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Efficient and rapid identification of corn mildew levels is essential for 
proper storage and transportation. This study utilized surface-enhanced 
Raman spectroscopy (SERS) to obtain Raman spectral fingerprints of 
moldy corn, combined with multi-class support vector machines (SVM) for 
rapid detection. Spectral data were preprocessed using the Savitzky-
Golay smoothing method, and principal component analysis (PCA) was 
applied to extract the top five components. Feature peaks were identified 
using partial least squares discriminant analysis (PLS-DA) regression 
coefficients, supplemented by manual selection, resulting in eight 
characteristic wavenumber peaks (482, 878, 1046, 1082, 1220, 1276, 
1452, and 1590 cm-¹). These features were used for clustering analysis, 
followed by SVM classification to distinguish mildew levels. The model 
achieved a 100% recognition rate, validated by cross-validation and 
confusion matrix analysis. The findings demonstrate that SERS combined 
with SVM enables precise differentiation of mildew levels, providing 
reliable support for Raman spectroscopy in fungal detection and grain 
safety monitoring. 
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INTRODUCTION 
 

Corn is one of the world’s primary feed crops, playing a vital role in enhancing 

agricultural and livestock production efficiency, ensuring food security, and supporting 

sustainable agricultural development. Additionally, corn is a key source of nutritional value 

in both crop and livestock systems. It is rich in crude fiber and possesses a well-balanced 

amino acid profile, making it widely used in both food and animal feed. The germ tissue is 

highly porous, exhibiting strong moisture absorption properties, and is abundant in 

carbohydrates (Liu et al. 2017). However, corn is prone to contamination during its growth, 

harvest, storage, and transportation, which can pose significant threats to animal health and 

food safety. Therefore, preventing contamination in corn feed and ensuring its quality and 

safety are critical for improving livestock productivity and ensuring food security. 

Effective contamination prevention requires sound agricultural management, stringent 

control over storage and transportation processes, and the adoption of advanced detection 

technologies for monitoring and analyzing contaminants. 

Corn feed is susceptible to contamination by aflatoxins, such as aflatoxin B1, and 

mycotoxins such as deoxynivalenol (DON), produced by fungi such as Aspergillus and 
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Fusarium species. These mycotoxins are toxic secondary metabolites produced by various 

fungi, including Aspergillus, Penicillium, and Fusarium species (Girolami et al. 2022), and 

they thrive in environments characterized by high temperature and humidity (Adeyeye 

2016). Moreover, some mycotoxins, such as aflatoxins, are heat-resistant and widely 

distributed. Their stable properties make them difficult to monitor, thus posing a significant 

threat to the livestock industry. 

Traditional detection methods for mycotoxins primarily include enzyme-linked 

immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and gas 

chromatography (GC). For instance, some researchers have utilized ELISA and HPLC-

tandem mass spectrometry (HPLC-MS) to detect two mycotoxins, zearalenone (ZEN) and 

T-2 toxin, in corn. The results showed that both methods successfully detected zearalenone 

(ZEA) in feed corn with 100% accuracy. The analysis further indicated that ELISA, with 

its simple sample preparation and rapid detection speed, is suitable for high-throughput 

testing. However, it is prone to false positives due to interferences. In contrast, HPLC-MS, 

although more complex, costly, and requiring higher operational expertise, offers more 

stable and accurate results (Zhong et al. 2019). Additionally, researchers have developed 

an indirect competitive ELISA to detect deoxynivalenol (DON) in wheat. The results 

demonstrated that the mouse polyclonal antibody against DON exhibited specific reactivity 

with 3-acetyl-DON and T-2 toxin. The recovery rate of DON in grains ranged from 82% 

to 93%, and the linear detection range for DON in grain samples was 0.01 to 100 μg/mL 

(Fang et al. 2011). 

These traditional methods typically involve extensive sample preparation, 

including toxin extraction from the matrix, purification to remove interfering substances 

prior to detection, and the use of appropriate instrumentation for quantification (Martinez 

and He 2021). These complex processes are time-consuming, costly, and may result in 

cross-reactivity and sensitivity issues. Since these methods often rely on reporter molecules 

that either bind to the target analyte or react with it, false positives may occur, leading to 

detection failures (Zhang et al. 2023). Under restricted detection conditions, these methods 

may fail to meet the demands for rapid, low-cost testing. Therefore, the development of 

portable and time-efficient on-site detection tools would be beneficial for corn feed testing. 

