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Wood Panel Defect Detection Based on Improved
YOLOvS8n

Rui Li, Shilu Zhong, and Xuemei Yang

Wood panel surface defect detection is critical to product quality.
Traditional detection methods are time-consuming and subjective, and
they can lead to economic waste, while deep learning image recognition
techniques offer a new approach. However, the accuracy and
convergence speed of existing defect detection techniques still require
improvement. In this paper, an improved algorithm based on YOLOv8n
was designed for accurate detection of wood panel defects. The C-ADown
method was designed to replace traditional downsampling, while
preserving high-frequency features. The combination of the Dilation-wise
Residual Module and multi-scale dilation attention was employed to
enhance the multiscale robustness of defect detection. A hybrid encoder
was added to improve localization accuracy. The loss function was
optimized to improve detection accuracy and convergence speed.
Compared to the base YOLOV8 version, the improved model achieved a
6.1% increase in mAP, an 8% increase in recall, and a 3.6% increase in
precision, significantly enhancing the model’s detection capabilities. The
GitHub link to the improved algorithm files is as follows:
(https://github.com/humblefactos1/YOLOV8-CDCl/tree/main.)
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INTRODUCTION

The detection of surface defects in wood panels has always been an urgent problem
for the wood processing industry. The traditional method of relying on manual visual
inspection has many drawbacks, including low efficiency, low accuracy, and high
subjectivity. In addition, due to the low degree of automation of the production line, it is
impossible to realize real-time monitoring and feedback, resulting in a high rate of
defective products, which brings huge economic losses to enterprises. Studies have shown
that traditional manual defect detection results in approximately 25% of wood resources
being wasted. A 1% reduction in raw material waste can decrease overall production costs
by about 2% (Buehlmann and Thomas 2002). In addition, the repetitive labor of manual
inspection easily leads to inspector fatigue, which affects the quality of inspection and
reduces the mechanical properties, appearance and utilization of wood, resulting in a
serious waste of wood resources (Cheng 2020). The quality of inspections is affected by
inspector fatigue.

Rapid advances in computer and sensor technology have revolutionized the wood
industry, and non-destructive testing techniques have emerged. Among them, acoustic,
radiographic, and optical inspection methods were once the traditional mainstream means

Li et al. (2025). “Improved panel defect detection,” BioResources 20(2), 2556-2573. 2556


https://github.com/humblefactos1/YOLOV8-CDC/tree/main

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

(Wang et al. 2013). However, as deep learning technology has become increasingly
sophisticated, it has become increasingly popular. With the maturity of deep learning
technology, NDT methods based on image recognition have gradually become a research
hotspot in academia and the industry due to its high efficiency and accuracy (Wang et al.
2024a). This method realizes automatic identification and classification of defects through
deep learning of wood panel images, providing a new paradigm for wood quality
inspection. Related studies have shown that the deep learning method shows great potential
in wood panel defect detection, which is expected to significantly improve the productivity
and product quality in the wood processing industry (Liu et al. 2023). Urbonas et al. (2019)
used a Faster R-CNN-based target detection network to localize and classify surface
defects in wood veneer, achieving an average accuracy of 80.6% using ResNet152 as a
pre-trained model. Cheng (2023) proposed a copy-paste-based class coverage method to
address imbalanced datasets. To tackle real-time performance and detection accuracy, a
CBi2-YOLO model was developed for wood panel defect detection. To fulfill the
requirement of calculating defect areas, Jia et al. (2023) proposed a quantitative recognition
method based on YOLOVS5, incorporating a dual-channel attention module to improve the
model's ability to recognize specific wood defects. Additionally, a shallow weighted
feature fusion network was introduced to fuse feature information from various layers
extracted by the backbone network, reducing the loss of feature information for small wood
defects. Jiang and Zhao (2024) proposed YOLOV7-ESS based on YOLOv7, which embeds
a dual-channel attention module to improve the model’s ability to recognize special defects
in wood panels. A shallow weighted feature fusion network is introduced to fuse the feature
information of each layer extracted by the backbone network to reduce the loss of feature
information of small defects in wood panel. Yang et al. (2023) employed global and local
adaptive thresholding algorithms to segment surface defects and extract image patches. By
replacing the ReLU activation function with ReLUG6 and introducing an inverted residual
structure, the MobileNetv2 deep learning network was optimized for defect detection and
classification. Wang et al. (2024b) constructed a Wood-Net network, which realizes the
defect recognition in the process of wood preference with high accuracy. Wang et al.
(2024c) introduced a two-way feature fusion network based on the YOLO-v8 algorithm
and proposes a feature fusion network model that combines the attention mechanism and
loss function optimization.

