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The quantity and quality of oilseed production in rapeseed mustard are
severely affected by biotic and abiotic stresses. Among these, the
biotrophic fungus Erysiphe cruciferarum causes powdery mildew (PM)
infection in Indian mustard cultivars, potentially reducing yield by up to
50% across affected regions in India. Considering recent developments in
molecular plant pathology and their impact on sustainable management of
challenging plant pathogens, this article reviews the current scenario for
resistance and its mechanism to E. cruciferarum in Brassica cultivars. It
also covers the complex molecular signaling pathways for resistance that
are regulated by phytohormones along with differential gene expression,
and effectors proteins in Brassica spp. The recent advancements in
genomics have contributed to identification of resistance/susceptibility
genes as well as quantitative trait loci (QTLs) involved in PM resistance.
Furthermore, this review unfolds a comprehensive understanding of the
genetic as well as genomic basis of resistance that can provide the
valuable insights for breeding programs focused on developing PM-
resistant rapeseed-mustard varieties. This review aims to provide the
background on recent discoveries and future strategies on identification of
resistance genes, aiding in the development of more resilient rapeseed-
mustard crops and leading to significant improvements in crop protection
and yield stability.
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INTRODUCTION

Rapeseed-mustard (Brassica spp.) stands as a cornerstone in global oilseed
cultivation, notably contributing to the edible oil market alongside soybean and oil palm.
However, a gap persists between the supply and demand of oilseeds, driven by the
increasing global population. Moreover, the change in global climate scenario has posed a
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significant risk to Brassica cultivation resulting in an increased disease incidences and
severity. A diverse range of plant pathogens infect Brassica crops. One such known fungal
biotroph is E. cruciferarum Opiz ex L. Junell, which causes powdery mildew (PM) disease
in this crop. There are about 700 species of PM pathogens capable of infecting
approximately 10,000 plant species (Braun and Cook 2012). Within the last two decades,
PM has become epidemic in rapeseed-mustard, affecting over 120 cruciferous host plant
species in more than 25 countries (Mir ef al. 2023). The disease is especially prevalent in
regions with cool, dry conditions in leading rapeseed-mustard producing countries such as
Canada, China, India, and the European Union (FAO 2022). In India, it spreads rapidly
across major mustard-growing states such as Uttar Pradesh, Rajasthan, Gujarat, and
Mabharashtra (Dange ef al. 2002; Mohitkar et al. 2012; Meena et al. 2018), thus posing a
major bottleneck to the seed production, quality and profitability. Furthermore, the
pathogen caused yield losses ranging between 20% and 40% across various regions of
India, with severely affected fields experiencing losses of up to 50% (Kumar et al. 2016;
Meena et al. 2018). These significant yield losses can translate into economic setbacks,
affecting the livelihoods of farmers and the overall productivity of the agricultural sector.
Despite its significance, PM has received less research attention compared to other
diseases such as Alternaria blight and white rust. Perhaps this is because it appears later in
the crop growth stages and its damage is estimated frequently after harvest. While previous
reports primarily have emphasized yield losses, PM affects overall productivity by
reducing oil quality and altering the plant’s physiological processes, especially decreasing
photosynthetic efficiency followed by overall plant vigour and seed yield. Due to the
presence of powdery mass on leaf surfaces, significant reductions were observed in leaf
gas exchange parameters like net photosynthetic rate and transpiration rate in the infected
leaves of susceptible genotypes compared to resistant and moderate genotype groups.
Chlorophyll fluorescence analysis revealed a decrease in the maximum quantum efficiency
of photosystem-II in PM-infected leaves across the genotype groups in different crop plants
(Sree et al. 2024; Saja et al. 2020). The net photosynthetic efficiency goes down in
susceptible genotypes, which ultimately affects the productivity of the crop plants.
Striking research efforts by plant pathologists and breeders to combat PM in
Brassica species have been bolstered by extensive work focused on elucidating the genetic
level of resistance and developing resilient cultivars. Studies leveraging model plants, such
as Arabidopsis thaliana, have given crucial insights for molecular defense mechanism,
signalling pathways underlying resistance to PM and pathogen-host interactions. Genetic
studies have identified candidate resistance genes (R genes) and quantitative traits loci
(QTLs) imparting with PM resistance, facilitating marker-assisted selections and breeding
programs targeted for improvement and development of resistant varieties for PM disease.
Moreover, the exploration of wild relatives of Brassica crops has unearthed
promising genetic resources for enhancing resistance. These efforts are pivotal for the
sustainable agriculture, aiming not only to minimize yield losses but also to reduce
dependency on chemical pesticides, thereby promoting eco-friendly crop production
practices. Cultural practices, such as crop rotation and debris management, help reduce
disease pressure but they are not always sufficient alone. Breeding for resistance offers a
sustainable solution, though it requires time and can be challenged by pathogen evolution.
An integrated approach combining these strategies (cultural, genetic resistance, minimal
use of pesticides) is the most effective for long-term PM disease management in Brassica
crops. However, judicious exploration of such strategies will signify mustard cultivation
with enhanced yield and quality. Hence, this review comprehends current knowledge and
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recent advancements in global rapeseed-mustard research, including Brassica genetics, the
PM (E. cruciferarum) pathogen, associated seed yield and oil content losses, and
management strategies. It further explores key aspects such as genetic diversity, host-
pathogen interactions, resistance mechanisms, and breeding strategies, that are crucial for
ensuring food and nutritional security, particularly in developing countries. Furthermore,
it outlines future research directions aimed for elucidating the complexities of PM disease
and accelerating the development of durable resistance in Brassica crops. By
understanding host-pathogen interactions and pinpointing resistance-associated genes, the
findings aid in the development of disease-resistant varieties through molecular breeding
and biotechnological approaches.

Fig. 1. Image illustrating the characteristic powdery mildew disease symptoms on Brassica spp.
leaf, stems, and pods.

ASPECTS OF THE PATHOGEN AND ITS CONTROL

Economic Significance of E. cruciferarum in Brassica Species

Powdery mildew disease is an epidemic and devastating disease in Indian mustard
cultivars. Due to variable weather conditions in different agro-climatic regions, powdery
mildew affects photosynthetic efficiency, leading to stunted growth, premature senescence,
defoliation, and reduced biomass accumulation. This results in shrivelled seeds, reduced
seed weight, and poor pod formation, ultimately lowering the oil content and collectively
deteriorating overall crop productivity. Powdery mildew disrupts photosynthetic surfaces.
This not only reduces the photosynthetic efficiency and yield, but it also causes a stress
condition for the plant. Exposure to stress condition can alter metabolite profiling and the
lipid biosynthesis pathways that ultimately change the fatty acid composition and reduce
its seed nutritional quality (Baud and Lepiniec 2010). In B. juncea, profound yield losses
were recorded due to E. cruciferarum infection, for example, in Gujarat, yield loss was
reported at 24.1% (Dange ef al. 2003), while in Haryana, the EC-126743 accession showed
a yield loss of 17.4% and a drop in oil content of 6.5% (Saharan and Sheoran 1985). In
Mabharashtra, the Pusa Bold and Seeta cultivars experienced dramatic yield reduction
ranging from 45% to 95% (Hare 1994). Another study from Maharashtra reported yield
losses between 15% to 40% and oil content reduction up to 37.6% in cultivars Seeta, Pusa
Bold, Bi0-902, and TM-17 (Kohire et al. 2008). Kanzaria ef al. (2013) estimated losses of
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7.3%, 21.7%, 22.5%, and 21.5% in oil content, protein content, seed yield, and test weight,
respectively, because of E. cruciferarum infection in Maharashtra and Gujarat, regions
where the PM disease is highly prevalent in severe form. Powdery mildew has also been
reported to cause yield losses exceeding 25% to 30% in Turkey, United States, Korea,
France, Australia, and Poland where B. napus is grown widely (Sadowski et al. 2002; Mert-
Turk 2008; Kaur et al. 2008; Khangura et al. 2011; Kim ef al. 2013; Uloth et al. 2016;
Meena et al. 2018). Brassica rapa cultivars such as Yellow Sarson in Canada and Europe
have shown yield losses of 20% to 30% and oil content reductions of 10% to 20% (Smith
and Johnson 2020). In B. oleracea, yield loss is often measured in terms of marketable
quality rather than quantity, yet losses ranging from 20% to 50% in cultivars including
Green Magic in California and Spain have been reported (Table 1; Saharan ef al. 2005).
These widespread and significant yield and oil content reductions around the world
highlight the necessity for effective disease management programmes to mitigate the

economic impact and yield losses of powdery mildew on Brassica crops.

