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Review of Long-Term Performance of Timber-Concrete
Composite Beams
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Timber-concrete composite (TCC) beams are formed by integrating timber
beams and concrete slabs into a cohesive structural unit using shear
connectors. This integration capitalizes on the tensile strength of timber
and the compressive strength of concrete, resulting in excellent load-
bearing capacity, bending stiffness, vibration comfort, sound insulation,
and fire resistance. The long-term behavior of TCC beams must be
emphasized, considering the significant time-dependent behaviors of
timber, concrete, and the connection system. This work analyzed the long-
term mechanical behavior of TCC beams and systematically reviewed the
current research on the long-term performance. The primary focus was on
the experimental studies of the shear performance of the shear connectors
and the mechanical performance of TCC beams under long-term loads.
Furthermore, theoretical methods and numerical simulation analyses for
evaluating the long-term performance of TCC beams were analyzed.
Strengths and weaknesses of existing theoretical methods are identified,
and further research and development in the calculation method of TCC
beams under long-term loads is proposed.
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INTRODUCTION

The green and environmentally friendly characteristics of timber structures align
with the contemporary focus on ecological balance and sustainable development. In
addition, using eco-friendly timber as a building material can reduce construction waste
and chemical pollution (Huber et al. 2019; Himes and Busby 2020; Duan et al. 2022). With
the advancement of modern timber construction technologies, timber structures are now
widely applied in public buildings such as apartments, office buildings, and conference
centers (Pastori et al. 2022; Svatos-Raznjevi¢ et al. 2022; Li et al. 2023). The timber-
concrete composite (TCC) beam is a structural component developed from timber beams,
combining the timber beam with a concrete slab through shear connectors to form a
cohesive unit, as shown in Fig. 1. Compared to traditional timber beams, TCC beams
significantly enhance the strength and stiffness of structural components, as well as
improve vibration performance, sound insulation, and fire resistance. This makes them
particularly suitable for multi-story and large-span timber structures (Xie et al. 2020;
Zhang et al. 2020; Du et al. 2021; Li et al. 2023).
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Fig. 1. Timber-concrete composite beam

The creep behavior of wood and the shrinkage and creep of concrete contribute to
the long-term deformations in TCC beams, which cannot be overlooked. The redistribution
of internal forces further complicates the theoretical analysis of the long-term mechanical
performance of the composite beams. Therefore, evaluating the long-term mechanical
behavior of TCC beams is crucial in the design and application. This paper reviews the
research findings on the long-term mechanical performance of timber-concrete composite
beams, analyzing the long-term stress mechanisms, with a focus on experimental studies
on the long-term behavior. This includes shear tests of shear connectors under long-term
loads and bending tests of composite beams. Furthermore, the theoretical methods and
numerical simulation analyses for evaluating the long-term performance of TCC beams are
analyzed.

LONG-TERM PERFORMANCE OF SHEAR CONNECTORS

Long-term tests on shear connection specimens aim to analyze the deformation
growth patterns of shear connectors under sustained loads. Different types of shear
connectors vary in shear stiffness and load-bearing capacity. To compare the long-term
deformation variations among different shear connector types, the sustained load is
generally set at 30% of the ultimate strength under short-term loading. Fragiacomo et al.
(2007) used the creep coefficient to measure the relative deformation of structural
components or joints under long-term loads compared to their initial deformation, which
is calculated as follows,

o)== "% )
€

where ¢(t) is creep coefficient of the shear connectors, &(t) is total deformation of the
structural component at time t, and o is initial deformation of the structural component.