Aiming at the lack of detection and leakage caused by the complexity of defects
and low recognition degree in the nondestructive testing of wood panel, this paper designs
an improved detection model based on YOLOv8. The main improvement points are as
follows:

1. The design of C-ADown instead of the traditional convolutional downsampling retains
the main features of the wood panel defects while effectively reducing the size of the
feature map and enhancing the model’s ability to perceive the local features.

2. A dynamic weight residual (DWR) module combining the attention mechanism of
multi-scale feature alignment (MSDA) is designed to replace the C2F and bottleneck
modules in the original YOLOvVS8. This module can adaptively adjust the weights of
different scale features to improve the detection accuracy of the model for multi-scale
targets.

Li et al. (2025). “Improved panel defect detection,” BioResources 20(2), 2556-2573. 2557



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

3. The Neck structure is improved by utilizing a hybrid encoder to convert multi-scale
features into a series of image features through intra-scale feature interaction and cross-
scale feature fusion.

4. The loss function is improved to speed up the convergence of the model and improve
the detection accuracy.

YOLOVS8 Detection Algorithm

YOLOVS, released by Ultralytics in 2023, is the latest iteration of the YOLO series,
building upon the significant speed and accuracy improvements achieved by YOLOV5. It
consistently demonstrates state-of-the-art performance on various publicly available
datasets and is considered an enhanced version of existing YOLO variants such as
YOLOV5 and YOLOX (Varghese and Sambath 2024). However, the original YOLOVS
architecture exhibits limitations when tasked with detecting objects such as wood, which
contain numerous small defects. These defects typically occupy a small portion of the
image pixels and possess low feature resolution, hindering the capture of fine defect details
in the deeper network layers. To address these challenges, this paper conducts a thorough
investigation of the YOLOv8n model and proposes several enhancements to bolster its
performance in detecting wood panel surface, thereby better aligning with the practical
demands of wood defect detection.

Fig. 1. YOLOvVS structure
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EXPERIMENTAL

Improved YOLOv8n Algorithm
C-ADown downsampling module design

Downsampling is a technique employed to expand the receptive field by reducing
the feature map size, which allows the model to capture a broader range of contextual
information within an image. Traditional downsampling methods for convolution
operations often increase the number and size of convolution kernels, which results in a
significant rise in both model parameters and computational complexity (Varghese and
Sambath 2024). These conventional approaches, while effective in capturing hierarchical
information, tend to be resource-intensive and can lead to overfitting, particularly when
working with high-resolution images.

ADown, the downsampling method employed in YOLOV9, effectively preserves
global image information through average pooling, aiding in the understanding of overall
image structure and texture. Additionally, maximum pooling is used to capture local
features such as edges and corner points, contributing to target localization.

In this paper, FOCUS slicing is introduced as a replacement for the parallel 3x3
convolution module in ADown downsampling. This module downsamples the feature map
by slicing the image at the pixel level and converting spatial information into channel
information, ensuring that original pixel information is not lost. By expanding the number
of channels by a factor of four, the network can analyze the image from multiple
perspectives, extracting richer features. An increased number of channels enhances the
network’s feature representation capabilities, allowing for better differentiation between
various target types (Wang et al. 2024d).

—_———————=

Fig. 2. C-ADown downsampling structure
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To prevent the network from over-relying on specific channels, channel shuffling
is performed after maximum pooling of parallel data. This technique disrupts the channel
order in the feature map, forcing the network to learn more complex feature representations
and improving model generalization. This enhancement enables the model to adapt to
different feature types, facilitating the extraction of complex features like wood grain and
color and improving the perception of subtle defects.