Table 1. Impact of Powdery Mildew Severity on Seed Yield and Oil Quantity
Losses in Brassica spp. under Indian and Global Perspectives

Brassica Species Cultivars | Yield Loss (%) Qil Location/ | References
Quantity | Countries
Loss (%)
B. juncea EC126743 17.4 6.5 Haryana Saharan
(India) and
Pusa Bold 4510 95 - Maharashtra | Hare 1994
and Seeta (India)
- 24 1 - Guijarat Dange et al.
(India) 2003
Seeta 40.0 37.3 Maharashtra | Kohire et al.
Pusa Bold 34.0 37.3 (India) 2008
Bio-902 36.0 37.5
TM-17 15.0 37.6
B. napus - >25t030 - United Karakaya et
States, al. 1993;
Poland, Sadowski et
Turkey, al. 2002;
Mert-Turk
2008
- 2510 30 - Korea, Khangura
Australia et al. 2011;
Kim et al.
2013;
Uloth et al.
2016
- 10 to 30 - France Penaud
1998;
Meena et
al. 2018
B. rapa Yellow 20to 30 10 to 20 Canada, Kumar et al.
Sarson Europe 2016
B. oleracea Green 20 to 50 - California, Saharan et
Magic Spain al. 2005
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Genomic insights and Host Range of E. cruciferarum

Erysiphe cruciferarum is a fungal biotroph that is primarily responsible for causing
powdery mildew (PM) in Brassica species including B. juncea, B. napus, B. nigra, B.
oleracea, and B. rapa (Glawe 2008). The phenotypic and fundamental genomic
information based on the conserved internal transcribed spacer (ITS) region of DNA has
been made available for E. cruciferarum, but no whole genome assembly has been reported
to date. However, the database is rich in genome of fungi causing PM disease in hosts other
than Brassicaceae. The previous genome assemblies indicates that PM fungi are
approximately four times larger in size compared to other ascomycetes, especially, the
genome size of Golovinomyces orontii is approximately 160 Mb. (Saharan ef al. 2023).
Various E. cruciferarum isolates were identified through the amplification of ITS1 and
ITS2 regions that flank the 5.8S rRNA using universal primers ITS1 (forward) and ITS4
(reverse), showing >99% nucleotide identity with GenBank sequences for E. cruciferarum.
The entire ITS region of the DNA for PM isolate KUS-F24819 was sequenced after
amplification with primers ITS5 and P3, and deposited under the accession no. KC862331
showing 100% identity with E. cruciferarum isolates from Arabidopsis thaliana, B.
oleracea var. acephala, and B. rapa (Kim et al. 2013). Morphological, along with
phylogenetic, analyses of various isolates were conducted using Erysiphaceae-specific
primers such as PMITS1 and PMITS2 (Borges et al. 2023). Detection at the molecular
level involved amplifying the ITS1 region with oligonucleotides EryF and EryR from
infected plant tissues DNA (Attanayake et al. 2009; Pane ef al. 2021). So far, the use of
comparative genomic studies greatly facilitates the identification and characterization of
genes linked to target traits in various species (Wan et al., 2008). However, additional
research is needed to elucidate the genomics and genetic diversity of the PM pathogen in
Indian mustard. In addition to cultivated Brassica species, the pathogen E. cruciferarum
also infects a wide range of wild relatives across the Brassicaceae family worldwide (Table
2).

Table 2. Inventory of Different Brassica Crop’s Wild Relatives Infected by PM
Pathogen Along with the Records of Various Locations Worldwide (Saharan et al.
2019)

Brassica Crop Wild Location/ References
Relatives Country
Alyssum sp. Iran Ershad 1977
A. hirsutum Bulgaria and Iran Ershad 1971, 1977; Amano 1986;

Negrean and Denchev 2000

A. dasycarpum, A. strigosum

Iran

Ershad 1977; Khodaparast et al. 2000

Alliaria petiolata

United Kingdom
(UK), Ohio (USA)

Amano 1986; Ershad 1977; Ciola and
Cipollini 2011

A. alyssoides, Armoracia UK Ellis and Ellis 1997
rusticana, Antirrhinum majus,
Cheiranthus cheiri, Erysimum
cheiri
Argemone mexicana India Bappammal et al. 1995
A. thaliana USA, Zurich, Koch and Slusarenko 1990; Karakaya
Germany, Korea, et al. 1993; Choi et al. 2009
and Europe
Brassica tournefortii India Dang et al. 2000
Cardamine debilis New Zealand Cooper 2013
Coronopus didymus Jammu Sharma 1979
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C. hirsute, C. flexuosa New Zealand Boesewinkel 1977; Cooper 2013
Camelina sativa UK and Greece Vellios et al. 2017

Capsella bursa-pastoris UK, Sharma 1979; Ellis and Ellis 1985;
Massachusetts Radisek et al. 2018

(USA), Slovenia,
and Jammu (India)

Cleome hassleriana

France and ltaly

Agha et al. 2008; Garibaldi et al. 2009,

C. spinosa

France, Italy, and
New Zealand

Boesewinkel 1977; Agha et al. 2008;
Garibaldi et al. 2009

Cardaria subsp. Chalapensis, Iran Ghanbary 1995; Aeenfar 2006
Cardaria draba
Conringia planisiligua Iran Khodaparast et al. 2000
Crambe spp., C. orientalis Iran Kachooeian et al. 2006

Diplotaxis tenuifolia Italy Pane et al. 2021
Descurainia sophia Iran Ershad 1977

E. sativa, E. vesicaria Australia, Haryana Gunasinghe et al. 2013

(India)
Eschscholzia californica Germany and Schmidt and Scholler 2011
Switzerland
Erodium moschatum, New Zealand Boesewinkel 1977

F. officinalis, Geranium
homeanum

Iberis amara

Madhya Pradesh,
Jammu (India)

Sharma and Khare 1992

Lepidium apetalum

Korea

Shin and La 1992

L. campestre, L. sativum, L.
latifolium

Iran

Amano 1986; Ershad 1977;
Kachooeian et al. 2006

L. virginicum Himachal Pradesh Paul 1984
(India)
Malcolmia Africana, M. Iran, Canada, Farr et al. 2009; Mirzaee et al. 2010
incana, M. maritime France
Meconopsis sp., Papaver sp. Czech Republic Pastircakova and Pastircak 2013
Orychophragmus violaceus China Tian et al. 2024

Papaver nudicaule, P.
somniferum, P. rhoeas

New Zealand,
Madhya Pradesh
(India)

Boesewinkel 1977; Sharma and Khare
1992

R. sativus

Iran, Haryana, and
Jammu (India)

Sharma 1979; Suhag and Duhan
1985

R. raphanistrum subsp.
Maritimus, Wasabia japonica

New Zealand

Cooper 2013

Rapistrum rugosum

Iran and Argentina

Ershad 1977; Ghanbary 1995;
Khodaparast et al. 2000

Sinapis arvensis

Greece and Iran

Amano 1986; Vellios et al. 2017

Sisymbrium officinale, S. UK Ellis and Ellis 1985
alliaria
Sisymbrium species Mexico Morales et al. 2009
S. iirio Iran and Argentina | Niknam and Guya 1996; Braun et al.

2000

S. orientale Iran Khodaparast et al. 2000
Stylophorum species Czech Republic Pastircakova and Pastircak 2013
S. diphyllum Switzerland Bolay 2005

Furthermore, different Brassica genotypes exhibit varying degrees of resistance or

susceptibility to E. cruciferarum. This variation is largely governed by the presence or
absence of resistance (R) genes, differences in the speed and intensity of immune response
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activation, and hormonal regulation efficiency. For instance, certain B. juncea lines and
wild relatives possess quantitative trait loci (QTLs) conferring partial to strong resistance,
while commercial cultivars often lack these traits. Additionally, transcriptomic differences
in defense gene expression further explain the differential responses, where resistant
genotypes show a faster and stronger activation of PR genes, SA signaling, and ROS
production compared to susceptible ones.

