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Evidence by which to confirm the location and approximate manufacturing 
date of document paper is a critical task in forensic investigations, 
particularly in cases involving suspected forgery or document 
manipulation. In this study, periodic marks formed during the papermaking 
process were analyzed using light-transmitted images captured by a two-
dimensional lab formation sensor. Step and angle data from the top five 
intensity peaks were extracted and used to train tree-based classification 
models. To handle directional symmetry, a modulo 180° transformation 
was applied to the angle data. The random forest (RF) classifier 
outperformed decision tree (DT) and extreme gradient boosting (XGB) 
models, achieving the highest F1 score. Feature importance analysis 
revealed that the step and angle at the third intensity level were the most 
discriminative features, likely reflecting structural characteristics of forming 
fabrics or drainage patterns. A simplified univariate strategy using these 
features also showed potential for estimating production periods. However, 
differences between the top and bottom surfaces—particularly in twin-wire 
systems—introduced classification bias, highlighting the need to 
separately classify paper sides in forensic datasets. Overall, this study 
demonstrates the feasibility and limitations of using periodic mark analysis 
for document dating. 
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INTRODUCTION 
 

Evidence related to manufacturing dates and locations is essential for detecting 

added or substituted pages in forged documents. Determining the date of a document helps 

establish the period during which a tax document or other official document was produced. 

This is performed by comparing the date of the document with the earliest availability of 

the paper on which it is printed. The materials used in the document must have been 

available before or on the date of the document; otherwise, if the date of the document is 

earlier than the availability of its paper, this anachronism indicates backdating (Ellen et al. 

2018). To facilitate this analysis, an accessible reference database is required (Jeong et al. 

2024a, b).  
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Conventional paper analysis methods focus on evaluating physical and optical 

characteristics, such as tensile strength, thickness, basis weight, ash content, color, and 

fluorescence (Grant 1973). In addition, techniques such as X-ray diffraction (Foner and 

Adan 1983), elemental analysis (Spence et al. 2002), infrared spectroscopy (Hwang et al. 

2024; Lee et al. 2024a, b; Lee et al. 2025a), Raman spectroscopy (Kuptsov 1994), image 

analysis (Miyata et al. 2002), and pyrolysis gas chromatography (Ebara et al. 1982) have 

been applied. However, these methods typically face challenges in accurately identifying 

the manufacturing date of paper. For example, physical testing methods are limited by their 

destructive nature, which may damage the documents. Nondestructive techniques, such as 

spectroscopy analysis, also have limitations, for example, documents may be contaminated, 

and the aging characteristics of paper can change depending on storage conditions 

(Havlínová et al. 2009; Małachowska et al. 2021). 

To address these limitations, light-transmitted image analysis methods based on fast 

Fourier transformation have been developed (Miyata et al. 2002; Comte et al. 2006; Berger 

and Ramos 2012). Berger (2009) captured light-transmitted images of office paper and then 

performed frequency analysis using the two-dimensional (2D) power spectrum technique. 

This method measures similarity through correlation and shows promise in distinguishing 

common office papers. Jeong et al. (2024a,b) performed classification analysis to 

discriminate manufacturers using periodic marks from the forming fabrics used during the 

papermaking process. Light-transmitted images were captured using a 2D lab formation 

sensor (Techpap, France), and the images were then transformed into Fourier transform-

based images. From these images, periodic marks were derived from the weaving patterns 

of the forming fabric and drainage marks depending on the paper machines.  

  These periodic patterns primarily originate from the forming fabric, an endless 

woven belt composed of synthetic monofilaments. It has two distinct sides—a forming 

surface and a wearing surface—with typical filament spacings of 0.3 to 0.6 mm (Adanur 

2017). During the paper formation process, the fiber suspension (headbox jet) is delivered 

onto the forming surface, where water drainage and fiber deposition inevitably imprint the 

mesh structure onto the paper surface. These imprints are known as weave marks or wire 

marks. In addition to weave marks, other periodic marks arise throughout the papermaking 

process due to mechanical interactions in various machine sections. These include: (1) 

drainage marks from variations in dewatering in the wire section, (2) shadow marks from 

suction rolls, (3) press felt marks from the press section, (4) groove marks from shoe press 

belts, and (5) canvas and dryer fabric marks from the drying section. Because such periodic 

marks are consistently and uniquely introduced during paper manufacturing, they serve as 

valuable forensic features. They have been widely documented for applications in paper 

origin discrimination and manufacturing date estimation (Berger 2009; Jeong et al. 2024a, 

b; Lee et al. 2024c; Lee et al. 2025b). 