This manuscript utilizes fluorescence immunoassay-based point-of-care testing 

(POCT) to measure the levels of mycotoxins in contaminated corn. The results indicate the 

presence of two mycotoxins, zearalenone (ZEN) and vomitoxin (DON), with toxin 

concentrations serving as a reference for the degree of corn contamination, which also 

provides supporting evidence for subsequent Raman spectroscopy analysis. POCT uses 

portable analytical instruments and corresponding reagents to rapidly obtain test results. It 

is time- and location-independent, easy to operate, cost-effective, and requires minimal 

sample preparation (Suo et al. 2023), enabling efficient and rapid measurements. 

The principle of fluorescence immunoassay is based on the highly specific binding 

between antigens and antibodies to detect target substances. The fluorescence signal 

generated by the antigen-antibody complex is proportional to the concentration of fungal 

toxins, allowing for trace detection (Wang et al. 2020). This technique offers reliable and 

accurate detection of low-concentration targets, demonstrating excellent sensitivity and 

reproducibility. 

In recent years, surface-enhanced Raman scattering (SERS) has become a powerful 

analytical technique for the rapid and sensitive detection of various contaminants (Gabbitas 

et al. 2023). 

Raman spectroscopy is an optical technique used to measure the vibrational energy 
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of chemical bonds in biomolecules. It provides rapid, non-destructive molecular structural 

information for both cells and extracellular compounds, without the need for reagents, and 

sample preparation is simple, even for a variety of biological samples (Hanlon et al. 2000). 

Surface-enhanced Raman spectroscopy (SERS) has found widespread application 

in agricultural and by-product safety testing due to its high sensitivity, molecular 

recognition specificity, and ability for rapid, real-time detection (Li et al. 2023). Excitation 

of localized surface plasmon resonance (LSPR) generates a strong electromagnetic field, 

and when the sample is placed on a roughened noble metal nanoparticle substrate, the 

Raman signal is significantly enhanced (Haynes et al. 2005). SERS combines Raman 

spectroscopy with nanotechnology to offer unique chemical and biochemical fingerprints 

for low-concentration analytes (Gao 2023). This technique, valued for its narrow peak 

shapes and high resolution in Raman spectra, increasingly provides detailed information 

on the molecular composition and conformation of samples (Gao et al. 2024). 

Currently, much of the research on SERS technology focuses on the development 

of specialized SERS-active substrates, which requires highly specialized skills and 

advanced equipment, thus limiting its widespread adoption and practical applications 

(Gabbitas et al. 2023). 

Although numerous studies have focused on the detection of mycotoxins in maize, 

and traditional detection methods such as enzyme-linked immunosorbent assay (ELISA), 

high-performance liquid chromatography (HPLC), and gas chromatography (GC) have 

seen widespread application to some extent, these methods are often hindered by 

challenges such as interference from complex sample matrices, false-positive results, 

lengthy sample preparation processes, and high costs. In particular, there is still a lack of 

convenient, efficient, and highly sensitive technologies for the rapid and on-site detection 

of mycotoxins in maize feed. Existing detection methods rely on sample pretreatment and 

labeling processes, which may introduce errors and reduce the accuracy of the results. 

Therefore, the current research has yet to fully address the challenge of achieving high-

sensitivity, low-cost, label-free, and high-throughput rapid detection in complex samples. 

This study combined fluorescent immunoassay with surface-enhanced Raman 

spectroscopy (SERS) to explore the application of a label-free SERS-based detection 

method for mycotoxins in maize. By using colloidal silver nanoparticles as the SERS 

substrate and employing multivariate statistical analyses such as principal component 

analysis (PCA) and support vector machine (SVM) pattern recognition, the work was 

successful in developing a model for determining the degree of maize contamination. This 

approach not only overcomes the limitations of conventional methods but also 

demonstrates the potential of SERS technology for rapid, portable, and sensitive detection, 

particularly in complex sample environments. 

 

 

EXPERIMENTAL 
  

Instruments and Equipment 
A fluorescent immunoassay quantitative point-of-care testing (POCT) analyzer 

(purchased from Shanghai Xiongtu Biotech Co., Ltd.), model XT8201A, and a test strip 

constant temperature incubator (purchased from Shanghai Xiongtu Biotech Co., Ltd.), 

model XT8202A, along with a fluorescent immunoassay quantitative test kit were used. 

The CORA 5001 Raman spectrometer, featuring a spectral range of 100 to 500 cm-1, 

spectral resolution of 6 to 9 cm-1, and a minimum wavenumber of 100 cm-1, was utilized. 
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The probe was placed laterally, and samples were placed in the detection vial with the lid 

closed for testing. The analysis software used were The Unscrambler X version 10.4 and 

MATLAB R2021a. 