Table 1 presents the long-term loading test data for several timber-concrete
connection specimens. The long-term deformation of the shear connection specimens
shows a characteristic pattern of rapid growth in the early stages, followed by a slowdown
in the later stages (Jorge et al. 2010). The tests varied in terms of environmental conditions,
loading duration, specimen size, and material types. From these variations, some key
parameters significantly impacting the creep coefficient can be identified.
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Table 1. Long-Term Tests of Timber-Concrete Composite Connection Specimens

Ks Concrete Environmental Load
t (Da
Authors Connector type (KN/mm) Wood type grade condition (Day) (kN) ()
Jorge et al LC20/22 600 0.91
29010) ' SFS screw / Glulam LC12/13 Constant 600 / 0.79
LC16/18 600 0.695
Fragiacomo et SFS screw 11.9 Redwood LC25 Constant 421 / 0.85
al. (2012)
16 mm screw 215 343 19.2 0.32
Van Egegrget al. Glulam LC9 Constant

(1999) 12 mm screw 8.7 426 10.6 0.69
8 mm rebar 14.6 Glued spruce C20 426 4.50 0.66
10 mm rebar 16.3 Spruce C20 573 6.90 0.49
Dias (2005) 10 mm rebar 14.0 Spruce C50 Constant 573 7.10 0.63
10 mm rebar 27.0 Pine Cc20 573 7.40 0.75
10 mm rebar 34.5 Chestnut C20 573 8.10 1.45
10 mm rebar 16.0 Spruce LC16 426 5.80 1.01
Jiana et al 6.63 C30 Indoor variation 32.71 0.59
(2321) ) 12 mm screw 6.58 Glulam LC30 Indoor variation 365 31.94 0.72
6.58 LC30 Outdoor variation 31.94 1.80
31.8 LC20 606 10.94 0.91

Jorge et al. ul
(2005) SFS screw 31.1 Glulam LC16 Constant 606 9.82 0.51
29.2 LC12 606 10.29 0.65
S(r;(goa)“' Notch connector / Glulam C30 Constant 342 Egé 133

Note: Ks is shear stiffness of shear connectors; t is holding time of long-term load; ¢(t) is creep coefficient of the shear connectors; C is normal concrete; LC
is lightweight concrete.
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Effect of Timber and Concrete Types

Due to the differing creep characteristics of timber and concrete, the long-term
performance of timber-concrete composite beam is more complex than that of pure timber
and concrete beams. Timber shrinks or expands with changes in relative humidity and
temperature. In the current long-term experiments of shear connections, the concrete used
mainly falls into two types: lightweight aggregate concrete and ordinary concrete. Jorge et
al. (2010) investigated the creep behavior of shear connectors with lightweight concrete.
As the concrete strength increased from 21.0 to 30.7 MPa, the creep coefficient increased
from 0.79 to 0.91. Fragiacomo et al. (2007) found that the type of concrete had no
significant impact on the long-term performance of connectors. However, Dias (2005)
discovered that the creep coefficient of shear connectors using lightweight aggregate
concrete was approximately twice that of those using ordinary concrete through
experiments. Additionally, Jiang et al. (2021) found that the one-year creep coefficient of
screw connections using lightweight concrete was about 1.2 times that of screw
connections using ordinary concrete. Van de Kuilen et al. (2011) analyzed the impact of
concrete grade on the long-term behavior of shear connections, finding that reducing the
concrete grade can lower the creep coefficient. Furthermore, the type of timber also affects
the long-term load-bearing behavior of shear connections. Dias (2005) performed long-
term loading tests on TCC specimens using pine, chestnut, and glued spruce, and found
that the creep coefficients of the specimens using logs were relatively large.