Distinguishing paper manufacturers and products can support forensic 

investigations involving document alterations, such as detecting substituted pages or 

inserted content in multipage documents (Berger and Ramos 2012; Comte et al. 2006; 

Miyata et al. 2002). While various analytical techniques for paper source identification 

have been extensively reported, these approaches do not offer the same level of forensic 

resolution as methods aimed at determining the manufacturing date of a document. In 

contrast, studies focused on document dating remain relatively limited, primarily due to 

the inherent challenges associated with such analyses. These challenges include potential 

contamination, as well as the fact that the aging behavior of paper is highly sensitive to 

storage conditions, making it difficult to establish consistent chronological markers. 
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In the authors’ previous studies on forensic document dating, periodic marks were 

analyzed using a 2D lab formation sensor (Lee et al. 2024c). To the best of the authors’ 

knowledge, periodic marks and ash content are intrinsic characteristics of paper that remain 

stable under environmental exposure and are resistant to post-manufacturing tampering, 

thereby serving as robust forensic markers (Choi et al. 2018). Nevertheless, ash content 

analysis often requires a relatively large sample size and may involve destructive 

procedures (Choi et al. 2018). In the authors’ earlier work, an artificial neural network 

(ANN) classifier was developed using features derived from periodic surface patterns, 

achieving a high classification performance with an F1 score of 0.951.  

Although this analytical approach is highly effective, ANN models are inherently 

prone to overfitting and are known to exhibit limited extrapolation capabilities (Rhein et 

al. 2024). Furthermore, neural networks often function as “black box” models, offering 

little interpretability with respect to the meaning or significance of individual weights 

(Lundberg and Lee 2017). Most importantly, machine learning–based training and 

prediction processes are often not user-friendly, requiring specialized expertise and 

computational resources that may limit their accessibility in practical forensic settings. 

The objective of this study was to develop user-friendly methods, such as univariate 

approaches, for paper differentiation. Previous studies have primarily employed 

multivariate and ANN-based classification models. In this study, a 2D lab formation sensor 

was used to extract features related to periodic marks on the paper surface. Feature 

importance was then evaluated using a random forest (RF) model to identify the most 

relevant periodic mark characteristics. Ultimately, the aim is to identify key periodic mark 

features that are critical for forensic document dating and to propose a method for 

constructing a database that integrates these features using an accessible, user-friendly 

analytical approach. 

 

 

EXPERIMENTAL 
 
Materials 

The information on the printing paper used in this study is presented in Table 1. For 

document paper dating, 12 products were collected, all from the same manufacturer but 

differing by production date. The “H” product was typical office paper in A4 size (210 mm 

× 297 mm).  

 

Table 1. Information on Printing Paper with Different Manufacturing Dates 

NO. Product Code Manufacturing Date Grammage (g/m2) 

1 

“H” 
product 
from a 
Paper 

Company 

H202009 Sep 19th, 2020 

80 

2 H202012 Dec 13th, 2020 

3 H202103 Mar 01st, 2021 

4 H202106 Jun 02nd, 2021 

5 H202109 Sep 07th, 2021 

6 H202112 Dec 17th, 2021 

7 H202204 Apr 27th, 2022 

8 H202206 Jun 30th, 2022 

9 H202210 Oct 18th, 2022 

10 H202301 Jan 28th, 2023 

11 H202304 Apr 10th, 2023 

12 H202307 Jul 19th, 2023 
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Dataset  
A 2D lab formation sensor (2D-F sensor) was used to scan the printing paper. The 

data collection process was repeated, with 50 samples collected for each product. In 

addition, measurements were performed randomly without distinguishing between the top 

and bottom sides. The 2D-F sensor generated light-transmitted images automatically, 

which were then analyzed using a fast Fourier transform algorithm to examine three distinct 

factors in the images, i.e., intensity, angle, and step (Jeong et al. 2024a,b; Lee et al. 2024c; 

Lee et al. 2025b). Figure 1 illustrates the principles for calculating the intensity, step, and 

angle from the light-transmitted images. The intensity refers to the brightness of periodic 

marks on paper. The term “angle” indicates the orientation of the linear repetitive marks 

within the plane of the paper, while “step” refers to the spacing between these marks, 

measured in millimeters. 

 

 
 

Fig. 1. Principles for calculating intensity, step, and angle from light-transmitted images 

 

The step and angle data of the periodic marks were measured at the highest 10 

intensities, creating a 1 × 30 array from each measurement. However, the authors noted 

that the intensity data varied for each measurement. For this reason, intensity values were 

removed from the dataset. The data scanned from a single paper product were represented 

as a 50 (samples) × 20 (variables) matrix, resulting in 600 (50 (samples) × 12 (products)) 

data points. 

