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The production of industrial hemp (Cannabis sativa L.) has expanded 
recently in the US. Limited agronomic knowledge and supply chain issues, 
however, stemming from a long-standing cultivation ban, pose a barrier to 
continued market expansion of hemp, which leads to the import of most 
hemp products. This review examines the most recent cultivation 
methods, fertilizer and nutrient requirements, soil management practices, 
environmental parameters, and post-harvest processing methods, 
particularly in the context of environmental benefits such as soil 
phytoremediation and CO2 sequestration. Details of the valorization of 
hemp biomass into sustainable products, such as fibers, papers, 
packaging, textiles, biocomposites, biofuels, biochar, and bioplastics, 
along with current limitations and scope for improvements, are explored. 
Finally, an overall summary of the life cycle and techno-economic analysis 
aimed at optimizing their environmental performance and economic 
feasibility are discussed with a focus on intersection with the growing 
circular economy paradigm. 
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INTRODUCTION 
 

Industrial hemp is one of the earliest domesticated plant species for known human 

cultivation practices spanning millennia (Fike 2016). It is an anemophilous plant belonging 

to the Cannabaceae family (Farinon et al. 2020). Due to its close physical and chemical 

resemblance to its psychotropic variant, marijuana, hemp cultivation was prohibited in the 

US for over a century (Xu et al. 2022). Cannabis is often classified as either marijuana or 

industrial hemp based on the delta-9-tetrahydrocannabinol (THC) concentration threshold 

(Cherney and Small 2016). When the THC content is 0.3% or less, according to the US 

Food and Drug Administration (FDA), it is considered industrial hemp, whereas THC 

content above 0.3% is found in marijuana (Yano and Fu 2023). Hemp was produced from 

wild Cannabis plants that most likely originated in Central Asia more than 3,000 years ago 

(Adesina et al. 2020). Hemp was first thought to have arrived in North America in about 

1606. It was grown for making clothes, sails, and ropes, but after World War II, hemp 

cultivation was banned in 1938 in North America (Cherney and Small 2016). Hemp has 
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been grown in relatively limited quantities since World War II, due to the stigma associated 

with its sister plant, marijuana (Yano and Fu 2023). In the United Kingdom, Austria, 

Switzerland, and Germany, cultivars with extremely low concentrations of the 

psychoactive compound THC have been legal since 1990s. Hemp manufacturing was 

permitted in Australia and Canada in 1998 (United States Department of Agriculture 2000). 

The US Farm Bill of 2014 permitted the cultivation of industrial hemp in the US on a pilot 

scale for research purposes, though it was still considered a controlled substance (Cherney 

and Small 2016). The Farm Service Agency (FSA) of U.S. Department of Agriculture 

(USDA) reported that after the start of the pilot program, the number of planted acres 

increased to 146,780 acres by 2019 (Fig. 1).  

 

 
 

Fig. 1. Reported sum of planted acres of hemp, fiber, grain, and floral, from 2015-2023, source: 
USDA FSA 

 

The US Farm Bill of 2018 defined hemp as a legal agricultural commodity and 

delisted hemp as a banned narcotic (Wylie et al. 2021). The legalization of the US Farm 

Bill in 2018 at the federal level led to a surge in planting in 2019. Many farmers anticipated 

high profits from hemp production, which resulted in oversupply. However, due to 

regulatory uncertainty, a surplus of hemp biomass and flower carried over from 2019, and 

a steady decline in wholesale pricing, U.S. farmers more recently have been planting less 

hemp than they did in 2019 (Caldwell et al. 2025). The lack of clear federal guidance on 

THC limits and complex state regulations made hemp farming risky. Many growers in 

2019 were forced  to destroy their plants after exceeding the legal THC  limit of 0.3% 

(Stevens and Pahl 2021). Additionally, the COVID-19 pandemic disrupted supply chains, 

making it more difficult for farmers to process and sell hemp. 

In the US, as of 2021, 49 states have legalized hemp production following the 

passage of the 2014 and 2018 Farm Bills, with the exception of Idaho (National 

Agricultural Statistics Service (NASS) 2022). Idaho became the 50th state to legalize 

industrial hemp and planted 680 acres for the first time in 2022 (National Agricultural 
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Statistics Service (NASS) 2023). Figure 2  illustrates the total industrial hemp grown across 

the US in open areas in 2023 based on the National Hemp Report 2024 (National 

Agricultural Statistics Service (NASS) 2024). The top five states based on planted acreage 

are: South Dakota (3,200), Montana (2,900), Oregon (2,300), California (2,100), and 

Missouri (1,750) (National Agricultural Statistics Service (NASS) 2024).  

 

 
Fig. 2. Total industrial hemp cultivated (in acres) in the Open Area in 2023 according to National 
Hemp Report 2024. 

 

Over 30 countries currently cultivate hemp and trade it as a cash crop (Adesina et 

al. 2020). Farmers who are interested in growing hemp in the US must obtain a license 

issued by the USDA, state, or tribe and pass the Federal Bureau of Investigation (FBI) 

criminal background check (Davis 2022). The cultivation and utilization of industrial hemp 

has experienced a remarkable resurgence in recent years because the practice promotes 

biodiversity, reduces chemical usage, conserves water, improves soil health, and 

contributes to climate change mitigation. Industrial hemp offers immense potential as a 

versatile and valuable crop with diverse applications ranging from textiles to construction 

materials to food, medicine, and bioenergy. More specifically, hemp can be used as a 

component in fiber composites (Shahzad 2012), biofuels (Zhao et al. 2020a), pulp and 

paper (Danielewicz and Surma-Ślusarska 2010), food source (Burton et al. 2022), 

insulators (Zampori et al. 2013), building materials (Jami et al. 2018), textiles (Zimniewska 

2022), and as an adjuvant in cosmetics (Vogl et al. 2004).  

Even with this huge range of applications, hemp comprises <1% of the total natural 

fiber used in the US due to the lack of processing infrastructure and agronomic guidelines 

as it competes against wood and related agro fibers (Aubin et al. 2015; Wenger et al. 2018). 

As regulations evolve and awareness grows, hemp can significantly contribute to 

sustainable agriculture and a low-carbon circular economy (Frazier et al. 2024), but it 

requires improved processing infrastructure, positive societal perception, favorable 

government incentives, and market opportunities to compete with other fiber sources. 
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Furthermore, successful cultivation of industrial hemp relies on understanding and 

implementing appropriate agronomic practices. This review aims to provide greater insight 

into the value of industrial fiber hemp by overviewing agronomic practices and possibilities 

for value-added bioproducts.  

 
 
HEMP PLANT ANATOMY AND COMPOSITION 
 

Industrial hemp is a herbaceous annual plant and is naturally dioecious, which 

means that it has both male and female reproductive organs, allowing it to self-pollinate. 

(Ehrensing 1998; Van der Werf 1994; Zheljazkov et al. 2023). Controlled selective 

breeding over time has developed monoecious cultivars. Monoecious varieties are used in 

dual-purpose hemp production and allow growers to produce both grain (seed used for 

food) and fiber. There are large differences between male and female plants 

physiologically. Male plants are highly desirable for fiber production because they can 

yield higher amounts of biomass (Schluttenhofer and Yuan 2017). Male plants mature on 

average two weeks sooner, and female plants survive three to five weeks longer than male 

plants until the grain is mature (Hall et al. 2012; Salentijn et al. 2019; Xu et al. 2022). 

Seed, used for grain, from monecious varieties are on average 25% lighter than dioecious 

varieties. Additionally, fiber yields from monoecious varieties are much lower than 

dioecious hemp. For these reasons, fiber hemp currently produced is nearly always 

dioecious (Ehrensing 1998; Williams and Mundell 2018).  

A typical hemp plant is composed of stalks, flowers, leaves, roots, and seeds. The 

stalk consists of a hollow inner core of rigid woody material called hurd, which is 

surrounded by a layer of long fibers known as bast. Hemp’s fibrous components are bast 

fibers and hurds. The hurd is engirdled by vascular cambium, along with an outer layer of 

cells made up of epidermal tissue, cortex, and phloem that forms the bark, within which 

the bast fibers are located (Snegireva et al. 2015). The vascular cambium is the tissue that 

is responsible for the radial development of the hurd (Ehrensing 1998; Jiang et al. 2018). 

A cross-section of a hemp stalk including xylem and phloem bundles is represented in Fig. 

3. 

 
 

Fig. 3. (a) cross-section of hemp stalk, (b) cross-section of hemp stalk stained with Toluidine blue 

and observed through microscope at 4 magnification (c) phloem parenchyma cells observed at 

10 magnification 
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Hemp ranges anywhere from 0.5 to 5 m in height, but on average grows to a height 

of 1 to 3.5 m with a diameter between 1 and 5.5 cm (Ramamoorthy et al. 2015; Zheljazkov 

et al. 2023). The variations in height and diameter mostly depend on sowing density, 

irrigation, and cultivar type (Burczyk et al. 2009). In lower sowing densities, hemp will 

branch out and increase its diameter and panicle density (Bhattarai, Jack Hall and Midmore 

2014; Horne 2020). High planting densities cause plants to grow taller and more slenderer 

with smaller diameters (Burczyk et al. 2009). Hemp grown for grain and cannabinoids is 

almost always shorter compared to hemp grown for fiber. As plant height increases, the 

stem diameter decreases, causing the proportion of bast to hurd fibers to increase. If high-

quality bast fiber is desired, then it is important to target maximum height and minimum 

diameter (Deng et al. 2019).  