Effect of Environmental Condition Variations

Fragiacomo et al. (2007) conducted experimental tests on the long-term behavior
of the ‘Tecnaria’ connector. The test results demonstrated that creep deformation increased
due to the hygroscopic behavior of the timber surrounding the connectors under fluctuating
humidity in a dynamic and ever-changing environment. A notable increase in delayed slips
was found when the loaded specimens were subjected to relative humidity cycles with a
period exceeding seven days and an amplitude of at least 40%. Fragiacomo et al. (2007)
found that in the absence of a plywood interlayer between the timber and concrete
components, high environmental humidity can cause wet concrete to seep and potentially
lead to timber decay. Furthermore, Jiang et al. (2021) employed lightweight concrete in
place of normal concrete to investigate the effect of environmental conditions on the long-
term behavior of shear connectors. The creep coefficient of screw connections under
outdoor environments was approximately 2.5 times that of those tested in indoor
environments. The variation in ambient temperature and humidity significantly affected
the creep coefficient of lightweight aggregate concrete specimens. The significant swelling
of timber in outdoor environments led to a substantial increase in deflection. Additionally,
mechano-sorptive creep in timber, induced by fluctuations in humidity, was more
pronounced in such environments, further contributing to a greater increase in deflection.

Effect of Shear Connectors Types and Load Levels

The types of shear connections and the load levels had impacts on the creep
coefficients. Comparing existing research findings revealed that the creep coefficient of
notched connections was greater than that of screw connections. Jorge et al. (2010) studied
the effects of concrete type and screw diameter on the shear capacity and stiffness of
connectors. The results demonstrated that the creep coefficients of the various shear
connectors generally ranged from 0.5 to 2.0, falling between the intrinsic creep coefficients
of timber and concrete. Shi et al. (2020) conducted long-term tests on notched connectors,
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and found that after approximately one year of loading, the long-term slip for notched
connections with load levels of 0.30 and 0.15 were 0.221 mm and 0.338 mm, respectively.
According to predictions from an improved creep model, the creep coefficient of slotted
connectors at the end of a 50-year service life was 3.0, and long-term loading had a minimal
impact on the creep coefficient of shear connections. Van de Kuilen et al. (2011) examined
the impact of dowel fastener types on the long-term behavior of shear connections,
discovering that an increase in screw diameter reduced the creep coefficient.

LONG-TERM PERFORMANCE OF COMPOSITE BEAMS

The long-term beam tests are usually adopted to study the variation patterns of
beam deflection deformation under long-term loading conditions. Table 2 summarizes the
long-term loading test data of several timber-concrete composite beams.

Effect of Construction Methods and Load Levels

Fragiacomo et al. (2007; 2012) conducted two long-term experiments of TCC
beams, which were constructed using two methods: unsupported and supported. In the
unsupported method, the timber beams bore the construction load, while in the supported
method, supports were placed under the timber beams during construction and removed
after the concrete hardened. The test results indicated that using the supported construction
method could reduce the initial deformation of the composite beams, and the final long-
term deformation value could be reduced by approximately 15%. Shi et al. (2021)
conducted a long-term experimental study on prefabricated TCC beams, revealing that
when the long-term load was doubled, the deflection increase of the composite beams rose
by about 60%, but the creep coefficient decreased by about 20%. Tao et al. (2022) found
that the stiffness and load-bearing capacity of composite beams with prefabricated glued
steel plate connections were increased by approximately 14.8% and 35.4%, respectively,
compared to those using glued steel plate connectors. Augeard et al. (2020) examined the
creep performance of TCC structures under sustained cyclic loads. The average creep
coefficients for the three groups of specimens were found to be 0.25, 0.11, and 0.15,
respectively. The specimens incorporating ultra-high-performance fiber-reinforced
concrete demonstrated the lowest creep coefficient of 0.11, compared to those using
ordinary concrete.

Effect of Concrete Types

Using lightweight concrete instead of ordinary concrete can have two opposing
effects on long-term mechanical performance (Jorge et al. 2010). Lightweight concrete
reduces the self-weight of structures, which is beneficial for reducing deformation. On the
other hand, lightweight concrete has a lower elasticity modulus and a higher shrinkage
compared to ordinary concrete. Fragiacomo et al. (2012, 2013) conducted full-scale tests
on a six-story TCC building and long-term experiments on composite beams and found
that specimens with lightweight concrete exhibited significant shrinkage and cracking
during loading. Three months post-loading, the creep coefficient reached 1.0. The cracking
compromised the protective function of the outer concrete layer, adversely affecting the
long-term durability of the composite beams. Yeoh (2010) found through experiments that
using low-shrinkage concrete reduced the long-term deformation of composite beams by
15% compared to using ordinary concrete.
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Table 2. Long-Term Tests of Timber-Concrete Composite Beams

