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Effect of Alkali Lignin on Laccase Activity and Mycelial
Biomass of Flammulina velutipes
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The effect of alkali lignin on laccase activity and mycelial biomass of
Flammulina velutipes was investigated at different fermentation
temperatures. The secretion of laccase by F. velutipes has certain
specificity. Under most fermentation medium conditions, no laccase
activity of F. velutipes CCMSSC 00103 was detected, but laccase activity
of F. velutipes FL 19 could be detected. Among the three strains of F.
velutipes, the laccase secretion capacity of F. velutipes FL 19 was clearly
higher than that of F. velutipes CCMSSC 05331 and F. velutipes CCMSSC
00103. Maximum laccase activity with the value of 73.42 + 4.74 U/L was
secreted by F. velutipes FL 19 in fermentation medium with alkali lignin,
KH2POa, Vitamin B1, and glucose, and appeared on the 2" day. The
presence of alkali lignin was useful for improving laccase activity secreted
by F. velutipes. The effect of alkali lignin on improving laccase activity
exceeded that of Populus beijingensis. F. velutipes was more suitable for
secreting laccase at 26 °C because the maximum laccase activity at 26 °C
(73.42 £ 4.74 U/L) was higher than that measured at 33 °C (70.71 + 6.89
U/L). The results can be useful for selecting suitable medium and
temperature of F. velutipes strains to produce low-cost laccase.
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INTRODUCTION

Lignin, the most abundant and natural aromatic substance in nature, is a polymer
composed of phenylpropyl units connected by various non-hydrolyzed C—C and C—O—C
bonds (Yang et al. 2012; Yang et al. 2021). Because of its extremely complex structure,
which is mainly reflected in the irregular structure of the matrix and the high branching of
the polymer network, lignin has a strong ability to resist microbial decomposition (Muaaz-
Us-Salam et al. 2020). Microbial depolymerization of lignin, which is one of the important
mechanisms of lignin depolymerization, has the advantages of low energy consumption,
no chemical additives, and environmental friendliness (Niu et al. 2021). A breakthrough in
the field of lignin biodegradation was investigated in 1983 when Tien and Kirk (1983)
described fungal lignin enzymes and their peroxide requirements. This finding led to the
biodegradation of lignin by fungi being widely studied worldwide (Pointing et al. 2001;
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An et al. 2023). Thus, fungi secreting related enzymes involved in the efficiently
degradation of lignin, including manganese peroxidase (MnP), lignin peroxidase (Lip), and
laccase (Lac), have been extensively studied (Wong 2009; Barapatre and Jha 2017; Yang
et al. 2021). Manganese peroxidase is a glycosylated hemoglobin that converts lignin
phenolic compounds to phenoxy radicals, while lignin peroxidase is a glycoprotein that
oxidizes nonphenolic and phenolic compounds. Laccase, belonging to a family of multi-
copper oxidase, can destroy the internal stability of aromatic rings by oxidizing the
phenolic hydroxyl of lignin (Xu et al. 2018; Weng et al. 2021). In addition, laccase has
been widely studied globally due to its wide and remarkable range of natural substrates
(An et al. 2021a, 2021b).

Laccase (EC 1.10.3.2), also commonly known as p-diphenol oxidase, is a type of
oxidase that catalyzes the reduction of Oz to H20 (Singh et al. 2011; Wang et al. 2019).
Laccase was first described by Yoshida (1883) and discovered in Chinese or Japanese
lacquer tree’s latex (Strong and Claus 2011). Laccase has been found in higher plants,
bacteria, insects, actinomycetes, and fungi of deuteromycetes, ascomycetes, and
basidiomycetes, which indicates that laccase is involved in various physiological processes
(Chen et al. 2013; Chauhan et al. 2017; Geng et al. 2018; Khatami et al. 2022). At present,
the biotechnological applications of laccases have been investigated for more than 30 years
because they are widely used in a wide scope of disciplines. Laccase has been shown to be
useful in the paper and bio-pulping industry, cosmetics and pharmaceuticals industry,
sewage treatment industry, chemical industry, textile industry, energy industry,
bioremediation industry, food and feed industry, and many others (Minussi et al. 2002;
Senthivelan et al. 2016; Yashas et al. 2018; Navas et al. 2019; Singh and Arya 2019; L. et
al. 2022; Zhang et al. 2022; Dong et al. 2023). However, the high production cost, low
activity, and low stability of laccase prevent its widespread use in industry (Couto and
Toca-Herrera 2007; Goncalves et al. 2015; Su et al. 2018).

