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Antimicrobial with Time-kill Kinetics, Antioxidant, and
Anticancer Properties of Rosmarinus officinalis L. Oil
Extract Based on Its Bioactive Components
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There is a major clinical problem associated with antimicrobial resistance.
Rosmarinus officinalis L. is an effective medicinal source. Its oil has been
extracted and tested for its multiple therapeutic capabilities. The oil extract
was found to be a broad-spectrum antimicrobial agent against Bacillus
subtilis and Staphylococcus aureus as Gram-positive bacteria,
Escherichia coli and Klebsiella pneumonia as Gram-negative bacteria,
and Candida albicans as the most common pathogenic mold. The
minimum inhibitory concentration of the oil extract was found to be 15.6
pg/mL against B. subtilis, S. aureus, and C. albicans, and 62.5 yg/mL and
125 pug/mL against E. coli and K. pneumonia, respectively. The bactericidal
activity started at 150 and 180 min against Gram-positive and Gram-
negative bacteria, respectively, with clear time-killing kinetics. The oil
extract was able to scavenge DPPH free radicals with an ICso of 4.0
pg/mL. The oil extract was found to have high toxicity on the Caco2 cell
line (colon tissue) at high dose 1000 pg/mL with 1Cso of 75.39 £+ 0.56
pg/mL. The chemical composition of the oil extract was determined
employing gas chromatography/mass spectrometry, in which 53
compounds were named at different surface area ratios, retention times,
and probability ratios.
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INTRODUCTION

The medical field, especially the clinical one, has long been plagued by a major
problem known as multidrug resistance, which is the ability of some microbes to resist
different antimicrobial agents (Uddin ef al. 2021; Alsolami et al. 2023; Saied et al. 2023).
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There is a modern term called superbug microbes, which are resistant to different
antibiotics at very high concentrations even above the approved minimum inhibitory
concentrations (MICs), causing serious medical conditions. Numerous synthetic and semi-
synthetic antibiotics are widely used worldwide to treat serious indications, but they have
many side effects that emerge in some patients, especially if administered for a long time.
Hence, the general medical trend resorts to using natural antibiotics extracted from
microorganisms and plants, especially those with therapeutic properties called medicinal
plants as studied by Almehayawi er al. (2024) and Selim et al. (2024). Although an
extensive variety of therapeutic plants are known and widely exploited for this function as
mentioned by Yahya et al. (2022) and Qanash et al. (2024), rosemary (Rosmarinus
officinalis L.) still ranks first in use, because it is available, affordable, easy to grow, and
has effective therapeutic properties (Belbachir et al. 2025).

Rosmarinus officinalis L. contains potent therapeutic essential oils (EOs) that
include antibacterial agents with different mechanisms. Therefore, these EOs are widely
employed in foodstuff preservation and pharmaceutical industry as an alternative medicine
(Bakri et al. 2024). The R. officinalis extracts are rich in antibacterial volatile oils, including
camphor, and oa-pinene, besides phenols, including acids of rosmarinic and carnosic
(Yeddes et al. 2021). R. officinalis is a perennial shrub and has many aromatic and
medicinal components (Rafie and Soheila 2017). The leaves of R. officinalis are described
as an ancient remedy, as they were consumed by the ancient Egyptians and Greeks to stop
various diseases and were also used as preservatives and food flavorings (Couto et al.
2012). The R. officinalis extracts contain various antioxidant compounds, which play
important roles, including preventing food decomposition and delaying diseases and aging.
Antioxidants inhibit oxidation by preventing the initiation of oxidative chain reactions. The
most common antioxidants rich in R. officinalis are phenols (flavonoids, tannins,
hydroxycinnamate esters, and lignin), vitamin C, vitamin E, and glutathione, which limit
the spread of reactive oxygen species (Khojasteh et al. 2020). The Lamiaceae family
includes a wide range of medicinal plants, especially R. officinalis, which is rich in various
therapeutic components, including powerful antioxidants, like caffeic acid, carnosic acid,
and rosmarinic acid as polyphenolic compounds (Singh and Manna 2022).

The R. officinalis L. species is widely distributed throughout the world even in
harsh environments, such as saline soils, so it has priority for use as a research material.
Egyptisrich in R. officinalis, especially at the Mediterranean coast. Therefore, the Bedouin
inhabitants of these coastal areas, who have inherited herbal medicine, use R. officinalis in
many cases that require quick and effective treatment. Therefore, R. officinalis is widely
used due to its antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticoagulant,
anticancer, anti-obesity, dietary supplement, and hepatoprotective effects. Moreover, R.
officinalis is used as an antispasmodic for renal colic and dysmenorrhea, a bronchodilator,
a cough suppressant, an expectorant, a mucolytic, and a hair growth stimulant. Phenolic
compounds have the upper hand in providing all of the above therapeutic properties to R.
officinalis, and therefore, it is considered the dark horse in the treatment of many severe
indications (Fernandez-Ochoa ef al. 2017; Nieto et al. 2018).