Authors Connector Type Wood Type Concrete Type Concrete Grade | Environmental Condition o)
Notch Normal 0.99
Yeoh. (2010) LVL Low shrinkage C35 Variable 1.06
Steel plate Low shrinkage 1.12
Fragiacomo et al. (2007) Notch Log Normal C30 Variable 822
Ceccotti et al. (2007) Dowel Glulam Normal C30 Variable 1.38
Kandécz et al. (2012) Screw Log Steel fiber reinforced C25 Variable 2.32
. Steel plate . . 0.61
Fragiacomo et al. (2013) Screw Glulam Self-compacting C20 Variable 051
- Notch Constant temperature 7.7
Hailui et al. (2015) SES screw LVL Normal C30 Variable moisture 79
Fragiacomo et al. (2012) SFS screw Mahogany Lightweight LC25 Variable 1?2
Screw 2.4
Steel plate . 1.8
Van Der et al. (1999) Notch+Screw LVL Normal C25 Variable 16
Concrete notch 14
Normal C30 Indoor variation 1.26
. Lightweight LC30 Indoor variation 1.20
Jiang et al. (2021) Screw Glulam Lightweight LC30 Indoor variation 1.65
Lightweight LC30 Outdoor variation 2.47
Shi et al. (2020) Notch+Screw Glulam Normal C35 Variable 0.88
0.98
Shi et al. (2021) Screw Glulam Prefabricated C30 Variable 0.89
0.96

Eisenhut et al. High performance .

(2016) Epoxy Glulam concrete / Outdoor variation 1.75-2.24

Note: C is normal concrete; LC is lightweight concrete.
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In long-term experiments on TCC beams by Kandcz et al. (2012), the concrete slab
was poured with steel fiber-reinforced concrete. Theoretically, the inclusion of fibers can
reduce concrete shrinkage and long-term deformation of composite beams. However, the
absence of a control group in the experiment leaves the application of fiber-reinforced
concrete in TCC beams open for further research. Jiang et al. (2021) observed that the
overall trend in long-term deflection growth for composite beams using lightweight
concrete was similar to those using ordinary concrete. Interestingly, the one-year creep
coefficient of composite beams with lightweight concrete was slightly smaller than that of
beams with ordinary concrete. Fu et al. (2020) investigated the bond performance between
wood chip concrete and timber, glued using four different adhesives. Wood chip concrete
was made by substituting 15% of the coarse aggregate volume with beech wood chips,
aiming to reduce the weight and enhance the thermal insulation properties of the concrete,
while maintaining a majority of its compressive strength.