There are many factors affecting the activity of fungal laccase, such as pH,
temperature, the type of fungus, lignocellulosic material, compounds, the type and
concentration of metal ions, etc. (Hu et al. 2014; Bettin et al. 2019; Rodriguez et al. 2019;
Sun et al. 2021; Tiwari et al. 2023; Vandelook et al. 2024). Thus, many researchers are
working to develop new microorganisms that are capable of producing laccase (Yang et al.
2015; Hadibarata et al. 2018; Rao et al. 2019; Han et al. 2021a, 2021b; Oztat et al. 2024).
Meanwhile, the ability of fungal mixtures to produce laccase has also been investigated
(Verma and Madamwar 2002; Vibha and Negi 2018; Rodriguez et al. 2019; Zhang et al.
2020). Of course, there are also scholars committed to exploring the types of lignocellulosic
materials or methods involving the mixing of lignocellulosic materials to analyze the
effects on the production of laccase by fungi (Xu et al. 2020; Han et al. 2021b). In addition,
there have been some studies analyzing the effects of metal ions or aromatic compounds
on the activity of fungal laccase (Wang et al. 2011; Yang et al. 2016; Zhuo et al. 2017; Li
et al. 2022). Flammulina velutipes, as a model white-rot fungus, had been shown to
produce laccase in previous studies (Janusz et al. 2015; An et al. 2016; Cesur et al. 2022a,b).
These studies mainly focused on the effects of metal ions, lignocellulose materials, and
aromatic compounds on laccase activity secreted by F. velutipes strains. However, there
has been a need for studies on the effect of alkali lignin on laccase activity secreted by F.
velutipes. Under these circumstances, this study intended to analyze the effect of alkali
lignin on laccase activity and mycelial biomass of F. velutipes. Meanwhile, the differences
in laccase activity and mycelial biomass from different F. velutipes strains were
investigated. The results will contribute to produce low-cost laccase.
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EXPERIMENTAL

Materials
Microorganisms

Flammulina velutipes CCMSSC 05331, F. velutipes FL 19, and F. velutipes
CCMSSC 00103 were kindly provided by Institute of Microbiology, Beijing Forestry
University. All fungal species were stored on malt extract agar (MEA) medium (glucose
10 g/L, malt extract 20 g/L, KH2POa4 3 g/L, and agar 20 g/L).

Chemicals

2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and alkali lignin
were purchased from Sigma-Aldrich (Sigma Aldrich (Shanghai) Trading Co., Ltd.). Malt
extract, yeast extract, and peptone were purchased from AOBOX (Beijing Aoboxing Bio-
Tech Co., Ltd.), and agar was purchased from Beijing BioDee Bio. Tech. Co., Ltd. (Beijing,
China). Other chemicals used in present work were purchased from Tianjin Zhiyuan
Chemical Reagent Co., Ltd. (Tianjin, China).

Lignocellulosic biomass

Populus beijingensis, obtained from Langfang city (Hebei province, China), was
chopped into small pieces, air-dried, and ground with the micro-grinding machine FZ-102
into the particle size between 20- and 60-mesh.

Methods
Microbial culture

Flammulina velutipes CCMSSC 05331, F. velutipes FL 19, and F. velutipes
CCMSSC 00103 were transferred to culture plate containing complete yeast agar medium
(CYM, composed of glucose 20 g/L, peptone 2 g/L, yeast extract 2 g/L, MgSO4-7H20 0.5
g/L, K2HPO4-3H20 1 g/L, KH2PO4 0.46 g/L, agar 15 g/L, and deionized water 1 L) and
cultured at 26 °C for 7 days to activate the fungal strains.

Inoculum preparation

Five pieces with the diameter of 1.0 cm were punched by a round tool, then
transferred into the 250-mL triangular flask containing 100 mL complete yeast medium
(CYM without agar) and cultured at 26 °C with the rotation speed of 150 rpm to perform
the seed liquid preparation process. Seven days later, the homogenization process of
mycelium pellets in the triangular flask was completed using a hand-held homogenizer
(Tianjin Hengao Technology Development Co., Ltd., Tianjin, China) for 2 min with the
speed of 5000 rpm. The suspension was used in a subsequent process as an inoculum.

