Selenium/Copper Oxide Nanoparticles Prepared with Urtica urens Extract: Their Antimicrobial, Antioxidant, Antihemolytic, Anticoagulant, and Plant Growth Effects

Ahmed M. Abd-ElGawad, Mohamed A. Amin, Mohamed A. Ismail, Mahmoud K. A. Ismail, Ahmed A. Radwan, Tushar C. Sarker, Medhat A. El-Naggar, and Eman M. Abdelkareem.

Urtica urens extract was applied for Se/CuO NPs synthesis with investigation of its biological activities and bio-stimulant qualities for Zea mays L. More antimicrobial activity was documented using Se/CuO NPs than U. urens extract against C. albicans, E. coli, S. typhi, B. subtilis, and S. aureus. Moreover less MIC and MBC values of Se/CuO NPs compared to *U. urens* extract against examined bacteria were recorded. Excellent antioxidant activity of Se/CuO NPs and *U. urens* extract was documented, with IC₅₀ 4.2±0.41 and 5.12 ±0.19 μg/mL, respectively. Anti-hemolysis of U. urens extract was higher than Se/CuO NPs with IC50 4.1±0.12 and 12.26±0.22 µg/mL, respectively. Anticoagulant potential of Se/CuO NPs was better than the *U. urens* extract *via* partial thromboplastin time (PPT) and prothrombin time (PT). Se/CuO NPs at 10 ppm caused the highest significant improvement in chlorophyll a and b of maize plants, but the highest value of carotenoids appeared at 20 ppm compared to the control and other treatments. The increase of shoot and root lengths was shown at 10 ppm of Se/CuO NPs by increasing 32.6 and 17.9%, respectively, compared to the control. Thus, novel bimetallic Se/CuO NPs synthesized using *U. urens* extract displayed antimicrobial, antioxidant, anticoagulant, anti-hemolysis, and plant biostimulant effects.

DOI: 10.15376/biores.20.2.2791-2810

Keywords: Urtica urens; Selenium; Copper; Nanoparticles; Antimicrobial; Stimulator; Antioxidant

Contact information: a: Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia, aibrahim2@ksu.edu.sa (A.M.A.); b: Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt, mamin7780@azhar.edu.eg (M.A.A.), mohamedismaeil.22@azhar.edu.eg (M.A.A.), mahmoudkotb39@azhar.edu.eg (M.K.A.I.), Ahmedradwan@azhar.edu.eg (A.A.R.); c: Texas A and M AgriLife Research Center, tushar.sarker@ag.tamu.edu (T.C.S.); d: Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt, Medhat14@gmail.com (M.A.E.), dremanarc@gmail.com (E.M.A.);

* Corresponding authors: mamin7780@azhar.edu.eg (M.A.A.); dremanarc@gmail.com (E.M.A.) Medhat14@gmail.com (M.A.E.)

INTRODUCTION

The advancement and utilization of nanotechnology have influenced various fields, including medicine and agriculture. It is critical to comprehend the disadvantages and advantages of using these products to ensure their sustainable and ideal use (El-Batal *et al.* 2023; Amin *et al.* 2024, 2025). Numerous investigations have focused on synthesizing nanoparticles (NPs) based on one metal, such as silver, copper, zinc, nickel, and selenium.

NPs of bimetals such as copper/zinc, zinc/selenium, zinc/gold, and iron/copper were studied by other investigations (Sharma and Dutta 2018; Al Abboud et al. 2024; Alghonaim et al. 2024a; Selim et al. 2025a,b), but there has been a lack of research concerning the multifunctional application of Se/Cu NPs. The synthesis of NPs was developed *via* incorporation of one or two bimetal NPs with organic polymers particularly in the medicinal and pharmacological applications (Abdelghany et al. 2023a; Al-Rajhi et al. 2024a,b). Numerous scientific papers have reported on the synthesis of NPs via physical, biological, and chemical approaches (Djamila et al. 2024). Although the main forms of harm brought on by NPs are cytotoxicity, genotoxicity, inflammation, and oxidative stress (Xuan et al. 2023), the biological method represents a safe alternative to the other applied methods for NPs synthesis. Synthesis via the extracts of microorganisms and plants has gained wide attention as a green, sustainable approach for creating a wide range of NPs (Abdelghany 2013; Qanash et al. 2023; Qanash et al. 2024). Moreover, the synthesis by plant extracts compared to microorganisms, are the greatest candidates for NPs synthesis because the extracts comprise several biomolecules such as polyphenols, alkaloids, and phenolic acids that serve as reducing agents to metal ions. Extracts can also be used as stabilizing the dispersible NPs subsequent to the process of synthesis (Abdelghany et al. 2018, 2023b). Many studies have demonstrated the safety and high efficiency of biogenic NPs as antioxidants and anticancer agents. For instance, Karimi and Mahdavi Shahri (2021) found that biogenic Ag NPs can act as an anticancer agent against MOLT-4 cell with IC50 at 0.011 compared to commercial anticancer Cisplatin with IC50 at 1.8 µm.

There are many ways to add micronutrients to plants, including by foliar application, seed priming, and soil drenching. However, priming the seeds has the benefit of facilitating easy access to nutrients during germination. It is also regarded as a cost-effective technique because so few nutrients are necessary for priming seeds (Farooq *et al.* 2021). Through improved photosynthetic pigments, antioxidant defense, osmotic changes, and membrane integrity, seed priming helps to improve drought tolerance (Saha *et al.* 2022).

Nanomaterials differs from bulk materials due to surface charge, chemical reactivity, and slow, controlled and adequate release (Otari et al. 2024). Bimetal NPs including selenium (Se) and copper (Cu) in doped form have been photosynthesized and applied in some biological activities. Se NPs are gaining main consideration due to their good bioavailability, low toxicity, and antioxidant, anticancer, and antimicrobial properties (Alghonaim et al. 2024b). Because Se NPs have a zero redox state (Se⁰), they may have antioxidant properties and are lower in toxic effects (Hussein et al. 2019). The occurrence of SeNPs particularly with other metal NPs has become the highest target of many researchers who are focused on applications in agricultural, therapeutic, and nutrition fields. In the field of plant cultivation, plant growth promotion and enhancement of yields were recorded with using SeNPs (Safdar et al. 2023). Unique physicochemical properties were attributed to CuO NPs as documented in scientific studies and include catalytic, fungicidal, bactericidal, therapeutic, and optical features. Doping of different metals in nanocomposite form enhances the surface, biocompatibility, and physical, and chemical properties (Al-Rajhi et al. 2022a). Sharma and Dutta (2018) showed that the charge transfer properties were enhanced in CuO NPs when doped with selenium and at the same time improved the liberation of hydroxyl groups.

The maize plant is one of the most significant crops grown worldwide for the production of biofuel as well as food and feed (Piperno et al. 2009). Numerous studies have

shown that low-level selenium administration to plants enhances photosynthesis, promotes fruit growth, and quality (Feng *et al.* 2013). Copper is an essential element for plants, unlike selenium, and it plays a variety of roles in their metabolism, defense against oxidative stress, electron transport during photosynthesis and respiration, ethylene detection, and the biogenesis of the molybdenum cofactor (Yruela 2009). Application of Se and Cu NPs has been found to enhance the chlorophyll content, enzymes activity, vitamin C, flavonoids, and glutathione in tomato plants (Hernández-Hernández *et al.* 2019). The present paper aimed to synthesize Se/CuO NPs in doped form for the first time by using *Urtica urens* extract, and to evaluate its application in pharmacological and agricultural fields.

