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Wood panel surface defect detection is critical to product quality. 
Traditional detection methods are time-consuming and subjective, and 
they can lead to economic waste, while deep learning image recognition 
techniques offer a new approach. However, the accuracy and 
convergence speed of existing defect detection techniques still require 
improvement. In this paper, an improved algorithm based on YOLOv8n 
was designed for accurate detection of wood panel defects. The C-ADown 
method was designed to replace traditional downsampling, while 
preserving high-frequency features. The combination of the Dilation-wise 
Residual Module and multi-scale dilation attention was employed to 
enhance the multiscale robustness of defect detection. A hybrid encoder 
was added to improve localization accuracy. The loss function was 
optimized to improve detection accuracy and convergence speed. 
Compared to the base YOLOv8 version, the improved model achieved a 
6.1% increase in mAP, an 8% increase in recall, and a 3.6% increase in 
precision, significantly enhancing the model’s detection capabilities. The 
GitHub link to the improved algorithm files is as follows: 
(https://github.com/humblefactos1/YOLOV8-CDC/tree/main.) 

 

DOI: 10.15376/biores.20.2.2556-2573 

 

Keywords: Wood panel; Deep learning; YOLOv8n; C-ADown; Dilation-wise Residual; Multi-scale dilation 

attention; Loss function 

 

Contact information: College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 

210037, China; *Corresponding author: mgslirui0909@gmail.com 

 

 

INTRODUCTION 
 

The detection of surface defects in wood panels has always been an urgent problem 

for the wood processing industry. The traditional method of relying on manual visual 

inspection has many drawbacks, including low efficiency, low accuracy, and high 

subjectivity. In addition, due to the low degree of automation of the production line, it is 

impossible to realize real-time monitoring and feedback, resulting in a high rate of 

defective products, which brings huge economic losses to enterprises. Studies have shown 

that traditional manual defect detection results in approximately 25% of wood resources 

being wasted. A 1% reduction in raw material waste can decrease overall production costs 

by about 2% (Buehlmann and Thomas 2002). In addition, the repetitive labor of manual 

inspection easily leads to inspector fatigue, which affects the quality of inspection and 

reduces the mechanical properties, appearance and utilization of wood, resulting in a 

serious waste of wood resources (Cheng 2020). The quality of inspections is affected by 

inspector fatigue. 

Rapid advances in computer and sensor technology have revolutionized the wood 

industry, and non-destructive testing techniques have emerged. Among them, acoustic, 

radiographic, and optical inspection methods were once the traditional mainstream means 
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(Wang et al. 2013). However, as deep learning technology has become increasingly 

sophisticated, it has become increasingly popular. With the maturity of deep learning 

technology, NDT methods based on image recognition have gradually become a research 

hotspot in academia and the industry due to its high efficiency and accuracy (Wang et al. 

2024a). This method realizes automatic identification and classification of defects through 

deep learning of wood panel images, providing a new paradigm for wood quality 

inspection. Related studies have shown that the deep learning method shows great potential 

in wood panel defect detection, which is expected to significantly improve the productivity 

and product quality in the wood processing industry (Liu et al. 2023). Urbonas et al. (2019) 

used a Faster R-CNN-based target detection network to localize and classify surface 

defects in wood veneer, achieving an average accuracy of 80.6% using ResNet152 as a 

pre-trained model. Cheng (2023) proposed a copy-paste-based class coverage method to 

address imbalanced datasets. To tackle real-time performance and detection accuracy, a 

CBi2-YOLO model was developed for wood panel defect detection. To fulfill the 

requirement of calculating defect areas, Jia et al. (2023) proposed a quantitative recognition 

method based on YOLOv5, incorporating a dual-channel attention module to improve the 

model's ability to recognize specific wood defects. Additionally, a shallow weighted 

feature fusion network was introduced to fuse feature information from various layers 

extracted by the backbone network, reducing the loss of feature information for small wood 

defects. Jiang and Zhao (2024) proposed YOLOv7-ESS based on YOLOv7, which embeds 

a dual-channel attention module to improve the model’s ability to recognize special defects 

in wood panels. A shallow weighted feature fusion network is introduced to fuse the feature 

information of each layer extracted by the backbone network to reduce the loss of feature 

information of small defects in wood panel. Yang et al. (2023) employed global and local 

adaptive thresholding algorithms to segment surface defects and extract image patches. By 

replacing the ReLU activation function with ReLU6 and introducing an inverted residual 

structure, the MobileNetv2 deep learning network was optimized for defect detection and 

classification. Wang et al. (2024b) constructed a Wood-Net network, which realizes the 

defect recognition in the process of wood preference with high accuracy. Wang et al. 