Mechanistic Insights Underlying Host-Pathogen Interactions in Brassica
Species
The first line of defense: PTI response against PM infection

Inherently, plants have evolved a two-step defense mechanism that detect and
deploy immune response appropriately: (1) Pattern recognition receptors or PRRs
(Extracellular receptor-like kinases: RLKs and receptor-like proteins: RLPs) that detect
PAMPs/DAMPs; (2) Intracellular receptors with nucleotide-binding and leucine-rich
repeat domains (NLRs) that interact with pathogen specific secretory proteins called
effectors (Krattinger and Keller 2016). The initial immune response to the pathogen attack
is triggered when the receptors on the host cell’s surface, called the PRRs, recognize
pathogen/damage-associated molecular patterns (PAMPs/DAMPs) (Jones and Dangl
2006), that are present on the pathogen’s surface. This recognition leads to PTI response,
which then initiates further down-signaling in the form of MAPK cascade and other
defense associated pathways. Previous research has shown that the chitin, in cell walls of
fungal pathogen, triggered immune responses in Arabidopsis, as it was recognized by PRR
receptors, such as LYK4/5 (lysine motif receptor-like kinases 4/5) and CERKI1 (chitin
elicitor receptor kinasel), which led to accumulation of defense protein and callose
deposition (Cao et al. 2014). Moreover, mutations in CERK 1 were also linked to increased
susceptibility for PM, emphasizing its role in broad range disease resistance (Wan et al.
2008). Similarly, the recessive gene, ol-2, an analog to the MLO gene revealed in barley,
facilitated histological resistance through the development of papillae. These papillae are
composed of callose and other substances and form at the sites where the plant and powdery
mildew interact, therefore halting fungal growth early and ensuring complete resistance
(Bai et al. 2003, 2008). In Brassica species also, these mechanisms need to be worked out
for the rapid screening and identification of durable resistant types.

R-gene base or vertical immunity (Effector-triggered immunity ETI)

Although PTI response provides strong defense against the infection, pathogens
tend to constantly evolve novel ways to bypass PTI. One such strategy is secretion of
specialized molecules called the effectors in the host cytoplasm. Effectors or the
‘avirulence’ factors are known to promote virulence and are highly diverse in nature (White
et al. 2000). The ETI is marked by robust resistance responses, activated when pathogen
effectors (avr proteins) are recognized by intracellular receptors present in the host cells,
resulting in race-specific, major gene resistance. Such type of resistance follows gene-for-
gene hypothesis according to which an effector gene causes avirulence in the host plant
with its interactive resistance (R) gene. These R gene encode diverse intercellular receptors
with two conserved domains, i.e.,, the nucleotide-binding site (NBS) and a region of
leucine-rich repeats (LRRs). Apart from LRR or LRR-like domains, the R proteins
typically possess toll/interleukin-1-receptor (TIR) domains, and serine/threonine kinases
(S/TK). The R genes are usually categorized into two groups: those with a TIR domain
towards N terminal are termed TNLs, while those with a CC (coiled-coil) domain towards
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N terminal are termed as CNLs. Additionally, R-genes with PM 8 (RPWS) domain have
also been reported and are referred to as RNLs (Tirnaz et al. 2020). Usually, initiation of
R-gene recognition system induces hypersensitive response (HR), which stops the
pathogen from spreading to neighboring healthy cells by inducing localized cell death at
the infection site, therefore, conferring systemic resistance (Keen ef al. 1993). The RNL
gene in Arabidopsis (viz., RPW8.1 and RPW8.2) has been reported to provide resistance
by promoting accumulation of H2O2 and confined cell death through the SA-dependent
pathway (Kim ef al. 2014). Among this, RPW8.2 localize towards EHM (extra-haustorial
membrane) to activate defense signaling, requiring specific protein interactions and
transport mechanisms. The reports on mutations in RPW8.2 affect its function and
resistance (Saharan and Krishnia 2001).

Role of phytohormones in PM resistance: Systemic acquired resistance (SAR)

For effectively deploying defense response against the pathogens, host plants have
developed various signaling pathways during the initiation of the infection. These
pathways are mostly activated in response to the changes in regulation of different
phytohormones, especially SA, JA, and Et. While SA accumulates during the attack by
biotrophic pathogens, JA and Et come together to stop the development of necrotrophic
organisms. Previous studies have shown the role of SA in inducing systemic acquired
resistance (SAR) in response to PM infection, which is caused by a biotrophic pathogen.
Usually, SA accumulation leads to SAR response, resulting in a long-term resistance
against multiple pathogens by activating a range of defense genes, particularly those
encoding pathogenesis-related (PR) proteins (Park ez al.2007). Key studies have
established the importance of SA signaling in the regulation of genes necessary for redox
and calcium signaling, essential for activation of NPR1 gene (Chandran et al. 2009). This
results in the increase of transcripts for genes involved in SA-production and PR genes.
Mutations in SA signaling genes such as wrky18 and wrky40 can affect the plant’s PM
disease response. Furthermore, mutation in EDR1 protein kinase affects the accumulation
of defense-related transcripts, particularly those encoding TFs such as WRKY and
AP2/ERF, thus increasing SA-dependent resistance against PM (Christiansen et al. 2011).
Moreover, infected plants with the EDRI1 mutation also revealed increased genes
expression related to the endomembrane system and ROS generation. The EDR1 migrates
from endoplasmic reticulum to the plant-fungal interaction site during PM disease, which
suggests that it is a part of secretory pathway in the defense against PM (Christiansen et al.
2011; Wu et al. 2015). These results demonstrate complex roles that the secretory system
and SA signaling play in Arabidopsis protection against E. cruciferarum. The PR-1 and
PR-2 genes were significantly up-regulated in Raphanus alboglabra compared to B. napus,
with the elicitor stimulating these genes upon PM infection (Alkooranee et al. 2015). These
types of studies, thus, highlight the intricate interplay between SA signaling, transcription
factors, and the secretory system in orchestrating effective defense mechanisms against
powdery mildew, underscoring the complexity of plant immune responses.

Inheritance and Resistance Mechanisms in Brassica Species Against E.
cruciferarum
Brassica species as potential genetic resistance sources for PM

Plant genetic resources are crucial components of agricultural biodiversity, essential
for the development of novel varieties to feed the world’s burgeoning population. The
genetic diversity within Brassica germplasm represents a valuable reservoir of resistance
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against PM disease, which can be harnessed effectively for the development of disease
resilient cultivars. Therefore, extensive research has been conducted globally to explore
the inherent potential for disease resistance in rapeseed-mustard against PM pathogen
(Table 3). Assessment of 71 genotypes of B. juncea from China, India, and Australia
revealing four genotypes, ‘JM06014°, ‘JM06015°, ‘IM06012°, and ‘JM06009’, provided
PM resistance in natural field conditions (Singh ef al. 2010). However, in contrast, all
tested genotypes from China and India were found to be susceptible to PM disease. In
another study, 200 genotypes were screened out of which 20 resistant, 9 moderately
resistant, and 71 highly susceptible genotypes were selected (Singh et al. 2016). Similarly,
61 germplasm were tested under natural conditions, identifying eight immune and one
highly resistant, with 36 moderately resistant genotypes (Chadar ef al. 2020). One genotype
‘RDV 29’ was also reported as highly resistant along with 12 moderately resistant
germplasm after screening of 1,020 Indian mustard accessions (Nanjundan et al. 2020).
Apart from cultivated Brassica, wild relatives are also a rich reservoir of resistance against
multiple diseases including PM; however, they are less explored. At present, eleven
accessions of 4. thaliana are reported to be resistant to PM disease. Therefore, more studies
to explore PM resistance in wild relatives are necessary to fully exploit their genetic
potential. Furthermore, there is a need for development of more robust screening
techniques to categorize germplasm more accurately from immune to susceptible. The
present screening methods involve phenotyping of the genotypes based on the observation
of physical symptoms post PM inoculation through staple leaf method or conidial dusting
with sterile brush (Bhosle ef al. 2021) followed by categorization under the rating scale
ranging from 0 (immune) to 9 (highly susceptible), as recommended by the AICRP-RM in
India. This often has led to inaccuracies and discrepancies in the observations and
inconsistency during the repeated experiments. Therefore, incorporation of molecular
approaches like LAMP (Loop-Mediated Isothermal Amplification) and LFA (Lateral Flow
Assay) assays can offer more rapid and accurate diagnosis of the pathogen and hence better
characterization of the germplasm is possible based on the quantification of disease
severity (Attaluri and Dharavath 2023).