EXPERIMENTAL

Preparation of Urtica urens Plant Extract

The *Urtica urens* plant was gathered from the Department of Botany, College of Science at Al-Azhar University's botanical garden. The entire plant, or the gathered material, was left to dry in the shade for five days at room temperature after being cleaned with distilled deionized H₂O. Next, 100 mL of double-distilled deionized H₂O and 5 g of the whole plant powder were cooked for 20 min at 70 °C. This solution was further filtered through Whatman No. 1 filter paper and kept at 4 °C.

Synthesis of Bimetallic Se/CuO NPs

The precursors for the production of bimetallic Se/CuO NPs were copper sulphate (0.01 mM) and sodium selenite (1 mM). A stock solution of both precursor salts was combined in an equal volume of 60 mL, and the mixture was then heated for 10 min at 80 °C to complete the synthesis process. Thirty milliliters of plant extract were added with continuous mixing for one hour at 40 °C on a magnetic stirrer. The color of the bimetallic Se/CuO NP precipitates changed from green to black green. Centrifuging at 10,000 rpm for 20 minutes was used to gather these NPs, and the pellet was then completely cleaned in double-distilled deionized water three times to remove plant organic residues. It was then dried in a hot air oven at 80 °C and kept for later use at 4 °C.

Characterization the Biogenic Synthesis of Se/CuO NPs

Spectral techniques including energy-dispersive X-ray spectroscopy were employed to recognize the different chemical elements that comprised the nanoparticles. High resolution-transmission electron microscopy was used to observe the size and shape of nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to study the functional groups of the material after synthesis of Se/CuO NPS.

Antimicrobial Properties of Se/CuO NPs and *U. urens* Extract

By means of the well diffusion method, the activity of Se/CuO NPs and *U. urens* extract was determined against examined microorganisms (*Salmonella typhi* (ATCC 6539), *Escherichia coli* (ATCC 8739), *Bacillus subtilis* (ATCC 6633), *Staphylococcus aureus* (ATCC 6538), *Candida albicans* (ATCC 10221), and *Penicillium glabrum* (Op694171). Each tested microbe was cultured separately in a plate containing nutrient agar for bacteria, in addition to potato dextrose agar for fungi. With the use of a cork borer, 6-mm radius wells were prepared in the inoculated agar. Twenty-five mg/ mL of Se/CuO NPs and *U. urens* extract were poured into the wells. Ampicillin/Nystatin was applied to

inhibit bacteria/fungi as a standard control, while the negative control was DMSO. The appeared zone of inhibition around the well once the incubation time ended (24 h/37 °C for bacteria or 5 day/30 °C for fungi) was measured. The broth dilution technique was employed to detect the minimum inhibitory concentration (MIC) as described by Abdelghany *et al.* (2023b). Se/CuO NPs and *U. urens* extract (100 µL of 1 mg/mL) were injected into a 96-well microtiter plate and then incubated (24 h/37 °C). The dye of resazurin sodium was injected into the wells to observe the findings after the period incubation, and the shift of color to pink from purple was used to determine the MIC of Se/CuO NPs and *U. urens* extract.

Antioxidant Activity *via* 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Test

The DPPH test was carried out using various changes to the procedure of Al-Rajhi *et al.* (2022b). In 100 methanol, 20 mg of DPPH was dissolved to create the stock solution. Next, methanol was added to the DPPH solution to dilute it until the absorbance at 517 nm was between 0.68 and 0.76. For a whole day, the DPPH stock solution was covered with aluminum foil and left in the dark to inhibit the production of free radicals. Se/CuO NPs and *U. urens* extract ranging from 12.5 to 100 mg/mL was added to 3 mL, and the mixture was then incubated in the dark for 15 min. Ascorbic acid was utilized as the standard and the DPPH methanol reagent was used as the control solution in the absence of sample. After careful preparation, the mixture was kept at 30 °C for 30 min while it was dark.

On a spectrophotometer, the wavelength was recorded at 517 nm to detect the Se/CuO NPs and *U. urens* extract scavenging potential, which was calculated as follows,

DPPH radical scavenging activity (%) =
$$\frac{A_{control} - A_{test}}{A_{control}} \times 100$$
 (1)

where A_{control} is the DPPH radical absorbance in methanol and A_{test} is the DPPH radical absorbance in tested samples.

The IC₅₀ quantity, which represents the efficient dose of Se/CuO NPs and *U. urens* extract needed to scavenge DPPH radicals (at level of 50%), was recorded.

Assay of Hemolysis Inhibition by Se/CuO NPs and U. urens Extract

Three milliliters of recently drawn whole blood were taken in heparinized tubes from the corresponding author of the present study: Mohamed A. Amin who was in good health. The blood samples were then centrifuged for 10 min at 3000 rpm. After dissolving the collected pellets in the centrifuged tube in an amount of normal saline solution equal to the volume of supernatant, the pellets were suspended in an isotonic buffer solution made from Na₃PO₄ buffer (10 mM) at pH 7.4 to reconstitute the pellets at a volume of 40% v/v. Red blood cells that had been reconstituted (or re-suspended supernatant) were utilized in isotonic solution (IS). Separately, distilled water was utilized as a hypotonic solution (HS) to dissolve the *U. urens* extract and the used Se/CuO NPs. Se/CuO NPs and *U. urens* extract at varying concentrations (100 to 1000 µg/mL) were introduced into 5 mL centrifuge tubes containing HS (per dose). Erythrocyte suspension (0.1 mL) was then combined with the HS and the Se/CuO NPs and *U. urens* extract in separate tubes, gently mixed, and incubated at 37 C for 1 h. The mixture was centrifuged at 1300 g for 3 min. The spectrophotometer (Milton Roy) was used to measure the absorbance (OD) at 540 nm in order to determine the hemoglobin content in the supernatant. The percentage of hemolysis was calculated relative to 100% hemolysis in distilled water. The tube contained 5 mL of distilled water was served as control, and another contained 5 mL of 200 g/mL of indomethacin served as a positive control (Al-Rajhi *et al.* 2022a). The provided equation was employed to assess the hemolysis inhibition % (HI) by the Se/CuO NPs and *U. urens* extract,

$$HI(\%) = 1 - \frac{A_2 - A_1}{A_3 - A_1} \times 100 \tag{2}$$

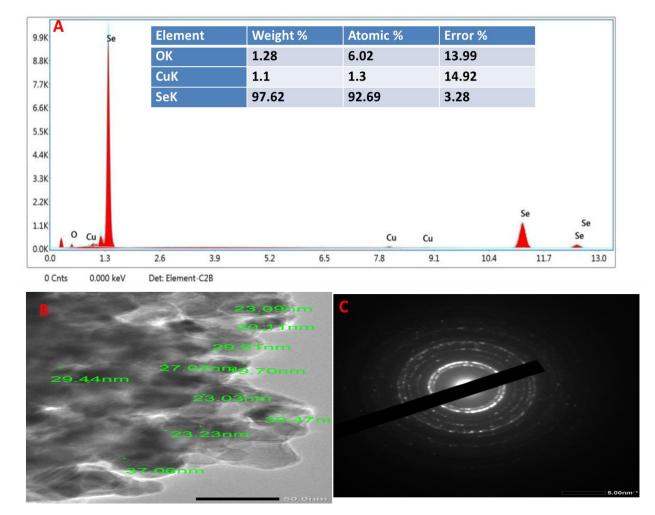
where A_1 and A_2 are Se/CuO NPs or *U. urens* extract absorbance in IS and HS, correspondingly, while A_3 = Control absorbance in HS.