(2024c) introduced a two-way feature fusion network based on the YOLO-v8 algorithm 

and proposes a feature fusion network model that combines the attention mechanism and 

loss function optimization.  

Aiming at the lack of detection and leakage caused by the complexity of defects 

and low recognition degree in the nondestructive testing of wood panel, this paper designs 

an improved detection model based on YOLOv8. The main improvement points are as 

follows:  

 

1.  The design of C-ADown instead of the traditional convolutional downsampling retains 

the main features of the wood panel defects while effectively reducing the size of the 

feature map and enhancing the model’s ability to perceive the local features. 

2.  A dynamic weight residual (DWR) module combining the attention mechanism of 

multi-scale feature alignment (MSDA) is designed to replace the C2F and bottleneck 

modules in the original YOLOv8. This module can adaptively adjust the weights of 

different scale features to improve the detection accuracy of the model for multi-scale 

targets.  
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3.  The Neck structure is improved by utilizing a hybrid encoder to convert multi-scale 

features into a series of image features through intra-scale feature interaction and cross-

scale feature fusion.  

4.  The loss function is improved to speed up the convergence of the model and improve 

the detection accuracy. 

 

YOLOV8 Detection Algorithm 
YOLOv8, released by Ultralytics in 2023, is the latest iteration of the YOLO series, 

building upon the significant speed and accuracy improvements achieved by YOLOv5. It 

consistently demonstrates state-of-the-art performance on various publicly available 

datasets and is considered an enhanced version of existing YOLO variants such as 

YOLOv5 and YOLOX (Varghese and Sambath 2024). However, the original YOLOv8 

architecture exhibits limitations when tasked with detecting objects such as wood, which 

contain numerous small defects. These defects typically occupy a small portion of the 

image pixels and possess low feature resolution, hindering the capture of fine defect details 

in the deeper network layers. To address these challenges, this paper conducts a thorough 

investigation of the YOLOv8n model and proposes several enhancements to bolster its 

performance in detecting wood panel surface, thereby better aligning with the practical 

demands of wood defect detection. 

 

 
Fig. 1. YOLOv8 structure 
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EXPERIMENTAL 
 
Improved YOLOv8n Algorithm 

C-ADown downsampling module design 

Downsampling is a technique employed to expand the receptive field by reducing 

the feature map size, which allows the model to capture a broader range of contextual 

information within an image. Traditional downsampling methods for convolution 

operations often increase the number and size of convolution kernels, which results in a 

significant rise in both model parameters and computational complexity (Varghese and 

Sambath 2024). These conventional approaches, while effective in capturing hierarchical 

information, tend to be resource-intensive and can lead to overfitting, particularly when 

working with high-resolution images. 

ADown, the downsampling method employed in YOLOv9, effectively preserves 

global image information through average pooling, aiding in the understanding of overall 

image structure and texture. Additionally, maximum pooling is used to capture local 

features such as edges and corner points, contributing to target localization. 

In this paper, FOCUS slicing is introduced as a replacement for the parallel 3x3 

convolution module in ADown downsampling. This module downsamples the feature map 

by slicing the image at the pixel level and converting spatial information into channel 

information, ensuring that original pixel information is not lost. By expanding the number 

of channels by a factor of four, the network can analyze the image from multiple 

perspectives, extracting richer features. An increased number of channels enhances the 

network’s feature representation capabilities, allowing for better differentiation between 

various target types (Wang et al. 2024d). 

 

 
Fig. 2. C-ADown downsampling structure 
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To prevent the network from over-relying on specific channels, channel shuffling 

is performed after maximum pooling of parallel data. This technique disrupts the channel 

order in the feature map, forcing the network to learn more complex feature representations 

and improving model generalization. This enhancement enables the model to adapt to 

different feature types, facilitating the extraction of complex features like wood grain and 

color and improving the perception of subtle defects. 