Rosmarinus officinalis has important medicinal uses, due to its ability to induce
apoptosis of various cancer cell lines, including breast, colon, liver, and leukemia (Rafie et
al. 2017). As reported in several studies, carnosic, carnosol, and ursolic acids showed
strong toxicity against cancer cells even at advanced levels leading to complete cure
(Gonzalez-Vallinas et al. 2015; Chan et al. 2021). The anticancer activity of R. officinalis
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acts as a mediator in numerous mechanisms, comprising apoptosis, arrest of cell cycle,
delay of angiogenesis, and alteration of signaling pathways required for cell division.
Cancer cell apoptosis is induced by carnosic acid and carnosol, which activate caspase
cascades, disrupt the mitochondrial membrane, and regulate the proteins design of pro- and
anti-apoptotic. Other components present in R. officinalis extracts kill cancer cells by
inhibiting cancer-promoting enzymes, including matrix metalloproteinase, which are
involved in tumor invasion and metastasis (Bozin et al. 2007). As mentioned in the current
introduction, there are many articles available on R. officinalis L. but the novelty in the
present investigation focused on antimicrobial activity and studying the Time-kill Kinetics
and its anticancer activity against cancer cells associated with the digestive system.
Therefore our research paper aims to show the therapeutic potential of different
components present in R. officinalis L. oil extract, as well as to recognize the chemical
constitution of the ethanolic extract of the oil using the GC-MS technique.

EXPERIMENTAL

Oil Extraction from R. officinalis L. Plant

Fresh R. officinalis L. plant (100 g) was ground in a mortar to obtain a fine paste,
then placed in a flask containing distilled water (1000 mL), followed by the addition of 200
mL of chloroform to obtain organic phase. The extraction time continued to 4 h. By means
of a rotating evaporator (Buchi Rotavapor E-210, China), the solvent was removed at 25
°C. The concentrated extract was washed by 4 mL of ethyl alcohol and then transferred to
an ampoule. Via a slight stream of 1 L/min nitrogen, the residual of ethanol was then
evaporated and the extract was reconstituted in 2 mL of ethyl alcohol (Teixeira et al. 2007).

Dilution of Antimicrobial Agent

Dilution was completed utilizing the broth microdilution approach illustrated by
Wiegand et al. (2008), where small volumes of broth medium were dispensed into sterile
plastic microdilution trays, hence the name. Microdilution trays consist of 96 wells, and all
wells were filled separately with broth (0.1 mL) using a fractionator in which a twofold
medium of antimicrobial agent was volumetrically diluted into the broth.

Preparation and Storage of Antimicrobial Agent

The microbial inoculum was prepared by the direct suspension of colony technique.
Sterile saline solution was inoculated with bacterial colonies grown on blood agar for 18
to 24 h, then incubated for 24 h. Turbid growth was adjusted to meet the 0.5 McFarland
standard using colorimetry, where 1 to 2 x 103 CFU/mL was obtained. Within 15 min, the
bacterial suspension was diluted using sterile distilled water to obtain an inoculum of 2 to
8 x 10° CFU/mL, and it was optimized at 5 x 10° CFU/mL. Within 15 min, each well in
the microdilution tray was inoculated with a bacterial inoculum (inoculum volume not
exceeding 10% of the well volume). The inoculated microdilution trays were placed in
plastic bags and sealed with plastic tape to avoid drying out and then incubated at 35 + 2
°C for 16 to 20 h in an ambient air incubator at different distances and heights to avoid
stacking to maintain the same incubation temperature for all bacterial cultures (Alghonaim
et al. 2024).
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Estimation of Minimal inhibitory Concentration (MIC)

A pure culture of the test bacterium was inoculated into trypsinized soy broth and
incubated overnight. The bacterial suspension was diluted in trypsinized soy broth to obtain
1 x 10° to 1 x 10 CFU/mL. The antimicrobial agent stock was diluted to approximately
100 times the MIC limit. A stock solution of the extract containing 1000 pg/mL was diluted
to obtain 500 pg/mL, and then diluted in a serial manner to obtain 1.95 ug/mL. Each dose
was injected in the inoculated 96-well microtiter plate by cultured trypsinized soy broth
with microorganisms. The negative control was twofold diluted (1000 — 1.95 pg/mL) free
of microorganism inoculum. The positive control was the bacterial suspension grown in
the same broth free of antimicrobial agent under the same conditions. The microtiter plates
were incubated at 35 + 2 °C for 16 to 20 h. The absorbance of the turbid growth was
measured at 630 nm using a Bio-Tek 800 TS microplate reader. Bacterial growth was tested
by colorimetry and compared in broth with and without antimicrobial agent, and the growth
endpoint or MIC was precisely determined (Al-Rajhi et al. 2024).