The C-ADown module, therefore, not only minimizes information loss but also
facilitates a smoother transition of the feature map across different scales. Its efficiency is
evident in the reduction of computational complexity compared to traditional convolution-
based downsampling methods, as it eliminates the need for large convolutional kernels
while still capturing fine details. The enhanced channel manipulation capabilities allow the
network to learn more intricate features, particularly in areas with complex textures or
small defects. These improvements contribute significantly to the model’s ability to
accurately detect wood panel defects, making it particularly effective for fine-grained
defect detection and regions with detailed structural patterns. The structure of the C-
ADown module is illustrated in Fig. 2.

C2F DWR (MSDA) design

The C2F structure, a key architectural component introduced in YOLOVS,
combines the strengths of the C3 and ELAN modules to enhance feature extraction, thereby
improving model accuracy and robustness. However, the C2F architecture primarily
focuses on local feature capture and may be less effective in processing global semantic
information. This limitation can hinder the model’s ability to differentiate between subtle
category variations when dealing with complex wood defects, potentially affecting
classification or detection accuracy.

To address this, a semantic segmentation module was introduced. This module
classifies each pixel in the image, providing finer semantic information that aids in a deeper
understanding of image content and improves the detection of tiny targets. Fusing the
output of the semantic segmentation module with the C2F module’s features enhances
feature representation richness and enables the model to more effectively distinguish
between different categories and instances.

In this study, the BottleNeck module within the C2F structure was improved by
designing the C2F_DWR structure and incorporating the MSDA multiscale null attention
mechanism. This structure is capable of extracting multi-scale features, which are essential
for detecting targets of varying sizes. The combination of DWR residuals and the MSDA
attention mechanism allows the model to extract more discriminative features for defect
detection and adaptively select features that are more relevant for defect classification, thus
improving classification ability and robustness.

DWRseg residual linkage

The Dilation-wise Residual Module (DWR) is an efficient multi-scale context
information extraction technique primarily used in the field of real-time semantic
segmentation. The module’s structure, as illustrated in Figure 3, employs a residual
structure to efficiently extract multi-scale contextual information through a two-stage
approach, fusing this information to generate a feature map with multi-scale receptive
fields (Wei et al. 2022).

In the first stage, streamlined feature maps of varying sizes were generated through
regional residualization to establish a foundation for semantic residualization in the second
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stage. This process was achieved using a standard 3x3 convolution operation combined
with a batch normalization (BN) layer and a ReL U activation layer. The 3x3 convolution
operation was responsible for initial feature extraction.

Subsequently, in the second stage, semantic residualization, multirate depth-
separable convolution was used for morphological filtering of regional features, ensuring
that each channel feature utilized only one appropriate receptive field. In the first stage,
depending on the desired receptive field size, the network selectively learned the
appropriate streamlined regional feature map for efficient matching.

To accomplish this, the regional feature maps were first divided into different step
groups, followed by the application of dilation depth convolution with varying rates to
these groups. Different expansion rates and convolution capacities were designed for
different network stages to fully leverage the varying feature map sizes produced at each
stage. This design transformed the function of multirate depth-separable convolution from
complex semantic information extraction to simple morphological filtering, thereby
improving the efficiency of multi-scale contextual information extraction (Zhao et al.
2024).

Fig. 3. Dual-scale Wide Residual Architecture

MSDA multiscale void attention

In the field of wood panel defect detection, some defects are often obscured by the
features of large targets due to their small size and inconspicuous features, leading to poor
performance of target detection models such as YOLOVS in recognizing small targets. To
address this problem, a multi-scale dilation attention (MSDA) mechanism was
incorporated into the C2F structure to improve the accuracy of the YOLOv8 model in
detecting small targets of wood panel defects. The MSDA mechanism was designed to
capture multi-scale features by configuring different dilation rates in different detection
heads, effectively strengthening the model’s ability to recognize the features of small
targets and enhancing the accuracy of its localization.

The proposed MSDA was based on the Sliding Window Expansion Attention
(SWDA) method. In this method, representative keys and values were selected for sparsity
within a sliding window. Subsequently, these selected patches were weighted by
performing the self-attention mechanism to obtain attention scores (Saito et al. 2019). The
formula for this attention is as follows.