 
Data Preprocessing 

Angles can be considered symmetric within the same step (e.g., 60° and 240°), and 

they are treated as equivalent. Therefore, all angle data were converted by modulo 180 

transformation, as defined in Eq. 1. 

𝜃′ = 𝜃 𝑚𝑜𝑑 180        (1) 

The usefulness of such angular transformations for capturing the directional 

characteristics of periodic marks has already been demonstrated in prior studies (Jeong et 

al. 2024a,b; Lee et al. 2024c), where the absolute value of the sine function, sin 𝜃, was 

used to account for symmetry. 
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PCA of Step and Angle Data 
Principal component analysis (PCA) was performed to reveal the inherent patterns 

and hidden features in the high-dimensional dataset. The step and angle data of the periodic 

marks on the paper comprised 20-dimensional data. The 20-dimensional data were 

projected onto a new seven-dimensional orthogonal space. Finally, the data structure was 

visualized in 2D space. The usefulness of PCA based on features of periodic marks on 

paper was demonstrated in our previous research (Lee et al. 2025b). However, that study 

relied on intensity data, which can be variable, to differentiate the paper origin.  

Before performing PCA, the step and angle data were standardized using Z-score 

normalization to scale each variable to have a mean of 0 and a variance of 1. The scaled 

value 𝑍𝑖 is defined as in Eq. 2, 

𝑍𝑖 =
𝑥𝑖−𝜇

𝜎
         (2) 

where 𝑥𝑖 denotes each observation of a variable 𝑥, μ denotes the mean of the variable 𝑥, 

and 𝜎 denotes the standard deviation of the variable 𝑥. 

 

Outlier Detection in Dataset using DBSCAN 
The density-based spatial clustering of applications with noise (DBSCAN) 

algorithm was used to detect outliers in the dataset (Ester et al. 1996; Campello et al. 2013), 

which were projected onto the orthogonal coordinate system of principal components 

(PCs). The DBSCAN parameters epsilon (eps) and minimum points (minPts) were 

empirically set to 5.0 and 7, respectively. Here, “eps” represents the radius within which 

neighboring data points exert mutual influence, and “minPts” specifies the minimum 

number of data points required to form a cluster. A cluster was established when at least 

seven consecutive points were found within a distance of 5.0 from a given data point. 

The detected outliers were removed from the dataset, and the classification model 

was then trained on the imbalanced dataset. 

 
Classification Models for Forensic Document Dating  

For the classification modeling of forensic document dating, tree-based models 

were employed. Tree-based models are widely recognized for providing a robust 

framework for decision-making processes. In this study, two representative ensemble 

methods—random forest (RF) and extreme gradient boosting (XGBoost)—were 

constructed, both of which utilize decision trees (DTs) as base learners. 

All data processing and classification were carried out in R (R Core Team 2023, 

version 4.5.0, Auckland, New Zealand). 

 

Dataset splitting 

The dataset was divided into training and test sets at a ratio of 7:3 for training and 

evaluation of the classification models to be compared. Stratified random sampling was 

used to ensure that the split ratio was maintained across all classes. 

 

Decision tree (DT) 

Single DTs (Breiman 2017) were tested to compare their classification performance 

with that of the RF model, which is an ensemble learning method. To optimize the DT 

model, the complexity parameter (cp), which controls the tree size and complexity, was 

carefully tuned. A grid search within the range of 0.001 to 0.1 was performed to identify 

the optimal cp value, thereby balancing model accuracy and preventing overfitting. The 
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final model was selected based on the cp value that achieved the highest performance in a 

threefold cross-validation. 

 

Random forest (RF) 

The RF classifier (Breiman 2001), an ensemble learning technique, helps mitigate 

premature convergence to some extent. Ensemble learning combines predictions from 

multiple models to improve the accuracy beyond that achievable by individual models. In 

this study, DTs (Breiman 2017) were employed as the base learners to construct the RF 

model. To increase the diversity among the DTs, the RF model builds them through random 

subsampling, without using all input variables, to construct independent trees. 

Furthermore, the RF model generates bootstrap samples from the training dataset via 

random sampling with replacement. In this process, approximately two-thirds of the 

training data (in-bag samples) are used to train the DTs, and the remaining one-third (out-

of-bag (OOB) samples) are used to validate the RF model. The probability that a sample is 

not selected from a dataset of size m during random sampling with replacement is 

represented by (m−1)/m. When repeated m times, the OOB probability approaches 36.8%, 

as shown in Eq. 3. 