The C-ADown module, therefore, not only minimizes information loss but also 

facilitates a smoother transition of the feature map across different scales. Its efficiency is 

evident in the reduction of computational complexity compared to traditional convolution-

based downsampling methods, as it eliminates the need for large convolutional kernels 

while still capturing fine details. The enhanced channel manipulation capabilities allow the 

network to learn more intricate features, particularly in areas with complex textures or 

small defects. These improvements contribute significantly to the model’s ability to 

accurately detect wood panel defects, making it particularly effective for fine-grained 

defect detection and regions with detailed structural patterns. The structure of the C-

ADown module is illustrated in Fig. 2. 

 

C2F_DWR (MSDA) design 

The C2F structure, a key architectural component introduced in YOLOv8, 

combines the strengths of the C3 and ELAN modules to enhance feature extraction, thereby 

improving model accuracy and robustness. However, the C2F architecture primarily 

focuses on local feature capture and may be less effective in processing global semantic 

information. This limitation can hinder the model’s ability to differentiate between subtle 

category variations when dealing with complex wood defects, potentially affecting 

classification or detection accuracy. 

To address this, a semantic segmentation module was introduced. This module 

classifies each pixel in the image, providing finer semantic information that aids in a deeper 

understanding of image content and improves the detection of tiny targets. Fusing the 

output of the semantic segmentation module with the C2F module’s features enhances 

feature representation richness and enables the model to more effectively distinguish 

between different categories and instances. 

In this study, the BottleNeck module within the C2F structure was improved by 

designing the C2F_DWR structure and incorporating the MSDA multiscale null attention 

mechanism. This structure is capable of extracting multi-scale features, which are essential 

for detecting targets of varying sizes. The combination of DWR residuals and the MSDA 

attention mechanism allows the model to extract more discriminative features for defect 

detection and adaptively select features that are more relevant for defect classification, thus 

improving classification ability and robustness. 

 

DWRseg residual linkage 

The Dilation-wise Residual Module (DWR) is an efficient multi-scale context 

information extraction technique primarily used in the field of real-time semantic 

segmentation. The module’s structure, as illustrated in Figure 3, employs a residual 

structure to efficiently extract multi-scale contextual information through a two-stage 

approach, fusing this information to generate a feature map with multi-scale receptive 

fields (Wei et al. 2022). 

In the first stage, streamlined feature maps of varying sizes were generated through 

regional residualization to establish a foundation for semantic residualization in the second 
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stage. This process was achieved using a standard 3x3 convolution operation combined 

with a batch normalization (BN) layer and a ReLU activation layer. The 3x3 convolution 

operation was responsible for initial feature extraction. 

Subsequently, in the second stage, semantic residualization, multirate depth-

separable convolution was used for morphological filtering of regional features, ensuring 

that each channel feature utilized only one appropriate receptive field. In the first stage, 

depending on the desired receptive field size, the network selectively learned the 

appropriate streamlined regional feature map for efficient matching. 

To accomplish this, the regional feature maps were first divided into different step 

groups, followed by the application of dilation depth convolution with varying rates to 

these groups. Different expansion rates and convolution capacities were designed for 

different network stages to fully leverage the varying feature map sizes produced at each 

stage. This design transformed the function of multirate depth-separable convolution from 

complex semantic information extraction to simple morphological filtering, thereby 

improving the efficiency of multi-scale contextual information extraction (Zhao et al. 

2024). 

 

 
Fig. 3. Dual-scale Wide Residual Architecture 

 

MSDA multiscale void attention 

In the field of wood panel defect detection, some defects are often obscured by the 

features of large targets due to their small size and inconspicuous features, leading to poor 

performance of target detection models such as YOLOv8 in recognizing small targets. To 

address this problem, a multi-scale dilation attention (MSDA) mechanism was 

incorporated into the C2F structure to improve the accuracy of the YOLOv8 model in 

detecting small targets of wood panel defects. The MSDA mechanism was designed to 

capture multi-scale features by configuring different dilation rates in different detection 

heads, effectively strengthening the model’s ability to recognize the features of small 

targets and enhancing the accuracy of its localization. 

The proposed MSDA was based on the Sliding Window Expansion Attention 

(SWDA) method. In this method, representative keys and values were selected for sparsity 

within a sliding window. Subsequently, these selected patches were weighted by 

performing the self-attention mechanism to obtain attention scores (Saito et al. 2019). The 

formula for this attention is as follows. 