 
Sample Collection and Physicochemical Testing 

The samples were collected from a farm warehouse where mold-infected feed corn 

was stored. Each sample weighed 10 g, with a total of 60 samples numbered from 1 to 60, 

stored in a cool, dark place. 

Before testing, the test strips, extraction solution, sample diluent, and samples were 

allowed to reach room temperature. The constant temperature incubator and the fluorescent 

immunoassay quantitative POCT analyzer were preheated for 10 min. 

The samples were ground, sifted, and weighed. One gram of the mixed sample was 

placed in a 10 mL centrifuge tube, and 5 mL of extraction solution was added. The mixture 

was vortexed for 5 min and then centrifuged at 4000 rpm for 2 min. A 100 µL aliquot of 

the supernatant was taken and mixed with 600 µL of sample diluent. Then it was set aside 

for testing. Once the incubator stabilized at 37 °C, the testing began. The ID card was 

inserted into the ID slot of the fluorescent immunoassay quantitative POCT analyzer to 

import the test information. The test strip was placed horizontally on the heating plate of 

the incubator, and 100 µL of the pretreated sample was added to the sample well using a 

pipette, starting the 6-min incubation timer. After incubation, the test strip was inserted 

into the analyzer’s slot to read the results. 
 
Spectral Detection Process 
SERS Substrate preparation 

Silver nitrate solution (purchased from Xi'an Tianmao Chemical Co., Ltd.) was 

used at a concentration of 0.01000 mol/L, grade GR (Guaranteed Reagent), and sodium 

citrate (purchased from Tianjin Xiangruixin Chemical Technology Co., Ltd.), grade AR 

(Analytical Reagent). To prepare the silver nanoparticle substrate, the required 

concentration of silver nitrate solution was prepared by diluting 15 mL of silver nitrate 

solution with distilled water to a total volume of 150 mL. A 1% mass percent sodium citrate 

solution was prepared by dissolving 1 g of sodium citrate in 100 mL of water and stirring 

until dissolved. The diluted silver nitrate solution was then transferred to a flask and heated 

to boiling on a magnetic stirrer. A total of 4 mL of sodium citrate solution was slowly 

added while maintaining a stirring speed of 300 rpm. Heating and stirring continued for 20 

min until a color change occurred. After the reaction, the solution was allowed to cool to 

room temperature and stored in a dark place to prevent light exposure. 

 

Test preparation 

The samples were crushed using a grinder and sieved through a 40-mesh screen. 

Exactly 1 g of the sieved sample was placed into a 10 mL test tube, to which 5 mL of 

universal extraction liquid was added. The mixture was extracted by vortexing for 5 min, 

followed by centrifugation. 1 mL of the supernatant was then transferred into a 

measurement vial, to which silver sol enhancement reagent was added. The mixture was 

thoroughly mixed in preparation for spectral analysis. The form of the sample to be tested 

was as a mixed solution in a measurement bottle. 
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Fig. 1. Typical sample spectrum 
 

Spectral acquisition 

The spectrometer was set to the following testing parameters: λ = 1064 nm, p = 450 

mW, and t = 10000 ms (auto). Spectral preprocessing included dark background 

subtraction and baseline correction. The device automatically sampled and saved the 

results. Each sample was prepared in triplicate to ensure accuracy, and the average value 

was taken as the final sample’s Raman spectral fingerprint. Spectral data were obtained for 

60 samples in total. The spectrum of a typical sample is shown in Fig. 1. 

 

 

RESULTS AND DISCUSSION 
 
Data Analysis 

The spectrometer automatically performs dark background subtraction and baseline 

correction. To mitigate the effects of high-frequency random noise, sample heterogeneity, 

and light scattering, it is necessary to preprocess the spectra to eliminate random noise. The 

Savitzky-Golay smoothing method was used for this purpose. The processing was carried 

out in MATLAB R2021a. The results are shown in Fig. 2. 
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Fig. 2. Spectral smoothing results 

 

Wavelength bands beyond 1700 cm-1 contain excessive noise and lack significant 

peaks, so only data prior to the 1700 cm-1 band were retained. A Partial Least Squares 

Discriminant Analysis (PLS-DA) model was constructed based on Principal Component 

Analysis (PCA) of the first five principal components and eight characteristic peaks 

identified using the R-C coefficient method. The ‘y’ values were assigned such that mild 

mold contamination was defined as ‘sample 1’, moderate contamination as ‘sample 2’, and 

severe contamination as ‘sample 3’. The model involved 57 samples, with 46 used in the 

modeling set and 11 in the prediction set. 

