) =5

ZkEna” I(Tl,k)

(10)

where I(f;) denotes the importance of variable i in the tree model. In the RF model,
variable importance is determined by aggregating the importance values of all DTs. Prior
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to aggregation, the importance of each variable is normalized using Eq. 11.

1I(f9)
I(f) = —~1Y 11
norml(f;) ST (I
Finally, the overall importance of each variable in the RF model is averaged across all DTs,
as shown in Eq. 12,
Zjeta” norml(fij)

T

I(RF,) = (12)

where ¢ represents each DT model, norml (fi].) denotes the normalized importance of

variable i in the RF model, and T represents the total number of DTs. The selected features
related to periodic marks, such as their angle and step (Fig. 1), were employed to develop
a simple method for printing paper dating.

RESULTS AND DISCUSSION

Step and Angle of Periodic Marks on Printing Paper

Tables 2 and 3 present the step and angle data of the periodic marks on paper from
a single measurement. For the step and angle data at the first two intensity levels, no
differences were observed across all classes, because these marks were derived from the
weaving patterns. The weave marks in the machine direction and the cross direction of the
paper machine are common features found in all types of products, regardless of the
manufacturer or manufacturing date. Angles of 180°, 360°, and 90° were considered in
these cases. However, unique steps and angles, particularly at the third intensity level,
depend on the forming fabrics used or the papermaking process (Jeong ef al. 2024a,b; Lee
et al. 2024c). For example, a step of 1.60 mm and an angle of 132.5° represent the
distinctive characteristics of sample H202103. Therefore, these features are considered
significant for forensic document examination. From this perspective, it can be
hypothesized that if document paper can be differentiated based on the step and angle
values at three, four, or five specific intensity levels, then a univariate method could be
developed. In other words, paper samples may be distinguishable by simply comparing the
step and angle at selected intensity levels.

Table 2. Steps (mm) of Periodic Marks on Paper at the Top Ten Intensities

No. | Step1 | Step2 | Step 3 | Step4 | Step 5 | Step 6 | Step7 | Step8 | Step 9 Step 10
1 1.33 1.33 1.73 1.64 3.27 2.90 2.72 3.18 2.00 2.35
2 1.32 1.32 1.70 1.72 1.12 1.64 3.34 3.29 2.85 2.60
3 1.32 1.32 1.60 1.75 1.26 2.86 2.24 2.94 1.84 2.14
4 1.31 1.31 1.61 3.21 3.04 1.73 3.13 2.90 2.25 3.06
5 1.32 1.32 1.09 1.27 3.29 2.18 2.80 1.53 1.38 3.01
6 1.32 1.32 1.66 1.25 1.13 3.30 3.12 3.18 2.59 2.68
7 1.32 1.32 1.56 2.90 3.26 3.32 2.18 2.76 2.82 3.07
8 1.31 1.31 1.66 1.73 1.1 3.09 2.29 1.57 2.24 1.77
9 1.31 1.32 1.76 3.07 1.21 2.41 2.58 2.47 1.13 3.02
10 1.32 1.32 3.26 2.90 2.83 2.14 2.48 1.61 2.31 2.50
11 1.31 1.31 1.64 3.16 3.17 1.89 2.35 2.94 2.94 2.61
12 1.32 1.32 1.64 1.68 3.29 2.94 3.21 3.10 2.88 1.60

1, H202009; 2, H202012; 3, H202103; 4, H202106; 5, H202109; 6, 202112; 7, H202204; 8,
H202206; 9, H202210; 10, H202301; 11, H202304; 12, H202307
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Table 3. Angles (°) of Periodic Marks on Paper at the Top Ten Intensities

No Angle | Angle | Angle | Angle | Angle | Angle | Angle | Angle | Angle | Angle
) 1 2 3 4 5 6 7 8 9 10
1 179.4 | 360.0 52.7 130.8 94.4 174.8 | 1281 234 170.9 | 166.2
2 179.4 | 360.0 | 130.7 49.9 90.0 175.6 | 172.5 29.2 129.8 | 120.6
3 179.4 | 360.0 | 132.5 53.9 100.8 79.7 19.4 1474 | 1153 | 103.5
4 179.4 | 360.0 | 1319 | 1625 72.8 52.7 94.0 142.4 74.7 92.2
5 179.4 | 360.0 954 100.9 18.0 115.3 | 1188 | 117.5 | 103.9 66.5
6 179.4 | 360.0 | 1324 87.8 93.0 168.1 54.3 35.2 31.8 139.7
7 179.4 | 360.0 | 133.0 5.2 37.8 58.8 148.2 36.8 68.3 110.8
8 179.4 | 360.0 47.6 128.4 87.0 15.4 104.5 58.1 94.2 93.6
9 179.4 | 360.0 55.7 120.3 | 102.6 | 142.3 75.8 109.9 94.3 6.1
10 179.4 | 360.0 | 127.8 95.2 55.2 122.8 89.0 63.1 110.7 | 1744
11 179.4 | 360.0 | 129.8 40.0 132.0 90.9 105.3 | 1054 56.3 115.7
12 179.4 | 360.0 | 129.8 51.9 72.0 99.3 78.1 102.8 | 148.8 96.6