Anti-coagulation Properties of Se/CuO NPs and U. urens Extract

The anticoagulant activity of Se/CuO NPs and *U. urens* extract was assessed using *in vitro* classical coagulant assays, such as prothrombin time (PT) and activated partial thromboplastin time (APTT) tests (Fana *et al.* 2012). Nine parts of human blood were mixed with one part of sodium citrate (3.2%), centrifuged for 10 min at 5000 rpm, and the supernatant was collected. The PT and APTT assays were then performed on the blood. After mixing citrated normal human plasma with Se/CuO NPs and *U. urens* extract at varying dilutions, the mixture was incubated at 37 °C for 3 min. After 3 min of 37 °C incubation, 0.10 mL of the APTT reagent was added to the latex and plasma reaction mixture, and it was incubated for an additional 5 min at 37 °C. Following the incubation period, 0.10 mL of pre-incubated CaCl₂ (0.025 mol/L) was added and incubated for 3 min at 37 °C. The clotting time was then recorded. As stated in the APPT assay, PT was also measured; however, the reaction mixture was supplemented with a pre-incubated PT reagent (0.20 mL) at 37 °C for 3 min, and the clotting time was noted. Plasma only and Plasma with heparin were employed as negative and positive controls, respectively.

A Pot Experiment to Show the Effect of Different Concentration of Bimetallic Se/CuO NPS on Morphology and Pigments of Maize Plants

Zea mays L. var. Giza 368 (triple hybrid) seeds were provided by the Agriculture Ministry, Sakha Research Center, Kafr el-Sheikh, Egypt. Uniform seeds were planted in natural loamy soil conditions in a pot experiment containing 8 groups with 3 replicates representing the following treatments: control (soaking in tab water for 24 h), then 1, 5, 10, 20, 50, 100, 200 ppm of bimetallic Se/CuO NPS (soaking for 24 h). The plant samples were collected at 40 days old for morphological traits and assessment pigments of maize plants. Chlorophyll contents of were assessed using the method of Vernon and Seely (1996). Carotenoid contents of were estimated according to Lichtenthaler *et al.* (1981).


Statistics

With the Minitab 18 program, statistical assessment was computed. Post hoc analyses were conducted using Tukey's test (honest significant difference) with a significance level of p < 0.05. The standard deviation of the means plus the mean of three replicates make up each number. Values of the same letter in the same column do not differ significantly; nevertheless, post hoc Tukey's test results at P < 0.05 show significant differences between distinct lower-case letters in the same column

RESULTS AND DISCUSSION

Characterization of Biogenic Bimetallic Se/CuO NPS

Using EDX analysis, the basic elements of bimetallic Se/Cu NPs were identified both quantitatively and qualitatively. Figure 1A shows that the Se represented the main elemental content of the formed sample. The peaks of Cu ions appeared at bending energies of 0.8, 7.9 and 8.9 KeV but, the Se ion was detected in the sample at bending energy of 1.3, 11.5, and 12.6 KeV. The EDX analysis indicates the weight percentages of Se and Cu were 97.62, 1.1 respectively as well as with atomic percentages of 92.69 and 1.3 %. The presence of O ion with weight percentages of 1.28% and atomic percentages of 6.02%) could be related to the formation of CuO or the adsorption of O on the bimetallic surface from surrounding environments (Alshehri and Malik 2020).

Fig. 1. Characterization of biogenic bimetalic Se/CuO NPS. A: EDX analysis, B showing the TEM and size distribution, C shown the SAED analysis for crystallinity detection

The TEM images show that the Se/CuO NPS were spherical or hemispherical with diameters about 20.4 to 55.9 nm (Fig. 2a). Similar to previously described elongated nanosnake-like particles, the nanoparticles tend to consolidate or come together (Huang *et al.* 2010). This suggests that a plant extract could be the agent of both forming the aggregates and stopping the hemispheric nanoparticles from completely changing morphologically. Recognition of the crystalline state of the produced nanoscale materials was aided by the technique known as selected area electron diffraction (SAED), which is associated with electron microscopy. Here, the bimetallic NP's SAED image revealed eight distinct and crisp rings that correspond to the component materials' crystallographic planes (Se and CuO) (Fig. 1C).

FT-IR was used to identify the functional groups found within the plant extract and their function in the reduction of metal precursor to generate Se/CuO -NPs, which causes new peaks to arise or the intensity of existing peaks to change (Fig. 2). A band at 3428 cm⁻¹ was identified as the source of the O-H bending of phenolic substances; however, after the production of Se/CuO NPs with an equivalent intensity Hamza et al. (2020), the band moved to 3432. The carboxylic group (COO⁻) vibration was assigned to the little band at 2356 cm⁻¹, which moved to 2361 cm⁻¹ after synthesis of Se/CuO NPs with the similar intensity. The peak at 1606 cm⁻¹ was assigned to the amide (CONH⁻) group which shifted to 1652 cm⁻¹ after synthesis of Se/CuO NPs. The peak at 1103 cm⁻¹ revealed the presence of (O–H) stretching for alkyl group. The peaks positioned at around 613 and 492 cm⁻¹ correspond to the characteristic stretching vibrations of Cu–O or SeO nanoparticles. Moreover, the band seen at 1050 cm⁻¹ may be attributed to the broad range alkene group's C=C stretching, which aids in the formation and stability of Se-CuO NPs (Saeed et al. 2019). The presence of different functional groups within plant extract could be associated with amines, proteins, carbohydrates, amino acids, and other macromolecules that are in charge of Se/ZnO-/CuO-nanoalloy reduction, capping, and stabilization (Nguyen et al. 2023).

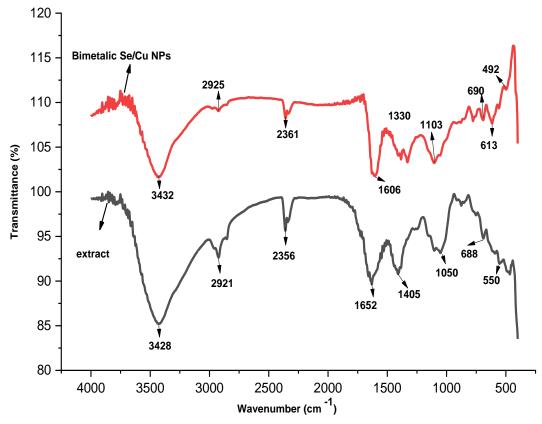
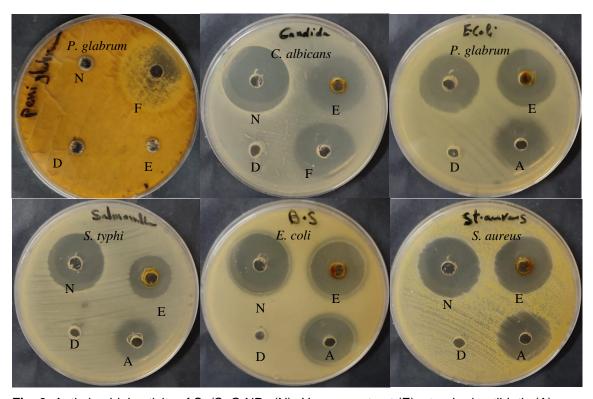