Effect of Environmental Condition Variations

Fragiacomo et al. (2013) studied the time-dependent characteristics of TCC floors
and precast concrete slabs. Throughout the experiment, continuous monitoring was
performed on mid-span deflection, relative slip at connection points, and the relative
humidity and temperature of the environment. The experimental results were validated
using finite element models, predicting the total deflection of the specimens after a 50-year
service life. Hailu (2015) conducted long-term tests on four TCC beams, focusing on the
impact of cyclic variations in environmental humidity on the deformation and stiffness of
the composite beams. The tests were conducted under a controlled environment with a
constant temperature and relative humidity fluctuating periodically between 50% and 95%.
The results showed that changes in relative humidity led to significant increases in
structural deformation. After the long-term load was removed, the stiffness of composite
beams degraded by approximately 20% to 50%. Jiang et al. (2021) observed that the long-
term deformation of composite beams subjected to outdoor variations increased at a much
faster rate than that of beams exposed to indoor conditions. The one-year creep coefficient
of the outdoor-tested beam specimens was roughly twice that of the indoor-tested
specimens. Eisenhut et al. (2016a,b) investigated the long-term behavior of adhesive-
bonded timber-concrete composite beams and found that the deflection of these beams
exhibited similar changes in response to seasonal temperature and humidity variations. Fu
et al. (2024) discovered that increasing relative humidity levels (55%, 75%, 95%) during
testing of wood-concrete composites led to a corresponding increase in wood moisture
content. This increase significantly reduced the shear strength of timber-concrete
composite (TCC) joints. The swelling of the wood under these conditions induced internal
stresses and caused damage to the concrete at the interface, ultimately decreasing shear
bond strength. It was also noted that the grade of concrete (ranging from C30 to C50) had
minimal impact on the effects of moisture-induced stresses. Bathon et al. (2006)
investigated the shear behavior of timber-concrete joints bonded with brittle epoxy and
ductile polyurethane. The results showed that the wet spruce timber-concrete joint retained
comparable shear capacity after 12 months when compared to the reference joint. In
contrast, dry spruce wood-concrete joints exhibited a decline in both shear strength and
stiffness. Hwang et al. (2023) examined the moisture content of nail-laminated timber
(NLT)-concrete composite floors under outdoor environments. It was found that the
moisture content of NLT increased with higher ambient relative humidity and the pouring
of wet concrete.
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Effect of Shear Connector Types

Fragiacomo et al. (2013) investigated two different types of connectors (steel plates
and screws). In the long-term tests, both composite beam specimens exhibited similar time-
dependent trends in mid-span deflection. The long-term loading resulted in increases in the
mid-span deflection after 339 days by 48% and 77%, respectively. Van Der Linden (1999)
found that the differences between the creep coefficient of the composite beams used steel
plate connectors and notch connectors were relatively small, and the creep coefficient of
the composite beams used screw connectors was significantly larger. Kuhlmann et al.
(2004) investigated the long-term behavior of notched connections and found that the creep
coefficient of notched connections reinforced with screws was lower compared to those
without screws. Auclair et al. (2016) introduced a novel shear connector for TCC beam,
comprising an elongated cylinder of ultra-high-performance fiber-reinforced concrete and
a steel core. This design prioritized sustainability by aiming to minimize the use of
structural adhesives and steel elements, while also considering constructability and ease of
assembly. Dankova et al. (2019) developed a non-metallic connector made from beech
plywood, which improved adhesion to the glulam rib and incorporated holes in the upper
portion to facilitate rebar placement and concrete penetration. Additionally, adhesives can
serve as connecting components. However, wood, concrete, and epoxy adhesives exhibit
distinct hygrothermal properties, leading to internal stresses during bonding under varying
temperature and moisture conditions. Tannert et al. (2017) conducted long-term studies
under indoor climatic conditions and found that adhesive bonding was a more rigid method
for achieving composite action between timber and concrete, with a calculated connection
efficiency of over 95% for both beams after 4.5 years of loading. Furthermore, long-term
loads of approximately 30% of beam capacity did not cause any degradation of the
adhesive bond.