 

Bast Fibers 
Bast fibers are present in the bark obtained from the stalk, which is about one-third 

of the plant by weight. It is composed of 70% to 75% cellulose, 15% to 20% hemicellulose, 

3% to 5% lignin, 0.8% pectin, 2% to 6% extractives, and 1% to 2% ash content  (Manaia 

et al. 2019; Möller and Popescu 2009; Zheljazkov et al. 2023). The cellulose concentration 

of hemp bast fibers is higher at the center of the stalk than it is at the top and bottom, and 

lignin concentration decreases from the bottom to the top of the stalk, while concomitantly 

displaying higher hemicellulose content (Li et al. 2013). Hemp bast fibers are regarded as 

the strongest and longest natural fiber, and they are cheaper to manufacture, and last far 

longer than materials such as cotton (Cherney and Small 2016; Manaia et al. 2019; Rehman 

et al. 2021). Hemp bast fibers also demonstrate weather resistance, UV resistance, and 

antimicrobial properties (Lamberti and Sarkar 2017). Primary markets for bast fibers 

include textiles, construction, paper, and molded plastics in the automotive industry with a 

very large concentration in composite wood products (Kiruthika 2017; Zimniewska 2022). 

The cross-section of hemp bast fiber is uneven and changes along its length (Manaia et al. 

2019). The cortex contains two separate bundles of hemp bast fibers that belong to phloem: 

primary bast fibers, which are about 50 mm long and 10 to 40 µm in diameter, and 

secondary bast fibers, which are ~ 2 mm long and 15 µm in diameter (Horne 2020). Primary 

bast fiber comprises 70 to 90% and secondary bast fiber comprises 10 to 30% of the bast 

fibers. The primary bast fibers are located under the epidermis and consist of large 

collenchyma cells, whereas secondary bast fibers are located near the cambium and consist 

of smaller collenchyma cells (Chernova et al. 2018; Horne 2020). Bast fiber composition 

can range from 14 to 48% of the plant’s mass due to cultivar along with most fiber varieties 

having about 30% bast fiber content (Ehrensing 1998; Musio et al. 2018).  

 

Hemp Hurds 
Hemp hurds are the woody interior portions of the hemp stalk that have been broken 

down into pieces and separated from the bast fibers (Xu et al. 2022). Hurds are comprised 

of xylem tissue that is separated by the cambium tissues from the bast fiber layer. The 

vessel members, ray and paratracheal cells, and libriform fibers make up the xylem (Horne 

2020). Hurds contain 18% to 27% hemicellulose and pectin, 21% to 28% lignin, and 40% 

to 48% cellulose, 2.2% extractives, and 1.4% ash content which makes it a viable option 

for use as a polymer reinforcement agent (Lawson et al. 2022; Momeni et al. 2021; 

Naithani et al. 2020; Stevulova et al. 2014). Although hemp hurds account for about two-

thirds of the plant by weight (70 to 75% of the hemp stalk) which is a sustainable fiber 

source, yet often overlooked as a low-value residue byproduct (Momeni et al. 2021; 
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Muangmeesri et al. 2021; Pal and Lucia 2019). Hemp hurds have lower processing 

chemical demand compared to hardwoods and softwoods, which makes them a good 

contender for a sustainable lignocellulosic resource (Salem et al. 2021). The use of only 

water at high temperature and pressure has also proved to be effective for the defibrillation 

of hemp without the use of any harsh chemicals (Tyagi et al. 2021). Hurds have been used 

in recent years in animal bedding and animal feed (Agate et al. 2020; Andre et al. 2016; 

Pietruszka et al. 2019). Hemp-based construction materials have gained much potential 

due to having good thermal insulation and being carbon-negative (Ahmed et al. 2022; Jami 

et al. 2018; Walker et al. 2014).  

 

Hemp Grains 
The term “hemp grains” is commonly used to refer to the edible seeds that are 

harvested for human consumption or animal feed. This material contains around 5.6% 

minerals (calcium, magnesium, potassium, and phosphorus), 25% easily digestible protein, 

28% total dietary fiber (TDF), and more than 30% oil (Callaway 2004; Oseyko et al. 2021; 

Teterycz et al. 2021). The primary minerals in hemp grains are calcium, magnesium, 

potassium, and phosphorus (Callaway 2004). Hemp grains are normally processed into oil 

with whole grains for food, making up a very small percentage of the market. Only 

approximately 10% of hemp grain oil is composed of saturated fatty acids, which are 

present as 0.2% behenic acid, 1.5% stearic acid, and 5% palmitic acid, all of which 

contribute to supporting human physiological processes (Xu et al. 2022). In general, hemp 

grown for grain is sown at lower densities and harvested at later dates with different 

equipment relative to hemp grown for fiber or dual-purpose varieties. In 2023, U.S. hemp 

grain production totaled 3.11 million pounds, a 28% increase from 2022, despite a 26% 

decrease in harvested area for hemp grain grown in the open to 3,986 acres. The average 

yield rose by 327 pounds to 779 pounds per acre. However, the total return dropped 36% 

($2.31 million) from 2022 due to the dominance of Canadian hemp grain producers over 

the U.S. hemp market (Ahmadi et al. 2024; National Agricultural Statistics Service (NASS) 

2024). Hemp grain yield depends on irrigation. The variety Felina 32 produced 2337 kg 

ha-1 grain with full irrigation which was 3.8 times higher than limited irrigation (Campbell 

et al. 2019). 

 

Hemp Fines 
Hemp fines are a by-product from the production process of hemp hurds and bast 

fibers and are made up of very small particles of hurds mixed with some very short bast 

fibers (Attard et al. 2018; Delhomme et al. 2020). During bast fiber separation, 15 to 33% 

of the hemp stalk’s mass becomes fines (Attard et al. 2018; Spierling et al. 2014). Hemp 

fines are often called hemp dust, which was not considered a valuable material and was 

landfilled and composted in the past. However, these are recently being used in the 

manufacturing of absorbents, plastics, biofuel, and biochar. While it has some lab-scale 

applications, industrial use is still rare. A few studies have been found in which biochar 

was made from hemp fines by hydrothermal carbonization to improve the fertility of the 

soil and to limit greenhouse gas emissions such as N2O (Dicke et al. 2015). Hemp fines 

were extracted to produce high-value-added lipids and cannabidiol (CBD) (Attard et al. 

2018). The material can absorb as much as 350% of its volume of water, and it also can 

balance the carbon/nitrogen ratio in sewage sludge (Gorchs and Lloveras 2003). Hemp 

fines with polylactic acid (PLA) were used to develop biocomposites with improved 

mechanical properties (Spierling et al. 2014). Hemp fines were also used to produce 
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insulating materials such as hempcrete for acoustic barriers and thermal barriers for 

buildings (Delhomme et al. 2020). 

 

Leaves and Inflorescences 
Leaves allow identification of different varieties of the fiber hemp plant. Industrial 

hemp possesses compound palmate-shaped leaves with 5 to 7 leaflets (Anderson 2021). 

Hemp leaves contain higher amounts of phytochemicals, as they are chronologically 

arranged from root to top (Semwogerere et al. 2020). Hemp inflorescences are an 

arrangement of greenish-yellow flowers on the upper part of central stem with some leaves, 

which are the main product of medicinal cannabis (Spitzer-Rimon et al. 2019; Vogel 2017). 

The expansion of a symmetrical tubular bract or calyx in the flower serves as a female plant 

identification trait. The inflorescence of female plants is leafy, stocky, and unbranched, 

whereas the inflorescence of male plants is heavily branching and has few to no leaves 

(Van der Werf 1994). Hemp inflorescences contain many cannabinoids and secondary 

metabolites, such as THC, non-hallucinogenic CBD, monoterpenoids, and 

sesquiterpenoids (Bertoli et al. 2010). Hemp leaves and inflorescences are both employed 

as sources of phytochemicals for therapeutic applications due to numerous 

pharmacological properties, including antioxidant, anti-inflammatory, and hypoglycemic 

effects (Liu et al. 2022; Xu et al. 2022). 

 

Hemp Roots 
The industrial hemp plant has deep roots, 45 to 90 cm long, which helps in 

phytoremediation of heavy metals in the soil, such as chromium, iron, and cadmium 

(Placido and Lee 2022; Xu et al. 2022). Toxins may accumulate in the roots, leaves, and 

stalks of hemp plant when used for phytoremediation (Angelova et al. 2004). As a result, 

these parts are not used to make food or personal care products but may be used to make 

biofuel, paper, fabric, and construction materials (Placido and Lee 2022; Vandenhove and 

Van Hees 2005). Hemp root contains 0.13% to 0.24% triterpenoids, 0.06 to 0.09% sterols, 

and 0.001% to 0.004% cannabinoids (Jin et al. 2020). Hemp root also contains many 

secondary metabolites including stigmasta-3,5,22-triene, fucosterol, oleamide, glutinol, 

and β-amyrone (Kornpointner et al. 2021). Hemp root has received less attention than other 

plant parts, though it has been used to treat infections, fever, and pain (Ryz et al. 2017). 