Fig. 2. FTIR of plant extract and bimetallic of Se/CuO NPS

Antimicrobial Activity of Se/CuO NPs and U. urens Extract

The apparent inhibition zones in Fig. 3 indicated that Se/CuO NPs and *U. urens* extract-mediated Se/CuO NPs possessed antimicrobial activities. Different levels of inhibition zones were recorded in Table 1 based on the tested microorganisms and tested sample, but generally Se/CuO NPs exhibited higher activity than extract. Growth of C. albicans, E. coli, S. typhi, B. subtilis and S. aureus were stopped with 31±0.48, 28±0.58, 26±0.69, 26±0.54, 27±0.74 mm of inhibition zones using Se/CuO NPs while its growth was stopped with 25±0.65, 26±1.25, 19±1.12, 24±0.98, and 25±0.28 mm of inhibition zones using the *U. urens* extract, respectively. The inhibitory action of Se/CuO NPs and *U. urens* extract was compared to standard antibiotic/antifungal which reflected significant differences in inhibition zone in case C. albicans with 2.65 HSD at 0.05. The Se/CuO NPs, U. urens extract showed antibacterial activity and inhibited C. albicans but didn't give antifungal activity against the filamentous fungus P. glabrum. This may be due to differences in wall structures. Significant differences appeared between Se/CuO NPs and standard antibiotic/antifungal at all tested bacteria and C. albicans. P. glabrum as filamentous fungus wasn't affected by U. urens extract or U. urens extract. Several bacterial species, namely S. aureus, B. subtilis, S. typhi, and E. coli, were inhibited by CuO NPs at 20 mg/ mL with maximum inhibition zone of 17.8 ± 0.4 mm (Dulta et al. 2022). In another study of Qanash et al. (2024), antimicrobial properties of ZnO NPs were enhanced when doped with SeONPs against different bacteria and fungi with inhibition zones of 28.33, 27.33, 27.67, 27.17, 27.5, 24.33, 23.33 and 18.17 mm against S. aureus, B. subtilis, Bacillus cereus, P. aeruginosa, E. coli, S. typhi, C. albicans, and Aspergillus niger. Se NPs

exhibited antimicrobial activity against *E. coli C. albicans, K. pneumoniae, S. aureus*, and *B. subtilis* (Alghonaim *et al.* 2024b). Regarding *U. urens* extract, their antimicrobial activity was reported in earlier investigation of (Mzid *et al.* 2017; Salem *et al.* 2021) against *C. albicans, S. aureus, B. subtilis, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus epidermidis, Escherichia coli, Enterococcus faecalis, Bacillus cereus, and <i>Micrococcus luteus*. The size and structure of NPs have an impact on their activity in live cells. He and colleagues found that the size and form of the NPs affect the diffusion, dispersion, and response of the cells (He *et al.* 2010). For instance, the diameters of the produced CuO-NPs affected their antibacterial effectiveness against *B. subtilis* and *S. aureus* and *P. aeruginosa* and *E. coli* (Azam *et al.* 2012).

Fig. 3. Antimicrobial activity of Se/CuO NPs (N), *U. urens* extract (E), standard antibiotic (A) /antifungal (F), and negative control (D) against different microorganisms

Table 1. Antimicrobial Activity of Se/CuO NPs, *U. urens* extract *vs.* Control

Microorganism	U. urens extract	Se/CuO NPs	Control (Ampicillin /Nystatin)	HSD at 0.05
P. glabrum	0.0±0.00 ^b	0.0±0.00 ^b	30±1.23ª	3.26
C. albicans	25±0.65°	31±0.48 ^a	28±0.32 ^b	2.65
E. coli	26±1.25 ^a	28±0.58 ^a	24±0.87 ^b	2.08
S. typhi	19±1.12 ^b	26±0.69 ^a	21±1.23 ^b	3.21
B. subtilis	24±0.98 ^b	26±0.54 ^a	24±0.87 ^b	0.94
S. aureus	25±0.28 ^a	27±0.74 ^a	23±1.01 ^b	2.29

Both MIC and MBC were assayed to characterize Se/CuO NPs and *U. urens* extract, and the results are shown in Table 2. The experiment reflected that MIC and MBC of Se/CuO NPs was less than *U. urens* extract with different levels. Excellent quantity of MBC (15.62±3.54 μg/mL) was recorded using Se/CuO NPs compared with its quantity (125±2.65 μg/mL) using extract in case *S. typhi*.

The same excellent result was recorded with the calculation of MBC in case *S. typhi*, where the MBC of the Se/CuO NPs exhibited was $31.25\pm2.54\,\mu\text{g/mL}$ compared with $500\pm3.65\,\mu\text{g/mL}$ MBC of the extract. Other outcomes were illustrated in Table 2. These results show the properties of both Se/CuO NPs and *U. urens* extract towards the tested microorganisms. The effect of both Se NPs and CuO NPs *versus* growth of some bacteria was documented with MIC values of 125 $\mu\text{g/mL}$ against *S. aureus* and 100 $\mu\text{g/mL}$ against *E. coli* (Rasheed *et al.* 2024).

Antioxidant Activity of Se/CuO NPs and U. urens Extract

From the results of antioxidant activity, it is clear that both Se/CuO NPs and U. urens extract possessed the highest capacity for radical scavenging with little difference (Table 3); however, the obtained IC50 values indicated that Se/CuO NPs (4.2±0.41 μ g/mL) were more effective than the U. urens extract (5.12 ±0.19 μ g/mL). In parallel, the activity of ascorbic acid was examined as antioxidant control, which gave an IC50 of 2.28±0.16 μ g/mL. In another study (Dulta et al. 2022), antioxidant activity of CuO NPs was documented by with IC50 of 91.2 μ g/mL.

Many investigations demonstrated that NPs possess more antioxidant potential than the extract of plant, which was employed for its synthesis (Sentkowska and Pyrzyńska 2023). Antioxidant activity may depend on the natural mediator of NPs synthesis. The CuO NPs were found to possess antioxidant activity with IC₅₀ of 28.05 μg/mL, while 51.71 μg/mL was associated with their producer *Suaeda maritime* (Peddi *et al.* 2021). Published papers documented the antioxidant activity of *U. urens* extract *via* DPPH, which is in agreement with the authors' investigations Mzid *et al.* (2017) and Salem *et al.* (2021).

Anti-hemolysis Activity of Se/CuO NPs and *U. urens* Extract

Destruction of human as well as animal red blood cells is known as hemolysis, causing liberation of hemoglobin. In the current work, management of hemolysis by Se/CuO NPs and U. urens extract compared with Indo (positive control) was recorded in Table 4 and Fig. 4. The hemolysis inhibition increased with the applied concentration increased up to $1000 \, \mu g/mL$ of both tested substances.

Table 2. Effective of *U. urens* Extract and Se/CuO NPs MIC and MBC with its MIC/MBC Index

	MIC μg/mL		HSD at	MBC μg/mL		HSD at	MBC/MIC index		HCD of
Microorganism	U. urens	Se/CuO	กรุป ลเ 0.05	U. urens	Se/CuO NPs	0.05	U. urens	Se/CuO NPs	HSD at 0.05
	extract	NPs	0.05	extract	Se/CuO NPS	0.05	extract	Se/CuO NPS	0.05
C. albicans	62.5±2.01a	15.62±1.25b	5.32	250±3.24a	62.5±2.15b	6.86	4±0.12a	4±0.09a	0.21
E. coli	31.25±1.23a	7.8±0.95b	3.26	125±2.10a	31.25±1.52b	5.95	4±0.25a	4±0.19a	0.16
S. typhi	125±2.65a	15.62±3.54b	6.32	500±3.65a	31.25±2.54b	7.65	4±0.35a	2±0.42b	0.56
B. subtilis	31.25±1.02a	15.62±1.36b	2.45	62.5±1.65a	15.62±2.15b	2.58	2±0.21a	1±0.29b	0.18
S. aureus	31.25±1.32a	15.62±2.26b	3.85	62.5±2.32a	15.62±0.98b	4.36	2±0.14a	1±0.08b	0.24