1, H202009; 2, H202012; 3, H202103; 4, H202106; 5, H202109; 6, 202112; 7, H202204; 8,
H202206; 9, H202210; 10, H202301; 11, H202304; 12, H202307

PCA and Outlier Detection of Step and Angle

Figure 2 shows pair plots of PC scores projected by clustering using the DBSCAN
algorithm on step and angle data with outliers. The DBSCAN algorithm detected 34 outlier
data points. As shown in the pair plots, the detected data points were not grouped into any
clusters and were located far away. The detected outliers comprised four from H202009,
six from H202009, one from H202106, three from H202112, three from H202204, two
from H202206, eight from H202210, one from H202301, two from H202304, and four
from M202307. The detected outliers were removed from the dataset. Consequently, the
dataset became an imbalanced dataset. The effect of outliers on classification performance
was evaluated in the classification modeling section.

Figure 3 shows the PC score plots of the first two PCs derived from the step and
angle data with and without outliers. In Fig. 3a, most data points form a large, unified
cluster, with the exception of some data points in the PC1 low region. These data points
are detected as outliers in Fig. 2. Outliers are not helpful relative to model construction
because they add complexity and introduce confusion to the training process of machine
learning models (Hwang et al. 2023; Lee et al. 2024a, b).

In preparation of Fig. 3b, the outliers had been removed from the dataset prior to
PCA. The characteristics of the forming clusters changed due to outlier removal. The data
points were separated from the large cluster shown in Fig. 3a and grouped into several
distinct clusters. However, some data points were divided into two groups even though the
product was manufactured on the same date. This indicates that the paper was
manufactured using twin-wire systems, such as hybrid or gap formers. In the Fourdrinier
wire system, the headbox slice jet impinges on a single forming fabric. Thus, the angle in
the same step is observed like a mirror image on them. Such information provides evidence
that the paper was probably manufactured using a Fourdrinier wire system. In contrast, in
a twin-wire system, the headbox slice jet impinges into the converging gap between the
two forming fabrics (Jeong ef al. 2024a,b; Smook 2002). Consequently, different weave
marks appear on both the top and bottom surfaces of the paper.

In forensic document examination, documents may contain content written on
either the top or bottom side. Notably, for papers manufactured using twin-wire systems,
such as hybrid or gap formers, it becomes challenging to distinguish between the wire and
felt sides. This suggests that the dataset should be composed of separate classes for the top
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and bottom sides. To address this issue, when constructing a dataset with step and angle
data using a 2D lab formation sensor, it is essential to determine whether the patterns of
the weave marks on the top and bottom sides are consistent.

PC1 (13.1%) PC2 (9.3%) PC3 (7.2%) PC4 (6.5%)

(%1°€1) 1L0d

(%€°6) 20d

(%2°2) €2d
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[1 H202009 [ ] H202103 A\ H202109 H202204 H202210 [] H202301 /\ H202307
O H202012 O H202106 <> H202112 H202206 (O H202304 X Outliers

Fig. 2. Pair plots of PC scores projected by clustering using DBSCAN on step and angle data with
outliers
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Fig. 3. PC score plots depicting the first two PCs derived from the step and angle data with outliers
(a) and without outliers (b).

Classification Models for Printing Paper Dating

It is well documented that, when analyzing periodic marks using a 2D-F sensor,
the step and angle values corresponding to the top five intensity levels are particularly
significant (Jeong et al. 2024a,b; Lee et al. 2024c). In this study, machine learning models
were constructed using two types of input data: step and angle values from all intensity
levels (unselected), and those from the top five intensity levels only (selected).

The classification performance and optimal hyperparameters of the three tree-
based models are summarized in Table 4. For models trained with data derived from
periodic marks, the angle values were preprocessed using the modulo 180 transformation
described in Eq. 1. In all cases, models trained with selected variables outperformed those
trained with unselected variables. These findings are consistent with previous reports
(Jeong et al. 2024a,b; Lee et al. 2024c). The DT model exhibited minimal improvement
with variable selection (F1 score of 0.627 to 0.629). The XGB model exhibited the best
improvement with variable selection, increasing its F1 score from 0.657 to 0.747, whereas
the hyperparameters remained consistent.