 

 

HEMP AGRONOMY 
 

The yield of hemp bast fibers, hurds, and grains varies greatly depending on 

different agronomic conditions, such as seed selection, soil condition, pest control, nutrient 

management, time of harvest, and sowing density (Grabowska and Koziara 2006).  

 

Soil Conditions 
Hemp flourishes in agricultural soil with high fertility, abundant organic matter 

content, high cation exchange capacity, and high arability (Van der Werf 1991). The soil 

should be well drained, but still able to retain moisture. Hemp does not grow well on wet 

soils that have heavy clay content. Hemp is best adapted to well-drained soils with pH 

between 6 and 7.5, but it can also tolerate soil pH as low as 5.0 (Amaducci et al. 2015; 

Garstang et al. 2005). 
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Seeding and Spacing 
Hemp seeds are defined as the reproductive structure that contains the embryo of a 

new plant. Fiber and grain hemp are grown from seed. Hemp seeds are small and grow 

poorly in sandy soils due to poor moisture retention and lack of a firm seedbed (Garstang 

et al. 2005). 

Sandy loam soil is ideal for growing hemp (Amaducci et al. 2015). Seedbed 

preparation often starts with ploughing to break a hardpan layer (Amaducci et al. 2015). 

Seeding into a highly compacted soil can result in a L-shaped root which negatively affects 

water and nutrient uptake (Adesina et al. 2020; Amaducci et al. 2015). During seedbed 

preparation, fertilizers are applied and a seed drill (Fig. 5) is used to space the fiber or grain 

hemp seeds evenly at the appropriate depth, no more than 3 cm, and cover them with soil 

(Amaducci et al. 2015). Cherney and Small (2016) recommended row spacing ranges from 

7 to 17 cm, but sometimes for fiber hemp 20 to 40 cm row spacing is used (Liu et al. 2017; 

Zheljazkov et al. 2023).  

 

Sowing Density and Seed Type 
Sowing density is one of the largest factors to consider depending on the type of 

hemp that will be grown. Generally, excessive sowing densities will decrease bast fiber 

content and quality, overall biomass yield, grain yield, panicle yield, stalk height and 

diameter, and partially, cellulose content (Burczyk et al. 2009). However, the reduction of 

sowing densities can also lead to undesirable qualities depending on the application for 

which the hemp is being grown. Few applications will benefit from a seed density of more 

than 60 to 80 kg/ha (Burczyk et al. 2009; Iványi and Izsáki 2009). Hemp sown at 60 to 80 

kg/ha is most efficiently used in textile applications (Burczyk et al. 2009). The lowest 

sowing densities typically used are between 10 and 20 kg/ha, and this hemp is grown for 

grain and cannabinoid yield (Burczyk et al. 2009). Unless the hemp is intended for textile 

applications, going above 30 kg/ha can decrease stem height, diameter, grain, and biomass 

yield. Good yields of stem, grain, and inflorescence combined were generated by 120 

plants per m2 with 0.5 m interrow spacing (Krüger et al. 2022; Zheljazkov et al. 2023). The 

effect of average sowing density on fresh biomass, final dry weight, and bast fiber yield 

has been summarized in Table 1 for different industrial hemp strains.  

 

Table 1. Effect of Average Sowing Density on Fresh Biomass, Final Dry Weight, 
and Bast Fiber Yield for Different Industrial Hemp Strains 

Strains Sowing density 
(per m2) 

Fresh 
Biomass 

(t/ha)  

Retted dry 
stem weight 

(t/ha) 

Bast fiber 
yield 
(t/ha) 

References 

Futura 75 81 48.5 18.6 4.6 (Tsaliki et al. 2021) 

Fedora 17 123 43.5 12 2.4 (Tsaliki et al. 2021) 

Bialobrzeski  142 50.5 16.6 4.3 (Tsaliki et al. 2021) 

Felina 32 102 50.0 15 3.5 (Tsaliki et al. 2021) 

Santhica 27 116 35.0 14 3.8 (Tsaliki et al. 2021) 

Tygra 101 40.0 11 3.1 (Tsaliki et al. 2021) 

Yunma 1 33 to 37 - - 2.2 (Deng et al. 2019) 

Narlısaray 150 to 200 20.4 9.4 2.6 (Yazici 2023) 

Marina 120 to 240 31.6 to 55.1 9.5 to 16.9 3.8 to 6.0 (Bajić et al. 2022) 
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Both seed cultivar and seed type have a significant impact on the yield of bast fibers, 

hurds, oils, and grains. Typical regular seeds of dioecious hemp have been chosen over 

monoecious strains for fiber production for many years. These seeds reveal themselves as 

male or female after a few weeks of growth. One of the most important factors to consider 

is that only female plants produce grain; therefore, the production of grain from a dioecious 

variety needs to be pollinated by male flowers. To optimize output as a grain crop, it is best 

to have a predominantly female population with a few male plants for pollination, or to 

have a monoecious variety (Schluttenhofer and Yuan 2017). Conversely, when hemp is 

cultivated to produce fiber, male plants are mostly desired without flowering, which 

promotes taller height with less branching (Johnson 2019). 

 

Fertilization and Nutrients  
Key macronutrients for growing hemp are nitrogen, potassium, and phosphorus 

(Wylie et al. 2021). Soil nutrient levels and applied amounts determine crop intake. 

Measuring residual soil nutrients before fertilization prevents under or over-exposure. 

Nutrient content can be directly measured from leaf tissue samples after about the 10th 

week of growth (Iványi and Izsáki 2009). Nitrogen is the most influential nutrient on hemp 

plant growth and is often the only nutrient added prior to sowing and during cultivation. A 

daily nitrogen intake of 3 to 4 kg/ha occurred throughout the first month, accounting for 

79% of the total nitrogen uptake (Ivonyi et al. 1997). Dual-purpose cultivars can benefit 

from nitrogen fertilization at rates of up to 200 kg/ha, which can increase biomass yields, 

grain yields, plant height, and stem diameter (Aubin et al. 2016; Zheljazkov et al. 2023). 

However, applying nitrogen beyond 150 kg/ha can have no effect or may decrease fiber 

yield and quality simultaneously (Aubin et al. 2015; Grabowska and Koziara 2006). There 

are mixed conclusions about the effects of potassium and phosphorus (Aubin et al. 2015; 

Cherrett et al. 2005). Phosphorus has some effect on plant height, tensile strength and 

elasticity of bast fibers but does not affect grain, stem, or biomass yield (Adesina et al. 

2020; Finnan and Burke 2013; Vera et al. 2006). P2O5 fertilization should not exceed 22.4 

kg/ha of phosphorus, because if this level is exceeded, the hemp seed mortality rate 

increases significantly (Williams et al. 2019; Zheljazkov et al. 2023). Fiber, grain, and 

dual-purpose hemp require a high amount of potassium; around 336 kg/ha (Zheljazkov et 

al. 2023). The quality and yield of bast fiber are affected more by potassium than 

phosphorus (Adesina et al. 2020; Cockson et al. 2019; Merfield 1999). Potassium uptake 

also increases with maturity of plant and the highest uptake occurs at the development stage 

of bast fibers which causes significant increases in cellulose and hemicellulose content 

(Adesina et al. 2020; Aubin et al. 2015). The recommended amount of potassium fertilizer 

for hemp plants is around 175 kg/ha (Adesina et al. 2020). On the other hand, cotton 

requires 50 to 412 kg/ha (Shah et al. 2022) and 110 to 250 kg/ha (Kommineni et al. 2024) 

of nitrogen and potassium fertilizer, respectively. Another fiber-generating crop, ramie, 

requires 525 kg/ha, 140 kg/ha, and 525 kg/ha of nitrogen, phosphorus, and potassium 

fertilizer, respectively, for maximum yield (An et al. 2024), which are higher relative to 

hemp.  

Some other secondary macronutrients and micronutrients, such as magnesium, and 

calcium have slight effects on hemp plant growth but no direct effect on grain and bast 

fiber yield except for boron and copper (Adesina et al. 2020; Cockson et al. 2019). The 

most common symptoms of different nutritional deficiencies are listed in Table 2 and Fig. 