Table 3. Antioxidant Activity of Ascorbic Acid Se/CuO NPs and *U. urens* Extract

Concentration (µg/mL)	U. urens extract	Se/CuO NPs	Ascorbic Acid	HSD at 0.05
Control 100%	0.0	0.0	0.0	000
1.95	39.0±1.02b	40.8±0.65b	44.8±0.84a	2.12
3.9	44.7±1.20b	47.9±1.06b	54.1±0.87a	3.65
7.81	54.3±1.29b	55.2±0.52b	60.0±1.65a	2.02
15.62	62.1±0.88b	62.9±1.02b	67.5±0.54a	1.65
31.25	69.1±1.03b	70.6±2.15b	75.4±1.87a	2.32
62.5	76.2±0.65b	77.9±0.54b	84.2±1.28a	3.03
125	81.4±0.65c	84.6±0.48b	91.5±1.10a	3.01
250	88.9±0.58c	92.0±1.07b	94.1±0.67a	2.45
500	93.0±1.21b	94.2±0.32b	96.4±0.59a	1.36
1000	95.2±0.21b	96.5±0.14b	98.1±0.25a	2.98
IC ₅₀ μg/mL	5.12 ±0.19 a	4.2±0.41a	2.28±0.16c	0.69

Surprisingly the *U. urens* extract exhibited activity for preventing the hemolysis that was higher than Se/CuO NPs. Moreover, a similar effect (non-significant) was associated with the extract and Indo at all examined conditions on the hemolysis inhibition. These descriptions were confirmed via calculation of IC₅₀, where U. urens extract, Se/CuO NPs, and Indo inhibited the hemolysis at IC₅₀ of 4.1 ± 0.12 , 12.26 ± 0.22 , and 4.00 ± 0.36 μg/mL, respectively. Blood hemolysis was observed in the red blood cells that were exposed to CuO NPs (Pourahmad et al. 2023). Dhabian and Jasim (2023) also showed the anti-hemolytic activity of Se NPs.

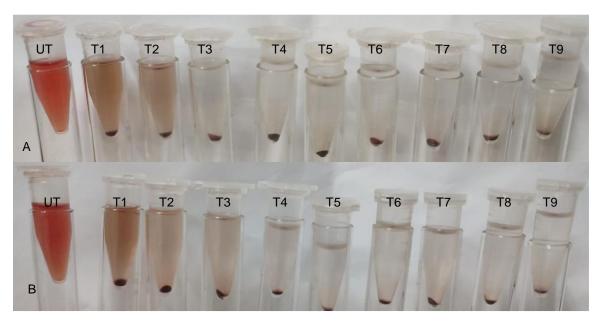


Fig. 4. Hemolysis inhibitio% of Se/CuO NPs (A) and U. urens extract (B) at different concentrations. T1 to T8 3.9 to 1000 µg/mL, T9 treated with Indomethacin, UT untreated sample

Table 4. Hemolysis Inhibition% of Se/CuO NPs and *U. urens* Extract and Indomethacin

Concentration		Hemolysis Inhibition9	HSD at 0.05	
(µg/mL)	U. urens	Se/CuO NPs	Indomethacin	
	extract			
Control 100%	0	0	0	000
3.9	43.4±1.25 ^a	32.9±0.95 ^b	44.7±0.36 ^a	3.211
7.81	53.8±1.65 ^a	42.9±1.26 ^b	54.5±1.11 ^a	5.125
15.62	64.9±0.42a	52.6±0.25 ^b	65.1±1.02 ^a	2.332
31.25	74.3±0.65 ^a	62.9±1.03 ^b	73.4±0.88 ^a	3.201
62.5	83.3±0.12 ^a	72.9±0.41 ^b	81.7±1.03 ^a	1.325
125	90.0±0.52a	80.9±0.21°	87.9±0.15 ^b	2.265
250	92.1±0.45a	85.4±0.14 ^b	93.0±0.21a	1.650
500	96.9±0.65a	89.2±0.41 ^b	95.8±1.00 ^a	1.562
1000	98.1±0.45 ^a	92.2±0.36 ^b	98.9±0.54 ^a	0.952
IC ₅₀ (µg/mL)	4.1±0.12 ^a	12.26±0.22 ^b	4.00±0.36a	0.321

Anticoagulation Activity Se/CuO NPs and *U. urens* Extract

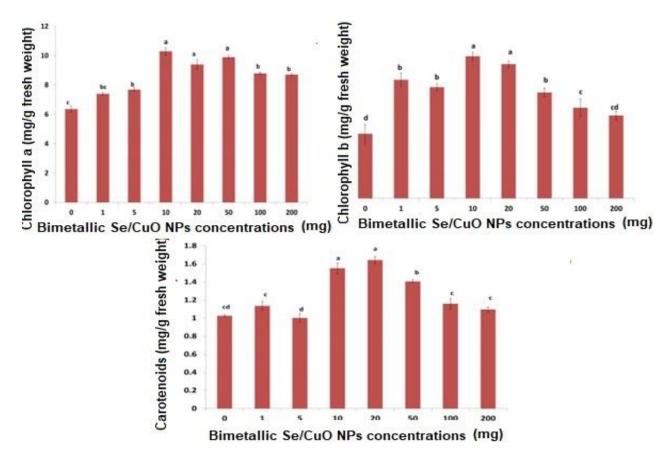
Anticoagulation of Se/CuO NPs and *U. urens* extract compared with heparin at different concentrations was recorded in Table 5. Se/CuO NPs exhibited significantly greater anticoagulant potential than the *U. urens* extract but not the same for heparin. At

2802

25 μg/mL, the prothrombin time (PT) was 17.4±0.96, 20.32±1.21, and 25.14±1.65 S; the partial thromboplastin time (PPT) was 35.45±0.09, 39.2±0.19, and 66.1±0.08 S; while at 75 μg/mL the PT was 45.3±0.10, 59.12±0.21, and 99.80±0.33 S; PPT was 73.4±0.21, 98.1±0.15, and 145.7±0.11 S of *U. urens* extract, Se/CuO NPs, and heparin. According to Ahmed *et al.* (2021), increasing the clotting time was observed with management of CuO NPs. The developed anti-coagulant effect may be due to inhibition of thrombin, as well as intrinsic coagulation factor as mentioned previously by Di Cera (2008). In a recent investigation (Siddique *et al.* 2024), several pharmacological utilizations were associated to Se NPs, such as anticoagulants, antioxidant, and thrombolytic potentials. In an *in vitro* study, Omar *et al.* (2017), showed that the *U. urens* extract possess either coagulation or anticoagulation influence on the tested blood, which is a result that matched our findings.