Table 3. Genetic Resources for Resistance in Brassica Species against Powdery
Mildew Pathogen

Species/ Genotypes/Accessions Reaction to Location Screening Reference
Varieties E. Methodology
cruciferarum
B. juncea [JWHJ 001, PCR 9201, RK Resistance Uttar Natural field Singh and
8602, RAUD 101, DIR 621, Pradesh, condition Singh 2003
PCR 10, RK 8615, YSPB 24 India
JM06009, JM06012, Resistance Australia Natural field Singh et al.
JM06014, JM06015 condition 2010
PBC-2004-1, EC-414309, Resistance Ayodhya, Natural field | Singh 2016
EC-399299, PBC-9221, Uttar condition
NPC-14, NUDB-26-11, Pradesh,
BAUSM-92-1-1, EC-339000, India
ONK-1, EC-338997, GSL-1,
HNS-004, NRCDR-515,
NRCR-837, PBC-2002-2,
NPN-1, NPC-15, RGN-55,
OCN-3, CAN-133,
Sahara CL, Xceed X121 CL Resistance Australia Artificial Uloth et al.
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inoculated 2016
condition
DIR-1507, DIR-1522 Resistance Hisar, India Natural field Dang et al.
condition 2000
TM 18, RM 505, NPJ-143, Resistance India Natural field Meena et
PRD 2013-3, DRMR 1-5 condition al. 2019
RDV29, RDV 21 Resistance | Tamil Nadu, Natural field Nanjundan
(1C0589658, ICGR20041) India condition et al. 2020,
2021
GM-3 and Swarna Jyoti Resistance Polasa, Natural field Lavanya et
Jagtial, condition al. 2023
Telangana
(India)
B. napus Hyola 650TT, Bravo TT, Resistance Australia, Artificial Dang et al.
Tumby, Narendra and GS- Hisar (India) inoculated 2000; Uloth
7027, Midas, Tower Trooper, condition et al. 2016
Summit,
B. napus ssp. | UG4 and UG3 Resistance Ontario, Artificial Shattuck
rapifera Canada inoculated 1993
condition
B. rapa PPBR-2, EC-414299 Resistance India Natural field Saharan et
condition al. 2019
B. rapa Toria | PT-2006-4, RMT-10-7, and Resistance India Natural field Saharan et
PT-303 condition al. 2019
B. rapa YSPb-24, TH-68 Resistance India Natural field Mehta et
Yellow condition al. 2008
sarson
B. rapa BSH-1 Moderate India Natural field Mehta et
Brown resistance condition al. 2008
sarson
B. carinata DLSC 1, HC-9603, HC 1, Resistance India Natural field Tonquc
HC-2 PBC-9221, P1 360883, condition and
PBC-2002, DRMR 243, Griffiths
DRMR 261, NPC-16, NPC- 2004;
21, DRMR-316, DRMR-100 Mehta et
al. 2008
B. juncea, UDN-11-32 Resistance Kanpur, Natural field Kumar et
B. carinata, India condition al. 2017
B. napus, UDN-11-03, UDN-11-28, Moderate Kanpur, Natural field Kumar et
Eruca sativa | and UDN-11-26 Resistance India condition al. 2017
and UDN-18- 25 High Chhattisgarh | Natural field Chadar et
B. rapa) Resistance , India condition al. 2020
UDN18.1, UDN18.5, Resistance | Chhattisgarh Natural field Chadar et
UDN18.6, UDN18.8, , India condition al. 2020
UDN18.12, UDN18.21,
UDN18.25 UDN18.31,
UDN18.36, UDN18.42,
UDN18.43, UDN18.47,
UDN18.54, UDN18.56,
UDN18.58 and UDN18.59
UDN18.24, UDN18.34, Immune Chhattisgarh | Natural field Chadar et
UDN18.40, UDN18.44, , India condition al. 2020
UDN18.48, UDN18.50,
UDN18.56 and UDN18.61
Arabidopsis | La-0, Se-0, C24, Stw-0, Te- Resistance Natural field | Adam et al.
thaliana 0, Co-1, Wa-1, Su-0Su Kas- condition 1999
1, SI-0
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Inheritance pattern of PM resistance in Brassica species

Introgression or crossings have been developed widely to study the inheritance
pattern of resistance in Brassica species for PM disease resistance (Alkooranee ef al. 2015).
Early breeding experiments crossing a susceptible parent from B. juncea with the resistant
parent belonging to B. carinata (Varuna x PCC2; RH 30 x HC-1) demonstrated that one
dominant gene provides wide resistance against multiple pathogens (PM, white rust and
Alternaria blight disease) in B. carinata (Kumar et al. 2002). In a recent study, accessions
of B. napus and other species were screened, and a B. carinata cv. ‘white flower’ was
identified immune for PM under natural and in-vitro conditions (Gong et al. 2020).
Hybridization of this B. carinata with the elite cultivar of B. napus ‘Zhongshuangl1’
generated Fi hybrids that inherited cytoplasm from the resistant parent (B. carinata). The
progenies were backcrossed to yield five and a single line from BCiF3 and BC:F2
generation, respectively, that showed highly resistance to moderate resistance against the
PM disease. Moreover, these lines exhibited similar seed quality and morphological traits
to ‘Zhongshuangl1’, indicating successful introgression of resistance genes into B. napus.
In India B. juncea, one accession, namely RDV29, was found to be completely resistant to
the PM disease. The genetic analysis of populations obtained by crossing the resistant
parent ‘RDV29’ with susceptible parent ‘RSEJ775’ was made. The screening and
evaluation of F1 generation showed that the PM resistance in RDV29 is semi-dominant in
nature and determined by two unlinked loci. The segregation ratios in F2 (9:6:1; resistant:
susceptible: highly susceptible), susceptible backcross (1:2:1; partially resistant:
susceptible: highly susceptible), and resistant backcross (all resistant) further confirmed
this statement. Furthermore, it was also inferred from the data that the expression of the
resistance depends on the gene dosage (Nanjundan et al. 2020). Similar findings were
previously reported in A. thaliana, where resistance to PM was governed by a locus in 5
genotypes and by two distant loci in single germplasm. In some cases, resistance was
encoded by semi-dominant alleles, while in others, susceptibility by dominant alleles
(Adam and Somerville 1996). The locus RPWS in A. thaliana consist of two resistance
genes (RPWS8.1 and RPWS.2) that are of dominant nature and confers broad range
resistance to PM (Xiao et al. 2001). These reports collectively shed light on the complex
and variable nature of resistance against the PM disease in Brassica crops, demonstrating
that effective resistance can arise from single dominant genes, semi-dominant alleles, or
multiple loci, thus offering insightful strategies for future breeding plans targeted at
improving Brassica crops.

Mechanism of resistance against PM in Brassica spp.