4.  
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Table 2. Nutritional Deficiencies Symptoms in Hemp Plants at Advanced Stages 

Nutrient Deficiency Symptoms References 

Nitrogen Paleness, stunting, and yellowing of the lower leaves, 
decreased yield of bast fiber 

(Kaur et al. 2023) 

Phosphorus Impaired growth, reddening of leaves, and lower immunity 
to diseases 

(Adesina et al. 
2020) 

Potassium Yellowing of the leaf that extends inward toward the midrib 
with the progress of symptoms 

(Cockson et al. 
2019) 

Copper Breakdown of the hemp stem (Adesina et al. 
2020) 

Magnesium Yellowing or graying white spots on the lower older leaves (Adesina et al. 
2020) 

Sulfur Yellowing of foliage, pale yellow around midrib (Cockson et al. 
2019) 

Calcium Yellowing, irregular geometries, and orientations, and 
stunted growth of leaves 

(Cockson et al. 
2019) 

 

 

 
 

Fig. 4. An inspection of the visual cues for common symptoms of advanced stage nutritional 
deficiencies in hemp plants. Reproduced from (Cockson et al. 2019), under the terms of the CC-
BY Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses 
/by/4.0/). 

http://creativecommons.org/licenses%20/by/4.0/
http://creativecommons.org/licenses%20/by/4.0/
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Climatic Conditions  
For germination and early development, hemp has certain needs with respect to 

temperature and moisture profiles. Late spring is the best time to plant seeds (Van der Werf 

1991). Spring soil temperatures should be ~ 10 °C if rapid establishment of hemp plants is 

desired and optimal vegetative growth is to be achieved. When seeded in warm soils (>10 

°C) with adequate soil moisture, most hemp varieties will sprout in 3 to 7 days (McGue et 

al. 2021). An air temperature range of 13 to 25°C is considered optimal temperature 

conditions, although the hemp plant can survive in warmer and colder temperatures 

(Averink 2015; Bouloc et al. 2013). If hemp is being grown for grain, then a much warmer 

climate and longer growing seasons are required. Being a short-day plant that matures more 

quickly as the days become shorter in the fall, early plantings yield higher amounts of fiber. 

Later plantings may lessen stem length and mass for grain and fiber production (Averink 

2015). The plant requires rain, especially during seed germination and until it becomes 

well-rooted, because fiber and grain hemp are not irrigated generally (Kraenzel et al. 1998). 

But the plants grown in US Southwestern summer undergo heat stress, which means that 

watering is needed to keep the roots cool (McGue et al. 2021). According to past research, 

industrial hemp has a lower water footprint than wood or cotton. Hemp uses approximately 

2,719 liters of water per kg of mass, whereas cotton uses approximately 10,000 liters of 

water per kg (Averink 2015). Abaca and ramie plants require rainfall of 2000 to 3000 

mm/year (Bande et al. 2013)  and 1500 to 3000 mm/year (Roy and Lutfar 2012), 

respectively. However, the primary need for rainfall for effective outdoor hemp growth in 

a temperate area is around 700 mm annually, which is lower (Vogel 2017). Hemp will only 

begin to mature when the length of the day is less than 12 hours. Another important factor 

to consider is that hemp is sensitive to the photoperiod, meaning that it grows and flowers 

according to photoperiod or daily hours of sunlight received rather than physiological 

maturity (Amaducci et al. 2008). 

 

Weed, Insects, Diseases and Pests 
Prior to extensive domestication, hemp exhibited natural mechanisms to deter 

insects and diseases, primarily through the production of bioactive compounds such as 

CBDs and terpenes, beneficial structural characteristics, and symbiotic relationships with 

endophytic fungi. The extract of hemp, containing cannabinoids (e.g., essential oil and 

terpenes), can significantly repel insects and pests. Evidence of antimicrobial activity was 

demonstrated in autohydrolyzed hemp pulp containing hemp extract, which reduced the 

growth of E. coli by 99.7% (Tyagi et al. 2022). Industrial hemp extract also showed 

insecticidal activity against Plodia interpunctella and can act as a potential sunflower grain 

protectant (Prvulović et al. 2023). Hemp essential oil was found to be toxic to aphids, flies, 

larvae, etc., and is recommended for use in Integrated Pest Management (IPM) and organic 

agriculture (Benelli et al. 2018). Hemp leaf extract containing CBD has demonstrated 

larvicidal properties against mosquito larvae, including strains resistant to conventional 

insecticides (Martínez Rodríguez et al. 2024). The dense foliage and rapid growth of hemp 

enable it to outcompete weeds, reducing the need for herbicides. These traits also contribute 

to its resilience against various pests and diseases, minimizing the necessity for chemical 

interventions. However, no evidence of inhibiting insects or diseases directly by the hemp 

plant itself was found in the literature before domestication. 

Like any other crop, hemp plants are also susceptible to insects, diseases, and 

weeds. Table 3 represents the common diseases caused by pathogens and their symptoms 

that affect hemp plants.  
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Table 3. The Most Common Diseases of Hemp Caused by Pathogens and their 
Symptoms 

Pathogens Common Name 
of Disease 

Symptoms Associated 
Damage 

References 

Alfamovirus Alfalfa Mosaic 
Virus 

Yellow blotches on foliage, 
curling and discoloration of 

leaves 

Mottling, plant 
death 

(Murray et 
al. 2022) 

Beet curly top 
virus (Vector: 

Beet 
leafhoppers) 

Curly top disease Yellowing of leaves, 
curling of plant and leaf 

edges 

Stunted growth, 
yield loss up to 

100% 

(Giladi et al. 
2020; Hu et 

al. 2021) 

Botrytis 
cinerea 

Gray mold Dying and formation of 
gray mycelium in flower 

Bud rot, reduced 
yield 

(Murray et 
al. 2022) 

Fusarium 
oxysporum 

Fusarium wilt Chlorotic leaf tips Wilting of plant 
and death 

(Punja 
2021) 

Fusarium 
solani 

Fusarium crown 
rot 

Rotting of root and crown 
discoloration 

Golovinomyce
s 

chicoracearum
, G. ambrosiae  

Powdery mildew Powdery white spot on 
leaves, buds and stems 

Reduced 
photosynthesis, 

leaf drop, 
stunted growth 

(Thiessen et 
al. 2020) 

Sclerotinia 
sclerotiorum 

Stem cankers Brown lesion on stems Wilting of plant 
and death 

(Murray et 
al. 2022) 

 

Hemp is also a host for many insects, such as hemp russet mite, hemp aphid, hemp 

flea beetle, grasshoppers, crickets, hemp leafroller, and armyworms, as well as predatory 

birds that attack hemp plants and cause yield losses (Britt and Kuhar 2020; Pejić et al. 

2020). Due to limited approved insecticides, fungicides, and pesticides, it is suggested to 

employ pathogen-resistant cultivars that are less susceptible to diseases and to follow IPM 

techniques involving biological methods to determine the appropriate timing of seeding, 

use of beneficial insects, and rotation with non-host crops (Ajayi and Samuel-Foo 2021; 

Kostuik and Williams 2019; Zheljazkov et al. 2023). Several weeds may also significantly 

hinder the growth of hemp, such as bindweed, pigweed, Johnson grass, and quack grass 

(Fike 2016; Fortenbery and Bennett 2001). As a response to crop protection, the 

Environmental Protection Agency (EPA) has approved only one herbicide, ethalfluralin, 

registered under the trade name Sonalan® HFP herbicide for fiber hemp (McVane et al. 

2024). Crop rotation, appropriate tillage, and dense plantation can shade out the majority 

of weedy growth (Kaiser et al. 2015; Zheljazkov et al. 2023).  

 

Harvest Seasons 
During the pre-harvest period, hemp growers need to report the total THC at least 

15 days prior to harvesting, depending on state or federal requirements, to ensure that the 

total THC is lower than the threshold of 0.3% as determined by laboratory testing (McGue 

et al. 2021). The relevant Department of Agriculture will advise the producer on proper 

disposal techniques if the harvested material exceeds the threshold. To avoid excessive 

total THC, early harvest is recommended. Hemp is harvested in late summer to early 

autumn depending on the type of hemp grown. Vegetative periods for hemp growth are 
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typically 60 to 150 days, but the period can vary depending on the cultivars (Strzelczyk et 

al. 2022). These periods are much shorter than other crops that produce raw materials for 

some of the same products, such as cotton and wood (Garstang et al. 2005).  

Typically, hemp is harvested at three different stages in its growing cycle; at the 

beginning of the inflorescence, during full bloom, and after grain maturity (Burczyk et al. 

2009). As the plant develops, parts of the plant mature and flower, thus yielding more grain 

and cannabinoids. Conversely, the stalk becomes more lignified, decreasing the 

processability and strength compared to if harvested earlier in the growing season (Musio 

et al. 2018). If high quality bast fiber is desired, then the plant should be harvested before 

grain and cannabinoids begin to develop (Burczyk et al. 2009). If the maximum yield of 

bast fiber, cellulose, and overall biomass is desired then hemp should be harvested at full 

bloom. When the male plants have finished blooming, dioecious hemp grown for bast fiber 

are normally harvested (Fike 2016). The best period to harvest for bast fiber is before grains 

are completely mature, typically 70 to 90 days after sowing. Beyond this time, bast fiber 

will become too coarse for textiles (Fortenbery and Bennett 2004). When growing for high 

grain or cannabinoid yields, hemp should be harvested at full maturity or when 70% of the 

grains are ripe. Waiting longer than this will cause losses due to reduced moisture and 

nutrient concentrations (Garstang et al. 2005). Research shows that hemp farmed for 

energy can provide yields of 9.9 t DM/ha in the spring and 14.4 t DM/ha in the fall (Prade 

et al. 2011).  

 

Harvest Method 
Depending on the volume of production, height of the plant, the intended purpose 

for the crop, and the resources on hand, several techniques are used for industrial hemp 

harvesting. Manual harvesting is carried out on small-scale fields using traditional tools 

including sickles or specialized hemp harvest knives. Mechanical harvesting is very 

common for large-scale fields (Kaiser et al. 2015).  