Table 4. Model Comparison for Printing Paper Dating

Models Variables Hyperparameters F1 score
DT Unselected?® cp = 0.001 0.627
Selected® cp = 0.006 0.629
XGB Unselected® Ir=0.1, max_depth =7 0.657
Selected® Ir = 0.1, max_depth =7 0.747
RF Unselected?® n_feature = 1/3, n_trees = 91 0.761
Selected® n_feature = 1/3, n_trees = 39 0.788

Definitions: a, step and angle data at all intensities; b, step and angle data at the top five intensities;
cp: complexity parameter; Ir: learning rate; max_depth: maximum depth of the trees
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The RF models outperformed the other classifiers, achieving F1 scores of 0.761
with unselected variables and 0.788 with selected variables. Overall, the models trained on
the step and angle data at the top five intensities exhibited increased F1 scores. Thus, when
analyzing periodic marks using a 2D lab formation sensor, the step and angle data at the
top five intensities are significant. Among the tree-based algorithms, RF, which utilizes an
ensemble learning process, was the most effective model. Thus, the RF model, which
achieved the highest F1 score among the three classifiers, was selected for feature
importance analysis.

Feature Importance Measures from RF

Figure 4 shows the progression of OOB errors as each classification tree is
incorporated during the RF training process for printing paper dating. Figures 4(a) and 4(b)
present similar patterns in OOB error reduction. Initially, as more trees are added, the OOB
errors decrease; notably, the use of step and angle data at the top five intensities accelerates
this reduction during the early stages of tree addition. Subsequently, the errors stabilize at
a consistent level once the number of trees exceeds 100 in Fig. 4a and 50 in Fig. 4b.

Based on these results, the optimal hyperparameters for the RF models were
determined (Table 4), and the best-tuned models were also used for feature importance
analysis. Notably, the minimum OOB errors achieved during training and the overall
classification performance were higher when using the selected step and angle data from
the top five intensities compared to using all intensity levels (Table 4).
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Fig. 4. Changes in out-of-bag (OOB) error rates with increasing number of classification trees in
the dating of printing paper. Models trained with step and angle data at all intensity levels (a);
Models trained with step and angle data at the top five intensity levels (b).

Figure 5 shows the feature importance of RF models trained on step and angle data.
Figure 5a shows the feature importance of the step and angle at all intensities. It is clearly
confirmed that the step and angle data at the third intensity level identified as most
significant variable for printing paper dating. In general, the step and angle data at the first
two intensities were measured for the weaving patterns of flat weaving (Jeong et al. 2024a,
b; Lee et al. 2024c). Figure 6 illustrates the design of a simple forming fabric. The warp
direction on the weaving machine aligns with the machine direction on the paper machine,
whereas the filling (weft) direction on the weaving machine corresponds to the cross-
machine direction (CD) on the paper machine (Adanur 2017). Therefore, angles near 360°
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and 180° (Table 3) are general features of the weft direction (CD), which are observed for
all types of products regardless of the manufacturing date.
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Fig. 5. Feature importance of RF models trained on step and angle data at all intensities (a) and
the top five intensities (b)
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Fig. 6. lllustration of flat fabric weaving (a), profile of fabric design (b), and top view of forming fabric
(c) (inspired (Adanur 2017))

However, the step and angle data at the third intensity level (Table 3) were not
associated with the weaving patterns. These data are assumed to represent the signatures
of the outer warp knuckle (Adanur 2017) or drainage marks (Jeong et al. 2024a,b; Lee et
al. 2024c). These characteristics depend on the type of forming fabric and the operation of
the paper machine. The remaining variables likely exhibited low importance (Fig. 5),
because they were either commonly observed across all paper samples, such as warp
patterns, or they exhibited indistinct patterns due to lower intensities. Therefore, the step
and angle data at the third intensity level were identified as the most significant features
for forensic document examination using periodic marks on the paper. Based on these
results, it can be hypothesized that if representative values—such as the step and angle data
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at the third intensity level—match across samples with different production dates, it may
indicate that the forming fabric was not changed during that period. Furthermore, a higher
number of matching representative values between an unknown sample and a specific
manufacturer's class increases the likelihood of identifying the manufacturer or
approximating the production date of the sample.