THEORETICAL ANALYSIS OF LONG-TERM PERFORMANCE OF TIMBER-
CONCRETE COMPOSITE BEAMS

Theoretical Research

Currently, the long-term theoretical analyses for TCC beams can be categorized
into numerical simulation methods and calculation methods. Numerical methods for
simulating long-term loading tests offer advantages such as low cost and flexible parameter
selection. Finite element models can be divided into one-dimensional (1D) finite element
models and three-dimensional (3D) finite element models. One-dimensional finite element
models are computationally inexpensive but require experimental data to obtain relevant
parameters for connectors. Amadio et al. (2001) proposed a 1D finite element model
assuming equal vertical displacements between the timber beam and the concrete slab, with
no slip between the concrete slab and the connectors, and using spring elements to simulate
shear connectors, showing good simulation results. Fragiacomo (2005) developed a finite
element model of TCC beams under long-term loads, fully considering the deformation
capacity of the connectors and the rheological properties of concrete, timber, and
connections. The model accurately simulated the creep of component materials and the
effects of moisture content on the creep of timber and connectors using precise linear
models. This model applies an effective step-by-step procedure without the need to store
the entire stress history at certain points to illustrate creep behavior. Three-dimensional
finite element models do not require the mechanical and rheological characterization of the
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connection but involve extensive contact calculations, leading to high computational costs.
Dias (2005) proposed a 3D finite element model that aligns well with long-term
experimental data of composite beams in stable environments. Fragiacomo et al. (2014)
developed a 3D numerical model to capture the time-dependent behavior of TCC beams
with notched connectors, subjected to long-term loads and simultaneous exposure to
varying temperature and humidity conditions.

Kavaliauskas et al. (2005) analyzed the applicability of the method in Eurocode 5
for the design of timber-concrete composite beams and suggested that this method is only
suitable for the design under short-term ultimate loads. However, in practical engineering,
timber-concrete composite beams often bear long-term loads, and their design is frequently
controlled by long-term deformation limits. For the calculation of long-term deformations,
Ceccotti (2002) recommended using reduction factors for the short-term elastic modulus
of concrete, the short-term elastic modulus of the timber beam, and the short-term stiffness
of the shear connectors to derive the modulus and stiffness for long-term design
calculations, as follows,

E
E .=—2¢ 1
ceff 1+ (pc ( )
E
E —_t 2
t,eff 1+ (/)t ( )
- 3
1429,

where ¢ Is creep coefficient of concrete, and ¢t is creep coefficient of timber.

For the sake of computational convenience, this method assumes that timber and
concrete behave as ideal elastic bodies, assuming that the load-slip curve of shear
connectors follows a linear relationship. Under relatively small external loads (such as
normal service loads), shear connectors also exhibit nonlinear force characteristics (Van
de Kuilen et al. 2011). However, for engineering design purposes, this method can satisfy
the design requirements of timber-concrete composite beams for relatively stable
environmental conditions. It holds certain physical significance, it is straightforward in
form, and it is convenient for practical calculations, making it suitable for application in
actual engineering projects. Nevertheless, considering the following two scenarios, this
method requires further refinement: (1) Given the current lack of an accurate model for
predicting the long-term deformation of shear connectors, it is recommended to conduct
long-term tests on shear connection specimens to obtain the long-term deformation
characteristics of shear connectors; (2) The current method cannot accurately account for
the effects of the environmental changes. Since the long-term mechanical properties of
timber and concrete differ, environmental variations can generate secondary internal forces
within the structure. These secondary forces need to be considered when evaluating the
long-term mechanical performance. Schéanzlin et al. (2003; 2007) proposed an approach
where strains induced by environmental changes in composite beams are equivalent to
external loads and are superimposed on the design loads. Additionally, they categorized
the environmental conditions surrounding the structure and used corresponding correction
factors to adjust the creep of the materials. Fragiacomo et al. (2006a, b) utilized the “y-
method” to calculate the deformation of composite beams under short-term loads and
applied differential equations to compute long-term deformations, ultimately summing the
deformation values. For engineering design purposes, it is feasible to approximate the
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deformation caused by environmental humidity changes on a weekly basis and extrapolate
the approximate deformation corresponding to the design life span (Fragiacomo et al.
2013).

Design Method — Eurocode 5

Eurocode 5 (EN 1995-1-1: 2004), currently the most widely used standard, offers
the comprehensive provisions for the long-term deformation of timber structure. It includes
detailed guidelines on calculation methods and requirements, specifically addressing the
time-dependent modulus and stiffness of component materials and shear connections.