Six fundamental procedures are involved in the harvesting of industrial hemp, such 

as chemical defoliation, cutting, retting, baling, loading, and transport (Fortenbery and 

Bennett 2004). The process of applying chemical agents to prevent or hasten the natural 

loss of hemp plant leaves is known as chemical defoliation. It is frequently used to make 

harvesting easier, especially in crops intended for grain or fiber production (Bengtsson 

2009).  

The chemical defoliation process is only used in Eastern Europe and is not popular 

in US. In US, hemp stem is typically cut with sickle bar mowers or forage harvesters; 

however, neither of these machines is specifically designed for harvesting hemp (Ehrensing 

1998; Kaiser et al. 2015; Williams and Mundell 2018). A common seed drill equipment 

and sickle bar mower for harvesting industrial hemp is represented in Fig. 5.  

The most popular technique for harvesting uses standard hay-making machinery 

(Zheljazkov et al. 2023). For high-quality bast fiber applications, stalks are cut into 1 m 

sections and aligned parallel, leaving a continuous layer of stalks on the ground before 

being retted or being sent to processing. Grain and dual-purpose varieties are harvested 

similarly to other grain crops, for which axial flow combine harvesters initially cut the 

hemp and separate the grain from the stalks (Merfield 1999). It is important to run combines 

and augers at lower speeds than normal to avoid unnecessary losses to the quality and yield 

of grain. The stalks from grain varieties are often left to rot in the field after harvest because 

the return of this low-quality lignified fiber is often not worth the labor.  
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Fig. 5. (a) Seed drill equipment for spacing the seeds and (b) sickle bar mower for harvesting 
industrial hemp plants 

 

 

POST-HARVEST HANDLING AND PROCESSING 
 

Retting  
Retting (Fig. 6a) is a microbial process that breaks down the chemical bonds 

between bast fiber bundles and hurds. By degrading lignin or pectin; retting enables the 

separation of hurds from the bast fibers (Ehrensing 1998; Fortenbery and Bennett 2001; 

Zimniewska 2022). There are various ways to carry out the retting, and among them, dew 

retting and water retting are the most common (United States Department of Agriculture 

2000; Zimniewska 2022). After harvesting, hemp stalks are usually left in the field for dew 

retting to enhance processability (Fig. 6a) (Williams and Mundell 2018). Field or dew 

retting takes 1 to 2 weeks in warm humid weather, but it usually takes around 4 to 5 weeks 

depending on atmospheric conditions (Ehrensing 1998). The yield of bast fiber content 

derived from unretted stems is slightly higher, ~ 6.5%, compared to retted hemp stems 

(Musio et al. 2018).  

Water retting, which immerses hemp stalks in large basins of water, is faster than 

field retting, taking only 5 to 10 days (Franck 2005; Zimniewska 2022). However, this 

method has a large environmental impact due to the large water use and increased 

Biological Oxygen Demand (BOD) (Musio et al. 2018). The water retting used to extract 

the long bast fibers is distinguished by their high quality, such as fineness, mechanical 

characteristics, and spinnability, making them superb for textile applications. 

Natural field and water retting have been replicated in an anthropogenic process in 

which enzymes act as bacteria to speed up the microbial degradation of the stems, which 

is called enzymatic retting (Horne 2020; Lee et al. 2020). The main drawback of this 

process is the high initial cost of the enzymes (Horne 2020). Chemical retting involves the 

use of sodium hydroxide, sodium sulfite, sodium carbonate, and sometimes with 

ethylenediaminetetraacetic acid (Horne 2020). It is cost-efficient and ensures high yield 

and high quality of bast fibers (Kostic et al. 2008). Physical retting, such as steam 

explosion, is carried out using hot steam and pressure to remove lignin, pectin, wax, and 

other non-cellulosic materials (Sauvageon et al. 2018). Stand retting, a modified form of 
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field retting, involves spraying herbicide before harvest to initiate degradation and mitigate 

crop losses due to inadequate retting (Garstang et al. 2005). Over-retting can result in bast 

fiber deterioration and decreased fiber strength, while under-retting may produce weak bast 

fibers and poor bast fiber separation. To obtain the best fiber quality, the retting process 

must be carefully controlled, which includes maintaining temperature, moisture content, 

and microbiological activity before being sent to fiber separation facilities (Williams and 

Mundell 2018).  

 

Decortication 
After retting, the windrowed or swathed hemp stalks undergo decortication. The 

term windrowed or swathed refers to crops that are cut and laid in rows in the field for 

retting before decortication. Figure 6b shows the process of separating the bast fibers from 

the hurds of the hemp stalk, which is called decortication. It can be performed on unretted 

stems as well, but the scutched (freed fibers from woody parts by beating) and hackled 

fiber yield is much lower in that case (Musio et al. 2018). It becomes easier for retted hemp 

due to the reduction of non-cellulosic content (Musio et al. 2018). Decorticated hemp had 

the lowest shive content if it had undergone dew retting before decortication (Musio et al. 

2018). This processing technique works best if high-quality bast fibers are desired and the 

stands are to be harvested at technical maturity or before grain production begins 

(Ehrensing 1998). 

Decortication is either done on site at the farm or the raw material can be baled and 

sent to a processing facility. However, if material is baled, it must be dried below 15% to 

18% moisture; otherwise, rotting can occur during transportation and storage (Garstang et 

al. 2005; Kaiser et al. 2015). It is almost always more cost-effective to undergo this process 

on the growing site. This eliminates the cost for drying, baling, and transportation to the 

decorticating facility as well as lost profit gained by the decortication facility. Decortication 

yield varies greatly depending on its intended purpose, with anywhere from 18% to 33% 

of mass turned into dust. Hammer mills are often used to decorticate unretted stalks at high 

speed when low purity fibers are targeted as it generates a lot of dust and fines (Chen et al. 

2004). 

There exist some other processing methods, especially for bast fiber separation, 

which varies based on their end use, such as breaking, shaking, screening, scutching, and 

hackling (Pejić et al. 2020). Breaking is a step of bast fiber separation in which hurds are 

broken down by cylindrical rollers, which partially separates the bast fibers (Ehrensing 

1998; Pejić et al. 2020). Vibratory screening machines are used to separate hemp bast fibers 

from small hurds and fine particles as they move across a vibrating mesh deck with pre-

determined perforations. As the deck vibrates, hurds and fine particles fall through the 

perforations, either as a desired end product or as byproducts for alternative uses. With 

mainly bast fibers left, there are a variety of ways that hemp bast fibers can be processed. 

Regardless of the process used, the bast fibers must undergo both scutching and hackling. 

Scutching removes impurities from the hemp such as grains and woody stems. Hackling 

combs the hemp bast fibers to make them softer and more uniform, preparing them for 

spinning into textile materials (Musio et al. 2018). Hemp bast fibers can be cottonized and 

spun at cotton mills or, if not, at flax mills. Historically, cotton mills, with slight 

modifications, have been preferred because they can produce much higher volumes of 

fibers than flax (Miller 1991).  
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Transportation Importance 
Transportation (Fig. 6c) is a very important cost factor in industrial hemp 

production due to the bulky and low-density nature of hemp biomass. Transportation cost 

and return efficiency are substantially lower for hurds than bast fiber (Bouloc et al. 2013). 

During grain harvesting, the combine harvester cuts, threshes, and cleans the grains 

automatically. The leftover shortened biomass is field dried and baled for transportation 

and storage. Transportation costs can also be affected by the type of bales formed. Square 

bales, for example, are more efficient geometrically. Square bales are typically cut at short 

lengths and are tied with elastic string because natural fiber string cannot withstand square 

baling pressure.  

However, biomass for pulp and paper processing or into high-strength particle 

boards must be plastic-free and round baled. These shortened fibers of grain production 

byproducts could significantly benefit the paper and board industry with better storage 

infrastructure and supply chain dynamics (Ehrensing 1998). In hurd applications where 

long bast fiber yield is not a concern, hemp is more apt to be baled immediately after 

harvest in a non-parallel orientation before being sent to a processing or storage facility. 

Since fibers are baled and the stems do not maintain a parallel orientation, the long bast 

fiber yield is much lower for baled hemp than for parallel-aligned and processed hemp. 

 

Storage 
Storage (Fig. 6d) is critical for both grain and stalks after harvest and must be 

closely monitored to avoid losses in quality, especially for extended storage times. Grain 

for food has very high standards for moisture and quality to be acceptable for processing. 

Sweating, evaporation, and condensation can lead to rejection, significant quality loss, and 

reduce hemp grain profitability while failing to aerate grains 3 to 4 hours post-harvest due 

to oxidation. Grains should be dried and stored at ~ 9% moisture in well-aerated silos and 

not collected from harvest until they reach below 12% moisture content.  

Full-floor aeration or rocket systems in hopper bins are effective for drying and 

cooling hemp grains through aeration (Brook et al. 2016). Low heat is maintained at less 

than 35 °C to avoid toasting of the grain and to ensure grain and grain oil quality is not 

compromised (Brook et al. 2016). Sun drying is practiced by farmers but is not 

recommended for commercial-scale production (Moon et al. 2020; Parihar et al. 2014). 