Estimation of Minimal Bactericidal Concentration (MBC)

The MBC was determined based on the MIC dilution and the two most concentrated
dilutions of the antimicrobial agent, which were plated and numbered to determine the
viable CFU/mL. On Mueller Hinton agar plates enriched with 10% sheep blood, 100 mL
of microbial culture was grown from each well that shown full inhibition of growth, from
the final positive, and from the growth control to get the MBC. The plates underwent a 72-
h microaerophilic incubation period at 35 °C. To ascertain the cidal or static impact of the
examined extracts on microorganisms, the MBC/MIC ratios were computed (French 2006).

Antimicrobial Activity Determination

Antimicrobial effect was operated by the agar well manner versus Bacillus subtilis
ATCC 6633, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, Klebsiella
pneumonia ATCC 13883, Candida albicans ATCC 10221, and Aspergillus brasiliensis
ATCC 16888. Nutrient agar/potato dextrose agar was operated for bacteria/fungi
inoculation with the best inoculum size for the test microorganisms, then transferred into
plates, which are called seeded plates. The agar surface was cut using a sterile corkborer to
make wells (6 mm in diameter). Each well was filled with 100 pL of oil extract compared
to those loaded with 100 uL of standard antibiotic (1.0 mg/mL). Agar plates were incubated
at 37 °C for 24 h and at 25 °C for 72 h with bacteria and fungi, respectively. The inhibition
zones that appeared around the wells were used to indicate antimicrobial activity, and vice
versa (Qanash et al. 2022).

Time-kill Kinetics Test

This test was used to identify the type of antimicrobial activity (bacteriostatic or
bactericidal) of the oil extract of R. officinalis L. against Gram-positive and Gram-negative
bacteria over time. In bactericidal activity, more than 99.9% was killed, which is equivalent
to 3 logio times the colony forming units (CFU) of the bacterial sample in a given time.
Nutrient broth was inoculated with a test bacterial strain and incubated at 37 °C for 24 h.
Bacterial suspension was supplemented with the oil extract at MIC. Nutrient broth without
inoculations was considered as a positive control, while nutrient broth inoculated with a
reference bacterial strain was considered as a negative control. The CFU/mL log was set at
zero, 30, 60, 120, 150, and 180 min (Chinedu et al. 2024).
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Evaluation of Antioxidant Activity

Antioxidant action was evaluated by measuring DPPH (Abdelghany et al. 2019).
Three milliliters of test material at varying concentrations (1.95, 3.9, 7.8, 15.62, 31.25,
62.5, 125, 250, 500, and 1000 pg/mL) were combined with 1.0 milliliter of the DPPH
solution (0.1 mM) and ethanol. After giving the mixture a good shake, it was allowed to sit
at room temperature for half an hour. A Milton Roy UV-VIS spectrophotometer (Nicolet
evolution 100, Cambridge, MA, USA) was applied to notice absorbance (517 nm). The
investigation was carried out employing ascorbic acid as a standard. The log dose-
prevention curve was applied to decide the 1Cso. Higher free radical potential was indicated
by means of the reaction mixture's low absorbance. The DPPH scavenging effect
percentage was calculated using Eq. 1:

Abs. control — Abs. sample

DPPH scavenging (%) =

x 100 (1)

Abs.control

Determination of Cytotoxicity of Test Sample

Wells containing tissue culture medium in the plate were inoculated with 1 x 10°
CFU/mL and well-kept at 37 °C up to one day. The growth medium was harvested from
the wells after the appearance of a monolayer, and then it was washed twice through water.
Double dilution was performed in RPMI medium twice in the presence of 2% serum. Each
dilution fraction (0.1 mL) was analyzed in all wells except 3 wells (control). Then the
cytotoxicity was tested to detect abnormalities compared to controls (Qanash et al. 2023).
The wells were supplemented with 20 uL of MTT solution and incubated in a under shaking
at 37 °C and 150 rpm for 5 min, then the period of incubation completed at 37 °C for 4 h
and at 5% CO2 The medium was disposed of, and the plate was dried by sterile tissue to
eliminate impurities. The reaction product was supplemented with 200 uL of DMSO and
incubated under shaking at 37 °C and 150 rpm for 5 min, and then at 560 nm, the
absorbance was deliberate.

GC-MS Analysis

The chemical alignment of the sample was determined operating a Trace GC1310-
ISQ mass spectrometer (Thermo Scientific, Austin, TX, USA) through a TG-5MS direct
capillary column (film thickness 30 m % 0.25 mm X 0.25 pum). The column oven
temperature was held at 35 °C and then extended 3 °C/min to 200 °C for 3 min and then
increased to the final temperature of 280 °C by 3 °C/min and held for 10 min. The
temperature of the injector and MS transfer line was maintained at 250 and 260 °C,
respectively. Helium was used as the carrier gas at a constant flow rate of 1 mL/min. The
solvent delay was 3 min and 1 pL diluted samples were automatically injected using the
Autosampler AS1300 coupled to the GC in split mode. The EI mass spectra were collected
at an ionization voltage of 70 eV over the range of 40 to 1000 m/z in full scan mode. The
ion source temperature was set at 200 °C. The components were identified by comparing
their retention times and mass spectra with those in the WILEY 09 and NIST 11 mass
spectra databases (Al-Rajhi and Abdelghany 2023).