(1) Provisions of materials and connections

In Eurocode 5, the evaluation of the final deformation of timber members under the
serviceability limit state incorporates a correction coefficient kder, which adjusts the elastic
modulus, shear modulus, and joint stiffness, as follows,

Ew fin — i (4)
' l+ kdef,w
Ec fin — L (5)
’ 1+ kdef, c
K
Ky g = ——3— 6
ser, fin 1+ k ( )

def, S

where kader, w IS dependent on different categories of wooden products and environmental
conditions; the values of kqer are 0.6, 0.8, and 2.0 for structures in environmental conditions
class 1, class 2, and class 3, respectively, according to the conventional wood products; Kaef,
c Is the creep coefficients of the concrete; and kaer, s is the creep coefficient of the shear
connector.

The aforementioned formula effectively meets the design requirements for timber-
concrete composite beams under short-term ultimate limit states (Yeoh et al. 2011; Du et
al. 2021; Wei et al. 2021). It should be noted that Eurocode 5 considers the impact of
connectors between timber and concrete on time-dependent deflection to be minimal,
treating the creep properties of connectors as a modified combination of timber and
concrete. However, Eurocode 5(EN 1995-1-1: 2004) provides only a simplified calculation
method for reduced wood stiffness in Section 3.2.3, without offering detailed guidance on
timber creep behaviors.

(2) y-Method

Eurocode 5 (EN 1995-1-1: 2004) provides a method for calculating the effective
bending stiffness of timber-timber composite beams using flexible connectors. This
method involves using an equivalent cross-section to account for the interface slip effect,
thereby determining the effective stiffness of the composite beam. Subsequently, the
deformation is calculated based on the principles of material mechanics. The effective
stiffness can be calculated using the following formula,

Ely =EL+E L, +1EAS +7,E,A% 7

where Elesf is effective flexural stiffness of composite beam with partial shear connection,
a1 is distance from the concrete neutral axis to the composite section neutral axis, az is
distance from the wood neutral axis to the composite section neutral axis, y1 is connection
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efficiency factor for the concrete slab; and y2 is connection efficiency factor for the wood
beam.

Design Guide for Timber-Concrete Composite Floors in Canada

The design guide for timber-concrete composite floors in Canada (Auclair 2020)
presents a simplified approach for evaluating long-term deflections by considering the
creep adjustment factor of each component of the TCC floor. However, it does not directly
account for the effect of concrete shrinkage on deflection. Instead, conservative
assumptions are made regarding the creep adjustment factor to ensure a realistic prediction
of long-term deflection.

(1) Concrete creep coefficient

The guide provides a mathematical formula for predicting long-term deflection
over time, which involves multiplying the instantaneous deflection caused by sustained
load by a specific factor,

Kc,eep,cz(u 5 ] (8)

1+50p'

where p' is the proportion of steel reinforcement under compression, and S is a time-varying
coefficient.

It is important to note that Eq. 8 is only valid when the concrete has reached an age
of 28 days. If the concrete is subjected to loading before 28 days, the creep factor must be
adjusted in accordance with the guidelines specified in CSA A23.3-14. (CSA A23.3-14.
2014).

(2) Timber creep coefficient

The CSA 086-14 (CSA 086-14. 2014) does not provide a method for calculating
long-term deflection over time. However, its appendix provides formulas applicable to
laminated veneer lumber for estimating its long-term deflection at the end of its service life
(50 years).

Apax =gt + A1 (9)

where Ast is elastic deflection due to short-term loads, ALt is long-term deflection due to
long-term loads, ALt iS Kereept X AinstLT), AinstLT IS instantaneous deflection due to long-
term loads, and Kcreep,t is creep modification factor for timber. Kcreept is 2.0 for dry service
conditions (moisture content<19%).