Hemp is typically stored between 7% and 9% moisture and closely monitored. Moisture 

content must be lower than 15% to prevent microbial breakdown in storage (Ehrensing 

1998). Figure 6 represents a typical scenario of industrial hemp post-harvest handling and 

processing operations such as field retting, decortication, transportation, and storage.  
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Fig. 6. A representation of industrial hemp post-harvest handling and processing operations (a) 
field retting, (b) decortication, (c) transportation, and (d) storage 

 

 

HEMP BIOPRODUCTS- SUSTAINABLE FIBERS, PACKAGING, AND 
BIOPLASTICS 
 

Due to renewable, biodegradable, and recyclable qualities, hemp is considered the 

second-largest farmed bast fiber after jute, which is a suitable feedstock for the 

manufacture of fibers, biocomposites, packaging, and bioplastics (Dayo et al. 2017). 

 

Bast Fibers 

Hemp bast fibers are well known for being breathable, long-lasting, and 

sustainable, which makes them well suited for textiles. However, hemp’s coarse, stiff bast 

fibers and poor spinnability necessitate blending with cotton to overcome spinning 

difficulties caused by pectin and lignin. A 50:50 hemp-cotton blended textile material has 

a better crease recovery angle, higher tensile resilience, toughness, higher surface friction, 

shear, and bending rigidity compared to 100% cotton (Ahirwar and Behera 2022). The first 

American flag and the earliest denim trousers designed by Levi Strauss were the oldest 

known woven items made of hemp (Crini et al. 2020). The addition of natural fibers such 

as hemp to a polymer matrix enhances the strength properties, reduces the environmental 

impact, and potentially decreases production costs (Joshi et al. 2012). A list of several 

biocomposites developed using hemp bast fibers including processing techniques, and 

applications are listed in Table 4.  

An obstacle associated with hemp biocomposites is that process temperatures 

cannot exceed 230 °C; otherwise, the bast fibers would experience thermal degradation. 

This means they are suitable for polypropylene and polyethylene plastics, but not for 
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polyamides, polyesters, or polycarbonates, which require temperatures above 250 °C 

(Shahzad 2012).  

 

Hemp Hurd Fibers 
 The hemp hurds biomass can be converted into pulp fibers by traditional chemical 

and mechanical pulping processes. For example, kraft, carbonate, and soda processes have 

been successfully used to isolate hemp hurds fibers (Naithani et al. 2020; Tyagi et al. 2021; 

Gaynor et al. 2024). The yield of carbonate hemp pulps was slightly lower than that of 

carbonate eucalyptus and bamboo but nearly the same as carbonate hardwood and 

softwood pulps. However, the yield of mild kraft hemp pulp was comparable to eucalyptus 

and higher than other kraft pulps (Salem et al. 2020). 

Furthermore, hydrothermal pulping, a chemical-free process, has shown promising 

results in extracting fibers from hemp hurds (Naithani et al. 2020; Tyagi et al. 2021). 

Organosolv pulping, using an ethanol-water mixture, has also been effective for fiber 

extraction (Muangmeesri et al. 2021). Additionally, alkaline pretreatment followed by 

pulping has been employed in recent studies to increase the yield of cellulosic fibers 

(Gaynor et al. 2024). 

 

Table 4. Processing Method and Application of Hemp-based Biocomposites 

Matrix Processing Method Application Reference 

Hemp bast fiber-polylactic 
acid (PLA) 

Hot pressing Textile reinforcement (Salmins et al. 
2023) 

Hemp bast fiber-
polybenzoxazine 

Compression molding Used as high-
performance 
composites 

(Dayo et al. 
2018) 

Hemp bast fiber-glass 
fiber-epoxy 

Hand lay-up technique Automotive industry (Murugu 
Nachippan et 

al. 2021) 

Hemp bast fiber-glass fiber Compression molding Light-weight structural 
applications 

(Mahmud et 
al. 2023) 

Hemp bast fiber-
polypropylene/polyester 

Needle punching and 
heat pressing 

Nonwoven fabrics (Stelea et al. 
2022) 

Hemp bast fiber-dicyanate 
ester of bisphenol-

A/bisphenol-A based 
benzox-azine resins 

Compression molding Indoor and outdoor 
application 

(Zegaoui et al. 
2019) 

Hemp bast fiber- recycled 
high density polyethylene 

Hydro-entanglement 
process and 

compression molding 
process 

Secondary structural 
applications 

(Angulo et al. 
2021) 

Hemp bast fiber-epoxy Vacuum assisted resin 
transfer molding 

Automotives, 
constructions, and 

internal finishes 

(Väisänen et 
al. 2018) 

Hemp bast fiber-
polypropylene 

/poly[styrene-b-(ethylene-
co-butylene)-b-styrene) 

(SEBS) 

Extrusion and injection 
molding 

Electric vehicles (Panaitescu et 
al. 2020) 

Hemp bast fiber-
colemanite 

Chemical impregnation 
and hot pressing 

Friction material, 
automotive 
applications 

(Karakaş et al. 
2024) 
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Hemp bast fiber-vinyl ester Compression molding Structural and non-
structural applications 

(Thirukumaran 
et al. 2024) 

Hemp bast fiber- 
poly(ethylene succinate) 

Melt mixing Active packaging (Zamboulis et 
al. 2023) 

 

Several modifications, such as carboxymethylation (Yao et al. 2022), acetylation 

(Basak et al. 2024), have been used to enhance the functional properties of hemp hurd 

fibers. Enzymatic treatment using pectinase (Li et al. 2017) and cellulase (Li et al. 2021) 

has improved the mechanical properties of composite materials made from hemp hurds, 

wood, and polypropylene. Further, recyclable hemp hurd fiber-reinforced PLA composites 

have been developed for 3D printing, exhibiting high stiffness, tensile strength, and good 

thermal stability (Beg et al. 2024).  

 
Sustainable Packaging 

The short fiber length of hemp hurds provides a distinct advantage to produce 

nanocellulose biopolymers in terms of energy consumption (Agate et al. 2020). Hemp 

whole stalk fibers and hurd fibers were used to produce molded packaging (Lo et al. 2024; 

Yimlamai et al. 2023), food packaging (Barbash et al. 2022), tissue and towels (Naithani 

et al. 2020), and barrier coatings and films (Tyagi et al. 2021). Paper produced with 2% 

hemp-derived nanocellulose showed an improvement in breaking length by 42% due to  an 

increased number of fiber-fiber bonds, making it suitable for premium-grade food 

packaging (Barbash et al. 2022). The antimicrobial activity of hemp packaging products 

also gained a lot of attention, since hemp contains biologically active compounds, such as 

alkaloids, saponins, and flavones responsible for bacterial growth inhibition (Tyagi et al. 

2022). Edible-coated packaging of gelatin with hempseed oil on golden apples, cheese, and 

pork reported antibacterial activity against Penicillium expansum, Saccharomyces 

cerevisiae, Staphylococcus aureus, and Escherichia coli pathogens (Mihaly Cozmuta et al. 

2015). Edible coating of hempseed protein with carrageenan for food preservation lowers 

the moisture vapor transmission rate of food (Noor et al. 2022). The use of hemp in active 

packaging films with shikonin, starch, and anthocyanin also indicates the freshness of 

foods such as shrimp, grape, clam, and salmon, respectively by color change with pH 

change (An et al. 2023; Dash et al. 2024; Zhu et al. 2023).  

 

Bioplastics  
Petroleum-based plastics introduce a variety of environmental issues, including 

human health issues, GHGs, and marine contamination. Therefore, bioplastics are gaining 

popularity as an alternative to traditional plastics (Atiwesh et al. 2021). The most common 

bioplastic synthesized from hemp is poly-3-hydroxybutyrate P(3HB) from Ralstonia 

eutropha fermentation and enzymatic hydrolysis of hemp hurds (Khattab and Dahman 

2019). P(3HB) is strong, hydrophobic, biodegradable, biocompatible, non-toxic, and has 

thermoplastic properties similar to polypropylene (PP) (Moliterni et al. 2022). It has many 

comparable properties to petroleum-based plastics such as high strength and melting 

temperature; however, it is a brittle material in large part due to the crystallization of the 

polymer when at room temperature (Avella et al. 2000). P(3HB) has found a profitable use 

in medical implants to repair the peripheral nerve and soft tissue defects. Different grades 

of bioplastics are made from hemp which is 2.5  stronger and 5  stiffer than PP (Karche 

and Singh 2019). Another bioplastic made from hemp is reinforced wheat gluten plastics 

which is 2  stronger than the control wheat gluten plastics (Wretfors et al. 2009). 
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HEMP BIOFUELS AND ENERGY MATERIALS  
 

Industrial hemp can be used as solid fuel and converted into liquid and gaseous 

fuel. A cleaner alternative to wood fuel, solid hemp fuels, such as biochar, pellets, and 

briquettes, because it has lower toxic emissions and reduces wood consumption (Parvez et 

al. 2021). After extracting valuable components such as grains, flowers, and bast fibers 

from hemp stalks, the remaining hemp hurds are often considered low-value. However, 

processing them into bioproducts, biofuels, biochar, and energy materials can valorize the 

whole hemp plant, creating additional revenue streams (Das et al. 2017; Ji et al. 2021). 

