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Analysis of Corn Deterioration Due to Molding Using
Surface-Enhanced Raman Spectroscopy

Xiaoyan Wei,? Guifang Wu,** Pengcheng Qiu,®* Huihe Yang,? Shubin Yan,?
Jianing Di,? Xiangpeng Zhao,? Feixu Zhang,? and Hongda Zhang 2

Efficient and rapid identification of corn mildew levels is essential for
proper storage and transportation. This study utilized surface-enhanced
Raman spectroscopy (SERS) to obtain Raman spectral fingerprints of
moldy corn, combined with multi-class support vector machines (SVM) for
rapid detection. Spectral data were preprocessed using the Savitzky-
Golay smoothing method, and principal component analysis (PCA) was
applied to extract the top five components. Feature peaks were identified
using partial least squares discriminant analysis (PLS-DA) regression
coefficients, supplemented by manual selection, resulting in eight
characteristic wavenumber peaks (482, 878, 1046, 1082, 1220, 1276,
1452, and 1590 cm). These features were used for clustering analysis,
followed by SVM classification to distinguish mildew levels. The model
achieved a 100% recognition rate, validated by cross-validation and
confusion matrix analysis. The findings demonstrate that SERS combined
with SVM enables precise differentiation of mildew levels, providing
reliable support for Raman spectroscopy in fungal detection and grain
safety monitoring.
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INTRODUCTION

Corn is one of the world’s primary feed crops, playing a vital role in enhancing
agricultural and livestock production efficiency, ensuring food security, and supporting
sustainable agricultural development. Additionally, corn is a key source of nutritional value
in both crop and livestock systems. It is rich in crude fiber and possesses a well-balanced
amino acid profile, making it widely used in both food and animal feed. The germ tissue is
highly porous, exhibiting strong moisture absorption properties, and is abundant in
carbohydrates (Liu et al. 2017). However, corn is prone to contamination during its growth,
harvest, storage, and transportation, which can pose significant threats to animal health and
food safety. Therefore, preventing contamination in corn feed and ensuring its quality and
safety are critical for improving livestock productivity and ensuring food security.
Effective contamination prevention requires sound agricultural management, stringent
control over storage and transportation processes, and the adoption of advanced detection
technologies for monitoring and analyzing contaminants.

Corn feed is susceptible to contamination by aflatoxins, such as aflatoxin B1, and
mycotoxins such as deoxynivalenol (DON), produced by fungi such as Aspergillus and
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Fusarium species. These mycotoxins are toxic secondary metabolites produced by various
fungi, including Aspergillus, Penicillium, and Fusarium species (Girolami et al. 2022), and
they thrive in environments characterized by high temperature and humidity (Adeyeye
2016). Moreover, some mycotoxins, such as aflatoxins, are heat-resistant and widely
distributed. Their stable properties make them difficult to monitor, thus posing a significant
threat to the livestock industry.

Traditional detection methods for mycotoxins primarily include enzyme-linked
immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and gas
chromatography (GC). For instance, some researchers have utilized ELISA and HPLC-
tandem mass spectrometry (HPLC-MS) to detect two mycotoxins, zearalenone (ZEN) and
T-2 toxin, in corn. The results showed that both methods successfully detected zearalenone
(ZEA) in feed corn with 100% accuracy. The analysis further indicated that ELISA, with
its simple sample preparation and rapid detection speed, is suitable for high-throughput
testing. However, it is prone to false positives due to interferences. In contrast, HPLC-MS,
although more complex, costly, and requiring higher operational expertise, offers more
stable and accurate results (Zhong et al. 2019). Additionally, researchers have developed
an indirect competitive ELISA to detect deoxynivalenol (DON) in wheat. The results
demonstrated that the mouse polyclonal antibody against DON exhibited specific reactivity
with 3-acetyl-DON and T-2 toxin. The recovery rate of DON in grains ranged from 82%
to 93%, and the linear detection range for DON in grain samples was 0.01 to 100 ug/mL
(Fang et al. 2011).