X =SWDA(Q, K,V,r) (1)
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xij = Attention(qj, Kr, Vr),

.
LS, Wr, 1<i<w,1< j<h,
dx )

The proposed MSDA was built upon SWDA by dividing the feature map into

windows at multiple scales through value inflation. The sliding window expansion

attention operation was then performed on these windows. Finally, the outputs from

different windows were stitched together, and feature aggregation was carried out using a

linear layer, as follows.

hi = SWDA(Qi, Ki,Vi,r), 1<i<n,
X = linear(Concat[hi,..., hn]) 3)

The features were passed to a linear layer for aggregation. Different expansion rates
were configured for individual heads. This multi-scale feature aggregation effectively
integrated semantic information at different scales within the supervised region,
significantly reducing redundancy in the self-attention mechanism, while avoiding
complex operations and additional computational overhead (Jiao et al. 2023).

Adaptive gating was incorporated into the MSDA null attention mechanism. The
gating weights were calculated based on the similarity between features. Additionally, an
initial weight was assigned to each type of defective feature by learning the defective label
information in the dataset. This initial weight was continuously updated during the model
training process, resulting in an adaptive weight that reflected the importance of different
defective features (Nie et al. 2024). When performing attention calculations, the original
attention weight was multiplied by the adaptive weight gi to obtain the final attention
weight. This allowed the model to focus more on defect features with higher importance,
thereby improving detection accuracy. The formula is shown below.

Xij = Attention(qi, Kr,Vr)g;

= Softmax(

4)
hi = SWDA(Qi, Ki,Vi,r,g), 1<i<n,

()

concat

SWDA(gi)

Fig. 4. Multi-Scale Dilated Attention Architecture
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Improvement of the neck structure

Multiple integration modules consisting of convolutional layers were embedded
into integration paths, which is a common technique in deep learning models. The primary
objective of this approach was to enhance the model’s representational ability and overall
performance by combining different feature maps. The CCFF (Cross-scale Context Fusion
Framework) architecture was optimized based on the cross-scale integration module,
which involved inserting multiple integration modules composed of convolutional layers
into the integration path. These integration modules were designed to efficiently integrate
the feature maps of two neighboring scales, generating a new feature map (Lv et al. 2024).
Given the varying receptive fields of different convolutional layers, they were capable of
capturing feature information at different scales. By strategically designing and arranging
these integration modules, a more refined and comprehensive multi-scale feature
integration was achieved. This fine-grained multi-scale feature integration mechanism
enabled the model to more accurately capture the detailed and contextual information of
the target object, leading to improved performance in various visual tasks. Its structure is
shown in Fig. 4.

DETECT

Concat

C2F

DETECT

conv

CONV 3X3

DETECT

Fig. 5. Cross-scale Integration Module of CCFF

Improving the loss function

loU (Intersection over Union) was used as a target detection evaluation metric. It
quantified the overlap between the predicted bounding box and the ground-truth box. The
loU loss function directly optimized the model by minimizing the difference between loU
and 1. However, this loss function suffered from a vanishing gradient problem when loU
approached 0 or 1, hindering network convergence. Moreover, loU only considered the
overlapping area, neglecting other geometric information such as the center point distance
and aspect ratio.

YOLOv8 employed CloU as the loss function for bounding box regression. CloU
not only considered the overlap area but also incorporated the centroid distance and aspect
ratio, leading to more accurate and efficient bounding box regression (Zheng et al. 2021).
By addressing the limitations of IoU, CloU significantly improved the model’s
performance:

F)Z
CloU =1loU —(—)—-aVv
c (6)
V= iz (arctan(W;gt) —arctan (ﬂ))2
T h_ gt h (7)
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v
1-1oU +V (8)

In Eq. 6, p? is the square of the Euclidean distance between the centroid of the predicted
and real frames, whereas v is a measure of the consistency of the aspect ratio.

CloU assumed that the aspect ratio of the target bounding box was a continuously
varying value and used a trigonometric function to calculate its consistency. In wood defect
detection, defects tended to occupy a small percentage of the area, leading to difficult
samples. Conversely, defect-free areas were considered simple samples. Very small defects
were challenging to accurately locate due to their size and inconspicuous features. The
distribution of aspect ratios in the target bounding box might be more complex, and the
CloU trigonometric function might not accurately capture this complexity. Therefore,
attention needed to be paid to bounding box regression for difficult samples.