Mechanical grinding to finely ground hemp followed by anaerobic digestion for biogas 

production yields 15% higher methane (Ji et al. 2021). The produced biogas can be burnt 

to produce electricity or used as vehicle fuel. Recently, biohydrogen has become more 

popular as a green fuel due to a number of benefits (Almarsdottir et al. 2010), including a 

high energy yield, which is nearly three times greater than that of fossil fuels (Kapdan and 

Kargi 2006), and minimal impact combustion products (Das and Veziroǧlu 2001). It has 

several uses, ranging from transportation to power. Clostridium thermobutyricum-like 

novel thermophilic bacterial strain AK14 has been used in the production of biohydrogen 

from hemp (Almarsdottir et al. 2010). 

Pyrolysis, fermentation, anaerobic digestion, and transesterification are the most 

common methods to produce liquid fuels, such as biodiesel and bioethanol (Parvez et al. 

2021; Zhao et al. 2020b). The yield of bioethanol has been found to vary with different 

pretreatment methods such as 67.4 to 74.7% for liquid hot water pretreatment, 67.2 to 

89.6% for acid pretreatment, and 95.8 to 96.7% for alkali pretreatment, which are almost 

similar to other crops (Das et al. 2017; Zhao et al. 2020b). Past studies describe the 

conversion of hemp biomass into biochar. Hemp hurd, which is the main byproduct of bast 

fiber generation, has been pyrolyzed and gasified with fir sawdust to produce biochar 

(Puglia et al. 2023). The char yield depends on pyrolysis temperature, residence time, pH, 

carbon, hydrogen, and ash content (Lehmann and Joseph 2009; Puglia et al. 2023). The 

obtained hemp biochar showed compatibility with seed germination when mixed with soil 

as a soil amendment (Puglia et al. 2023). It boosts soil carbon (C) and nitrogen (N) levels 

because of its high C/N ratio which is around 25 mg N g-1 C (Luxhøi et al. 2006), and 

enhances microbial metabolic activities. 

Biochar’s porous structure (pore size > 50 nm) provides a habitat for 

microorganisms, protecting them from predation by larger arthropods. Additionally, the 

high water-holding capacity and high adsorption capacity of biochar help immobilize 

pollutants in soil, reducing migration and toxicity, which further benefits soil 

microorganisms (Huang et al. 2023). Hemp residue and biochar have both been reported 

to increase the soil enzymatic (e.g., phosphodiesterase, arylsulfatase, acid phosphatase, β-

glucosaminidase, and β-glucosidase) activities by 1 to 2 fold compared to hardwood 

biochar (Atoloye et al. 2022).  Hemp biochar carbonized at 400 to 600 °C and 800 to 1000 

°C showed potential for solid biofuel and electronics applications, respectively (Marrot et 

al. 2022). In the bioenergy production process, hemp biochar blended with coal can result 

in a 10% reduction in CO2 emissions (Parvez et al. 2021). Hemp can generate 13 t/ha 

biochar per year, which helps carbon sequestration and reduces GHGs (Adesina et al. 

2020). 
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CONSTRUCTION MATERIALS 
 

The building sector consumes 40% of the global energy, mainly for heating and 

cooling, and consumes 32% of global energy demand and is responsible for 30% energy 

related CO2 emissions (Abdellatef and Kavgic 2020; Ahmed et al. 2022; Ingrao et al. 

2015). In the US, 29% of the total greenhouse gases, and over 40% of the global CO2 is 

emitted by the building sector (Lee and Chong 2016). Therefore, scientists seek more eco-

friendly, carbon-negative materials to replace carbon-positive materials in construction and 

the building sector (Ahmed et al. 2022). Hempcrete is an alternative concrete used as a 

building material that has a negative carbon footprint (Pochwała et al. 2020). It is a 

biocomposite, made up of hemp hurd fibers, lime, and water (Collet and Pretot 2014). The 

notable use of hempcrete began in the early 1980s (Dartois et al. 2017). Due to its superior 

thermal insulation capabilities, hempcrete insulates against both heat and cold. It is used in 

floor, roof, and wall insulation materials because of its lightweight, breathability, fire-

resistance, and acoustic properties, helping regulate indoor temperature and reducing the 

need for additional heating or cooling (Antonov et al. 2017; Delhomme et al. 2020; Ingrao 

et al. 2015). The Adnams Warehousing and Distribution Centre in Suffolk is the UK’s 

largest application of lime/hemp for wall construction, which achieved significant thermal 

performance savings. The use of hemp fiber reduces the heat transfer through walls and 

decreases the U-value to 0.18 W/m2K (Muhit et al. 2024). Hemp bast fiber incorporation 

in asphalt for road construction also increases mechanical performance such as fatigue 

resistance and tensile strength while reducing rutting and cracking (Muhit et al. 2024). 

 

 

ENVIRONMENTAL BENEFITS- LIFE CYCLE ASSESSMENT (LCA) AND 
TECHNO-ECONOMIC ANALYSIS (TEA) 

 

Industrial hemp, a fast-growing plant, acts as a carbon sink, absorbing up to 22 t 

CO2/ha,  which is more than any other crop (Adesina et al. 2020). Hemp absorbs and stores 

carbon in stem, roots, and leaves via photosynthesis and bio-sequestration. Therefore, 

hemp-based products have a low or negative carbon footprint (Pochwała et al. 2020). 

Decomposing or incinerating biomass in the field releases CO₂ back into the atmosphere. 

For hemp to achieve a truly negative carbon footprint, its biomass must be processed or 

stored in ways that prevent CO₂ from re-entering the atmosphere. For instance, converting 

hemp biomass into biochar helps maintain a negative carbon footprint, as biochar enriches 

soil while sequestering carbon (Adesina et al. 2020). Hemp fibers used in construction 

(hempcrete), insulation, or biocomposites provide long-term carbon storage (Collet and 

Pretot 2014). Additionally, when hemp is processed into biofuels, integrating carbon 

capture technology can further minimize emissions (Ji et al. 2021).  

Hemp farming can use regenerative techniques such as crop rotation and cover 

cropping to enhance soil health, biodiversity, pest and disease management, nutrient 

optimization, weed control, soil health improvement, and sustainable agriculture. Hemp is 

cultivated as an auxiliary fiber crop, although it fits best in a crop rotation with cereals or 

legumes (Kostuik and Williams 2019). 

Implementation of hemp in a crop rotation provides allelopathic effects, reducing 

nematode populations in soil, thereby serving as a nematicide for the crops that are 

vulnerable to nematodes, such as maize, peas, and potatoes (Rothenberg 2001). Generally, 

leguminous crops are used as cover crops because they can fix atmospheric nitrogen, 
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improving soil fertility and reducing the need for synthetic nitrogen fertilizers for the main 

crops. Though hemp cannot fix nitrogen, implementing it as a cover crop in a crop rotation 

at a thick planting density inhibits weeds and prevents erosion, and its deep root system 

improves soil structure and porosity (Lotz et al. 1991; Struik et al. 2000). Hemp has been 

recognized for its potential in phytoremediation, a process whereby plants can help 

detoxify contaminated soils by absorbing pollutants or heavy metals by its deep root 

system, thus aiding land reclamation and environmental remediation (Placido and Lee 

2022). 

The leaves of the hemp plant were found to accumulate three heavy metals, 1,530 

mg/kg of copper, 151 mg/kg of cadmium, and 123 mg/kg of nickel (Ahmad et al. 2016). 

Near the Chernobyl Nuclear Disaster site, hemp was grown in 1986 to aid in the 

decontamination of the soil (Adesina et al. 2020; Ahmad et al. 2016; Citterio et al. 2003; 

Placido and Lee 2022). No effect on fiber quality and plant height was observed in recent 

studies due to contaminated heavy metal soil (Linger et al. 2002; Pietrini et al. 2019). 

Proper handling and disposal of hemp biomass after phytoremediation is important to 

prevent the reabsorption of heavy metals (e.g., copper, cadmium, nickel) back into the 

environment. Contaminated hemp biomass can be incinerated, reducing it to ashes, which 

are then safely disposed of in landfills. This prevents metals from leaching back into the 

soil (Placido and Lee 2022). Studies show that heavy metals do not affect the fiber quality 

of hemp, so biomass can be used for building materials, insulation, and composites, or any 

other non-food and non-textile applications (Wu et al. 2021). Contaminated biomass can 

also be considered for composting, pyrolysis, or metal recovery (Rheay et al. 2021). Hemp 

harvested from remediation sites can be safely converted into bioenergy (Kniuipytė et al. 

2023). 

 Hemp’s natural resistance to pests and diseases reduces the need for chemicals, 

promoting healthier ecosystems and minimizing harm to wildlife and waterways (Ajayi 

and Samuel-Foo 2021). It is drought-tolerant, adaptable to various temperatures, and it 

conserves freshwater resources by using less input water and requiring minimal 

maintenance and agrochemicals throughout the growing season (Cherrett et al. 2005). No-

till farming of hemp is of great interest as it reduces fuel and energy uses, which in turn 

decreases environmental emissions (Van Der Werf 2004).   

 

Life Cycle Assessment (LCA)  
Several LCA studies have been conducted on hemp-based products and field 

production to determine the environmental burdens in terms of different environmental 

impact categories, such as acidification, eutrophication, global warming potential, etc. 