Exposure of Brassica plants to E. cruciferarum triggers the initial defense
mechanisms against pathogen infection and proliferation. These include physical barriers
such as wax, cuticle, epidermal cell wall, stomata, leaf hairs, and thick-walled tissues, that
prevent pathogen entry. In cruciferous plants, resistance to E. cruciferarum before
penetration is mainly provided by the cuticle and waxes (Malinovsky et
al. 2014). Microscopic and transcriptome analyses were performed for PM resistance in
the progenies of inter-specific crosses between resistant B. carinata and susceptible parent
B. napus and found formation of needle-like and few flaky particles on the leaf wax of
progenies that showed resistance. Furthermore, the study also found elevated expression
of genes involved in biosynthesis of wax (CER, KCS6, MAHI, and LACS?2), which are
necessary for modulating certain wax components in resistant genotypes (Zhang et
al. 2022). Additionally, several cell wall integrity genes, such as PGIP1, PMRS, RWA2,
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PDCBI, C/VIF2, and PMEI9, were also observed to be upregulated. In contrast, low
callose deposition in resistant progenies as compared to in susceptible ones was observed
in the study, perhaps due to initiation of other structural responses deterring the pathogen
entry in resistant genotypes. The histopathological and phenotypic studies revealed that
necrosis as a result of PM disease was observed higher after infection in Camelina sativa
and B. juncea as compared to Sinapis alba (Mir et al. 2023). This cell death was
apprehended due to antioxidant enzyme activities in these species following infection by
E. cruciferarum as corresponding to the cell death, the enzyme activity was observed to be
relatively higher in C. sativa and B. juncea in comparison with S. alba. However, if the
pathogen overcomes these initial defensive layers, it encounters a more systematic defense
response through proven mechanisms viz., ETI and PTI. Similar mechanism of resistance
was documented in other species of PM pathogen (Muthamilarasan and Prasad 2013). A
form of cell death as HR (hypersensitive reactions) was reported in tomato powdery
mildew interactions. This HR reaction is due to the interaction among pathogen avirulence
(avr) factors and plant proteins (Nimchuk et al. 2003). There are two forms of HR
responses in response to Oidium neolycopersici on tomato. The single cell HR reactions
and fast HR reactions occur in the presence of two different genes, i.e., Ol-4 and Ol-6,
respectively, which could happen if the epidermal cells are infected by the haustoria
(Huang et al. 1998; Bai et al. 2005). Tomato plants carrying three Ol-genes (OI-1,3, and
5) are associated with three accessions of Solanum habrochaites (Li et al. 2007). In
Arabidopsis thaliana CPRS mutants, hypersensitive response is accompanied by spatial
and temporal overexpression of CEP1 in a specific manner, coinciding with the
spontaneous cell death. However, it is noteworthy that while CEP1’s involvement in
programmed cell death (PCD) is regulated by CPRS5 and induced by E. cruciferarum, it is
not essential for CPRS mutants to show elevated amounts of resistance to PM (Misas-
Villamil et al. 2016; Howing et al. 2017). The inherent powdery mildew resistance genes
with crop plants encode different physiological responses in host cells and result in
different levels of resistance. Similarly, Indian mustard cultivars also comprise various
species and accessions from Brassica. Therefore, there are possibilities of different genes
that could respond to such HR reactions, which need thorough investigations.

Biochemical indices associated with resistance against powdery mildew infections
Cruciferous plants generally synthesize biochemical molecules upon PM
pathogen’s infection as defense response. In response to the pathogen penetration, it has
been observed that the infected cells of Arabidopsis and other crucifer develop cell wall
appositions (CWAs) that not only provide physical reinforcements but also act as a
chemical antimicrobial barrier against E. cruciferarum (Hardham et al. 2007; Huckelhoven
2007). Post-penetration, the changes in biochemistry of the host plant come as part of SAR
and ISR response, where the ISR pathway is arbitrated by NPR1 gene and is ultimately
crucial for disease resistance and responds to changes in ethylene and jasmonic acid, while
the SAR pathway is regulated by salicylic acid (SA) accumulation (Choudhary et al. 2007).
This pathway usually regulates the PR proteins, such as PR1, PR2, and PRS5, while the JA-
ET pathway controls different defense genes, including PDF1.2 and PR3 in A. thaliana.
Additionally, the plant cytochrome P450 gene also responds to the powdery mildew
infection by encoding defense-related biochemical enzymes. In Arabidopsis, the mutants
lacking the CYP83A1 gene were found to be involved in synthesizing plant chemicals that
exhibit resistance to PM (Weis et al. 2013). It was then found that this gene (CYP83A1)
aided in producing glucosinolates that are key molecules involved in host defense
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mechanisms (Bak et al. 2001). Glucosinolates have a key role in both deterring or attracting
insects and combatting diseases such as powdery mildew (Bednarek and Osbourn 2009).
Without sufficient glucosinolates, the tested pathogen struggles to infect Brassicaceae
plants, reliant on these compounds for host recognition and penetration (Weis ef al. 2014).
Another tryptophan-derived compound called camalexin is also believed to contribute to
enhanced PM resistance. Its production relies on several cytochrome P450 enzymes, viz.
CYP71A13, CYP79B2, and CYP71B15 (associated with the camalexin and phytoalexin
deficiency) (Nafisi ef al. 2007; Schuhegger ef al. 2007a, 2007b). Mutations within these
genes usually hamper the camalexin production, therefore leading to reduced resistance
(Saharan et al. 2019). These insights underscore the multifaceted nature of powdery
mildew resistance in cruciferous plants, where diverse biochemical pathways and genetic
components, including glucosinolates, camalexin, and PMR genes, collectively contribute
to complex and dynamic defense responses against pathogen invasion.

Molecular events involved in resistance in Brassica species in response to E. cruciferarum

Although the histological or cellular reactions and the biochemical molecules are
associated with some of the defense responses to PM infections, the genomic or molecular
interactions are the ultimate end process for ascertaining the host resistance types. The
evolutionary mechanism that helps maintain homologous R genes in B. napus, which
provide broad spectrum resistance for PM pathogen, have been previously studied. In B.
rapa, one gene and three genes in B. oleracea, have been identified as being similar to
RPWS (Li et al. 2016). Additionally, two loci RPW6 and RPW7 were located on
chromosome 5 and 3, respectively, in A. thaliana genome that showed independent
dominant inheritance against PM disease (Xiao ef al. 1997). Most of the characterized R
genes in A. thaliana for powdery mildew are C-terminal NB-LRRs, while there is a smaller
number of N-terminal coiled-coil motif superfamily and transmembrane domains. Key
genes include EDS1, EDRI1, PAD4, EDSS5, NPR1, EIN2, RARI, COIl, SGT1b, PBS3,
NDRI1, and RPW8 (Xiao et al. 2005). In Arabidopsis, genetic screenings have also led to
the identification of six recessive loci of PM resistant mutants (PMR1 to PMR6), with
genes PMR2, PMR4/GSL5, PMRS, and PMR6 having been partially characterized in
Arabidopsis (Vogel and Somerville 2000; Jacobs et al. 2003; Nishimura ef al. 2003;
Consonni et al. 2006). These mutants have shown increased resistance against PM disease.
Furthermore, the susceptibility gene containing MLO locus was also screened and
characterized in Brassica with respect to its sequence similarity with barley MLO and
identified as a susceptibility gene (Consonni ef al. 2006). Chandran et al. (2009) elucidated
67 transcription factors with altered expression at the PM infection site, revealing that
MYB3R4 acts as a regulator for transcription, thus influencing host endo-reduplication at
the infection site. This combination of homologous R genes, transcription factors, and
resistance-related loci work together to provide robust defense against E. cruciferarum and
other PM pathogens.

Non-host Resistance (NHR)

The most prevalent and important plant immunity, known as NHR, offers a broad-
spectrum resistance to multiple pathogens (Mysore and Ryu 2004; Thordal-Christensen
2003). Such resistance prevents infections from pathogens that did not co-evolve alongside
the host, mainly due to the lack of adapted fungal effectors or the presence of numerous
resistance genes (Jones and Dangl 2006).
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The NHR functions against fungal pathogens that are non-adapted like PM. The
NHR has an independent, multi-component defense system, i.e., pre- and post-invasion
immunities (Lipka et al. 2005; Wiermer et al. 2005; Stein et al. 2006; Meena ef al. 2018).
Arabidopsis NPR1 genes, which are important for systemic acquired resistance, are
essential for the regulation of NHR (Chen et al. 2013; Zhong et al. 2015).

Previous studies on Arabidopsis have shown that it exhibits resistance to PMs, such
as Blumeria graminis and E. pisi, that are not adapted to A. thaliana. These function
through strong pre-invasion defenses that are mediated by PEN1 to PEN4 genes (Collins
et al. 2003; Stein et al. 2006). The gene PEN1 codes a protein called syntaxin that prevents
fungal penetration by forming ternary SNARE complexes (Assaad ef al. 2004; Bhat ef al.
2005; Kwon et al. 2008). PEN 2 and PEN 3 proteins also play roles in penetration
resistance, with PEN 2 demonstrating myrosinase activity that can impede fungal infection
(Lipka et al. 2005; Stein et al. 2006).

While the NHR response in pre-invasion stage is mediated by PEN (penetration
gene), in the post-invasion stage, it is regulated by PM pathogen genes with increased
disease susceptibility, phytoalexin-deficient, and genes associated with senescence
(Saharan et al. 2019). The dual role of non-host resistance, where pre- and post-invasion
immunity, regulated by various pathogen-related genes, collectively offer robust protection
against non-adapted powdery mildew pathogens.