The CSA 086-14 (CSA 086-14. 2014) provides calculation methods only for
cross-laminated timber (CLT) and does not specify creep adjustment factors for other types
of wood products. Therefore, when using other wood types, a conservative approach can
be taken by applying the same creep adjustment factors as those for CLT, in accordance
with the requirements of the National Design Specification (NDS) (American Wood
Council. 2015). The creep adjustment factor is 1.5 for glued laminated timber and structural
composite lumber under dry conditions, while it is 2.0 for wood structural panels and CLT.

(3) Connection creep coefficient

The long-term shear stiffness (KLt) of the connectors is typically obtained through
push-out experiments. In the absence of specific data, the serviceability shear stiffness of
the connectors can be estimated by dividing it by twice the creep adjustment factor of the
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wood (Schmidt et al. 2004). This approach assumes that twice the timber creep adjustment
factor provides a conservative estimate for the shear connector, as its creep is generally
between 1 and 2 times that of the timber (Li et al. 2023).

(4) Deflection Calculation

According to the effective modulus method (Ceccotti et al. 2002), the Young
modulus of concrete, timber, and the shear stiffness of the connections are reduced based
on their respective creep adjustment factors. The total long-term deformation of TCC floor
is determined using Eq. 9. In cases where specific data are unavailable, it is a conservative
approach to estimate the serviceability shear stiffness of the connections by dividing it by
twice the creep adjustment factor of wood (Fragiacomo et al. 2004). This assumption is
based on the observation that twice the creep adjustment factor of timber generally falls
between 1 and 2 times that of timber creep (Du et al. 2021), making it a reasonable estimate
for shear connector performance. The effective modulus of each component is calculated
using the following equations.

E

E.r= " c (20)
creep,c
E

E.r= " t (11)
creep,t
K

KLT = 2K (12)

creep,t

where Ec is Young modulus of concrete, E:is Young modulus of timber, K is shear stiffness
of the connector, Kcreepc IS creep modification factor for concrete, and Kcreept IS Creep
modification factor for timber.

Further research could focus on developing more precise models and calculation
methods to address a variety of scenarios. Accurate models are crucial for predicting the
long-term deformation of shear connectors. Calculation techniques must be improved to
account for environmental variations and the nonlinear behavior of materials. Furthermore,
numerical simulation and analytical methods should be further advanced to provide a more
comprehensive theoretical framework for the design and analysis of TCC beams under
long-term loading.

CONCLUSIONS

This paper analyzed the long-term mechanical behavior of timber-concrete
composite (TCC) beams and systematically reviewed the current research on the long-term
performance. The conclusions can be summarized as follows:

1. The mechanical properties of timber change with environmental conditions,
particularly humidity and moisture content. Under prolonged loading, timber
undergoes plastic deformation, leading to a decrease in strength and stiffness over time.
The cyclical changes in moisture content cause noticeable creep in timber, contributing
to the long-term deformation growth of structural components.
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2. Shear connectors play a crucial role in maintaining the integrity of timber-concrete
composite beams by transferring shear forces between the timber and concrete
components. Long-term tests have indicated that the creep coefficient of shear
connectors is affected by the type of connectors, loading conditions, and environmental
factors. Different shear connectors exhibit varying degrees of long-term slip and
deformation, which must be considered in the design of TCC beams.

3. The differing long-term mechanical behaviors of concrete, timber, and shear
connectors lead to complex internal force redistributions within composite beams under
prolonged loading. The timber typically undergoes significant creep, particularly under
environmental effects. This results in a dynamic stress distribution across the cross-
section of the composite beam, necessitating careful consideration of these effects in
the design and analysis of TCC beams to ensure structural integrity and longevity.

4. To enhance the practical application of TCC beams in engineering, more accurate
models for predicting the long-term deformation of shear connectors are required.
Additionally, refining calculation methods to include environmental variations and the
nonlinear behavior of materials will improve the reliability of long-term performance
predictions. Continued development in both numerical simulation and analytical
methods will provide a more comprehensive theoretical framework for the design and
analysis of TCC beams under long-term loads.
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