However, a direct comparison between them is not possible because of differences in 

modeling assumptions and system boundaries. Among all the previous LCA articles, 

building materials, hempcrete, and insulation were the most studied products. A list of 

different LCA studies on hemp-based products with location, methodology, considered 

major environmental impact categories and carbon footprint is recorded in Table 5. 

According to these studies, hemp was found to be one of the least damaging crops as 

manifested by its reduced impacts on global warming potential, energy usage, 

eutrophication, and climate change as a value-added product. As hemp requires less 

fertilizer, it reduces CO₂ and N₂O emissions from fertilizer production and application. 

Reduced fertilizer input means less nitrate leaching into groundwater and less 

eutrophication in rivers and lakes (Van Der Werf 2004). Hemp plants require relatively 
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low water. So, it can grow rain-fed and can access groundwater due to its deep root system 

which eliminates irrigation-related emissions. 

 
Techno-Economic Analysis (TEA) 

Hemp is an eco-friendly substitute for cotton because it produces three times more 

fiber per hectare than cotton, resulting in a 77.6% reduction in agricultural costs when 

considering four main cost inputs, such as fertilization costs, cost of irrigation, cost of 

seeds, and pest control costs (Duque Schumacher et al. 2020). Due to increased 

requirements of fertilizer, the production and processing cost of hemp grain is $2913 to 

3573 per Megagram (Mg) which is higher than the hemp fiber production cost of $1155 to 

1505 per Mg (Khanal and Shah 2024).  

Table 5. A List of Different LCA Studies on Hemp-based Products with Location, 
Methodology, Considered Major Environmental Impact Categories, and Carbon 
Footprint (Abbreviations: GWP global warming potential); E (eutrophication); A 
(acidification); T (toxicity); OD (ozone Depletion); FD (fossil fuel depletion); PM 
(particulate matter); LU (land use); O (others) 

Product Comparator Location Functional Unit 
for Cradle-to-

gate LCA 

Major 
Environment

al Impact 
Categories 
Considered 

Carbon 
Foot-
print 
(kg 

CO2eq) 

References 

Hemp 
Fiber 

Fiber hemp vs. 
arable crops 

France 1 ha of hemp GWP, E, A, T, 
LU, O 

2330  (Van Der 
Werf 2004) 

Fiber hemp vs. 
flax based on 
different retting  

Central-
Europe, 
France, 
Belgium, 
Netherlands, 
Hungary 

100 kg of yarn GWP, E, A, 
FD, LU, O 

1350-
1810  

(Turunen 
and Van Der 
Werf 2007) 

Fiber hemp vs. 
flax 

Spain 1-ton fiber GWP, E, A, 
FD, O 

1600  (González-
García et al. 
2010a) 

Fiber hemp vs. 
flax 

Spain 1 tonne of non-
wood paper pulp 

GWP, E, A, T, 
O 

7031  (González-
García et al. 
2010c) 

Fiber 
composite 

hemp/PLA vs. 
flax/PLA vs. 
polyamide/glas
s fiber 
composites 

Latvia 1000 × 500 mm 
large composite 

GWP, E, A, T,  
OD, FD 

1.7  (Seile et al. 
2022) 

Pulp and 
paper 

Hemp paper 
vs. eucalyptus 
paper 

Portugal 1-ton of paper GWP, E, A, LU 8200-
8500  

(Da Silva 
Vieira et al. 
2010) 

Hemp and flax-
based pulping 
vs. straw-based 
pulping 

China 1-ton of wheat 
straw pulp 

GWP, E, A, T,  
OD, FD, O 

4550  (Sun et al. 
2018) 
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Grain Different hemp 
varieties 

Italy 1 kg seed GWP, E, A, T,  
OD, FD, PM, 
LU, O 

0.161-
18.720  

(Campiglia 
et al. 2020) 

Hempcrete Hempcrete wall 
with different 
coatings 

France 1 m2 wall GWP, E, A, 
OD, FD, O 

-0.016  (Pretot et al. 
2014) 

different bio-
based building 
element  

Belgium 1 m2 building 
elements 

GWP, PM, LU 14.26-
138.02  

(Mouton et 
al. 2023) 

Hempcrete vs. 
traditional brick 
block 

Italy 1 m3 wall GWP, T, FD 15.9  (Di Capua et 
al. 2021) 

Insulation Among four 
bio- based and 
two nonrenew-
able 
insulations. 

Germany 1 m2 external 
wall 

GWP, E, A, T, 
OD, FD, PM, 
LU, O 

11.7  (Schulte et 
al. 2021) 

Among natural 
and synthetic 
insulating 
materials 

Italy 1 m3 of the 
insulating 
material 

GWP, OD, O 630.72  (Rocchi et 
al. 2018) 

Ethanol Among five 
lignocellulosic 
materials 

Spain 1 km distance 
driven by a flexi 
fuel vehicle 

GWP, E, A, 
FD, O 

0.0794- 
0.2370  

(González-
García et al. 
2010b) 

Biodiesel Hemp diesel 
vs. diesel oil 

Spain Consumption of 
44.80 L of diesel 
oil or 47.04 L of 
hemp diesel 
in an 18-ton 
lorry in 50 km 

GWP, E, A, 
OD, FD, O 

-2.33  (Casas and 
Rieradevall I 
Pons 2005) 

 

Hemp composite is one of the most inexpensive composites in terms of end-of-life 

treatment, with costs ranging from $8.77 to 10.2 per kg, $2.18 to 3.66 per kg, and $1.52 to 

3 per kg for 0.01 kg, 0.1 kg and 1 kg part weight PLA incorporation into hemp fiber, 

respectively (Haylock and Rosentrater 2018). Hemp has a lower entrepreneurial risk due 

to its annual production cycle, compared to the longer-term commitments required for 

perennial energy crops. A study conducted in the Czech Republic determined that the cost 

of producing hemp biochar by pyrolysis ranges from €452 to 667 per ton without utilizing 

excess heat and from €381 to 596 per ton with excess heat utilization (Vávrová et al. 2022). 

Hemp biomass containing 10% lipid would be a cheaper option for biodiesel production if 

hemp can be produced at $50/ MT. The cost of biodiesel production from hemp is $4.31 

per gallon, which is comparable to soybean biodiesel production of $4.15 per gallon 

(Viswanathan et al. 2021). Industrial hemp can be made more profitable by using a 

production plan that considers several co-products. When compared to other growth 

models, the dual-purpose growing model demonstrated a greater degree of productive 

efficiency. 

According to research findings, the cost of producing hemp stalks from a fiber 

hemp variety was US $0.29/kg, whereas the cost from dual-purpose cultivation was slightly 
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higher, at around US $0.41/kg. Moreover, fiber yield was found to be 1480 kg/ha from 

fiber hemp, whereas from dual-purpose variety, fiber yield was 1275 kg/ha. At the same 

time, dual-purpose varieties yield 850 kg/ha of grains, which is also comparable to grain-

only varieties where the grain yield is around 958.3 kg/ha (Ceyhan et al. 2022). While 

current evidence shows positive returns on concurrent hemp products, hemp must be 

financially competitive with conventional crops. Future studies should compare hemp’s 

profitability with other crops and consider regional differences, especially in the Global 

South, which is yet to be analyzed, for more economically viable hemp production systems 

due to low-input farming and cheap labor (Budhathoki et al. 2024). 

 

 
CONCLUSIONS 

 

This review article has provided a comprehensive analysis of industrial fiber hemp 

anatomy, current agricultural practices in the context of the US, and the novel applications 

of hemp into low-carbon bioproducts by analysis of the major findings of recent studies. It 

explored the cultivation practices and agronomic considerations necessary for successful 

hemp production, highlighting key factors such as soil requirements, nutrient management, 

climate, and pest control. In terms of cultivation recommendations, the ideal soil pH for 

hemp generally falls within the range of 6.0 to 7.5. For fertilizer requirements, hemp 

typically benefits from nitrogen-rich fertilizer at 150 to 200 kg/ha during the vegetative 

growth stage and potassium fertilizer at 175 kg/ha. On the other hand, cotton and flax 

require 50 to 412 kg/ha and 20 to 40 kg/ha of nitrogen, and 110 to 250 kg/ha and 50 to 

180 kg/ha of potassium fertilizer, respectively. Late spring with a soil temperature of 13 to 

25 °C is optimum for seed sprouting and further vegetative growth. Industrial hemp’s 

ability to sequester significant amounts of carbon dioxide (22 t CO2/ha by 1 hectare hemp), 

reduce reliance on synthetic pesticides and herbicides, enhance soil health, prevent erosion, 

contribute to biodiversity and phytoremediation, makes it a compelling choice for 

sustainable agriculture. Furthermore, it has an expanding array of applications not limited 

to textiles, foods, cosmetics, and paper. Hemp industries are moving towards more 

applications in sustainable materials such as biofuel, biocomposites, biochemicals, 

bioplastics, and biochar production, not only in sole production but also in more 

economically feasible co-production systems. However, to achieve successful 

monetization of hemp products, further LCA US-based LCA studies should be conducted 

to validate performance with respect to environmental indices. 
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