Misclassified Printing Paper

The final RF models trained on the step and angle data at the top five intensities
exhibit low errors and high F1 scores (Table 4). These findings corresponded to those of
previous studies (Jeong et al. 2024a,b; Lee et al. 2024c). However, the F1 score was very
low, indicating that the model trained without intensity data performed poorly in printing
paper dating. This limitation can be attributed to the structural characteristics of papers
manufactured using a twin-wire system, as shown in the PCA results (Fig. 3b), where the
periodic marks on the top and bottom sides are distinct. These findings indicate the need
to treat the top and bottom sides as separate classes within the dataset. Therefore, when
constructing a dataset using step and angle information obtained from a two-dimensional
laboratory formation sensor, it is crucial to assess the consistency of weave mark patterns
between the top and bottom surfaces.

Figure 7 shows the confusion matrix of the random forest (RF) model trained using
step and angle data at the top five intensity levels. Based on the confusion matrix, the most
frequently misclassified classes were H202103, H202112, and H202210. It is assumed that
periodic marks from the top and bottom sides were mixed during dataset construction. In a
twin-wire system, if different forming fabrics are used for the top and bottom wires, distinct
periodic mark patterns can be imprinted on each side of the paper surface.
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Fig. 7. Confusion matrix of the RF model trained using step and angle data at the top five intensity

levels. Each cell represents the number of samples predicted for each class, with darker shades
indicating higher frequencies.
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Simplified Univariate Strategy for Printing Paper Dating

A total of 50 sheets were randomly sampled from office paper produced by the
same manufacturer as the dataset, but with different production dates. The step and angle
values at the third intensity peak were measured on both the top and bottom sides. Among
the three unknown samples, Unknown 1 was produced in 2022 and Unknown 2 in 2020,
whereas Unknown 3 showed no matches with any samples in the existing dataset.
Additionally, it is assumed that the data points excluded from all clusters may have been
influenced by fluctuations in intensity values, as such variations can alter the ranking of
step and angle features based on intensity.

These results suggest that if a comprehensive dataset is available, a simple
univariate approach using representative values such as the step and angle at the third
intensity can be effectively applied for estimating the production period of printing paper.
Furthermore, division into two subgroups within the same class was also observed using
this method. This division may be attributed to the appearance of different weave marks
on the top and bottom surfaces of the paper, likely due to the use of a twin-wire paper-
making system.

From another perspective, when representative class values match between samples
with different production dates, it can be inferred that the same forming fabric was used
during that period. Therefore, continuously updating the representative value database over
time can help identify the period during which forming fabric changes occurred. This
approach can be further applied to estimate the date of production in the context of
questioned document examination.
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Fig. 8. Mapping unknown samples with known manufacturer but different production dates using
step and angle values at the third intensity.

Limitations and Future Studies

This study considered the dating of printing paper using periodic marks on its paper
surface for forensic purposes. The dataset comprised the steps and angles of periodic marks
on the paper surface. During dataset construction, the step and angle were measured
randomly from either the top or bottom side of the paper, which may introduce bias into
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the classification models. The periodic marks on the top and bottom sides of the paper
differ if manufactured in a twin-wire system. In addition, if the manufacturer does not
change the forming fabric used in production, it may not provide clear evidence for
document dating. It is also common for machine operators to either regularly purchase the
same brand and model of forming fabric or temporarily switch to a different brand before
returning to the original. In such cases, periodic mark analysis can only reveal whether the
same forming fabric was used, rather than providing a precise production date. On the other
hand, if the repeated marks also exhibit features characteristic of felts, suction rolls, or
dryer fabrics, the term “fingerprint” could be more robustly justified in forensic
assessments of common origins of paper sheets.

These limitations should be addressed using sampling techniques and by increasing
the data volume. When constructing a database, it is essential to determine whether the
periodic marks on both sides are consistent. If differences exist, the dataset should be
separated into top and bottom sides. Future work will focus on constructing a separated
dataset to reduce bias and ensure that the model does not incorrectly recognize the periodic
marks on the top and bottom sides as the same class.

CONCLUSIONS

This study demonstrated that periodic marks on printing paper, particularly the step
and angle data from light-transmitted images, can be effectively used for forensic document
dating. The use of step-angle features from the top five intensity levels significantly
improved classification performance in tree-based models. Among them, the random forest
model achieved the highest F1 score. Feature importance analysis identified the third
intensity level as the most critical for distinguishing manufacturing dates, likely reflecting
forming fabric differences or machine-specific drainage marks. A simplified univariate
strategy using these features further supported their forensic value. However, differences
in periodic marks between the top and bottom sides of paper—common in twin-wire
systems—may reduce model reliability. Therefore, future datasets should distinguish
between paper surfaces to reduce bias and enhance interpretability. This study provides a
foundation for the development of user-friendly and non-destructive tools for forensic
document examination.
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