( , , , )X SWDA Q K V r=                                             (1) 
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The proposed MSDA was built upon SWDA by dividing the feature map into 

windows at multiple scales through value inflation. The sliding window expansion 

attention operation was then performed on these windows. Finally, the outputs from 

different windows were stitched together, and feature aggregation was carried out using a 

linear layer, as follows. 

( , , , ),    1 ,

linear(Concat[ , , ])

i i i i

i n

h SWDA Q K V r i n

X h h

=  

=                                   (3)

 

The features were passed to a linear layer for aggregation. Different expansion rates 

were configured for individual heads. This multi-scale feature aggregation effectively 

integrated semantic information at different scales within the supervised region, 

significantly reducing redundancy in the self-attention mechanism, while avoiding 

complex operations and additional computational overhead (Jiao et al. 2023). 

Adaptive gating was incorporated into the MSDA null attention mechanism. The 

gating weights were calculated based on the similarity between features. Additionally, an 

initial weight was assigned to each type of defective feature by learning the defective label 

information in the dataset. This initial weight was continuously updated during the model 

training process, resulting in an adaptive weight that reflected the importance of different 

defective features (Nie et al. 2024). When performing attention calculations, the original 

attention weight was multiplied by the adaptive weight gi to obtain the final attention 

weight. This allowed the model to focus more on defect features with higher importance, 

thereby improving detection accuracy. The formula is shown below. 

Attention( , , )

  

ij ij r r ix q K V g=

                                          (4)

 

( , , , , ),    1 ,i i i ih SWDA Q K V r g i n=  

                                 (5)
 

 
Fig. 4. Multi-Scale Dilated Attention Architecture 
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Improvement of the neck structure 

Multiple integration modules consisting of convolutional layers were embedded 

into integration paths, which is a common technique in deep learning models. The primary 

objective of this approach was to enhance the model’s representational ability and overall 

performance by combining different feature maps. The CCFF (Cross-scale Context Fusion 

Framework) architecture was optimized based on the cross-scale integration module, 

which involved inserting multiple integration modules composed of convolutional layers 

into the integration path. These integration modules were designed to efficiently integrate 

the feature maps of two neighboring scales, generating a new feature map (Lv et al. 2024). 

Given the varying receptive fields of different convolutional layers, they were capable of 

capturing feature information at different scales. By strategically designing and arranging 

these integration modules, a more refined and comprehensive multi-scale feature 

integration was achieved. This fine-grained multi-scale feature integration mechanism 

enabled the model to more accurately capture the detailed and contextual information of 

the target object, leading to improved performance in various visual tasks. Its structure is 

shown in Fig. 4. 

 

 
 

Fig. 5. Cross-scale Integration Module of CCFF 

 

Improving the loss function 

IoU (Intersection over Union) was used as a target detection evaluation metric. It 

quantified the overlap between the predicted bounding box and the ground-truth box. The 

IoU loss function directly optimized the model by minimizing the difference between IoU 

and 1. However, this loss function suffered from a vanishing gradient problem when IoU 

approached 0 or 1, hindering network convergence. Moreover, IoU only considered the 

overlapping area, neglecting other geometric information such as the center point distance 

and aspect ratio. 

YOLOv8 employed CIoU as the loss function for bounding box regression. CIoU 

not only considered the overlap area but also incorporated the centroid distance and aspect 

ratio, leading to more accurate and efficient bounding box regression (Zheng et al. 2021). 

By addressing the limitations of IoU, CIoU significantly improved the model’s 

performance: 
2

2
( )
P

CIoU IoU aV
C

= − −
                                           (6)

 

2

2

4 _
(arctan( ) arctan( ))

_

w gt w
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    1

V
a

IoU V
=

− +                                                    (8) 
 

In Eq. 6, p2 is the square of the Euclidean distance between the centroid of the predicted 

and real frames, whereas v is a measure of the consistency of the aspect ratio.   

CIoU assumed that the aspect ratio of the target bounding box was a continuously 

varying value and used a trigonometric function to calculate its consistency. In wood defect 

detection, defects tended to occupy a small percentage of the area, leading to difficult 

samples. Conversely, defect-free areas were considered simple samples. Very small defects 

were challenging to accurately locate due to their size and inconspicuous features. The 

distribution of aspect ratios in the target bounding box might be more complex, and the 

CIoU trigonometric function might not accurately capture this complexity. Therefore, 

attention needed to be paid to bounding box regression for difficult samples. 