Process of submerged fermentation

The pH of fermentation medium used for laccase production of different
Flammulina velutipes strains remained natural, and the formula was shown in Table 1. 100
mL of corresponding fermentation medium were added into 250-mL triangular flasks. Next,
they were autoclaved at 121 °C for 30 min, and then 3 mL inoculum as mentioned above
were added into every triangular flask. Next, all flasks were divided into two groups and
cultured in a rotary shaker at 150 rpm with the temperature of 26 or 33 °C, respectively.
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Table 1. Details of Each Component of the Medium

Fermentation Alka}li KH2PO4 | Vitamin B1 | Glucose | Peptone E_qpulus_
Medium Lignin (g/L) (g/L) (/L) (g/lL) | beijingensis
(g/L) (g/flask)
M1 3 3 0.03 - - B
M2 3 3 0.03 10 - B
M3 3 3 0.03 - 2 _
M4 3 3 - R 2 _
M5 3 3 0.03 10 2 B
M6 - 3 0.03 10 2
M7 3 0.03 - ; 3

Preparation of crude enzyme solution and laccase activity assay

Crude enzyme solution was prepared by filtering the fermentation liquor with a
filter paper, and the filter liquor was centrifuged at 4 °C for 20 min with the speed of 12,000
rpm. The supernatant obtained after centrifugation was the crude enzyme solution that was
used for the subsequent determination of laccase activity.

The laccase activity was determined by the method of Bourbonnais and Paice
(1990), and the specific operation process was as described by An et al. (2018). Laccase
activity was determined by measuring the changes in the absorbance when ABTS were
oxidized at 420 nm (&20 = 3.6 x 10* Mt cm™). One unit of laccase activity was defined as
the amount of laccase required to oxidize 1.0 umol of ABTS per minute.

Biomass dynamics

To determine the biomass dynamics, mycelium pellets in the fermentation liquor
were filtered by a filter paper, and washed three times with the deionized water to remove
the fermentation medium. The washed mycelium pellets were finally dried at 60 °C to a
constant weight.

Statistical analysis

To analyze the effects of fermentation medium, temperature, and strains on laccase
activity, three-way analysis of variance (ANOVA) using the Tukey post hoc test was
performed with SPSS 22.0 (PROC GLM, Armonk, NY, USA). All colorful figures were
generated by the Origin 2016 software (OriginLab Corporation, Northampton, MA, USA).

RESULTS AND DISCUSSION

Laccase Activity and Mycelium Biomass in Different Fermentation Medium
It was found that laccase activity could be improved by the metal ions,
lignocellulosic wastes, fungal species, and other factors. Flammulina velutipes, as a model
white-rot fungus, had been shown to secrete laccase in previous studies (An et al. 2015,
2016; Janusz et al. 2015; Xie et al. 2017; Cesur et al. 2022a, 2022b). There are many
studies on the effect of lignocellulosic materials or metal ions on laccase activity of white-
rot fungi, including the species from the genus of Flammulina (An et al. 2016; Cesur et al.
2022a,b; Hasan et al. 2023; Kasirajan and Kamaraj 2023). Of course, alkali lignin has also
been shown the capacity in increasing the laccase activity of Ganoderma lucidum and
Pleurotus ostreatus (Sitarz et al. 2013; An et al. 2018). Based on this, the effect of alkaline
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lignin on laccase activity and mycelium biomass of Flammulina velutipes strains was

investigated in this study.