Statistical Analysis
The findings were demonstrated as mean + standard deviation (SD) and mean +
standard error (SE), which were computed with SPSS v.25 and Microsoft Excel 365. One-
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way investigation of variance (ANOVA) was applied to assess quantitative data with a
standard distribution across various treatments at a 0.05 possibility level.

RESULTS and DISCUSSION

The oil extract of R. officinalis L. was tested for its antimicrobial ability versus
fungi and versus bacteria belonging to both Gram-positive and negative (Table 1 and Fig.
1). The oil extract activity against microorganisms was compared with 1.0 mg/mL of
gentamycin and fluconazole as standard antibacterial and antifungal antibiotics,
respectively. The oil extract showed broad-spectrum antimicrobial action, affecting B.
subtilis, S. aureus, E. coli, K. pneumonia, and C. albicans but not A. brasiliensis. Gram-
positive bacteria were most affected by the oil extract, followed by C. albicans and bacteria
of Gram-negative. Naturally, the oil extract showed less activity against bacteria
development of Gram-negative, due to their different line of defense and resistance
mechanisms to antimicrobial agents. The oil extract showed inhibition regions of 28 + 0.1
and 31 + 0.1 mm compared to gentamycin activity of 27 + 0.2 and 26 + 0.2 mm for B.
subtilis and S. aureus, correspondingly. Therefore, the oil extract was more effective than
gentamycin, and S. aureus was more sensitive to the activity of the oil extract than B.
subtilis. The oil extract showed inhibition zones 0of 23 + 0.1 mm and 20 + 0.2 mm compared
to gentamycin activity of 25 + 0.1 mm and 20 + 0.1 mm for E. coli and K. pneumonia,
respectively. Therefore, the oil extract was less effective than gentamycin, and E. coli was
more susceptible to the activity of the oil extract than K. pneumonia. The oil extract
revealed an inhibition area of 30 = 0.1 mm compared to fluconazole activity of 31 + 0.1
mm for C. albicans. Therefore, the oil extract was less effective than fluconazole. The oil
extract did not show antifungal activity against 4. brasiliensis compared to fluconazole
activity of 25 = 0.2 mm. This may be because of cell wall structure where it is different
from the wall structure of bacteria. Yeddes et al. (2022) informed that rosemary essential
oil showed bactericidal activity against bacteria belonging to Gram-negative, including
Campylobacter jejuni, Salmonella enterica, Pseudomonas aeruginosa, Enterobacter
aerogenes, and Escherichia coli, besides Gram-positive, including Bacillus subtilis,
Staphylococcus aureus, and Enterococcus faecalis. Bosni¢ et al. (2006) informed that
rosemary (Bosnian origin) essential oil exhibited prevention action for growth of E. coli
and P, aeruginosa as Gram-negative bacteria, as the essential oil was found to contain high
levels of 1,8-cineole (Kifer et al. 2016), camphor (Zainudin and Mohd 2015), and a-pinene
(Ngan et al. 2019).
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Table 1. Antimicrobial Activity of Volatile Oil Extract of R. officinalis L. Against
Pathogens

Pathogens Mean of Antimicrobial Activity by Inhibition Zone
(mm)
Oil Extract Standard Antibiotics (1 mg/mL)
Antibacterial Antifungal
(Gentamycin) (Fluconazole)
B. subtilis 28 +0.1 YA I
S. aureus 31+0.1 LR I ——
E. coli 23+0.1 L N e —
K. pneumonia 20+0.2 POk T ——
C. albicans L T e — 31+0.1
A. brasiliensis NA | s 25+0.2

NA: No activity

The oil extract showed different MICs against different pathogens (Table 2). The
oil extract showed MIC of 15.6 pg/mL against B. subtilis, S. aureus, and C. albicans. The
oil extract showed MICs of 62.5 and 125 pg/mL toward E. coli and K. pneumonia,
respectively. The oil extract showed different MBCs against different pathogens (Table
3). The extract of oil showed MBC of 31.2 pg/mL toward B. subtilis and S. aureus. The
extract of oil showed MBCs of 125 pg/mL and 500 pg/mL against E. coli and K.
pneumonia, respectively. The oil extract showed MBC of 62.5 pg/mL versus C. albicans.
Aseer et al. (2021) registered that the leaves extract via ethanol of rosemary presented
potent activity against growth of clinical isolates, including S. aureus, Enterococcus sp.,
Streptococcus pyogenes, Salmonella sp., Shigella sp., Klebsiella pneumoniae, P.
aeruginosa, E. coli, Proteus sp., and Campylobacter sp. Furthermore, the MIC of the
ethanolic extract of rosemary at dose from 4 x 103 pg/mL to 32 x 10° ug/mL with MBC
at dose from 8 x 10° pg/mL to 32 x 10 pg/mL. The MIC and MBC were shown toward
S. aureus, while their top quantities were shown against E. coli.