Genes Governing Intrinsic Resistance in Brassica Species and their
Mechanisms Against E. cruciferarum

The resistance often has been controlled by Mendelian genes (Biffen 1905). Many
research outcomes have accumulated the knowledge on different basis of plant resistance
(Lucas 2011; Russel 2013). However, limited efforts have been made to explore this basis
content for developing durable resistant genotypes. Recent advancements in genomic and
transcript analysis techniques have significantly contributed to understanding the
molecular pathway that contributes toward resistance against PM. Identified genes
represent both SAR and NHR pathways and belong to R- gene (RPWS), SA signaling
pathways (NPR1 and NPR2), calmodulin binding protein (MLO), transcription factors
(WRKY70), etc. (Table 4).

A recent transcriptome analysis using RNA-seq data on two B. napus cultivars,
displaying a contrasting range of resistance against powdery mildew disease, found that
gene expressions involved during pectin modification and degradation were at elevated
levels in resistant cultivar in comparison to susceptible. These genes included PM
resistant5 (PMRS5), polygalacturonase inhibitor1 (PGIP1), pectin methyl esterase inhibitor
9 (PMEIY), and reduced wall acetylation2 (RWA?2) (Zhang et al. 2022). Studies conducted
in Arabidopsis and other crops have recently confirmed that members of these gene
families, such as PMR, PGIP, PMEI, and RWA, are strongly linked with susceptibility or
resistance to pathogen (Engelsdorf e al. 2017; Lionetti et al. 2017). These studies highlight
specific gene families and molecular pathways that play a key role in developing durable
resistance against powdery mildew, emphasizing the potential for utilizing advanced
genomic techniques to enhance resistance breeding strategies in Brassica species and other
Crops.
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Table 4. Genes Along with their Functions Conferring Resistance in Crucifer’s

Species Against Powdery Mildews

Host Genes Controlling Host | Mechanism of Action/ Function References
Species Resistance
Arabidopsis | MLO genes (mlo2, mlo6, Confer wide range R by altered Consonni et al. 2006
thaliana mlo12) Triple mutant cell wall composition
A. thaliana NPR1, NPR2 Regulators of SAR Zhang et al. 2003
B. juncea NPR1 Activates SAR Ali et al. 2017
B. rapa and BnHR Resistance to PM Lie et al. 2016
B. oleracea
A. thaliana RPW8.1, RPW8.2 R through SHL or HR Xiao et al. 2001, 2003
A. thaliana CPR5 Control R through PCD Misas-Villamil et al.
2016; Howing et al.
2017
A. thaliana PAD3, WRKY33d, and Elevated amounts of camalexin for | Qiu et al. 2008; Pandey
Cyp 83 a-1-3 mutant R et al. 2010; Mao et al.
2011; Weis et al. 2013
B. juncea AtMLOG6, AtMLO2, Provide basal R Saharan et al. 2019
AtMLO12, AtROP-
regulated AtRLCK VIA3
A. thaliana PEN genes, EDS1, NHR at pre and post--invasion Wiermer et al. 2005;
PAD4, SAG101 stage Stein et al. 2006; Lipka
et al. 2008
Crucifers MYB 51 TF Regulator of glucosinolate Saharan et al. 2019
biosynthesis genes
Crucifers Overexpression of r Confer R to PM Saharan et al. 2019
genes, such as PAD3,
PAD4, MLO, PEN, EDR,
NPR1, MAPK, MAPK 65-
3, PMR, SNARE, RLCKs,
ED5, KDLd, and
WRKY70
Crucifers Plant UBX domain- Fungal reproduction and growth Rancour et al. 2004
containing protein (PUX)
2
Crucifers Bax inhibitor 1s Support PM penetration Huckelhoven et al.
and development 2004; Babaeizad et al.
2009; Eichmann et al.
2010
Crucifers Lifeguard (LEG) proteins Support PM penetration Reimers et al. 2006,
and development 2008; Hu et al. 2009
Crucifers NPR1, PD4 Exhibit enhanced S Xiao et al. 2005
Crucifers nah G (transgenic) Exhibit enhanced S Reuber et al. 1998
Crucifers | Receptor-like cytoplasmic Enhanced fungal growth Saharan et al. 2009
kinases) VIA3 mutant
A. thaliana Penetration gene 1, Increase PM penetration Kim et al. 2014
VAMP
A. thaliana | wrky40 mutants, wrky18 Enhanced camalexin Affolter et al. 2008;
Beers et al. 2004
A. thaliana MLO2, MLOG6, and Suppress basal defense and Panstruga 2005
MLO12 modulate infection process
A. thaliana Soluble carbohydrate Decreases fungal growth Schweizer et al. 2000
elicitor
A. thaliana Chito-octamer Elicitor of plant defenses Ramonell et al. 2002
A. thaliana | Chitonases, glucanases, Important role in PM resistance Makandar et al. 2006
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thaumatins, defensins
(PR proteins)
A. thaliana PAMPs, PRRs Activate immune responses Niks and Marcel 2009;
Boller and Felix 2009
A. thaliana CERK1 Contributes to basal R Wan et al. 2008
A. thaliana KDEL, Cys EP, CEP1 Provide R during post-penetration Howing et al. 2017
A. thaliana SR 1 Regulates NDR1 expression and Nie et al. 2012
EIN 3
A. thaliana PMR4/GSL5 Callose synthesis (a physical Ellinger et al. 2013
barrier)
A. thaliana AtL31, overexpression, Enhanced penetration Maekawa et al. 2014;
RABA4, Ellinger et al. 2014

*Abbreviations: KDEL-CysEPs- C-terminal KDL endoplasmic reticulum retention signal with
cysteine endopeptidases from Castor bean; CEP- Constitutive expression of protein; PMR PM-
resistant; EDR-Enhanced disease resistance; CERK- Chitin elicitor receptor kinase gene; SR-
Signal-responsive; PAD- Phytoalexin-deficient; VAMPs-Vesicle-associated membrane protein;
RLCKs- Receptor-like cytoplasmic kinases and EIN-Ethylene-insensitive, and SNAREs- Soluble
N-ethylmaleimide—sensitive factor attachment protein receptors

Major R Genes ldentified for Brassica Powdery Mildew Resistance
Status of RPWS8 gene in cultivated Brassica species

The major concern to ascertain durable resistance is whether resistance genes (R)
after undergoing diploidization remain present or are lost in Brassica species. For instance,
it was discovered that B. rapa and B. oleracea each have four homologs of the RPWS gene.
However, in B. napus (Bn), which is a cross between B. oleracea (Bo) and B. rapa (Br),
seven homologs (RPWS8) were observed. It was unclear whether these genes were lost in
B. napus and through what evolutionary process (Li ef al. 2016). The findings suggested
that, although, BoHR homolog originating from B. oleracea remained largely unchanged,
the BrHR homolog introduced from B. rapa displayed comparatively more variability
within the genome of B. napus due to evolutionary processes such as gene loss, deletion,
insertion, substitution, mutation, and intragenic recombination. Furthermore, the BnHR
genes, although shared high sequence similarity with BoHR genes, the absence of
homologs in B. napus accessions was explained through intragenic recombination
involving two paralogs and two orthologs. Additionally, subcellular localization studies
were done by fusing truncated BnHRa and BnHRb at the C-terminus, as well as full length
BnHR with Yellow Fluorescent Protein (YFP). It was found that the BnHRb-YFP and
BnHRa-YFP predominantly present at the extra-haustorial membrane encompassing the
haustorium of PM pathogen. The study also revealed the role of these genes in induction
of cell death leading to improved resistance against PM disease in Arabidopsis by ectopic
expression studies (Li et al. 2016).