The FocalerloUintroduced in this paper reconstructed the loU loss through a linear
interval mapping method, which could focus more on different types of samples. The
weights of different samples in the loss function were adaptively adjusted according to the
number of different defect types and the difficulty of detection (Zhang and Zhang 2024).
This approach effectively addressed the challenges posed by difficult samples in wood
defect detection.

0, loU <d
lou feaer — ) 10U =0 00
u—d
1 loU <d

9)
where loUfocaler is the reconstructed Focaler-loU, 1oU is the original loU value, and [d,
u] € [0, 1]. By adjusting the values of d and u, the loUfocaler can be made to focus on
different regression samples. Its loss is defined as follows:

I-focaler—IoU =1-1loU Focaler (10)
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Fig. 6. YOLOV8-CDC structure diagram

The Focaler-loU loss was combined with the CloU loss to form the Focaler-CloU
loss. This new loss function incorporated a focusing mechanism based on the CloU loss,
assigning greater weight to hard samples. By doing so, the model was encouraged to pay
more attention to these difficult samples, thereby improving the detection accuracy. The
Focaler-CloU loss formula is as follows:

Lfocaler—CIoU = I‘CIoU +1oU —loU Focaler (11)

In the wood surface defect detection dataset used in this paper, a portion of the
defect targets belong to small-sized targets, accounting for approximately one-third of the
total targets in the dataset. Therefore, considering the training perspective of the dataset,
this paper incorporated Focaler-CloU as part of the primary loss function to guide the
model’s bounding box regression task. During the actual training process, the network
calculates the CloU loss and Focaler-CloU loss for each detection box and dynamically
combines them to form the final Focaler-CloU loss. The improved model is named
YOLOV8n-CDC, and its structure is shown in Fig . 6.

Wood Panel Defects Database

This experiment utilized a wood panel dataset uploaded by individual users of
roboflow. As shown in Fig. 7, the dataset contained four common types of wood surface
defects: dead knot, live knot, crack, and scar. A total of 950 defect images were included.
To expand the dataset, data augmentation techniques such as flipping, scaling, and cropping
were applied. The augmented dataset was then re-labeled, resulting in a training set of 2117
images, a validation set of 248 images, and a test set of 248 images. The content of the
dataset is presented in Fig.7. The number of wood panel defects is summarized in Table.1.
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Fig. 7. Wood Panel Defects database

Table 1. Results of Ablation Experiments

Defect category Quantities
Dead knot 4065
Live knot 3134
Scar 3495
Crack 3278

Environment Configuration

The experiments were conducted on an NVIDIA GeForce RTX3070ti with 8GB of
video memory, using the PyTorch framework. The experimental parameters included 300
epochs, a batch size of 16, and an image size of 640.

Precision, Recall, Average Precision, and mean Average Precision (mAP) were
used as evaluation metrics. mAP, which measures the model's performance across various
target categories and confidence thresholds, was the primary metric. Precision, also known
as the detection rate, evaluates a classification model's performance by measuring the
proportion of true positives among predicted positives. Recall measures the proportion of
correctly detected targets to all true targets [10]. The formula for the metric is as follows,
where TP represents true positives, FP represents false positives, and FN represents false
negatives.

> AP(d)
mAP =41
¢ (12)
- TP
precision = ———
TP+ FP
(13)
recall = L (14)
TP+FN

Ablation experiment

To assess the specific impact of each module on performance, the YOLOv8 base
version was used as the baseline model. Eight sets of experiments were designed to conduct
ablation analysis of the modules, ensuring consistent experimental conditions. The
improved modules were gradually introduced to construct variant models, and their
corresponding performance metrics were obtained. Table 2 compares the performance data
of these models, analyzing the specific impact of removed or replaced modules on overall
performance.
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Table 2. Results of Ablation Experiments

C- M- CCF | Focaler | mAP50 mAP50 | Recall Precision GFLOPs
ADown | C2F |F -CloU | (%) -95 (%) | (%) (%) (G)
78.5 49 67 78.2 8.1
\ 79.3 48.9 73.7 75 7.2
\ 81.4 49.5 71.6 79.3 9.1
\ 79.8 48.7 68.8 81.2 7.6
\ 80.8 48.8 74.1 79.2 8.1
\ \ 82.9 49.1 725 78.5 8.5
\ \ \ 83.7 50.3 76.7 78.9 8.0
\ \ \ \ 84.8 50.1 775 84.7 8.0