Table 5. Anticoagulant Activity at Different Doses of Se/CuO NPs, *U. urens* Extract and Heparin via Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT)

Dose	PT (Sec)			HSD	PTT (Sec)			HSD
(µg/mL)	U.	Se/CuO	Heparin		U. urens	Se/CuO	Heparin	
	urens	NPs	-		extract	NPs	-	
	extract							
0.0	12.5	12.5	12.50	1.68	30.0	30.0	30.0	5.21
	±0.23a	±0.32a	±0.15a		±1.21a	±0.95 a	±1.21a	
25	17.4		25.14	2.32	35.45	39.2	66.1	3.25
	±0.96c	20.32±1.21b	±1.65a		±0.09c	±0.19b	±0.08a	
50	24.8		49.80	4.02	50.4	61.6	93.8	2.23
	±0.22c	32.1±0.09b	±0.21a		±0.06c	±0.32b	±0.18a	
75	45.3		99.80	3.26	73.4	98.1	145.7	6.32
	±0.10c	59.12±0.21b	±0.33a		±0.21c	±0.15b	±0.11a	


Effect of bimetallic Se/CuO NPS on Morphological Traits and Pigment Contents of Maize Plant

The tested plant, the created NPs (dose, particle size, and shape), and the method of application (foliar, substrate, and seeds) all were found to influence the differing effects of NPs on plants. In this study, different doses of Se/CuO NPS were used to improve growth and pigment contents of maize plants. Based on data in Table 6, it appeared that bimetallic Se/Cu NPS at 1, 5, 10, 20, 50, and 200 ppm exhibited significant improvement in shoot lengths of maize plant. The highest increase of shoot and root lengths occurred in the 10 ppm treatment by 32.6 % and 17.9%, respectively, compared to the control. Se/CuO NPS at 20 ppm caused the highest value of fresh weight of shoot and root. In the same concept on tomato plants, Hernández-Hernández *et al.* (2019) found that, adding 10 mg/L of Se NPs could boost tomato output by as much as 22 percent. Additionally, Shafiq *et al.* (2024) found that CuO NPs improved growth traits of growth and biochemical characteristics of maize grown under normal conditions or stress conditions of salinity.

In the photosynthetic system, chlorophylls play a critical role that is strongly correlated with plant biomass and recovery. Data in Fig. 5 appeared to show that Se/CuO NPS at 1, 5, 10, 20, 50, and 100 ppm led to significant improvement in pigments content (chlorophyll a, b and carotenoid) of maize plant compared to the control and other treatments. The treatment of 10 ppm resulted in the highest significant improvement in chlorophyll a and b; the highest value of carotenoids occurred after treatment of 20 ppm of bimetallic compared to the control and other treatments.

Concentration	Shoot length	Root length	Fresh weight of	Fresh weight of
			shoot	root
Control	43.60±5.03b	10.40±2.97a	7.888±1.318c	1.0260±0.2033bc
1 mg	54.40±3.87a	8.720±1.057a	10.338±2.215abc	1.136±0.1696abc
5 mg	52.20±3.91ab	10.558±1.606a	10.036±1.128abc	1.0020±0.1464c
10 mg	57.30±3.44 a	12.26±2.99a	11.726±1.583ab	1.552±0.401ab
20 mg	52.40±7.44ab	12.08±2.31a	13.128±1.049a	1.6420±0.1038a
50 mg	53.90±4.23a	9.40±3.86a	10.90±2.83bc	1.4060±0.1996abc
100 mg	49.80±3.87ab	11.080±1.219a	8.588±1.305bc	1.160±0.224abc
200 mg	51.71± 1.30ab	9.60±3.65a	11.402±1.090b	1.096±0.467abc
HSD at 5%	8	4.65	3.084	0.486

Table 6. Morphological Traits of Maize Plant under Different Concentrations of Se/CuO NPS

Fig. 5. Effect of different concentrations of Se/CuO NPs on pigments contents of maize plant. The standard deviation of the means plus the mean of three replicates make up each number. Values of the same letter in the same column do not differ significantly; nevertheless, post hoc Tukey's test results at P < 0.05 show significant differences between distinct lower-case letters in the same column

Hernández-Hernández *et al.* (2019) found that the application of Cu at 10, 50, and 250 ppm and Se at 1 and 10 ppm increased chlorophyll content of tomato plants. Also, González-García *et al.* (2021) showed that application of Se NPs 10 and 50 mg L⁻¹, Cu NPs 100 and 500 mg L⁻¹ caused increased chlorophyll in the leaves of bell pepper, which minimize the degradation of chlorophyll in the plant. Furthermore, certain chloroplast enzymes involved in the manufacture of photosynthetic pigments are positively impacted

by NPs. According to Hussein *et al.* (2019), the application of Se NPs increased the amount of chlorophyll in the peanut crop. Furthermore, certain chloroplast enzymes included in the making of photosynthetic pigments were positively affected by NPs, and as a result chlorophylls and other pigments may accumulate in the leaves.

CONCLUSIONS

- 1. *Urtica urens* extract showed success in an eco-friendly procedure for synthesizing Se/CuO nanoparticles (NPs).
- 2. Se/CuO NPs were found to be particularly effective against pathogenic microorganisms including C. *albicans*, E. *coli*, S. *typhi*, B. *subtilis*, and S. *aureus*.
- 3. Se/CuO NPs exhibited antioxidant properties, and the ability to scavenge free radicals was documented.
- 4. Anti-hemolysis of *U. urens* extract was higher than Se/CuO NPs, while the anticoagulant potential of Se/CuO NPs was recorded as better than the *U. urens* extract *via* partial thromboplastin time (PPT) and prothrombin time (PT).
- 5. The current study has shown that there is a significant improvement of morphological traits and pigments contents of maize plant.

ACKNOWLEDGMENTS

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2025R676) King Saud University, Riyadh, Saudi Arabia.

REFERENCES CITED

- Abdelghany, T. M. (2013). "Stachybotrys chartarum: A novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity," *Indones. J. Biotechnol.* 18(2), 75-82. DOI: 10.22146/ijbiotech.7871
- Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A., and Mabrouk, A. S. (2018). "Recent advances in green synthesis of silver nanoparticles and their applications: About future directions," *BioNanoSci.* 8, 5-16. DOI: 10.1007/s12668-017-0413-3
- Abdelghany, T. M., Al-Rajhi, A. M., Almuhayawi, M. S., Abada, E., Al Abboud, M. A., Moawad, H., and Selim, S. (2023a). "Green fabrication of nanocomposite doped with selenium nanoparticle—based starch and glycogen with its therapeutic activity: Antimicrobial, antioxidant, and anti-inflammatory in vitro," *Biomass Conversion and Biorefinery* 13(1), 431-443. DOI: 10.1007/s13399-022-03257-8
- Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., Yahya, R., and Salem, S. S. (2023b). "Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms," *Biomass Conv. Bioref.* 13, 417-430. DOI: 10.1007/s13399-022-03412-1