BjNPRI1 gene

The non-expressor of PR genes family, having NPR1, NPR3, and NPR4, is
extremely important in signaling pathway of the salicylic acid (SA) for plant defense.
NPR1 acts as a positive regulator by activating (PR) genes upon SA accumulation during
pathogen infection. Both NPR3 and NPR4 serve as negative regulators and SA receptors,
controlling NPR1 activity by facilitating its degradation, ensuring a balanced immune
response. The overexpressed BjNPR1 in transgenic B. juncea presented increased
resistance to E. cruciferarum and A. brassicae, its involvement in broad-spectrum disease
resistance is shown by its delayed symptom development and decreased disease severity
(Ali et al. 2017).
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Mildew Locus O (MLO) proteins

The MLO gene family plays a pivotal role in pathogen-host interactions and
offering resistance to PM diseases. A transmembrane protein that the wild-type MLO gene
produces is implicated in increasing powdery mildew susceptibility by aiding fungal entry
and establishment within the host plant. This susceptibility pathway is disrupted by the
loss-of-function mutations in MLO genes, which strengthens the plant defense against the
pathogen. The significance of the MLO gene in improving plant resistance to PM has been
highlighted by recent developments in gene editing technology (Shi et al. 2022). In
Arabidopsis, studies have identified PMR2, which encodes MLO?2, as a crucial regulator
promoting compatibility between PM species (Consonni et al. 2006). MLO-2 aids in PM
pathogen entry into plant cells, along with the close paralogs MLO6 and MLO12
(Panstruga 2005). These MLO genes are part of membrane proteins having a conserved
role in plant defense (Devoto et al. 2003). Arabidopsis possesses a group of 15 MLO gene,
among which MLO2, MLO6, and MLO12 are particularly influential in PM compatibility
(Collins et al. 2003). The MLO proteins interact with calmodulin, influencing defense
responses independently of signaling pathways such as SA or JA/ET (Bhat et al. 2005).
The presence of MLO is crucial for E. cruciferarum infection, with pathogens utilizing
MLO functions to inhibit host defense responses (Panstruga 2005). In rapeseed , mutating
the BnMLOG6 gene resulted in significant resistance to E. cruciferarum and Sclerotinia
sclerotiorum (Shi et al. 2022). Moreover, resistant plants showed lower expression levels
of the susceptibility genes MLO6 and MLO12, demonstrating their critical function in PM
resistance (Zhang et al. 2022). Triple mutant devoid of AtMLO2, AtMLO6, and AtMLO12
exhibited nearly total resistance against E. cruciferarum infections (Consonni et al. 2006).
Above-mentioned studies demonstrate the critical role of MLO genes in facilitating PM
susceptibility and highlight the potential of gene-editing technologies, like CRISPR/Cas9,
to disrupt MLO pathways and significantly enhance resistance to powdery mildew in
various crops.
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Fig. 2. Image describing different pathways for resistance against powdery mildew pathogen
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Upon pathogenic invasion, powdery mildew pathogens release PAMPs and
DAMPs. These molecules are recognized by PRRs present on the host plant cell surface,
triggering a MAPK cascade that leads to a plant defense response. Simultaneously, the
pathogen releases effector molecules that interact with resistance (R) proteins, typically
containing LRR, (TIR), and S/TK domains, activating R genes to halt pathogen spread.
Another defense pathway involves calcium signaling, which activates NPR1 protein,
leading to the accumulation of salicylic acid (SA)-responsive transcription factors such as
WRKY and AP2/ERF. Plants with the EDR1 mutation show increased expression of genes
linked to the endomembrane system and reactive oxygen species (ROS) generation,
indicating that EDR 1-mediated immunity against powdery mildew may rely heavily on the
secretory pathway. Furthermore, the MLO (Mildew Locus O) gene family plays an
essential part in pathogen-plant interactions; MLO genes of the wild type increase
vulnerability by enabling fungal entry. This susceptibility pathway is disrupted by loss-of-
function mutations in MLO genes, strengthening the plant's defense against the pathogen.

Arabidopsis RPW8

Crop breeding has made considerable use of disease resistance genes (R-genes) to
create durable disease-resistant cultivars to reduce crop losses by diseases. Resistance to
PM fungus can be introgressed in many plant species, and R-genes inherited dominantly
or semi-dominantly provide unique protection as a supplementary defense mechanism (Bai
et al. 2005; Marone et al. 2013). Plant populations naturally contain numerous allelic
variants of R-genes. Previous studies indicate PM resistance in the model plant Arabidopsis
is often polygenic, with the RPW8 gene being a significant QTL. Subsequent studies
identified additional RPW genes ranging from RPW6 to RPW13 and also including semi-
dominant resistance loci, RPW1, RPW2, RPW4, and RPWS5, mapped on chromosomes 2,
3,4, and 5, respectively (Adam et al. 1996; Wilson et al. 2001). However, RPW8 emerged
as a vital contributor to natural resistance and is present in accessions such as Shahdara,
Co3, Do00, Ei4, 5, Kasl, Ms0, Nok3, and Wall (Wilson et al. 2001; Xiao et al. 2001,
Gollner et al. 2008). The RPWS locus in the accession Ma0 consists of two genes, RPWS.1
and RPW8.2. The combination provides resistance to PM pathogens (Xiao et al. 2001).
Unlike typical R genes that offer isolate-specific resistance (Martin et al. 2003), RPWS-
mediated resistance activates PR genes, leading to a hypersensitive response (HR) marked
by H202 accumulation, cell death, and callose deposition upon pathogen attack (Xiao et al.
2001; Xiao et al. 2003; Xiao et al. 2005; Gollner et al. 2008). Additionally, enhanced gene
expression of these has been linked to formation of necrotic spots associated with
hypersensitive response-like activity induced by elevated SA levels, in the transgenic line
S24 (Saharan et al. 2019). RPW8.1 is a broad-spectrum resistance gene that balances plant
immunity by feedback regulation of WRKYS51 transcription factor (Yang et al. 2024).
Furthermore, another study has also shown that the promoters of RPW8.1 and RPWS.2
genes are essential for resistance (Xiao et al. 2003). These insights into the role of RPW8
and its associated allelic variants underscore the potential for harnessing these genes in
breeding programs to develop durable, broad-spectrum resistance against powdery mildew
in various crops, ultimately improving agricultural resilience and productivity.

Transcription Factors (TFs) Regulating Resistance in Brassica spp. against
E. cruciferarum

Transcriptional regulators in plants can be activated either directly through
pathogen receptors or via signal transduction by MAP kinases (Shen et al. 2007). In
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Arabidopsis, WRKY TFs, such as WRKY 18, WRKY33, and WRKY40, are crucial for
camalexin biosynthesis, contributing to powdery mildew (PM) resistance (Qiu et al. 2008;
Pandey et al. 2010; Mao et al. 2011). WRKY70 is necessary for activating SA pathway
and provides resistance against multiple pathogens. Interestingly, WRKY-18 and 40 also
plays an important role by negatively regulating defense genes against Golovinomyces
orontii, with double mutants showing complete resistance to infection (Shen et al. 2007).
In barley, WRKY1 and WRKY?2, which are homologous to WRKY 18 and WRKY40,
interact with MLA immune receptors (Shen et al. 2007). Under normal conditions, they
suppress defense genes, but upon pathogen detection, MLA displaces them, enhancing
defense against Blumeria graminis f. sp. hordei (Bgh). NAC TFs, such as the barley gene
NAC6 and its homolog ATAF1 in Arabidopsis, are also key regulators of early defense
responses to PM (Jensen et al. 2007). Silencing these genes reduces resistance, while over-
expression enhances it, indicating their role in pre-haustorial defense mechanisms. In
cruciferous plants, WRKY transcription factors and the overexpression of various
resistance genes (e.g., MLO, PEN, PMR, MAPK, EDR, PAD3, MPK3, MPR1, EDSS5,
SNARE, PAD4, RLCKs, and KDL) are critical for effective defense against PM. These
studies highlight the pivotal role of transcription factors, particularly WRKY and NAC,
along with various resistance genes, in regulating complex defense pathways, highlighting
their potential for enhancing powdery mildew resistance through targeted genetic
interventions in cruciferous plants (Saharan et al. 2019).