These traditional methods typically involve extensive sample preparation,
including toxin extraction from the matrix, purification to remove interfering substances
prior to detection, and the use of appropriate instrumentation for quantification (Martinez
and He 2021). These complex processes are time-consuming, costly, and may result in
cross-reactivity and sensitivity issues. Since these methods often rely on reporter molecules
that either bind to the target analyte or react with it, false positives may occur, leading to
detection failures (Zhang et al. 2023). Under restricted detection conditions, these methods
may fail to meet the demands for rapid, low-cost testing. Therefore, the development of
portable and time-efficient on-site detection tools would be beneficial for corn feed testing.

This manuscript utilizes fluorescence immunoassay-based point-of-care testing
(POCT) to measure the levels of mycotoxins in contaminated corn. The results indicate the
presence of two mycotoxins, zearalenone (ZEN) and vomitoxin (DON), with toxin
concentrations serving as a reference for the degree of corn contamination, which also
provides supporting evidence for subsequent Raman spectroscopy analysis. POCT uses
portable analytical instruments and corresponding reagents to rapidly obtain test results. It
is time- and location-independent, easy to operate, cost-effective, and requires minimal
sample preparation (Suo et al. 2023), enabling efficient and rapid measurements.

The principle of fluorescence immunoassay is based on the highly specific binding
between antigens and antibodies to detect target substances. The fluorescence signal
generated by the antigen-antibody complex is proportional to the concentration of fungal
toxins, allowing for trace detection (Wang et al. 2020). This technique offers reliable and
accurate detection of low-concentration targets, demonstrating excellent sensitivity and
reproducibility.

In recent years, surface-enhanced Raman scattering (SERS) has become a powerful
analytical technique for the rapid and sensitive detection of various contaminants (Gabbitas
et al. 2023).

Raman spectroscopy is an optical technique used to measure the vibrational energy
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of chemical bonds in biomolecules. It provides rapid, non-destructive molecular structural
information for both cells and extracellular compounds, without the need for reagents, and
sample preparation is simple, even for a variety of biological samples (Hanlon et al. 2000).

Surface-enhanced Raman spectroscopy (SERS) has found widespread application
in agricultural and by-product safety testing due to its high sensitivity, molecular
recognition specificity, and ability for rapid, real-time detection (Li et al. 2023). Excitation
of localized surface plasmon resonance (LSPR) generates a strong electromagnetic field,
and when the sample is placed on a roughened noble metal nanoparticle substrate, the
Raman signal is significantly enhanced (Haynes et al. 2005). SERS combines Raman
spectroscopy with nanotechnology to offer unique chemical and biochemical fingerprints
for low-concentration analytes (Gao 2023). This technique, valued for its narrow peak
shapes and high resolution in Raman spectra, increasingly provides detailed information
on the molecular composition and conformation of samples (Gao et al. 2024).

Currently, much of the research on SERS technology focuses on the development
of specialized SERS-active substrates, which requires highly specialized skills and
advanced equipment, thus limiting its widespread adoption and practical applications
(Gabbitas et al. 2023).

Although numerous studies have focused on the detection of mycotoxins in maize,
and traditional detection methods such as enzyme-linked immunosorbent assay (ELISA),
high-performance liquid chromatography (HPLC), and gas chromatography (GC) have
seen widespread application to some extent, these methods are often hindered by
challenges such as interference from complex sample matrices, false-positive results,
lengthy sample preparation processes, and high costs. In particular, there is still a lack of
convenient, efficient, and highly sensitive technologies for the rapid and on-site detection
of mycotoxins in maize feed. Existing detection methods rely on sample pretreatment and
labeling processes, which may introduce errors and reduce the accuracy of the results.
Therefore, the current research has yet to fully address the challenge of achieving high-
sensitivity, low-cost, label-free, and high-throughput rapid detection in complex samples.

This study combined fluorescent immunoassay with surface-enhanced Raman
spectroscopy (SERS) to explore the application of a label-free SERS-based detection
method for mycotoxins in maize. By using colloidal silver nanoparticles as the SERS
substrate and employing multivariate statistical analyses such as principal component
analysis (PCA) and support vector machine (SVM) pattern recognition, the work was
successful in developing a model for determining the degree of maize contamination. This
approach not only overcomes the limitations of conventional methods but also
demonstrates the potential of SERS technology for rapid, portable, and sensitive detection,
particularly in complex sample environments.