 

Principal Component Analysis of Spectral Data 
After smoothing the spectral data using the Savitzky-Golay (S-G) method, the 

dimensionality of the data was still too large, necessitating further dimensionality 

reduction. Principal component analysis reduces dimensions by identifying the directions 

of maximum variance in the data and constructing a set of orthogonal new axes. PCA 

captures the directions with the highest variance in the data while attempting to retain as 

much information as possible. Initially, PCA standardizes the data to neutralize the impact 

of variable scales by giving each feature the same mean and variance. The standardization 

formula is as follows, 

𝓍𝑠𝑡𝑑 =
𝓍−𝜇

𝜎
        (1) 

where μ represents the mean of the features, and σ denotes the standard deviation of the 

features. The standardized data matrix is expressed as 𝑋(n×p), where n is the number of 

samples and p is the number of features). Subsequently, the covariance matrix of the 

standardized data is computed using the following formula. 

Cov(𝑋) =
1

𝓃−1
𝑋𝑇𝑋         (2) 

The covariance matrix reflects the linear correlation between each pair of features. 

The next step is to perform eigenvalue decomposition on the covariance matrix to obtain 

its eigenvalues and eigenvectors. Let the covariance matrix be denoted as C, with its 

eigenvalues represented by λ and eigenvectors by v, resulting in Eq. 3. 

𝐶v = λv         (3) 
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The eigenvalues indicate the variance captured by each principal component, while 

the eigenvectors represent the directions of these principal components. Based on the 

magnitude of the eigenvalues, the first k eigenvectors were selected as the new basis axes. 

The data were then projected onto these principal components to obtain the reduced-

dimensional data. 

The contributions of the principal components obtained after PCA are shown in 

Table 1. 

 

Table 1. Principal Component Contributions 

Principal component PC-1 PC-2 PC-3 PC-4 PC-5 

Cumulative Explained Variance 77.5354 94.7141 96.4960 97.9972 98.5378 

Principal component PC-6 PC-7 PC-8 PC-9 PC-10 

Cumulative Explained Variance 98.7261 98.9152 99.0180 99.0909 99.1224 

 

The first five principal components accounted for over 98.5% of the variance. 

Convex hulls were calculated for each category, and convex polygon boundaries were 

drawn around each category's perimeter. The classification results are shown in Fig. 3. 

 

 
 

Fig. 3. Principal component analysis (PCA) plot 

 

Partial Least Squares Regression Analysis of Spectral Data 
Due to the indistinct separation of edge samples, the model constructed using 

principal components as inputs for Support Vector Machines demonstrated poor stability. 

To enhance prediction accuracy, a combination of PCA and Partial Least Squares 

Discriminant Analysis (PLS-DA) models was used to extract and merge features. 

Important variables were selected based on the regression coefficients obtained from the 

PLS regression model, forming a new dataset to build a revised PLS-DA model. The 

advantage of this model, based on PLS-DA, is that it can detect inter-group variability 

while reducing the number of variables, allowing for high intra-group variability without 

needing information about the sample composition to establish the model and distinguish 

samples (Barker and Rayens 2003). The discriminative effect of the PLS-DA model is 

illustrated in Fig. 4. 
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Fig. 4. PLS-DA model discrimination plot 

 
Spectral Peak Feature Analysis 

Raman spectroscopy relies on the identification of characteristic peaks. By 

combining the R-C coefficient method with manual selection, eight characteristic peaks 

were identified. These peaks are illustrated in Fig. 5. The Raman characteristic peak at 878 

cm⁻¹ corresponds to CH₂ rocking (Li et al. 2019; Zhu et al. 2023). The peak at 1046 cm⁻¹ 

is attributed to C-C aromatic ring or C-O stretching vibration, possibly related to in-plane 

rocking of -CH₃ (Tan et al. 2015) or C-Cl stretching (Rodriguez et al. 2020; Wu et al. 

2021). The 1220 cm⁻¹ peak is associated with C-N stretching, while the 1276 cm⁻¹ peak 

corresponds to β(C-H₂)(ring) and β(C-H) ring deformation (Wu et al. 2012). The 1452 cm⁻¹ 

peak is linked to ν(C7=C8), ring deformation (Li et al. 2019; Zhu et al. 2023), or C-H in-

plane bending (Yuan et al. 2017). The peak at 1590 cm⁻¹ corresponds to the C-C aromatic 

ring vibration (Agarwal 2006) or β(C-H)(CH₃) and β(C-H)(ring) modes (Wu et al. 2012). 