The second set of experiments significantly reduced computational effort by
adjusting the downsampling strategy and replacing the traditional convolutional operation
with C-ADown, while preserving feature information. This resulted in a 0.8%
improvement in mean average precision (mAP) and a significant increase in recall of about
6.7%. The third set of experiments improved the C2F structure by introducing the DWR
residual join and MSDA attention mechanism, enhancing the ability to capture multi-scale
features, and contributing significantly to the improvement of precision and mAP. This
resulted in a 4.4% improvement in mAP. The fourth group of experiments improved the
NECK structure by incorporating the CCFF, which effectively fused features at different
scales, enhancing feature fusion while reducing computational effort. The fifth group of
experiments improved the loss function, accelerating model convergence speed without
increasing computational cost. Ultimately, compared to the base version of YOLOVS, the
improved model achieved a 6.3% improvement in mAP, a 10.5% improvement in recall,
and a 6.5% improvement in precision. These improvements effectively enhanced the
model's accuracy, demonstrating a good synergy between the improved modules.

Loss function comparison

When comparing the loss functions of the base and improved models, as shown in
Fig. 8, the CloU loss function had limitations in its performance due to its insufficient
consideration of the balance of sample difficulty. By introducing the Focaler-loU loss
function on top of CloU, the model was able to focus more on processing difficult samples.
This improvement significantly accelerated the convergence of the model and reduced the
overall loss value, thereby enhancing the overall performance.

Training Box Loss Training Classification Loss Training DFL Loss

—— FocalerioU —— FocalerioU | —— FocalerioU
CioU CioU 4.0 CioU

354 354

|
3.04 3.04

254

0 50 100 150 200 250 300 0 50 100 150 200 250 300 ] 50 100 150 200 250 300
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Fig. 8. Comparison of training loss functions

Comparison of different defects

A confusion matrix was generated by comparing the actual categories of the
validation set with the predicted categories of the model, as shown in Fig. 9. This figure
compares the confusion matrix plots of the different algorithms. The true-negative squares
on the diagonal represent the categories correctly predicted by the model. The other squares
represent misdetections and false detections. The values on the diagonal of Fig. 8(b) were
consistently higher than those on the diagonal of Fig. 8(a), especially for live knots and
crack defects. This indicates a more significant improvement of the improved algorithm
over the original algorithm. A comparison of the results is shown in Figs. 10 and 11.

Comparison of different algorithms

To demonstrate the superiority of the proposed algorithm in wood panel defect
detection, it was compared with other mainstream algorithms. The comparison results are
presented in Table 3. The proposed algorithm outperformed YOLOvV3-tiny by 15.4% in
accuracy and 6.2% in mAP. Compared to YOLOV5, it achieved a 10% increase in accuracy
and a 6.8% increase in mAP, with a slight increase in the number of parameters. When
compared to the larger YOLOVSs, the proposed algorithm exhibited a 4.5% increase in
accuracy and a 1.9% increase in mAP. While the proposed algorithm demonstrated
comparable performance to some of the improved algorithms, it surpassed them in the
detection of dead knots, dry scars, and live knots. However, its performance in crack
detection was slightly lower than that of wood-net. In summary, the proposed algorithm
exhibited strong performance compared to both mainstream YOLO algorithms and other
improved algorithms. It demonstrated superior accuracy in detecting scar and live knot
defects Table 3 Comparison of different algorithms.
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Fig. 9. (a) Confusion matrix for the YOLOv8 model (b) Confusion matrix for the improved model

Fig. 10. YOLOVS8 defect detection results

Li et al. (2025). “Improved panel defect detection,” BioResources 20(2), 2556-2573.