𝑂𝑂𝐵 = lim
𝑚→∞

(1 −
1

𝑚
)

𝑚
= 𝑒−1 ≈ 0.3678.     (3) 

For the input variable n_feature used in DT generation, the square root (“sqrt”), 

binary logarithm (“log2”), and one-third (“1/3”) of all spectral points were tested. The 

number of trees (n_tree) was varied from 10 to 150, and the optimal values for n_feature 

and n_tree were selected based on the minimum OOB error identified through the grid 

search. 

 

XGBoost (XGB) 

The XGB algorithm (Chen and Guestrin 2016) is a tree-based ensemble learning 

method that differs fundamentally from the RF approach. While RF builds multiple DTs 

independently and aggregates their outputs through majority voting, XGB constructs DTs 

sequentially, where each tree attempts to correct the residual errors of the previous trees 

through gradient-based optimization. This boosting framework allows XGB to achieve 

higher prediction accuracy, especially in cases involving complex, nonlinear patterns. 

In this study, DTs were employed as base learners to construct the XGB model. To 

enhance generalization performance and prevent overfitting, XGB incorporates several 

regularization techniques, including shrinkage (learning rate control), subsampling of rows 

and columns, and penalties on tree complexity. Additionally, unlike traditional gradient 

boosting, XGB leverages second-order derivatives (i.e., both gradients and Hessians) of 

the loss function to improve convergence speed and model stability. 

For multiclass classification, the number of boosting rounds (n_rounds) was varied 

from 10 to 150, the maximum tree depth (max_depth) was adjusted between 3 and 5, and 

the learning rate (eta) was tested in the range of 0.001 to 0.3. Grid search was used to 

identify the optimal set of hyperparameters based on the classification accuracy on the 

validation dataset. 
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Evaluation metric 

Accurately evaluating the classification of observations into positive and negative 

categories is essential in classification tasks. True positives represent observations 

correctly classified as belonging to the positive class, whereas true negatives denote 

observations correctly classified as belonging to the negative class. Conversely, false 

negatives occur when positive observations are incorrectly classified as negative, and false 

positives arise when negative observations are incorrectly classified as positive. These 

values enable the calculation of various performance metrics to assess the effectiveness of 

classification models in detecting the target class. 

The F1 score, which is the harmonic mean of precision (Eq. 4) and recall (Eq. 5), 

is a commonly used performance metric in classification problems with class imbalance; it 

is defined in Eq. 6. 

𝑃𝑟𝑒𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
,        (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
,        (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.      (6) 

The weighted F1 score, which was applied to evaluate the performance of the RF 

model, accounts for class imbalance by assigning weights to each class (Eq. 7) and 

integrating these weights into their respective F1 scores (Eq. 8). This approach enables the 

weighted F1 score to assess both individual class performance and overall model 

performance, even with imbalanced datasets (Hwang et al. 2024), 
 

𝑤𝑖 =
𝑁𝑖

𝑇𝑖
,         (7) 

 

where 𝑤𝑖 denotes the weight of class, 𝑁𝑖 denotes the number of samples in the class, and 

𝑇𝑖 denotes the total number of samples. 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1𝑖 = ∑ 𝑤𝑖 × 𝐹1𝑖
𝑁
𝑖=1 .      (8) 

 

Feature Importance Measures from the Random Forest Model 
The importance of order in the step and angle data was assessed using the mean 

decrease impurity method (Louppe et al. 2013). This approach identifies variables that are 

significant in the decision making of the RF model to confirm the manufacturing date and 

location of printing paper. The DTs contribute to understanding the role of each variable 

and offer transparency and insight into the decision-making process of the classification 

model. This process, called feature importance measurement, is defined as follows, 

 𝐼(𝑛𝑗) = 𝑤𝑗𝐶𝑗 − 𝑤𝐿𝑗
𝐶𝐿𝑗

− 𝑤𝑅𝑗
𝐶𝑅𝑗

,      (9) 

where 𝑛𝑗 denotes the parent node, 𝐿𝑗 and 𝑅𝑗 denote the left and right child nodes branched 

from 𝑛𝑗, 𝑤𝑗 denotes the node weight or sample count, and 𝐶𝑗 denotes the impurity of 𝑛𝑗. 

The importance of variable i in a DT is defined as follows, 

𝐼(𝑓𝑖) =
∑ 𝐼(𝑛𝑗)𝑗

∑ 𝐼(𝑛𝑘)𝑘∈𝑛𝑎𝑙𝑙

        (10) 

where 𝐼(𝑓𝑖) denotes the importance of variable i in the tree model. In the RF model, 

variable importance is determined by aggregating the importance values of all DTs. Prior 
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to aggregation, the importance of each variable is normalized using Eq. 11. 