The oil extract showed antibacterial activity with different time-kill kinetics over
time ranging from zero to 180 min (Table 3). In Gram-positive bacteria, bactericidal
activity was found to start at 150 min, while in other groups of bacteria (Gram-negative)
it was found to start at 180 min. The oil extract revealed superior antibacterial potential
toward Gram-positive if compared to Gram-negative group. At zero time, the bacterial
counts were found to be 112 x 10° + 2.0 CFU/mL, 55 x 10°+ 1.0 CFU/mL, 17 x 10° £ 2.0
CFU/mL, and 21 x 10° + 2.0 CFU/mL with B. subtilis, S. aureus, E. coli, and K.
pneumonia, respectively. The count of bacteria gradually decreased over time until they
were completely absent at 150 min for B. subtilis and S. aureus, and at 180 min for E. coli
and K. pneumonia.
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Fig. 1. Antimicrobial activity of oil extract of R. officinalis L. (O) and standard (Gentamycin /
Fluconazole) (S), and DMSO (D) against pathogens

Table 2. Determination of MIC and MBC (ug/mL) of Volatile Oil Extract of R.
officinalis L. Against Pathogens

Concentration Pathogens
(ug/mL) B. subtilis S. aureus E. coli K. pneumonia | C. albicans
MIC | MBC | MIC | MBC | MIC | MBC | MIC MBC | MIC | MBC
1.95 + + + + + + + + + +
3.90 + +
7.81 + +
15.62 -
31.25 - -
62.5 - - - -
125 - - - - - - - - - -
250 - - - - - - - - - -
500 - - - - - - - - - -
1000 - - - - - - - - - -
+; The growth is present, -; The growth is absent (no growth)

+
+

V|
|

V|
+ |+ |+ [+ |+
+ |+ |+ [+ |+
+ 4|+ [+ ]+
|

Chinedu et al. (2024) reported that time-kill kinetics of ethanolic extract of Allium
sativum at quantities of 0.5, 1.0, and 2 mg/mL were measured to repress S. aureus and P.
aeruginosa. The ethanolic extract showed bacteriostatic activity at 0.25 mg/mL, while it
showed bactericidal activity at 0.5 and 1 mg/mL versus S. aureus and P. aeruginosa after
24 and 12 h, correspondingly. A significant decline (p < 0.05) in the count of viable P.
aeruginosa was observed over multiple time periods at 1.0 mg/mL at 0.09 log10 to 1.20
log10 after 10 h, and at 0.5 mg/mL at 0.02 log10 to 0.52 log10 after 12 h. The reduction in
viable P. aeruginosa ranged from > 18.35% to < 99.9% at 1.0 mg/mL, and > 5.30% to <
99.9% at 0.5 mg/mL between 2 h and 24 h. A significant decrease (p < 0.05) in the count
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of viable S. aureus was observed over multiple time periods at 1.0 mg/mL at 0.09 log10 to
0.97 log10 after 10 h, and at 0.5 mg/mL at 0.03 log10 to 0.47 log10 after 12 h. The reduction
in viable S. aureus ranged from > 18.44% to < 99.9% at 1.0 mg/mL, and > 6.0% to < 99.9%
at 0.5 mg/mL between 2 h and 24 h.

Table 3. Time-kill Kinetics Assay of Antibacterial Activity of Volatile Oil Extract of
R. officinalis L.

Time-Kkill Antibacterial Activity (CFU/mL)
Kinetics (min) B. subtilis S. aureus E. coli K. pneumonia

0.0 112x10°+2.0 | 55x10°+1.0 | 17x10°+2.0 21 x10°+£ 2.0
30 20x10%+1.0 | 33x10%+2.0 | 22x10%+2.0 118 x 10+ 2.0
60 17x10°+1.0 | 24x102+2.0 440+ 3.0 38 x10°+1.0
120 110+ 2.0 380+2.0 156 £ 2.0 210+2.0
150 0.0 0.0 12+1.0 34+2.0
180 0.0 0.0 0.0 0.0