EXPERIMENTAL

Instruments and Equipment

A fluorescent immunoassay quantitative point-of-care testing (POCT) analyzer
(purchased from Shanghai Xiongtu Biotech Co., Ltd.), model XT8201A, and a test strip
constant temperature incubator (purchased from Shanghai Xiongtu Biotech Co., Ltd.),
model XT8202A, along with a fluorescent immunoassay quantitative test kit were used.
The CORA 5001 Raman spectrometer, featuring a spectral range of 100 to 500 cm™,
spectral resolution of 6 to 9 cm™, and a minimum wavenumber of 100 cm, was utilized.
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The probe was placed laterally, and samples were placed in the detection vial with the lid
closed for testing. The analysis software used were The Unscrambler X version 10.4 and
MATLAB R2021a.

Sample Collection and Physicochemical Testing

The samples were collected from a farm warehouse where mold-infected feed corn
was stored. Each sample weighed 10 g, with a total of 60 samples numbered from 1 to 60,
stored in a cool, dark place.

Before testing, the test strips, extraction solution, sample diluent, and samples were
allowed to reach room temperature. The constant temperature incubator and the fluorescent
immunoassay quantitative POCT analyzer were preheated for 10 min.

The samples were ground, sifted, and weighed. One gram of the mixed sample was
placed in a 10 mL centrifuge tube, and 5 mL of extraction solution was added. The mixture
was vortexed for 5 min and then centrifuged at 4000 rpm for 2 min. A 100 pL aliquot of
the supernatant was taken and mixed with 600 pL of sample diluent. Then it was set aside
for testing. Once the incubator stabilized at 37 °C, the testing began. The ID card was
inserted into the ID slot of the fluorescent immunoassay quantitative POCT analyzer to
import the test information. The test strip was placed horizontally on the heating plate of
the incubator, and 100 pL of the pretreated sample was added to the sample well using a
pipette, starting the 6-min incubation timer. After incubation, the test strip was inserted
into the analyzer’s slot to read the results.

Spectral Detection Process
SERS Substrate preparation

Silver nitrate solution (purchased from Xi'an Tianmao Chemical Co., Ltd.) was
used at a concentration of 0.01000 mol/L, grade GR (Guaranteed Reagent), and sodium
citrate (purchased from Tianjin Xiangruixin Chemical Technology Co., Ltd.), grade AR
(Analytical Reagent). To prepare the silver nanoparticle substrate, the required
concentration of silver nitrate solution was prepared by diluting 15 mL of silver nitrate
solution with distilled water to a total volume of 150 mL. A 1% mass percent sodium citrate
solution was prepared by dissolving 1 g of sodium citrate in 100 mL of water and stirring
until dissolved. The diluted silver nitrate solution was then transferred to a flask and heated
to boiling on a magnetic stirrer. A total of 4 mL of sodium citrate solution was slowly
added while maintaining a stirring speed of 300 rpm. Heating and stirring continued for 20
min until a color change occurred. After the reaction, the solution was allowed to cool to
room temperature and stored in a dark place to prevent light exposure.

Test preparation

The samples were crushed using a grinder and sieved through a 40-mesh screen.
Exactly 1 g of the sieved sample was placed into a 10 mL test tube, to which 5 mL of
universal extraction liquid was added. The mixture was extracted by vortexing for 5 min,
followed by centrifugation. 1 mL of the supernatant was then transferred into a
measurement vial, to which silver sol enhancement reagent was added. The mixture was
thoroughly mixed in preparation for spectral analysis. The form of the sample to be tested
was as a mixed solution in a measurement bottle.
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Fig. 1. Typical sample spectrum

Spectral acquisition

The spectrometer was set to the following testing parameters: 4 = 1064 nm, p = 450
mW, and t = 10000 ms (auto). Spectral preprocessing included dark background
subtraction and baseline correction. The device automatically sampled and saved the
results. Each sample was prepared in triplicate to ensure accuracy, and the average value
was taken as the final sample’s Raman spectral fingerprint. Spectral data were obtained for
60 samples in total. The spectrum of a typical sample is shown in Fig. 1.