2569



PEER-REVIEWED ARTICLE

bioresources.cnr.ncsu.edu

Fig. 11. Improved algorithm defect detection results

Table 3. Comparison of Different Algorithms

id:2 live knot 0.78

id:3 live knot OO

ead knot

AP (%) -
Arithmetic Dead | Scar | Live | Crack ?S/SPSO T)'g/l:;/?o E:);)e)zmsmn (|?>/(j)c al %F)LOPS FPS
knot knot

SSD 79.5 78.2 | 76 70.5 73.6 44.5 67.2 74.5 92 42.6
faster-RCNN 82.6 815 |(79.1 | 77.1 79.2 48.9 72.5 75.2 108 14.3
YOLOv3- 85.7 79.6 | 75.2 | 73.8 78.6 475 69.3 73.8 19 85.2
tiny

YOLOvV5 84.3 759 | 77.1 | 745 78 47.4 74.7 70.3 7.1 54.3
YOLOv6 84.5 90 74.9 | 69.7 79.8 46.8 70.9 73.1 11.8 43.1
YOLOv7 85.7 79.6 | 75.2 | 73.8 78.6 48.6 69.3 73.8 19 445
YOLOvV8n 86.5 84.1 |71.7 | 71.8 78.5 49 78.2 67.2 8.1 81.3
YOLOvVS8s 86.7 81.2 | 83 79.8 82.7 50.8 80.2 71.7 28.4 69.7
YOLOvV5 HS | 85.9 88.3 [ 82.7 | 71.4 82.1 49.8 78.9 76 23.3 60.8
Wood-net 83.9 89.5 | 839 | 76.2 83.8 50.6 78.6 78.7 16.4 21.3
YOLOv8n- 88.7 92.2 | 85.3 | 75.9 84.8 50.1 84.7 77.5 8.0 58.4
CDC

Comparison of versatility
To verify the generalization of the improved model, comparative experiments were
conducted on the Roboflow public dataset. While maintaining the training parameters of
the model, comparative experiments were also performed on related domain public
datasets. The results of these comparative experiments are presented in Tables 4 and 5.
Dataset 1 (https://universe.roboflow.com/rtech/wood-surface-defects)
Dataset 2 (https://universe.roboflow.com/laila-hammad-cxqz8/wood-jxhd5)
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Table 4. Comparison of Generalizability across Dataset 1

arithmetic Precision/% Recall/% mAP50/%
YOLOvV8n 47.3 45.8 46.1
YOLOv8n-CDC | 53.3 45 48.2

Table 5. Comparison of Generalizability across Dataset 2

Arithmetic Precision/% Recall/% mAP50/%
YOLOvV8n 33.7 48.9 41.8
YOLOv8n-CDC | 34.9 55.6 43.6

CONCLUSIONS

1. To address the challenges of defect detection in wood panels caused by leakage and
misdetection, an improved YOLOv8-based model was proposed in this study.
Extensive ablation experiments and comparative evaluations with various existing
models were conducted to effectively mitigate these issues.

2. The proposed model replaces the traditional downsampling approach in the backbone
network with C-ADown and integrates the DWR module, which combines the MSDA
null attention mechanism to enhance the C2F and bottleneck modules in YOLOVS. This
modification allows for improved accuracy in detecting features across multiple scales.
Additionally, the NECK structure is enhanced by introducing the CCFF hybrid coding
framework, which facilitates intra-scalar, inter-scalar, and cross-scalar feature
interactions. The loss function is also refined to further optimize the model’s
performance.

3. Future research will aim to address the limitations of the detection head, particularly
the risk of overfitting that arises from the relatively small dataset size, which may
hinder the model’s generalization ability, especially when applied to diverse or unseen
data. Additionally, future work will explore more effective feature fusion techniques,
with a focus on improving the model’s ability to detect small and densely packed
targets. Furthermore, model compression strategies, such as pruning and distillation,
will be investigated to enable real-time deployment on embedded devices. However,
the potential trade-offs in model accuracy and robustness will be carefully evaluated,
as these compression techniques could compromise the overall performance.

4. A critical aspect of the model’s future development will be its generalizability across
various industrial domains. Although the current improvements provide promising
results for wood panel defect detection, the scalability of the model to other materials
and industries will require thorough validation. The model’s robustness in handling
data from different sources, variations in environmental conditions, and diverse defect
types needs to be systematically assessed. This includes extending its application to
industries such as construction, furniture manufacturing, and packaging, where similar
challenges in defect detection and quality control exist. Further refinement of the
model, including addressing its sensitivity to data variation and incorporating domain
adaptation techniques, will be essential to ensure its broad applicability and reliable
performance across diverse operational contexts.
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