The 1566 cm⁻¹ peak is related to ν(-CH₃) vibration (Yuan et al. 2017). 

 

 
 

Fig. 5. Characteristic peak identification 
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Discriminant Analysis Based on Support Vector Machines 
The five principal components derived from principal component analysis and the 

eight characteristic peaks selected via the RC coefficient method combined with manual 

selection were used as inputs for the Support Vector Machine (SVM) algorithm. A one-

versus-all SVM approach was implemented using the fitcecoc function in MATLAB, 

decomposing the multi-class problem into several binary SVM models. The classification 

of corn mold levels was performed by aggregating the voting results from multiple SVM 

models, and model classification results were evaluated using a confusion matrix. The 

algorithm was executed in MATLAB R2021a with the following steps: 

 

(1) Define the known training set as follows: 

T = {(x1, y1), … , (x𝒾, y𝒾)}ϵ(X × Y)ℓ          (4) 

where   x𝒾ϵX = 𝑅𝑛；y𝒾ϵY = {1, … , M}，𝒾 = 1, … , ℓ. 

(2) Perform the following operation on 𝑗 = 1, … , 𝑀: treat the j-th class as the positive 

class and the remaining M-1 classes as the negative class, and use the support 

vector machine to obtain the decision function. 

𝑓j(x) = sgn (g𝑗(x))                       (5) 

where 

gj(𝓍) = ∑ y𝑖α𝑖
𝑗
K(𝓍, 𝓍𝑖)𝑙

𝑖=1 + 𝑏𝑗           (6) 

(3) Determine the input 𝒳 as belonging to the j-th class, where j is the index of the 

maximum value in gℓ(x),…, g𝑀(x). 

(4) For the solution α = (α1
𝑗
, … , α𝑙

𝑗
)

T
 of the classification problem, assuming that 

αk
j

> 0 is a component of α, the solution (ω∗, 𝑏∗) for (ω, b) can be expressed as 

                                ω∗ = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑙
𝑖=1                          (7) 

                               𝑏∗ = 𝑦𝑘 (1 −
α𝑘

𝑗

C
) − ∑ y𝑖α𝑖

𝑗
K(𝓍𝑖, 𝓍𝑘)𝑙

𝑖=1         (8) 

The performance of different kernel functions was compared, and the learning 

parameters for the SVM were set with a penalty factor c=1000.0. The linear kernel 

function-based SVM model showed the best classification performance, with confusion 

matrices displayed in Figs. 6 and 7. The fused model achieved an accuracy of 100% on 

both the training set and the test set. The results indicate that the feature fusion derived 

from PCA and PLS analysis effectively distinguishes between different degrees of corn 

mold. 
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Fig.  6. Confusion matrix of the training set    

 
 

Fig. 7. Confusion matrix of the test set         
 

 
CONCLUSIONS 

 

1. Fungi secrete enzymes that degrade polysaccharides, such as cellulose, in maize, 

leading to modifications in its chemical structure. Both deoxynivalenol (DON) and 

zearalenone (ZEN) molecules feature aromatic ring structures. In Raman spectroscopy, 

the C–C stretching vibration of the aromatic ring typically appears in the 1400 to 1500 

cm⁻¹ range. The C=C stretching vibration around 1600 cm⁻¹ serves as a characteristic 

fingerprint peak for deoxynivalenol (DON) and also corresponds to the C=O stretching 

vibration, which is a key marker for zearalenone (ZEN). 

2. This study successfully employed surface-enhanced Raman spectroscopy (SERS) in 

combination with spectroscopic and chemometric methods to accurately identify the 

degree of mold deterioration in corn. By applying the Savitzky-Golay smoothing 

technique for spectral preprocessing and utilizing Principal Component Analysis 

(PCA) in conjunction with the R-C coefficient method to identify characteristic peaks, 

key spectral bands were determined at 482, 878, 1046, 1082, 1220, 1276, 1452, and 

1590 cm⁻¹, thus significantly enhancing the effectiveness of mold detection. 

3. The study further integrated the principal components extracted from PCA with 

manually selected characteristic peaks to develop a support vector machine (SVM) 

discriminant model, achieving a recognition accuracy of 100%. This fused discriminant 

model provides an innovative and efficient approach for future applications of 

spectroscopic technology in detecting mold contamination, laying a solid foundation 

for improving food safety monitoring. 
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