The effect of fermentation medium, temperature, and strains on laccase activity was
significant during the whole fermentation stage (P < 0.001). Maximum laccase activity of
Flammulina velutipes CCMSSC 05331, F. velutipes FL 19, and F. velutipes CCMSSC
00103 detected in M1 at 26 °C was 26.39 + 0.95 U/L, 37.25 + 2.52 U/L, and 55.06 *+ 5.34
U/L, appearing on the 5, 3™ and 8" day of fermentation, respectively (Fig. 1a, 1b, 1c).
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Similarly, the maximum laccase activity of Flammulina velutipes CCMSSC 05331,
F. velutipes FL 19, and F. velutipes CCMSSC 00103 detected in M2 at 26 °C was 45.81 +
414 U/L, 73.42 + 4.74 U/L, and 51.08 + 3.70 U/L, appearing on the 5™, 2"4, and 6" day of
fermentation, respectively (Fig. 1a, 1b, 1c). Under the fermentation condition of M1 and
M2, the mycelial biomass of Flammulina velutipes CCMSSC 05331, F. velutipes FL 19,
and F. velutipes CCMSSC 00103 was 0.093 + 0 g and 0.211 + 0.009 g, 0.173 £ 0.002 g
and 0.092 £ 0 g, and 0.026 £ 0 g and 0.060 + 0.005 g (Fig. 2a, 2b, 2c). It is easy to find that
the laccase activity value secreted by fungi had no direct linear relationship with its own
mycelial biomass. In the whole, the maximum laccase value of F. velutipes strains in M 2
medium appeared earlier than that in M1 medium. It is worth mentioning that the F.
velutipes strains reached the maximum mycelial biomass earlier with M2 than M1.
However, the composition difference between M2 and M1 was that M2 contains glucose,
a simple carbon source, which seemed to indicate that the presence of glucose helped F.
velutipes strains to indirectly accelerate laccase to achieve maximum laccase activity by
accelerating biomass accumulation. Of course, that does not mean that the presence of
glucose leads to an increase in the total mycelial biomass. Kanwal and Reddy (2011)
evaluated the effect of different carbon sources on ligninolytic activity secreted by
Morchella crassipes and concluded that laccase activity variation depended on the carbon
source used. Li et al. (2011) studied the mechanism of excess production of laccase under
microbial interaction through the co-culture process of Ganoderma lucidum and Candida
sp. HSDO7A, and the results showed that nitrogen source, sulfur source, hydrolase, and
inducers had no significant influence on laccase activity. In addition, it was apparent that
glucose deprivation in the medium was also not the crucial reason why G. lucidum
overproduces laccase, although it was able to improve laccase activity to a certain extent.
Nutrient media optimization for simultaneous enhancement of the laccase and peroxidases
production by coculture of Dichomitus squalens and Ceriporiopsis subvermispora was
investigated by Kannaiyan et al. (2015), and the optimum nutrient levels were 1% glucose,
0.1% arabinose, 20 mM sodium nitrate, 0.27% casein, 0.31 mM CuSOg4, and 0.07 mM
MnSOas. An et al. (2018) found that the combination of alkaline lignin and glucose as an
additional carbon source was conducive to the enhancement of laccase activity in Pleurotus
ostreatus. Similarly, this study also found that glucose was beneficial to the improvement
of laccase activity to some extent. Ottoni et al. (2016) investigated the effect of different
carbon sources on laccase activity of Trametes versicolor and concluded that glycerol
could be described as a good inducer to produce laccase. Thus, this also fully reflects the
diversity of fungi using carbon nutrition.

Laccase activity of F. velutipes CCMSSC 05331 and F. velutipes CCMSSC 00103
fermented in M3, M4, M5, M6, and M7 at 26 °C could not be detected during the whole
stage of fermentation, while the maximum laccase activity of F. velutipes FL 19 in M7
containing Populus beijingensis was 26.76 + 2.21 U/L (Fig. 1a, 1b, 1c). Further, mycelial
biomass of tested F. velutipes strains in M3, M4, M5, M6, and M7 could be measured (Fig.
2a, 2b, 2c). It was clear that although no laccase activity was detected in these F. velutipes
strains under M5 medium, the mycelial biomass accumulated by these strains was very
high, and respectively reached 0.400 + 0.028 g (F. velutipes CCMSSC 05331), 0.375 +
0.032 g (F. velutipes FL 19), and 0.210 + 0.013 g (F. velutipes CCMSSC 00103).
Compared with M2, M5 contained a simple nitrogen source of peptone. Thus, the presence
of peptone increased the mycelial biomass of three tested strains. In addition, the ratio of
carbon to nitrogen also affected the growth of mycelia.
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Fig. 2. Mycelium biomass of Flammulina velutipes strains fermented in different medium (a:
Flammulina velutipes CCMSSC 05331 cultured at 26 °C; b: F. velutipes FL 19 cultured at 26 °C;
c: F. velutipes CCMSSC 00103 cultured at 26 °C; d: F. velutipes CCMSSC 05331 cultured at