𝑛𝑜𝑟𝑚𝐼(𝑓𝑖) =
𝐼(𝑓𝑖)

∑ 𝐼(𝑓𝑗)𝑗∈𝑓𝑎𝑙𝑙

       (11) 

Finally, the overall importance of each variable in the RF model is averaged across all DTs, 

as shown in Eq. 12, 

𝐼(𝑅𝐹𝑖) =
∑ 𝑛𝑜𝑟𝑚𝐼(𝑓𝑖𝑗

)𝑗∈𝑡𝑎𝑙𝑙

𝑇
       (12) 

where t represents each DT model, 𝑛𝑜𝑟𝑚𝐼(𝑓𝑖𝑗
) denotes the normalized importance of 

variable i in the RF model, and T represents the total number of DTs. The selected features 

related to periodic marks, such as their angle and step (Fig. 1), were employed to develop 

a simple method for printing paper dating.  

 

 

RESULTS AND DISCUSSION 
 
Step and Angle of Periodic Marks on Printing Paper 

Tables 2 and 3 present the step and angle data of the periodic marks on paper from 

a single measurement. For the step and angle data at the first two intensity levels, no 

differences were observed across all classes, because these marks were derived from the 

weaving patterns. The weave marks in the machine direction and the cross direction of the 

paper machine are common features found in all types of products, regardless of the 

manufacturer or manufacturing date. Angles of 180°, 360°, and 90° were considered in 

these cases. However, unique steps and angles, particularly at the third intensity level, 

depend on the forming fabrics used or the papermaking process (Jeong et al. 2024a,b; Lee 

et al. 2024c). For example, a step of 1.60 mm and an angle of 132.5° represent the 

distinctive characteristics of sample H202103. Therefore, these features are considered 

significant for forensic document examination. From this perspective, it can be 

hypothesized that if document paper can be differentiated based on the step and angle 

values at three, four, or five specific intensity levels, then a univariate method could be 

developed. In other words, paper samples may be distinguishable by simply comparing the 

step and angle at selected intensity levels. 

 

Table 2. Steps (mm) of Periodic Marks on Paper at the Top Ten Intensities  

No. Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 

1 1.33 1.33 1.73 1.64 3.27 2.90 2.72 3.18 2.00 2.35 

2 1.32 1.32 1.70 1.72 1.12 1.64 3.34 3.29 2.85 2.60 

3 1.32 1.32 1.60 1.75 1.26 2.86 2.24 2.94 1.84 2.14 

4 1.31 1.31 1.61 3.21 3.04 1.73 3.13 2.90 2.25 3.06 

5 1.32 1.32 1.09 1.27 3.29 2.18 2.80 1.53 1.38 3.01 

6 1.32 1.32 1.66 1.25 1.13 3.30 3.12 3.18 2.59 2.68 

7 1.32 1.32 1.56 2.90 3.26 3.32 2.18 2.76 2.82 3.07 

8 1.31 1.31 1.66 1.73 1.11 3.09 2.29 1.57 2.24 1.77 

9 1.31 1.32 1.76 3.07 1.21 2.41 2.58 2.47 1.13 3.02 

10 1.32 1.32 3.26 2.90 2.83 2.14 2.48 1.61 2.31 2.50 

11 1.31 1.31 1.64 3.16 3.17 1.89 2.35 2.94 2.94 2.61 

12 1.32 1.32 1.64 1.68 3.29 2.94 3.21 3.10 2.88 1.60 

1, H202009; 2, H202012; 3, H202103; 4, H202106; 5, H202109; 6, 202112; 7, H202204; 8, 
H202206; 9, H202210; 10, H202301; 11, H202304; 12, H202307 
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Table 3. Angles (°) of Periodic Marks on Paper at the Top Ten Intensities  

No. 
Angle 

1 
Angle 

2 
Angle 

3 
Angle 

4 
Angle 

5 
Angle 

6 
Angle 

7 
Angle 

8 
Angle 

9 
Angle 

10 

1 179.4 360.0 52.7 130.8 94.4 174.8 128.1 23.4 170.9 166.2 

2 179.4 360.0 130.7 49.9 90.0 175.6 172.5 29.2 129.8 120.6 

3 179.4 360.0 132.5 53.9 100.8 79.7 19.4 147.4 115.3 103.5 

4 179.4 360.0 131.9 162.5 72.8 52.7 94.0 142.4 74.7 92.2 

5 179.4 360.0 95.4 100.9 18.0 115.3 118.8 117.5 103.9 66.5 

6 179.4 360.0 132.4 87.8 93.0 168.1 54.3 35.2 31.8 139.7 

7 179.4 360.0 133.0 5.2 37.8 58.8 148.2 36.8 68.3 110.8 

8 179.4 360.0 47.6 128.4 87.0 15.4 104.5 58.1 94.2 93.6 

9 179.4 360.0 55.7 120.3 102.6 142.3 75.8 109.9 94.3 6.1 

10 179.4 360.0 127.8 95.2 55.2 122.8 89.0 63.1 110.7 174.4 

11 179.4 360.0 129.8 40.0 132.0 90.9 105.3 105.4 56.3 115.7 

12 179.4 360.0 129.8 51.9 72.0 99.3 78.1 102.8 148.8 96.6 

1, H202009; 2, H202012; 3, H202103; 4, H202106; 5, H202109; 6, 202112; 7, H202204; 8, 
H202206; 9, H202210; 10, H202301; 11, H202304; 12, H202307 