RESULTS AND DISCUSSION

Data Analysis

The spectrometer automatically performs dark background subtraction and baseline
correction. To mitigate the effects of high-frequency random noise, sample heterogeneity,
and light scattering, it is necessary to preprocess the spectra to eliminate random noise. The
Savitzky-Golay smoothing method was used for this purpose. The processing was carried
out in MATLAB R2021a. The results are shown in Fig. 2.
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Fig. 2. Spectral smoothing results

Wavelength bands beyond 1700 cm™ contain excessive noise and lack significant
peaks, so only data prior to the 1700 cm™ band were retained. A Partial Least Squares
Discriminant Analysis (PLS-DA) model was constructed based on Principal Component
Analysis (PCA) of the first five principal components and eight characteristic peaks
identified using the R-C coefficient method. The ‘y’ values were assigned such that mild
mold contamination was defined as ‘sample 1°, moderate contamination as ‘sample 2’, and
severe contamination as ‘sample 3°. The model involved 57 samples, with 46 used in the
modeling set and 11 in the prediction set.

Principal Component Analysis of Spectral Data

After smoothing the spectral data using the Savitzky-Golay (S-G) method, the
dimensionality of the data was still too large, necessitating further dimensionality
reduction. Principal component analysis reduces dimensions by identifying the directions
of maximum variance in the data and constructing a set of orthogonal new axes. PCA
captures the directions with the highest variance in the data while attempting to retain as
much information as possible. Initially, PCA standardizes the data to neutralize the impact
of variable scales by giving each feature the same mean and variance. The standardization
formula is as follows,

x—U

Xsta =~ (D

where u represents the mean of the features, and o denotes the standard deviation of the
features. The standardized data matrix is expressed as X(nxp), where n is the number of
samples and p is the number of features). Subsequently, the covariance matrix of the
standardized data is computed using the following formula.

Cov(X) = ﬁXTX )

The covariance matrix reflects the linear correlation between each pair of features.
The next step is to perform eigenvalue decomposition on the covariance matrix to obtain
its eigenvalues and eigenvectors. Let the covariance matrix be denoted as C, with its
eigenvalues represented by A and eigenvectors by v, resulting in Eq. 3.

Cv=2Av 3)
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The eigenvalues indicate the variance captured by each principal component, while
the eigenvectors represent the directions of these principal components. Based on the
magnitude of the eigenvalues, the first k eigenvectors were selected as the new basis axes.
The data were then projected onto these principal components to obtain the reduced-
dimensional data.

The contributions of the principal components obtained after PCA are shown in
Table 1.

Table 1. Principal Component Contributions

Principal component PC-1 PC-2 PC-3 PC-4 PC-5
Cumulative Explained Variance 77.5354 | 94.7141 96.4960 | 97.9972 | 98.5378
Principal component PC-6 PC-7 PC-8 PC-9 PC-10
Cumulative Explained Variance 98.7261 | 98.9152 | 99.0180 | 99.0909 | 99.1224

The first five principal components accounted for over 98.5% of the variance.
Convex hulls were calculated for each category, and convex polygon boundaries were
drawn around each category's perimeter. The classification results are shown in Fig. 3.

PCA Results with Convex Hull
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Fig. 3. Principal component analysis (PCA) plot

Partial Least Squares Regression Analysis of Spectral Data

Due to the indistinct separation of edge samples, the model constructed using
principal components as inputs for Support Vector Machines demonstrated poor stability.
To enhance prediction accuracy, a combination of PCA and Partial Least Squares
Discriminant Analysis (PLS-DA) models was used to extract and merge features.
Important variables were selected based on the regression coefficients obtained from the
PLS regression model, forming a new dataset to build a revised PLS-DA model. The
advantage of this model, based on PLS-DA, is that it can detect inter-group variability
while reducing the number of variables, allowing for high intra-group variability without
needing information about the sample composition to establish the model and distinguish
samples (Barker and Rayens 2003). The discriminative effect of the PLS-DA model is
illustrated in Fig. 4.
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PLS-DA Results with Convex Hull
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Fig. 4. PLS-DA model discrimination plot