Antioxidant activity was determined on the basis of prevention of lipid
peroxidation, so scavenging DPPH free radicals. Standard ascorbic acid and oil extract of
R. officinalis L. were prepared at different concentrations, which were experienced for their
capability to scavenge DPPH by calculating its absorbance at 517 nm. The oil extract of R.
officinalis L. presented antioxidant action by scavenging DPPH across 1Cso of 4.0 pg/mL
contrasted to the ICso of ascorbic acid (standard) of 3.13 pg/mL (Table 4). Thus, there is a
slight difference between the antioxidant activities of standard ascorbic acid and the oil
extract of R. officinalis L., with the former showing a higher ability to scavenge DPPH. The
DPPH scavenging rate started at its peak at 1000 pg/mL with standard ascorbic acid and R.
officinalis L. oil extract, then gradually decreased with lower concentrations until it reached
its lowest level at 1.95 pg/mL. Ahmad (2024) registered that the antioxidant potential of
rosemary leaf extracts was tested in accordance with different components, including total
contents of phenolic (TPC), flavonoid (TFC), and Tannin (TTC). Where the ethanolic
extract showed maximum TPC (72.3 GAE mg/g) and TFC (26.8 RE mg/g), while the
aqueous extract reflected TTA (20.2 GAE mg/g), and the methanolic extract reflected
scavenging of free radicals NO (86.7 RE mg/g) and DPPH (138 GAE mg/g). Also, the
aqueous extract reflected antioxidant activity in ABTS (125 TE mg/g), and ferric reducing
power (144.5 AScE mg/g) compared to FRAP (130.5 AScE mg/g) and total antioxidant
activity (179 GAE mg/g) utilizing the ethanolic extract of rosemary leaves. The outcomes
of the paper of Ahmad (2024) exhibited that the highest coefficient of determination
showing the link among the phytocomponents content and the antioxidant approaches used
was among TPC, FRAP, and TFC.
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Table 4. In vitro Assay of Antioxidant Activity of Oil Extract and Ascorbic Acid

Conc. Ascorbic Acid (Standard) Oil Extract of R. officinalis L.
(ug/mL) | Mean % of DPPH + Mean % of DPPH +
As17 Scavenging SD SE As17 Scavenging SD SE
1000 0.027 98.2 0.004 | 0.001 |0.038 97.5 0.002 | 0.001
500 0.057 96.2 0.003 | 0.001 |0.071 95.3 0.002 | 0.001
250 0.096 93.7 0.002 | 0.000 |0.105 93.0 0.004 | 0.001
125 0.140 90.7 0.002 | 0.001 |0.159 89.5 0.003 | 0.001
62.5 0.257 82.9 0.002 | 0.001 |0.271 82.0 0.004 | 0.001
31.25 0.397 73.7 0.003 | 0.001 |0.440 70.8 0.005 | 0.001
15.625 | 0.519 65.5 0.003 | 0.001 |0.538 64.3 0.005 | 0.001
7.8125 | 0.640 57.5 0.004 | 0.001 |0.668 55.7 0.003 | 0.001
3.90 0.731 51.5 0.002 | 0.001 |0.791 47.5 0.003 | 0.001
1.95 0.879 41.7 0.002 | 0.001 |0.900 40.3 0.005 | 0.001
0.00 1.507 0.00 0.010 | 0.003 |1.507 0.00 0.010 | 0.003
ICs0 3.13 pg/mL 4.0 pg/mL

SD; Standard deviation, SE; Standard error

The oil extract was tested for its effect (toxicity/viability) on the Caco2 cell line
(colon tissue) compared to a normal cell line that appeared free of abnormal signs. Different
concentrations of rosemary extract were experienced for their influence on the cell line
(Table 5). The oil extract presented the highest toxicity of 97.6% and the lowest viability of
2.41% at 1000 pg/mL. The cytotoxicity decreased and the viability increased with the slope
trend of rosemary extract until the lowest cytotoxicity of 1.62% and the highest viability of
98.4% were reached at 31.2 pg/mL. Different concentrations of the oil extract showed
cytotoxic and viability effect on colon tissues with ICso of 75.39 + 0.56 (Table 6).
Additionally, morphological changes were observed on treated cancer cells to rosemary oil
extract with clear apoptosis as cleared in Fig. 2, particularly at high concentrations. Eleni et
al. (2022) reported that R. officinalis L. is extensively worked as a potent pharmaceutical
plant due to its high cytotoxicity on different cell lines, including cancer cell lines of
rhabdomyosarcoma and glioblastoma. The methanolic extract showed potent cytotoxicity
based on time and dose on the two cell lines. The treated cell lines showed the lowest
ICso values at 72 h corresponding to 0.249 mg/mL for cell line of rhabdomyosarcoma and
0.577 mg/mL for cell line of glioblastoma.

Table 5. Cytotoxicity Effect of Rosemary on Caco2 Cell Line

Conc. (ug/mL) |Mean (Aseo) | £ SE |Viability (%) |Toxicity (%) ICs0 = SD (pug/mL)

0.0 0.72 0.002 100 0.0

1000 0.017 0.0006 2.41 97.59 75.39 £ 0.56
500 0.021 0.0014 3.01 96.99

250 0.028 0.0020 3.89 96.11

125 0.083 0.0061 11.62 88.38

62.5 0.339 0.0096 47.08 52.92

31.25 0.708 0.0026 98.38 1.62

SD; standard deviation, SE; standard error
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Fig. 2. (A) Caco2 cell line in colon tissues as a positive control; rosemary extract doses including
(B) 31.25 ug/ mL, (C) 62.5 pug/ mL, (D) 125 pg/ mL, (E) 250 pg/ mL, (F) 500 pyg/ mL, and (G) 1000
pg/mL