 
PCA and Outlier Detection of Step and Angle  

Figure 2 shows pair plots of PC scores projected by clustering using the DBSCAN 

algorithm on step and angle data with outliers. The DBSCAN algorithm detected 34 outlier 

data points. As shown in the pair plots, the detected data points were not grouped into any 

clusters and were located far away. The detected outliers comprised four from H202009, 

six from H202009, one from H202106, three from H202112, three from H202204, two 

from H202206, eight from H202210, one from H202301, two from H202304, and four 

from M202307. The detected outliers were removed from the dataset. Consequently, the 

dataset became an imbalanced dataset. The effect of outliers on classification performance 

was evaluated in the classification modeling section. 

 Figure 3 shows the PC score plots of the first two PCs derived from the step and 

angle data with and without outliers. In Fig. 3a, most data points form a large, unified 

cluster, with the exception of some data points in the PC1 low region. These data points 

are detected as outliers in Fig. 2. Outliers are not helpful relative to model construction 

because they add complexity and introduce confusion to the training process of machine 

learning models (Hwang et al. 2023; Lee et al. 2024a, b). 

In preparation of Fig. 3b, the outliers had been removed from the dataset prior to 

PCA. The characteristics of the forming clusters changed due to outlier removal. The data 

points were separated from the large cluster shown in Fig. 3a and grouped into several 

distinct clusters. However, some data points were divided into two groups even though the 

product was manufactured on the same date. This indicates that the paper was 

manufactured using twin-wire systems, such as hybrid or gap formers. In the Fourdrinier 

wire system, the headbox slice jet impinges on a single forming fabric. Thus, the angle in 

the same step is observed like a mirror image on them. Such information provides evidence 

that the paper was probably manufactured using a Fourdrinier wire system. In contrast, in 

a twin-wire system, the headbox slice jet impinges into the converging gap between the 

two forming fabrics (Jeong et al. 2024a,b; Smook 2002). Consequently, different weave 

marks appear on both the top and bottom surfaces of the paper.  

In forensic document examination, documents may contain content written on 

either the top or bottom side. Notably, for papers manufactured using twin-wire systems, 

such as hybrid or gap formers, it becomes challenging to distinguish between the wire and 

felt sides. This suggests that the dataset should be composed of separate classes for the top 
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and bottom sides. To address this issue, when constructing a dataset with step and angle 

data using a 2D lab formation sensor, it is essential to determine whether the patterns of 

the weave marks on the top and bottom sides are consistent. 

 

 
Fig. 2. Pair plots of PC scores projected by clustering using DBSCAN on step and angle data with 
outliers 
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Fig. 3. PC score plots depicting the first two PCs derived from the step and angle data with outliers 
(a) and without outliers (b). 
 

Classification Models for Printing Paper Dating 
It is well documented that, when analyzing periodic marks using a 2D-F sensor, 

the step and angle values corresponding to the top five intensity levels are particularly 

significant (Jeong et al. 2024a,b; Lee et al. 2024c). In this study, machine learning models 

were constructed using two types of input data: step and angle values from all intensity 

levels (unselected), and those from the top five intensity levels only (selected). 
The classification performance and optimal hyperparameters of the three tree-

based models are summarized in Table 4. For models trained with data derived from 

periodic marks, the angle values were preprocessed using the modulo 180 transformation 

described in Eq. 1. In all cases, models trained with selected variables outperformed those 

trained with unselected variables. These findings are consistent with previous reports 

(Jeong et al. 2024a,b; Lee et al. 2024c). The DT model exhibited minimal improvement 

with variable selection (F1 score of 0.627 to 0.629). The XGB model exhibited the best 

improvement with variable selection, increasing its F1 score from 0.657 to 0.747, whereas 

the hyperparameters remained consistent.  