The FocalerIoUintroduced in this paper reconstructed the IoU loss through a linear 

interval mapping method, which could focus more on different types of samples. The 

weights of different samples in the loss function were adaptively adjusted according to the 

number of different defect types and the difficulty of detection (Zhang and Zhang 2024). 

This approach effectively addressed the challenges posed by difficult samples in wood 

defect detection. 

0,               

,  

1,               

facaler

IoU d

IoU d
IoU d IoU u

u d

IoU d




−
= 

−
                                 (9)

 

where IoUfocaler is the reconstructed Focaler-IoU, IoU is the original IoU value, and [d, 

u] ∈ [0, 1]. By adjusting the values of d and u, the IoUfocaler can be made to focus on 

different regression samples. Its loss is defined as follows: 

1 Focaler

focaler IoUL IoU− = −
                                           (10)
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Fig. 6. YOLOV8-CDC structure diagram 
 

The Focaler-IoU loss was combined with the CIoU loss to form the Focaler-CIoU 

loss. This new loss function incorporated a focusing mechanism based on the CIoU loss, 

assigning greater weight to hard samples. By doing so, the model was encouraged to pay 

more attention to these difficult samples, thereby improving the detection accuracy. The 

Focaler-CIoU loss formula is as follows: 

                                 (11)
 

In the wood surface defect detection dataset used in this paper, a portion of the 

defect targets belong to small-sized targets, accounting for approximately one-third of the 

total targets in the dataset. Therefore, considering the training perspective of the dataset, 

this paper incorporated Focaler-CIoU as part of the primary loss function to guide the 

model’s bounding box regression task. During the actual training process, the network 

calculates the CIoU loss and Focaler-CIoU loss for each detection box and dynamically 

combines them to form the final Focaler-CIoU loss. The improved model is named 

YOLOv8n-CDC, and its structure is shown in Fig . 6. 
 

Wood Panel Defects Database 
This experiment utilized a wood panel dataset uploaded by individual users of 

roboflow. As shown in Fig. 7, the dataset contained four common types of wood surface 

defects: dead knot, live knot, crack, and scar. A total of 950 defect images were included. 

To expand the dataset, data augmentation techniques such as flipping, scaling, and cropping 

were applied. The augmented dataset was then re-labeled, resulting in a training set of 2117 

images, a validation set of 248 images, and a test set of 248 images. The content of the 

dataset is presented in Fig.7. The number of wood panel defects is summarized in Table.1. 

Focaler

focaler CIoU CIoUL L IoU IoU− = + −
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Fig. 7. Wood Panel Defects database 

 

Table 1. Results of Ablation Experiments 

Defect category Quantities 

Dead knot 4065 

Live knot 3134 

Scar 3495 

Crack 3278 

 

Environment Configuration 

The experiments were conducted on an NVIDIA GeForce RTX3070ti with 8GB of 

video memory, using the PyTorch framework. The experimental parameters included 300 

epochs, a batch size of 16, and an image size of 640. 

Precision, Recall, Average Precision, and mean Average Precision (mAP) were 

used as evaluation metrics. mAP, which measures the model's performance across various 

target categories and confidence thresholds, was the primary metric. Precision, also known 

as the detection rate, evaluates a classification model's performance by measuring the 

proportion of true positives among predicted positives. Recall measures the proportion of 

correctly detected targets to all true targets [10]. The formula for the metric is as follows, 

where TP represents true positives, FP represents false positives, and FN represents false 

negatives. 

1

( )
c

d

AP d

mAP
c

==


                                                (12)

 TP
precision

TP FP
=

+

                                            (13)

 

TP
recall

TP FN
=

+
                                                 (14) 

 

Ablation experiment 

To assess the specific impact of each module on performance, the YOLOv8 base 

version was used as the baseline model. Eight sets of experiments were designed to conduct 

ablation analysis of the modules, ensuring consistent experimental conditions. The 

improved modules were gradually introduced to construct variant models, and their 

corresponding performance metrics were obtained. Table 2 compares the performance data 

of these models, analyzing the specific impact of removed or replaced modules on overall 

performance.  
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Table 2. Results of Ablation Experiments 

C-
ADown 

M-
C2F 

CCF
F 

Focaler
-CIoU 

mAP50 
(%) 

mAP50
-95 (%) 