- Ahmed, S. B., Mohamed, H. I., Al-Subaie, A. M., Al-Ohali, A. I., and Mahmoud, N. M. R. (2021). "Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite," *Sci. Rep.* 5(1), article 9540. DOI: 10.1038/s41598-021-88907-z.
- Al Abboud, M. A., Mashraqi, A., Qanash, H., Gattan, H. S., Felemban, H. R., Alkorbi, F., and Moawad, H. (2024). "Green biosynthesis of bimetallic ZnO@ AuNPs with its formulation into cellulose derivative: Biological and environmental applications," *Bioresources and Bioprocessing* 11(1), article 60. DOI: 10.1186/s40643-024-00759-3
- Alghonaim, M. I., Alsalamah, S. A., Mohammad, A. M., and Abdelghany, T. M. (2024a). "Green synthesis of bimetallic Se@ TiO₂NPs and their formulation into biopolymers and their utilization as antimicrobial, anti-diabetic, antioxidant, and healing agent in vitro," *Biomass Conversion and Biorefinery*, 1-13. DOI:10.1007/s13399-024-05451-2
- Alghonaim, M. I., Alsalamah, S. A., Ali, Y., and Abdelghany, T. M. (2024b). "Green mediator for selenium nanoparticles synthesis with antimicrobial activity and plant biostimulant properties under heavy metal stress," *BioResources* 19(1), 898-916. DOI: 10.15376/biores.19.1.898-916
- Al-Rajhi, A. M., Selim, S., Abdalla, A. E., Hagagy, N., Saddiq, A. A. N., Al Jaouni, S. K., and Abdelghany, T. M. (2024a). "Synthesis of chitosan/Fe₂O₃/CuO-nanocomposite and their role as inhibitor for some biological disorders in vitro with molecular docking interactions studies," *International Journal of Biological Macromolecules* 280(1), article 135664. DOI: 10.1016/j.ijbiomac.2024.135664
- Al-Rajhi, A. M., Abdelghany, T. M., Almuhayawi, M. S., Alruhaili, M. H., Al Jaouni, S. K., and Selim, S. (2024b). "The green approach of chitosan/Fe₂O₃/ZnO-nanocomposite synthesis with an evaluation of its biological activities," *Applied Biological Chemistry* 67, article 75. DOI: 10.1186/s13765-024-00926-2
- Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M. Y. R., and Abdelghany, T. M. (2022a). "In situ green synthesis of Cu-doped ZnO based polymers nanocomposite with studying antimicrobial, antioxidant and anti-inflammatory activities," *Appl. Biol. Chem.* 65, article 35. DOI: 10.1186/s13765-022-00702-0
- Al-Rajhi, A. M. H., Yahya, R., Abdelghany, T. M., Fareid, M. A., Mohamed, A. M., Amin, B. H., and Masrahi, A. S. (2022b). "Anticancer, anticoagulant, antioxidant and antimicrobial activities of *Thevetia peruviana* latex with molecular docking of antimicrobial and anticancer activities," *Molecules* 27, article 3165. DOI: 10.3390/molecules27103165
- Alshehri, A. A., and Malik, M. A. (2020). "Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation," *Catalysts* 10(10), article 1138. DOI: 10.3390/catal10101138
- Amin, M. A. A., Abu-Elsaoud, A. M., Nowwar, A. I., Abdelwahab, A. T., Awad, M. A., Hassan, S. E. D., and Elkelish, A. (2024). "Green synthesis of magnesium oxide nanoparticles using endophytic fungal strain to improve the growth, metabolic activities, yield traits, and phenolic compounds content of *Nigella sativa* L," *Green Processing and Synthesis* 13(1), article 20230215. DOI: 10.1515/gps-2023-0215
- Amin, M. A., Algamdi, N. A., Waznah, M. S., Bukhari, D. A., Alsharif, S. M., Alkhayri, F., Abdel-Nasser, M., and Fouda, A. (2025). "An insight into antimicrobial, antioxidant, anticancer, and antidiabetic activities of trimetallic Se/ZnO/CuO nanoalloys fabricated by aqueous extract of *Nitraria retusa*," *Journal of Cluster Science* 36(1), 1-15. DOI:10.1007/s10876-024-02742-6
- Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., and Memic, A. (2012). "Size-dependent

- antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains," *International Journal of Nanomedicine* 7, 3527-3535. DOI: 10.2147/JJN.S29020
- Dhabian, S. Z., and Jasim, R. S. (2023). "Antioxidant, cytotoxic, and antihemolytic activity of greenly synthesized selenium nanoparticles using *Elettaria cardamomum* extract," *Journal of Nanostructures* 13, 76-85. DOI: 10.22052/JNS.2023.01.009
- Di Cera, E. (2008). "Thrombin," *Molecular Aspects of Medicine* 29(4), 203-254. DOI: 10.1016/j.mam.2008.01.001.
- Djamila, B., Eddine, L. S., Abderrhmane, B., Nassiba, A., and Barhoum, A. (2024). "In vitro antioxidant activities of copper mixed oxide (CuO/Cu₂O) nanoparticles produced from the leaves of *Phoenix dactylifera* L," *Biomass Conversion and Biorefinery* 14(5), 6567-6580. DOI: 10.1007/s13399-022-02743-3
- Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., and Ighalo, J. O. Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). "Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity," *Sustain Environ Res* 32, article 2. DOI: 10.1186/s42834-021-00111-w
- El-Batal, A. I., Ismail, M. A., Amin, M. A., El-Sayyad, G. S., and Osman, M. S. (2023). "Selenium nanoparticles induce growth and physiological tolerance of wastewater-stressed carrot plants," *Biologia* 78(9), 2339-2355. DOI: 10.1007/s11756-023-01401-x
- Fana, L., Wua, P., Zhanga, J., Gaoa, S., Wanga, L., Li, M., Shaa, M., Weiguo Xie, W., and Nie, M. (2012). "Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates," *Int. J. Biol. Macromol.* 50, 31-37. DOI: 10.1016/j.ijbiomac.2011.09.024
- Farooq, M., Almamari, S. A. D., Rehman, A., Al-Busaidi, W. M., Wahid, A., and Al-Ghamdi, S. S. (2021). "Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean," *Scientia Horticulturae* 281, article 109894. DOI:10.1016/j.scienta.2021.109894
- Feng, R., Wei, C., and Tu, S. (2013). "The roles of selenium in protecting plants against abiotic stresses," *Environmental and Experimental Botany* 87, 58-68. DOI: 10.1016/j.envexpbot.2012.09.002
- González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J., and Juárez-Maldonado, A. (2021). "Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress," *Plants* 10, article 217. DOI: 10.3390/ plants10020217
- Hamza, M. F., Lu, S., Salih, K. A. M., Mira, H., Dhmees, A. S., Fujita, T., Wei, Y., Vincent, T., and Guibal, E. (2020). "As(V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads," *Science of The Total Environment* 719, article 137396, DOI: 10.1016/j.scitotenv.2020.137396.
- He, C., Hu, Y., Yin, L., Tang, C., and Yin, C. (2010). "Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles," *Biomaterials* 31, 3657-3666. DOI: 10.1016/j.biomaterials.2010.01.065
- Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Valdés-Reyna, J., and Juárez-Maldonado, A. (2019). "Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants," *Plants (Basel)* 20; 8(10), article 355. DOI: 10.3390/plants8100355