 
Table 4. Model Comparison for Printing Paper Dating 

Models Variables Hyperparameters F1 score 

DT 
Unselecteda cp = 0.001 0.627 

Selectedb cp = 0.006 0.629 

XGB 
Unselecteda lr = 0.1, max_depth = 7 0.657 

Selectedb lr = 0.1, max_depth = 7 0.747 

RF 
Unselecteda n_feature = 1/3, n_trees = 91 0.761 

Selectedb n_feature = 1/3, n_trees = 39 0.788 

Definitions: a, step and angle data at all intensities; b, step and angle data at the top five intensities; 
cp: complexity parameter; lr: learning rate; max_depth: maximum depth of the trees 
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The RF models outperformed the other classifiers, achieving F1 scores of 0.761 

with unselected variables and 0.788 with selected variables. Overall, the models trained on 

the step and angle data at the top five intensities exhibited increased F1 scores. Thus, when 

analyzing periodic marks using a 2D lab formation sensor, the step and angle data at the 

top five intensities are significant. Among the tree-based algorithms, RF, which utilizes an 

ensemble learning process, was the most effective model. Thus, the RF model, which 

achieved the highest F1 score among the three classifiers, was selected for feature 

importance analysis.  
 
Feature Importance Measures from RF 

Figure 4 shows the progression of OOB errors as each classification tree is 

incorporated during the RF training process for printing paper dating. Figures 4(a) and 4(b) 

present similar patterns in OOB error reduction. Initially, as more trees are added, the OOB 

errors decrease; notably, the use of step and angle data at the top five intensities accelerates 

this reduction during the early stages of tree addition. Subsequently, the errors stabilize at 

a consistent level once the number of trees exceeds 100 in Fig. 4a and 50 in Fig. 4b.  

Based on these results, the optimal hyperparameters for the RF models were 

determined (Table 4), and the best-tuned models were also used for feature importance 

analysis. Notably, the minimum OOB errors achieved during training and the overall 

classification performance were higher when using the selected step and angle data from 

the top five intensities compared to using all intensity levels (Table 4).  

 
 

Fig. 4. Changes in out-of-bag (OOB) error rates with increasing number of classification trees in 
the dating of printing paper. Models trained with step and angle data at all intensity levels (a); 
Models trained with step and angle data at the top five intensity levels (b). 
 

Figure 5 shows the feature importance of RF models trained on step and angle data. 

Figure 5a shows the feature importance of the step and angle at all intensities. It is clearly 

confirmed that the step and angle data at the third intensity level identified as most 

significant variable for printing paper dating. In general, the step and angle data at the first 

two intensities were measured for the weaving patterns of flat weaving (Jeong et al. 2024a, 

b; Lee et al. 2024c). Figure 6 illustrates the design of a simple forming fabric. The warp 

direction on the weaving machine aligns with the machine direction on the paper machine, 

whereas the filling (weft) direction on the weaving machine corresponds to the cross-

machine direction (CD) on the paper machine (Adanur 2017). Therefore, angles near 360° 
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and 180° (Table 3) are general features of the weft direction (CD), which are observed for 

all types of products regardless of the manufacturing date. 

 

 
 

Fig. 5. Feature importance of RF models trained on step and angle data at all intensities (a) and 
the top five intensities (b) 

 
Fig. 6. Illustration of flat fabric weaving (a), profile of fabric design (b), and top view of forming fabric 
(c) (inspired (Adanur 2017))  
 

However, the step and angle data at the third intensity level (Table 3) were not 

associated with the weaving patterns. These data are assumed to represent the signatures 

of the outer warp knuckle (Adanur 2017) or drainage marks (Jeong et al. 2024a,b; Lee et 

al. 2024c). These characteristics depend on the type of forming fabric and the operation of 

the paper machine. The remaining variables likely exhibited low importance (Fig. 5), 

because they were either commonly observed across all paper samples, such as warp 

patterns, or they exhibited indistinct patterns due to lower intensities. Therefore, the step 

and angle data at the third intensity level were identified as the most significant features 

for forensic document examination using periodic marks on the paper. Based on these 

results, it can be hypothesized that if representative values—such as the step and angle data 
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at the third intensity level—match across samples with different production dates, it may 

indicate that the forming fabric was not changed during that period. Furthermore, a higher 

number of matching representative values between an unknown sample and a specific 

manufacturer's class increases the likelihood of identifying the manufacturer or 

approximating the production date of the sample. 
 

Misclassified Printing Paper 
The final RF models trained on the step and angle data at the top five intensities 

exhibit low errors and high F1 scores (Table 4). These findings corresponded to those of 

previous studies (Jeong et al. 2024a,b; Lee et al. 2024c). However, the F1 score was very 

low, indicating that the model trained without intensity data performed poorly in printing 

paper dating. This limitation can be attributed to the structural characteristics of papers 

manufactured using a twin-wire system, as shown in the PCA results (Fig. 3b), where the 

periodic marks on the top and bottom sides are distinct. These findings indicate the need 

to treat the top and bottom sides as separate classes within the dataset. Therefore, when 

constructing a dataset using step and angle information obtained from a two-dimensional 

laboratory formation sensor, it is crucial to assess the consistency of weave mark patterns 

between the top and bottom surfaces. 