Spectral Peak Feature Analysis

Raman spectroscopy relies on the identification of characteristic peaks. By
combining the R-C coefficient method with manual selection, eight characteristic peaks
were identified. These peaks are illustrated in Fig. 5. The Raman characteristic peak at 878
cm™! corresponds to CH: rocking (Li et al. 2019; Zhu et al. 2023). The peak at 1046 cm™
is attributed to C-C aromatic ring or C-O stretching vibration, possibly related to in-plane
rocking of -CHs (Tan et al. 2015) or C-CI stretching (Rodriguez et al. 2020; Wu et al.
2021). The 1220 cm™! peak is associated with C-N stretching, while the 1276 cm™ peak
corresponds to B(C-Hz)(ring) and B(C-H) ring deformation (Wu etal. 2012). The 1452 cm™
peak is linked to v(C7=CS8), ring deformation (Li et al. 2019; Zhu et al. 2023), or C-H in-
plane bending (Yuan et al. 2017). The peak at 1590 cm™! corresponds to the C-C aromatic
ring vibration (Agarwal 2006) or B(C-H)(CHs) and B(C-H)(ring) modes (Wu et al. 2012).
The 1566 cm ™ peak is related to v(-CHs) vibration (Yuan et al. 2017).

Single Sample Spectrum Visualization
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Fig. 5. Characteristic peak identification
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Discriminant Analysis Based on Support Vector Machines

The five principal components derived from principal component analysis and the
eight characteristic peaks selected via the RC coefficient method combined with manual
selection were used as inputs for the Support Vector Machine (SVM) algorithm. A one-
versus-all SVM approach was implemented using the fitcecoc function in MATLAB,
decomposing the multi-class problem into several binary SVM models. The classification
of corn mold levels was performed by aggregating the voting results from multiple SVM
models, and model classification results were evaluated using a confusion matrix. The
algorithm was executed in MATLAB R2021a with the following steps:

(1) Define the known training set as follows:
T = {Xpy1), ) (X0 ¥)JEX X Y)* (4)

where x;eX=R";y,eY={1,..,.M}, i=1,..,°.
(2) Perform the following operationon j = 1, ..., M: treat the j-th class as the positive
class and the remaining M-1 classes as the negative class, and use the support
vector machine to obtain the decision function.

() = sgn () (5)
where _
gl(x) = Xi yie/K(x, ) + b/ (6)
(3) Determine the input X as belonging to the j-th class, where j is the index of the
maximum value in g¢(x)...., g" (x).

. T
(4) For the solution a = (a{, ...,a{) of the classification problem, assuming that
a{( > 0 is a component of «, the solution (w*, b*) for (w, b) can be expressed as

W =Xy ayix; ()
J .
b = yie (1= %) - Bh yiod Ky ) ®

The performance of different kernel functions was compared, and the learning
parameters for the SVM were set with a penalty factor ¢=1000.0. The linear kernel
function-based SVM model showed the best classification performance, with confusion
matrices displayed in Figs. 6 and 7. The fused model achieved an accuracy of 100% on
both the training set and the test set. The results indicate that the feature fusion derived
from PCA and PLS analysis effectively distinguishes between different degrees of corn
mold.
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Fig. 6. Confusion matrix of the training set Fig. 7. Confusion matrix of the test set

CONCLUSIONS

1.

Fungi secrete enzymes that degrade polysaccharides, such as cellulose, in maize,
leading to modifications in its chemical structure. Both deoxynivalenol (DON) and
zearalenone (ZEN) molecules feature aromatic ring structures. In Raman spectroscopy,
the C—C stretching vibration of the aromatic ring typically appears in the 1400 to 1500
cm ! range. The C=C stretching vibration around 1600 cm™ serves as a characteristic
fingerprint peak for deoxynivalenol (DON) and also corresponds to the C=0 stretching
vibration, which is a key marker for zearalenone (ZEN).

This study successfully employed surface-enhanced Raman spectroscopy (SERS) in
combination with spectroscopic and chemometric methods to accurately identify the
degree of mold deterioration in corn. By applying the Savitzky-Golay smoothing
technique for spectral preprocessing and utilizing Principal Component Analysis
(PCA) in conjunction with the R-C coefficient method to identify characteristic peaks,
key spectral bands were determined at 482, 878, 1046, 1082, 1220, 1276, 1452, and
1590 cm™!, thus significantly enhancing the effectiveness of mold detection.

The study further integrated the principal components extracted from PCA with
manually selected characteristic peaks to develop a support vector machine (SVM)
discriminant model, achieving a recognition accuracy of 100%. This fused discriminant
model provides an innovative and efficient approach for future applications of
spectroscopic technology in detecting mold contamination, laying a solid foundation
for improving food safety monitoring.
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