- Huang, P., Kong, Y., Li, Z., Gao, F., and Cui, D. (2010). "Copper selenide nanosnakes: Bovine serum albumin-assisted room temperature controllable synthesis and characterization," *Nanoscale Res Lett.* 5, 949-956. DOI: 10.1007/s11671-010-9587-0
- Hussein, H. A., Darwesh, O. M., Mekki, B. B., and Hallouty, S. M. (2019). "Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium," *Biotechnol. Rep.* 24. DOI: 10.1016/j.btre.2019.e00377
- Karimi, S., and Mahdavi Shahri, M. (2021). "Medical and cytotoxicity effects of green synthesized silver nanoparticles using Achillea millefolium extract on MOLT-4 lymphoblastic leukemia cell line," *Journal of Medical Virology* 93(6), 3899-3906. DOI: 10.1002/jmv.26694
- Lichtenthaler, H., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., and Rahmsdorf, U. (1981). "Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves," *Photosynthesis Research* 2, 115-141. DOI: 10.1007/BF00028752
- Mzid, M., Ben Khedir, S., Ben Salem, M., Regaieg, W., and Rebai, T. (2017). "Antioxidant and antimicrobial activities of ethanol and aqueous extracts from *Urtica urens*," *Pharm Biol.* 55(1), 775-781. DOI: 10.1080/13880209.2016.1275025
- Nguyen, T. T. T., Nguyen, Y. N. N., Tran, X. T., Nguyen, T. T. T., and Tran, T. V. (2023). "Green synthesis of CuO, ZnO, and CuO/ZnO nanoparticles using *Annona glabra* leaf extract for antioxidant, antibacterial and photocatalytic activities," *Journal of Environmental Chemical Engineering* 11, article 111003. DOI: 10.1016/j.jece.2023.111003
- Omar, G., Abdallah, L., Rahim, A., Othman, R., and Barakat, A., (2017). "Selected wild plants ethanol extracts bioactivity on the coagulation cascade," *Journal of Scientific Research and Reports* 13(6), 1-10. DOI: 10.9734/JSRR/2017/32989
- Otari, S., Bapat, V. A., Lakkakula, J., Kadam, U. S., and Suprasanna, P. (2024). "Advancements in bionanotechnological applications for climate-smart agriculture and food production," *Biocatalysis and Agricultural Biotechnology 57*, article 103117. DOI: 10.1016/j.bcab.2024.103117
- Peddi, P., Ptsrk, P. R., Rani, N. U., and Tulasi, S. L. (2021). "Green synthesis, characterization, antioxidant, antibacterial, and photocatalytic activity of *Suaeda maritima* (L.) Dumort aqueous extract-mediated copper oxide nanoparticles," *Journal of Genetic Engineering and Biotechnology* 19(1), article 131. DOI: 10.1186/s43141-021-00229-9
- Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J., and Dickau, R. (2009). "Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico," *Proc. Natl. Acad. Sci. USA* 106, 5019-5024. DOI: 10.1073/pnas.0812525106
- Pourahmad, J., Salami, M., and Zarei, M. H. (2023). "Comparative toxic effect of bulk copper oxide (CuO) and CuO nanoparticles on human red blood cells," *Biological Trace Element Research* 201(1), 149-155. DOI: 10.1007/s12011-022-03149-y
- Qanash, H., Bazaid, A. S., Alharazi, T., Barnawi, H., Alotaibi, K., Shater, A. R. M., and Abdelghany, T. M. (2024). "Bioenvironmental applications of myco-created bioactive zinc oxide nanoparticle-doped selenium oxide nanoparticles," *Biomass Conversion and Biorefinery* 14(15), 17341-17352. DOI: 10.1007/s13399-023-03809-6
- Qanash H., Bazaid, A. S., Aldarhami, A., Alharbi, B., Almashjary, M. N., Hazzazi, M. S., Felemban, H. R., and Abdelghany, T. M. (2023). "Phytochemical characterization and efficacy of *Artemisia judaica* extract loaded chitosan nanoparticles as inhibitors

- of cancer proliferation and microbial growth," *Polymers* 15(2), article 391. DOI: 10.3390/polym15020391
- Rasheed, R., Bhat, A., Singh, B., and Tian, F. (2024). "Biogenic synthesis of selenium and copper oxide nanoparticles and inhibitory effect against multi-drug-resistant biofilm-forming bacterial pathogens," *Biomedicines* 12(5), article 994. DOI: 10.3390/biomedicines12050994.
- Saeed, M., Ansari, M. T., Kaleem, I., Bajwa, S. Z., Rehman, A., Bano, K., Khizra, B., Bushra, T., Nuzhat, J., Mehvish, Z., Ayesha, S. (2019). "Assessment of antimicrobial features of selenium nanoparticles (SeNPs) using cyclic voltammetric strategy," *J. Nanosci. Nanotechnol.* 19, 7363-7368. DOI: 10.1166/jnn.2019. 16627
- Safdar, M., Aslam, S., Akram, M., Khaliq, A., Ahsan, S., Liaqat, A., Mirza, M., Waqas, M., and Qureshi, W. A. (2023). "*Bombax ceiba* flower extract mediated synthesis of Se nanoparticles for antibacterial activity and urea detection," *World J. Microbiol. Biotechnol.* 39(3), article 80. DOI: 10.1007/s11274-022-03513-z
- Salem, H., Toumi-Benali, F., Kerfouf, A., and Benyamina, A. (2021). "Antioxidant, antibacterial and antifungal activities of the aqueous and hydroalcoholic extracts of Western Algerian *Urtica urens*," *South Asian Journal of Experimental Biology* 11(3), 327-336. DOI: 10.38150/sajeb.11(3). p327-336
- Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M. D., Gupta, N. K., Mehta, B. K., Kumar, P., Pandey, S., Chauhan, J., and Singhal, R. K. (2022). "Drought stress responses and inducing tolerance by seed priming approach in plants," *Plant Stress* 4, article 100066. DOI: 10.1016/j.stress.2022.100066
- Selim, S., Abdelghany, T. M., Almuhayawi, M. S., Nagshabandi, M. K., Tarabulsi, M. K., Elamir, M. Y. M., and Al Jaouni, S. K. (2025a). "Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators," *Sci. Rep.* 15, article 2032. DOI:10.1038/s41598-024-85005-8
- Selim, S., Saddiq, A. A., Ashy, R. A., Baghdadi, A. M., Alzahrani, A. J., Mostafa, E. M., Al Jaouni, S. K., Elamir, M. Y. M., Amin, M. A., and Hagagy, N. (2025b). "Bimetallic selenium/zinc oxide nanoparticles: Biological activity and plant biostimulant properties," *AMB Express* 15(1), 1-11. DOI:10.1186/s13568-024-01808-y.
- Sentkowska, A., and Pyrzyńska, K. (2023). "Antioxidant properties of selenium nanoparticles synthesized using tea and herb water extracts," *Appl. Sci.* 13, article 1071. DOI: 10.3390/app13021071
- Shafiq, H., Shani, M.Y., Ashraf, M.Y., De Mastro, F., Cocozza, C., Abbas, S., Ali, N., Zaib-un-Nisa, Tahir, A., Iqbal, M., *et al.* (2024). "Copper oxide nanoparticles induced growth and physio-biochemical changes in maize (*Zea mays* L.) in saline soil," *Plants* 13, article 1080. DOI: 10.3390/plants13081080
- Sharma, A., and Dutta, R. K. (2018). "Se-doped CuO NPs/H2O2/UV as a highly efficient and sustainable photo-Fenton catalytic system for enhanced degradation of 4-bromophenol," *Journal of Cleaner Production* 185, 464-475. DOI: 10.1016/j.jclepro.2018.03.049
- Siddique, M., Khan, M., Bokhari, S., Ismail, M., Ahmad, K., Haseeb, H., Kayani, M., Khan, S., Zahid, N., and Khan, S. (2024). "Ascorbic acid-mediated selenium nanoparticles as potential antihyperuricemic, antioxidant, anticoagulant, and thrombolytic agents," *Green Processing and Synthesis* 13(1), article 20230158. DOI: 10.1515/gps-2023-0158

- Soliman, M. K., Amin, M. A. A., Nowwar, A. I., Hendy, M. H., and Salem, S. S. (2024). "Green synthesis of selenium nanoparticles from *Cassia javanica* flowers extract and their medical and agricultural applications," *Scientific Reports* 14(1), article 26775. DOI: 10.1038/s41598-024-77353-2
- Vernon, L. P., and Seely, G. R. (1996). "The Chlorophylls," Academic Press, New York. Yruela, I. (2009). "Copper in plants: Acquisition, transport, and interactions," Functional Plant Biology 36(5), 409-430. DOI: 10.1071/FP08288
- Xuan, L., Ju, Z., Skonieczna, M., Zhou, P. K., and Huang, R. (2023). "Nanoparticles-induced potential toxicity on human health: applications, toxicity mechanisms, and evaluation models," *MedComm* 4(4), article e327. DOI: 10.1002/mco2.327

Article submitted: November 22, 2024; Peer review completed: January 21, 2025; Revised version received and accepted: January 23, 2025; Published: February 19, 2025. DOI: 10.15376/biores.20.2.2791-2810