Future Strategies on Genetics and Genomic Approaches for Augmenting
Resistance in Rapeseed-Mustard Against E. cruciferarum

Molecular breeding is of utmost importance for enhancing resistance to pests and
diseases in Brassicaceae crops. It involves precise breeding, enrichment of genetic
diversity, broad-spectrum resistance to multiple pathogens, and development of climate-
resilient genotypes, efc. Interspecific hybridization within the Brassica genus shows
promising results for crop enhancement due to the close genetic relationships between
species. For instance, B. napus originates from the wide hybridization among B. oleracea
and B. rapa resulting in a distinct species. In contrast, other species such as B. juncea, B.
carinata, and B. nigra share common genomes. The PM resistance was introduced in B.
oleracea, their BCi progeny and interspecific hybrid plants were produced using embryo
culture and sexual crosses procedures by involving accession PI 360883 (B. carinata) and
B. oleracea cultivars Cecile and Titleist. Plant morphology and RAPD evaluation
confirmed the origin of B. carinata, used as maternal parent to obtain hybrids via embryo
rescue culture. Amid these populations, eight BCi plants and all interspecific hybrids
displayed resistance to PM (Tonguc and Griffiths 2004). B. carinata cv., ‘White flower’
was identified as immune under field and greenhouse conditions after the evaluation of 102
germplasm of B. napus as well as other Brassicas for resistance to PM disease. Inclusion
of B. carinata cytoplasm, yellow petals, and male sterility, true F1 hybrids were produced
without embryo rescue. Morphological characteristics, seed quality, and molecular marker
analysis confirms the hybrids and their progenies. Breeding lines such as W3PS.1, W7.6,
W7.4, W7.1, W8.1, and W8.3 resulted in resistance or moderate resistance reaction to PM
(Gong et al. 2020). Previous studies identified two semi-dominant genes governing PM
resistance in Indian mustard (Kapadia et al. 2019). Using molecular markers OI10-B12
and OI10-CO01, they distinguished between susceptible and resistant bulks in the cross GM-
3 x Pusa Swarnim. These markers are valuable for identifying disease resistance across
various Brassica species, especially because the ‘C’ genome might have naturally

Chanda et al. (2025). “Powdery mildew pathogen,” BioResources 20(4), 11319-11353. 11337



PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu

introgressed into different genotypes through outcrossing. Molecular markers closely
associated with various resistance genes are crucial for enhancing the selection of trait,
especially for combining multiple distinct genes within the same genetic background
(Tanksley et al. 1989). The development of resistant Brassica species against diseases can
be accelerated by utilizing genetic and molecular marker-based techniques, thereby
improving sustainable agriculture and world food security. Transgenic approaches have
proven to be effective in enhancing disease resistance in rapeseed mustard (B. juncea), a
crucial oilseed crop. Through incorporating specific genes known for their defensive
properties, genetically modified plants with improved resistance to various pathogens have
been developed. An example includes the chitinase gene, which has been demonstrated to
provide resistance against fungal infections. Chitin is degraded by chitinase enzymes,
which are essential to plant defense. Plants that have their chitinase genes overexpressed
are considerably more resistant to fungus-related diseases. In a previous study, the
introduction of chitinase gene was done from rice (Oryza sativa) into B. juncea via
Agrobacterium mediated transformation. Transgenic plants of B. juncea evaluated for
resistance against two predominant fungal pathogens, i.e., A. brassicae and Sclerotinia
sclerotiorum. A significant decrease in disease severity was recorded in transgenic lines
compared to control plants (Grover et al. 2015). Chitinase enzyme effectively degrades the
cell wall of fungi and reduces the growth and development of the pathogens. So far
advancements in molecular breeding, transgenic, and genome editing approaches can play
a crucial role in generating broad-spectrum resistance to PM pathogen.
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Genome Editing and CRISPR/Cas9 Technology in Brassica Powdery
Mildew Resistance

Globally, systematic, strategic, and practical research approaches focusing on the
genetic development of cruciferous crop plants draw on a diverse range of associated
subjects. The control of many prevailing plant pathogens has been achieved since the
development of molecular tools and techniques in the field of molecular plant pathology.
Among contemporary methods, an efficient and desirable genetic approach for managing
increasingly problematic plant diseases is the modification of intrinsic genetic contents
through genome editing technologies. This technology has created more interest within the
scientific community due to the effectiveness, versatility, and simplicity associated with
the genome editing tool CRISPR (Clustered Interspaced Palindromic Repeats) (Banerjee
et al. 2023). It offers rapid selection and modification of target genomic areas by deletion
or addition of specific base pairs, facilitating the development of desired traits, with special
reference to disease resistance genes.

The genome editing (CRISPR) method has shown potential in altering numerous
desirable traits in a various agricultural commodity, including rice, wheat, coffee, bananas,
cassava, soybeans, and sweet oranges (Prado et al. 2024). This approach has also
contributed to the introduction of genes conferring resistance to powdery mildew in some
crops. For instance, the CRISPR/Cas9 system has been used to generate elite tomato
(Solanum lycopersicum) lines, with the SIMLO1 knockout line targeting pathogen Oidium
neolycopersici (Pramanik et al. 2021). There are sixteen MLO genes (MLO1 through
MLO16) identified as the primary causes of powdery mildew susceptibility. Furthermore,
Agrobacterium-mediated transformation is used to insert the DMR1 gene for PM resistance
into the aromatic sweet basil plant (Ocimum basilicum) (Navet and Tian 2020). The target
gene MLO-7 introduced in grapevines to combat the powdery mildew-causing Uncinula
necator using CRISPR/Cas9 ribonucleoproteins (RNPs) led to enhanced resistance against
the powdery mildew disease (Malnoy et al. 2016). Although a disease resistance
mechanism in Brassica crops has not yet been established, a candidate gene, MYB28, has
been introduced in broccoli (B. oleracea) to increase glucoraphanin content through
protoplast transfection using RNPs (Kim ef al. 2022). By replacing the RGEN RNP gene
in place of the BoIMYB28 gene, researchers successfully developed a broccoli cultivar
with increased glucoraphanin contents. A recently published technique for editing the
genome of the mustard crop (B. juncea) utilized cotyledon explants to introduce CRISPR
components into the plant genome via an Agrobacterium-mediated transformation (Ahmad
et al. 2024). The research output involves an expanded workflow and various steps for
recovering genome-edited knockouts, further verification of the edits, and accurate
recovery of the transgene-free genome edited plants, providing a robust foundation for
future studies on CRISPR/cas9 technology. The emphasis is on developing multiple of
disease-resistant mustard cultivars worldwide.

CONCLUSIONS

This comprehensive review has summarized published information about rapeseed-
mustard, which is a significant edible oil crop, ranking closer to soybean and palm oil in
context of its contribution in the edible oil market, in India. However, this crop faces a lot
of challenges from both biotic and abiotic stresses, resulting in substantial losses in quality
and production. Among the biotic stress, PM incited by E. cruciferarum poses a significant
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economic threat in mustard cultivation in India. Severe incidences encompass 17% to
29.5% yield loss in various Indian states. The Indian mustard cultivars grown across
different regions of India are highly vulnerable to the infection of powdery mildew
pathogen. Researchers worldwide have extensively investigated various aspects of PM in
Brassica species. Many Brassica species and their wild relatives are rich sources of
important candidate genes, especially those related to resistance against various stresses
including biotrophic diseases. Studies focusing on varietal screening have disclosed the
resistance levels of B. juncea to E. cruciferarum. Additionally, research has explored the
genetic and genomic elements contributing to PM resistance in different B. juncea
genotypes, aiming to offer empirical data and reliable markers for detecting resistant plant
materials. The absence of clear scientific information regarding the resistance source for
powdery mildew disease in B. juncea and its genetic traits has impeded comprehensive
research efforts to combat this disease. Therefore, in this paper the authors explicitly
reviewed different aspects about Brassica powdery mildew, its economic significance, and
the cellular and molecular aspects of resistance mechanisms for sustainable management
practices. Furthermore, molecular studies using a model plant like A. thaliana are crucial
to analyze host-parasite interactions with the PM pathogen, particularly in economically
significant hosts, such as rapeseed-mustard, Chinese cabbage, broccoli, cauliflower, radish,
turnip, horseradish, turnips, kohlrabi, kale, and rape. This review further contributes with
a comprehensive understanding of plant defense mechanisms that offer self-sustained crop
protection and reduce stress factors, promoting eco-friendly and sustainable crop
production.

In future investigations on B. juncea, emphasis should be placed on diverse aspects
of PM, encompassing host-pathogen interactions, variability, racial profiling, virulence
patterns, QTL mapping, and molecular mechanisms underlying pathogenesis. Identifying
effector molecules and their corresponding R-genes will further enhance our understanding
about resistance mechanisms for future programmes on resistance breeding. Creating
innovative pre-breeding materials by utilizing resistant crop wild relatives, whether closely
or distantly related, and employing marker-assisted selection methods can streamline
Brassica improvement initiatives. Implementing strategies to manipulate host factors
targeted by the PM pathogen will greatly contribute to the advancement of PM
management techniques within Brassica crop improvement programs.
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