Recall 
(%) 

Precision 
(%) 

GFLOPs 
(G) 

    78.5 49 67 78.2 8.1 

√    79.3 48.9 73.7 75 7.2 

 √   81.4 49.5 71.6 79.3 9.1 

  √  79.8 48.7 68.8 81.2 7.6 

   √ 80.8 48.8 74.1 79.2 8.1 

√ √   82.9 49.1 72.5 78.5 8.5 

√ √ √  83.7 50.3 76.7 78.9 8.0 

√ √ √ √ 84.8 50.1 77.5 84.7 8.0 

 

The second set of experiments significantly reduced computational effort by 

adjusting the downsampling strategy and replacing the traditional convolutional operation 

with C-ADown, while preserving feature information. This resulted in a 0.8% 

improvement in mean average precision (mAP) and a significant increase in recall of about 

6.7%. The third set of experiments improved the C2F structure by introducing the DWR 

residual join and MSDA attention mechanism, enhancing the ability to capture multi-scale 

features, and contributing significantly to the improvement of precision and mAP. This 

resulted in a 4.4% improvement in mAP. The fourth group of experiments improved the 

NECK structure by incorporating the CCFF, which effectively fused features at different 

scales, enhancing feature fusion while reducing computational effort. The fifth group of 

experiments improved the loss function, accelerating model convergence speed without 

increasing computational cost. Ultimately, compared to the base version of YOLOv8, the 

improved model achieved a 6.3% improvement in mAP, a 10.5% improvement in recall, 

and a 6.5% improvement in precision. These improvements effectively enhanced the 

model's accuracy, demonstrating a good synergy between the improved modules. 

 

Loss function comparison 

When comparing the loss functions of the base and improved models, as shown in 

Fig. 8, the CIoU loss function had limitations in its performance due to its insufficient 

consideration of the balance of sample difficulty. By introducing the Focaler-IoU loss 

function on top of CIoU, the model was able to focus more on processing difficult samples. 

This improvement significantly accelerated the convergence of the model and reduced the 

overall loss value, thereby enhancing the overall performance. 
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Fig. 8. Comparison of training loss functions 
 

Comparison of different defects 

A confusion matrix was generated by comparing the actual categories of the 

validation set with the predicted categories of the model, as shown in Fig. 9. This figure 

compares the confusion matrix plots of the different algorithms. The true-negative squares 

on the diagonal represent the categories correctly predicted by the model. The other squares 

represent misdetections and false detections. The values on the diagonal of Fig. 8(b) were 

consistently higher than those on the diagonal of Fig. 8(a), especially for live knots and 

crack defects. This indicates a more significant improvement of the improved algorithm 

over the original algorithm. A comparison of the results is shown in Figs. 10 and 11. 

 

Comparison of different algorithms 

To demonstrate the superiority of the proposed algorithm in wood panel defect 

detection, it was compared with other mainstream algorithms. The comparison results are 

presented in Table 3. The proposed algorithm outperformed YOLOv3-tiny by 15.4% in 

accuracy and 6.2% in mAP. Compared to YOLOv5, it achieved a 10% increase in accuracy 

and a 6.8% increase in mAP, with a slight increase in the number of parameters. When 

compared to the larger YOLOv8s, the proposed algorithm exhibited a 4.5% increase in 

accuracy and a 1.9% increase in mAP. While the proposed algorithm demonstrated 

comparable performance to some of the improved algorithms, it surpassed them in the 

detection of dead knots, dry scars, and live knots. However, its performance in crack 

detection was slightly lower than that of wood-net. In summary, the proposed algorithm 

exhibited strong performance compared to both mainstream YOLO algorithms and other 

improved algorithms. It demonstrated superior accuracy in detecting scar and live knot 

defects Table 3 Comparison of different algorithms. 