Figure 7 shows the confusion matrix of the random forest (RF) model trained using 

step and angle data at the top five intensity levels. Based on the confusion matrix, the most 

frequently misclassified classes were H202103, H202112, and H202210. It is assumed that 

periodic marks from the top and bottom sides were mixed during dataset construction. In a 

twin-wire system, if different forming fabrics are used for the top and bottom wires, distinct 

periodic mark patterns can be imprinted on each side of the paper surface.  

 

 
Fig. 7. Confusion matrix of the RF model trained using step and angle data at the top five intensity 
levels. Each cell represents the number of samples predicted for each class, with darker shades 
indicating higher frequencies. 
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Simplified Univariate Strategy for Printing Paper Dating 
A total of 50 sheets were randomly sampled from office paper produced by the 

same manufacturer as the dataset, but with different production dates. The step and angle 

values at the third intensity peak were measured on both the top and bottom sides. Among 

the three unknown samples, Unknown 1 was produced in 2022 and Unknown 2 in 2020, 

whereas Unknown 3 showed no matches with any samples in the existing dataset. 

Additionally, it is assumed that the data points excluded from all clusters may have been 

influenced by fluctuations in intensity values, as such variations can alter the ranking of 

step and angle features based on intensity.  

These results suggest that if a comprehensive dataset is available, a simple 

univariate approach using representative values such as the step and angle at the third 

intensity can be effectively applied for estimating the production period of printing paper. 

Furthermore, division into two subgroups within the same class was also observed using 

this method. This division may be attributed to the appearance of different weave marks 

on the top and bottom surfaces of the paper, likely due to the use of a twin-wire paper-

making system. 

From another perspective, when representative class values match between samples 

with different production dates, it can be inferred that the same forming fabric was used 

during that period. Therefore, continuously updating the representative value database over 

time can help identify the period during which forming fabric changes occurred. This 

approach can be further applied to estimate the date of production in the context of 

questioned document examination. 

 

 
Fig. 8. Mapping unknown samples with known manufacturer but different production dates using 
step and angle values at the third intensity. 

 
Limitations and Future Studies 

This study considered the dating of printing paper using periodic marks on its paper 

surface for forensic purposes. The dataset comprised the steps and angles of periodic marks 

on the paper surface. During dataset construction, the step and angle were measured 

randomly from either the top or bottom side of the paper, which may introduce bias into 
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the classification models. The periodic marks on the top and bottom sides of the paper 

differ if manufactured in a twin-wire system. In addition, if the manufacturer does not 

change the forming fabric used in production, it may not provide clear evidence for 

document dating. It is also common for machine operators to either regularly purchase the 

same brand and model of forming fabric or temporarily switch to a different brand before 

returning to the original. In such cases, periodic mark analysis can only reveal whether the 

same forming fabric was used, rather than providing a precise production date. On the other 

hand, if the repeated marks also exhibit features characteristic of felts, suction rolls, or 

dryer fabrics, the term “fingerprint” could be more robustly justified in forensic 

assessments of common origins of paper sheets. 

These limitations should be addressed using sampling techniques and by increasing 

the data volume. When constructing a database, it is essential to determine whether the 

periodic marks on both sides are consistent. If differences exist, the dataset should be 

separated into top and bottom sides. Future work will focus on constructing a separated 

dataset to reduce bias and ensure that the model does not incorrectly recognize the periodic 

marks on the top and bottom sides as the same class.  

 

 

CONCLUSIONS 
 

This study demonstrated that periodic marks on printing paper, particularly the step 

and angle data from light-transmitted images, can be effectively used for forensic document 

dating. The use of step-angle features from the top five intensity levels significantly 

improved classification performance in tree-based models. Among them, the random forest 

model achieved the highest F1 score. Feature importance analysis identified the third 

intensity level as the most critical for distinguishing manufacturing dates, likely reflecting 

forming fabric differences or machine-specific drainage marks. A simplified univariate 

strategy using these features further supported their forensic value. However, differences 

in periodic marks between the top and bottom sides of paper—common in twin-wire 

systems—may reduce model reliability. Therefore, future datasets should distinguish 

between paper surfaces to reduce bias and enhance interpretability. This study provides a 

foundation for the development of user-friendly and non-destructive tools for forensic 

document examination. 
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