The oil extract was investigated using GC-MS and was noticed to contain 53
compounds at different retention times (RTs), surface area ratios, and probability ratios
(Table 6), as shown in Fig. 3. The current findings showed that the RT increased towards
peak 1 to peak 60, due to the increased association of the compound with the column as a
stationary phase. Thus, the compound at peak 1 had the weakest association with the
column, and then the association gradually increased until it reached the strongest state
with the compound at peak 61. However, the boiling point and solubility of the compound
in the stage of liquid, as well as the column temperature, affect the RT. Therefore, if the
boiling point of the compound rises above the column temperature, the RT increases, and
if the solubility of the compound in the liquid stage increases, the RT increases. Mehdi et
al. (2011) reported that the ingredients of the essential oil of Iranian rosemary were
identified through GC-MS analysis corresponding to 68 components. The analysis revealed
that the most significant and influential components were 1,8-cineole (23.5%), a-pinene
(21.7%), verbenone (7.57%), camphor (7.21%), and eucalyptol (4.49%).
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Table 6. GC-MS Examination of Rosemary Extract

*RT % of . **Prob MW
Peak (min) | Area Constituent %) Formula (g/mol)
1 11.17 | 0.29 O-Cymene 19.14 CioH14 134
2 1142 | 6.44 Eucalyptol 46.20 C10H180 154
3 1151 | 3.65 Cyclohexanol,1-methyl-4-(1- 16.31 C12H2002 196
methylethenyl)-acetate
4 1451 |0.70 1,6-Octadien-3-0l,3,7-dimethyl 57.98 C10H180 154
5 15,53 |0.38 Bicycloheptan-2-one,1,7,7-trimethyl-(1S) | 25.34 C10H160 152
6 15.61 | 0.70 |Bicycloheptan-2-one,1,7,7-trimethyl- (1S)- | 26.03 C10H160 152
7 1714 | 0.36 B|cycloheptan—2—§rl1,dl(,);,7—tr|methyl (1s- 21.90 C10H180 154
8 17.35 |0.73 p-Menthan-1-ol 11.86 C10H200 156
9 17.51 |0.81 p-Menthan-1-ol 12.08 C10H200 156
10 17.68 | 7.05 | Cyclohexanol,5-methyl-2-(1-methylethyl) 10.65 C10H200 156
11 18.58 | 0.46 (+) Isopulegol 16.68 C10H180 154
12 18.69 | 0.43 Ethyl linalool 36.63 C11H200 168
13 19.28 | 1.37 Carbonic acid, but-3-yn-1-yl octyl ester 8.70 C13H2203 226
14 2195 | 056 1,5-D|methy_l—l—vmyl-4-hexeny| 2- 28.63 C17H2sNO2 273
aminobenzoate
15 22.65 | 0.36 Orthotertbutyl cyclohexyl acetate 37.80 | Ci12H2202 198
16 26.48 | 0.42 | 2,6-Octadien-1-OL, 3,7-dimethyl- acetate | 31.89 | C12H2002 196
17 28.21 |0.71 Caryophyllene 31.66 CisHa4 204
18 30.36 | 0.50 ¢-lonone, methyl 33.52 C14H220 206
1,4-Naphthalenedione, 4A,5,8,8A- C13H1603
19 3165 1042 tetrahydro-2-methoxy-4 A,8-dimethyl 29.21 220
20 32.10 |0.31 Dodecanoic acid, 3-hydroxy 22.52 | C12H2403 216
21 32.38 | 0.40 (-) Menthoxyacetyl chloride 5.28 |C12H21CIO2 | 232
22 3431 |3.62 Diethyl phthalate 80.26 | C12H1404 222
23 35.84 | 0.47 Cedrol 13.43 Ci5H240 220
o 3659 | 4.05 Cyclopentane acetic acid, 3-oxo-2-pentyl-, 92 56 Ci3H2203 296
methyl ester
25 36.85 | 0.97 Triethyl citrate 90.23 | C12H2007 276
26 3726 | 238 1-(4-lIsopropylphenyl)-2-methylpropy! 71.06 Ci5H2202 234
acetate
27 37.38 | 0.73 Cis-3-Hexenyl salicylate 80.74 | Ci3H1603 220
o8 3748 |0.99 1-(4-lIsopropylphenyl)-2-methylpropy! 3516 Ci5H2202 234
acetate
29 3835 |0.46 1-(4-1sopropylphenyl)-2-methylpropyl 19.07 Ci5H2202 234
acetate
30 4237 | 151 5,5-Dimethyl-2-(7- hydr_oxy-N-heptyI)-Z-N- 19.07 C19H3803 314
hexyl-1,3-dioxane