 

 
(a) 
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(b) 

 
Fig. 9. (a) Confusion matrix for the YOLOv8 model (b) Confusion matrix for the improved model 

 

 
 

Fig. 10. YOLOv8 defect detection results 
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Fig. 11. Improved algorithm defect detection results 
 

 

Table 3. Comparison of Different Algorithms 

Arithmetic 

AP (%) 
mAP50
(%) 

mAP50
-95/% 

Precision 
(%) 

Recall 
(%) 

GFLOPs 
(G) 

FPS Dead 
knot 

Scar Live 
knot 

Crack 

SSD 79.5 78.2 76 70.5 73.6 44.5 67.2 74.5 92 42.6 

faster-RCNN 82.6 81.5 79.1 77.1 79.2 48.9 72.5 75.2 108 14.3 

YOLOv3- 
tiny 

85.7 79.6 75.2 73.8 78.6 47.5 69.3 73.8 19 85.2 

YOLOv5 84.3 75.9 77.1 74.5 78 47.4 74.7 70.3 7.1 54.3 

YOLOv6 84.5 90 74.9 69.7 79.8 46.8 70.9 73.1 11.8 43.1 

YOLOv7 85.7 79.6 75.2 73.8 78.6 48.6 69.3 73.8 19 44.5 

YOLOv8n 86.5 84.1 71.7 71.8 78.5 49 78.2 67.2 8.1 81.3 

YOLOv8s 86.7 81.2 83 79.8 82.7 50.8 80.2 71.7 28.4 69.7 

YOLOv5_HS 85.9 88.3 82.7 71.4 82.1 49.8 78.9 76 23.3 60.8 

Wood-net 83.9 89.5 83.9 76.2 83.8 50.6 78.6 78.7 16.4 21.3 

YOLOv8n-
CDC 

88.7 92.2 85.3 75.9 84.8 50.1 84.7 77.5 8.0 58.4 

 

Comparison of versatility 

To verify the generalization of the improved model, comparative experiments were 

conducted on the Roboflow public dataset. While maintaining the training parameters of 

the model, comparative experiments were also performed on related domain public 

datasets. The results of these comparative experiments are presented in Tables 4 and 5. 

Dataset 1 (https://universe.roboflow.com/rtech/wood-surface-defects) 

Dataset 2 (https://universe.roboflow.com/laila-hammad-cxqz8/wood-jxhd5) 
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Table 4. Comparison of Generalizability across Dataset 1 

arithmetic Precision/% Recall/% mAP50/% 

YOLOv8n 47.3 45.8 46.1 

YOLOv8n-CDC 53.3 45 48.2 

 

Table 5. Comparison of Generalizability across Dataset 2 

Arithmetic Precision/% Recall/% mAP50/% 

YOLOv8n 33.7 48.9 41.8 

YOLOv8n-CDC 34.9 55.6 43.6 

 

 

CONCLUSIONS 
 
1. To address the challenges of defect detection in wood panels caused by leakage and 

misdetection, an improved YOLOv8-based model was proposed in this study. 

Extensive ablation experiments and comparative evaluations with various existing 

models were conducted to effectively mitigate these issues. 

2. The proposed model replaces the traditional downsampling approach in the backbone 

network with C-ADown and integrates the DWR module, which combines the MSDA 

null attention mechanism to enhance the C2F and bottleneck modules in YOLOv8. This 

modification allows for improved accuracy in detecting features across multiple scales. 

Additionally, the NECK structure is enhanced by introducing the CCFF hybrid coding 

framework, which facilitates intra-scalar, inter-scalar, and cross-scalar feature 

interactions. The loss function is also refined to further optimize the model’s 

performance. 

3. Future research will aim to address the limitations of the detection head, particularly 

the risk of overfitting that arises from the relatively small dataset size, which may 

hinder the model’s generalization ability, especially when applied to diverse or unseen 

data. Additionally, future work will explore more effective feature fusion techniques, 

with a focus on improving the model’s ability to detect small and densely packed 

targets. Furthermore, model compression strategies, such as pruning and distillation, 

will be investigated to enable real-time deployment on embedded devices. However, 

the potential trade-offs in model accuracy and robustness will be carefully evaluated, 

as these compression techniques could compromise the overall performance. 

4. A critical aspect of the model’s future development will be its generalizability across 

various industrial domains. Although the current improvements provide promising 

results for wood panel defect detection, the scalability of the model to other materials 

and industries will require thorough validation. The model’s robustness in handling 

data from different sources, variations in environmental conditions, and diverse defect 

types needs to be systematically assessed. This includes extending its application to 

industries such as construction, furniture manufacturing, and packaging, where similar 

challenges in defect detection and quality control exist. Further refinement of the 

model, including addressing its sensitivity to data variation and incorporating domain 

adaptation techniques, will be essential to ensure its broad applicability and reliable 

performance across diverse operational contexts. 
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