31 42.56 | 0.86 9,12-Octadecadienoic acid 9.07 CisH3202 280
32 42.79 | 0.52 9,12-Octadecadienoic acid 14.92 | CigH3202 280
33 4363 | 9.45 5-Am|no-2-(P-mgthoxym_ethyl)-z- methyl- 3701 C12H14N6O 258
2H-triazolo triazine
34 43.94 | 3.20 Benzoic acid, 2-hydroxy-phenylmethyl ester | 68.25 | C14H1203 228
35 47.15 | 0.56 Musk ketone 40.89 (C14H18N20s | 294
36 48.82 | 0.89 Hexadecanoic acid, ethyl ester 56.64 | CisH3602 284
37 53.67 | 3.95 Linoleic acid ethyl ester 35.59 | C20H3602 308
38 53.96 | 3.21 Ethyl oleate 17.80 | C20H3802 310
39 55.03 | 0.53 Octadecanoic acid, ethyl ester 55.51 | C20H4002 312
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40 56.64 | 056 4,6-Bis (1,1 —dlmfath_ylethyl)—z ,5'-dimethoxy- 36.62 C22H3003 342
1, 1'-biphenyl-2-ol
3-Pyridinecarbonitrile,6-[2,2-Bis- CisH1sN20
41 57.79 | 1.17 |(methylthio) ethenyl]-4-(4 -methoxyphenyl)- | 54.04 Sz 342
2-methyl
3-Pyridinecarbonitrile,2-ethoxy-5,6- C19H22N204
42 °8.87 | 131 dimethyl-4-(3,4,5-trimethoxyphenyl) 12.87 342
3-Pyridinecarbonitrile, 6-[2,2-Bis- CisH1sN20
43 59.45 | 0.49 |(methylthio) ethenyl]-4-(4 -methoxyphenyl)- | 10.07 S2 342
2-methyl
44 6019 |0.91 Podoca_rpa—1,8,11, 13—te_traen-3—one, 14- 64.29 C22H3003 342
isopropyl-1,13- dimethoxy
4,7-Methano-2H-inden-2-one, 4,5,6,7- Ca25H240
45 62.15 | 2.01 tetrahydro -4,8,8-trimethyl-1 ,3-diphenyl 4223 340
46 6419 | 053 1,2—Propaned|(_)I, 3-(hexadecyloxy)-, 6.93 C23H4405 400
diacetate
4H-1-Benzopyran -4-one, 2-(3,4- C18H1607
47 6712 10.71 dimethoxyphenyl)-3,5-dihydroxy-7-methoxy 35.08 344
48 68.70 | 1.04 Cyclooctan_epentanmc acid, 1-nitro-a,2- 43.88 C14H21NOs 299
dioxo-, methyl ester
49 68.90 | 073 2-Hydroxy-3-[(9E) -9-octadecenoyloxy] 24.80 C39H7205 620
propyl (9E)-9-octadecenoate
50 69.68 | 0.57 9-Octadecenoic acid 9.26 C18H3402 282
51 71.78 |3.44 13-Docosenamide 71.25 | C22HasNO 337
2,6,10,14,18,22-Tetracosahexaene, CaoHso
52 73.25 |0.88 2,6.10,15,19,23-hexa methyl 12.30 410
53 75.44 | 1.04 Dotriacontane 29.96 Cs2Hes 450
4,5-Epoxy-17-methyl-3- C25H24N204
54 78.03 | 1.14 phthalimidomorphina N-6-ol 48.40 416
55 79.32 |9.39 (+)-Sesamin 61.77 | C20H1806 354
56 79.79 |1.92 Dotriacontane 25.70 Cs2Hes 450
5,4-(Benzo-1,3-dioxol- 5-yl) hexahydrofuro- C20H1807
57 80.47 1 3.90 3, 4-C-furan-1-yl) oxy) benzo-1,3 dioxol 92.80 370
58 83.30 | 0.59 a-Sitosterol 56.88 C29Hs500 414
59 83.93 | 154 Dotriacontane 30.53 Csz2Hes 450
*RT; Retention time, **Prob; Probability, ***MW; Molecular weight
RT: 0.00 - 9242
100+ SRl
90—%
80
g 70—; 79.32
g 6C€ 11.42 4363
%‘ 50% 17 68
£ o
&
A 36 59
20—; 8393
10—; 28.22
b Al i

[=]

0

o Ao b
L I Y L L LN L)
25 3

Time (min)

Fig. 3. Chromatogram from GC-MS analysis of rosemary extract
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CONCLUSIONS

1. The present oil extract of was analyzed via GC-MS technique and found to be rich
with numerous bioactive compounds, from which 5-amino-2-(P-methoxymethyl)-2-
methyl-2H-triazolo triazine and (+)-sesamin were detected with the highest area 9.45
% and 9.39, respectively.

2. Oil extract of Rosmarinus officinalis L. possesses excellent antimicrobial (C.
albicans, B. subtilis, S. aureus, E. coli, and K. pneumonia) and antioxidant (ICso 4.0
pg/mkL) activities.

3. Anticancer activity of R. officinalis L. extract was reported with ICso of 75.39 £ 0.56
ng/mL against the Caco2 cell line.
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