33 °C; e: F. velutipes FL 19 cultured at 33 °C; f: F. velutipes CCMSSC 00103 cultured at 33 °C) .
M1 = fermentation medium 1; M2 = fermentation medium 2; M3 = fermentation medium 3; M4 =
fermentation medium 4; M5 = fermentation medium 5; M6 = fermentation medium 6; M7 =
fermentation medium 7

Colla et al. (2023) aimed to evaluate the carbon-to-nitrogen (C/N) ratios and
nitrogen contents in sugarcane bagasse and soybean meal substrate formulations on
mycelial growth, laccase activity, and mushroom production of Lentinus crinitus in solid-
state cultivation, and found that mycelial growth, mushroom yield, biological efficiency,
and biological efficiency-to-cultivation time ratio of L. crinitus were higher with the
substrate of 1.2% nitrogen (C/N ratio of 36.6). Another aspect that cannot be ignored to
account for the difference between M5 and M6 was that M5 contained alkaline lignin.
Meanwhile, the mycelial biomass of F. velutipes strains was the highest in M5, indicating
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that alkaline lignin was helpful for accumulation of mycelial biomass. F. velutipes
CCMSSC 05331 and F. velutipes CCMSSC 00103 did not grow in M7 at 26 °C, which
was composed of Populus beijingensis, KH2PO4, and vitamin B1. It can be seen that
complex lignocellulosic materials with lignin content were not conducive to the growth of
mycelia. When fermented at 33 °C, laccase activity of Flammulina velutipes CCMSSC
05331 could be measured in M1 and M7, and laccase activity of F. velutipes FL 19 could
be measured in M1, M3, and M7, while no laccase activity of F. velutipes CCMSSC 00103
was detected in all fermentation medium (Fig. 1d, 1e, 1f). In addition, the mycelial biomass
of F. velutipes CCMSSC 05331 and F. velutipes FL 19 was the highest in M5 at 33 °C,
while maximum mycelial biomass of F. velutipes CCMSSC 00103 was obtained from M6
(Fig. 2d, 2e, 2f).

Xu et al. (2020) found that the laccase production of Trametes versicolor obtained
from the optimizing culture medium with tea residues was 25.7 U/g dry substrate, resulting
in a 4.0-fold increase compared with the laccase production from unoptimized culture
medium. Gou et al. (2022) found that corn stover could replace glucose as a carbon source
to promote laccase production. Of course, other lignocellulosic materials, such as cassava
waste, corn straw, wheat straw, straw, and even urban food waste, have also been reported
to affect the secretion of laccase by fungi (Wang et al. 2015; Unuofin et al. 2019; Kumar
etal. 2022). All the above studies have shown that the presence of lignocellulosic materials
can promote fungal laccase activity, but it is based on the accumulation of mycelial biomass.

Laccase Activity and Mycelium Biomass of Different Flammulina velutipes
Strains

There has been continuous development of new laccase-producing strains and
evaluation of their laccase-producing capacity. Therefore, a large number of white-rot
fungi have been shown to produce laccase (Gonzalez-Gonzalez et al. 2023).

Maximum laccase activity of Flammulina velutipes CCMSSC 05331, F. velutipes
FL 19, and F. velutipes CCMSSC 00103 was 45.81 + 4.14 U/L fermented in M2 at 26 °C,
73.42 £4.74 U/L fermented in M 2 at 26 °C, and 55.06 + 5.34 U/L fermented in M1 at 26 °C
(Fig. 1). Similarly, maximum laccase activity of F. velutipes FL 19 at 33 °C was nearly
2.59-fold larger than that from F. velutipes CCMSSC 05331, and laccase activity of F.
velutipes CCMSSC 00103 was not measured in all test fermentation media during the
whole fermentation stage. Thus, the laccase secreting ability of F. velutipes FL 19 was
higher than that of F. velutipes CCMSSC 05331 and F. velutipes CCMSSC 00103. Of
course, the media in which these strains were able to produce the enzyme were also
inconsistent.

Janusz et al. (2015) investigated the laccase production and metabolic diversity
among 12 Flammulina velutipes strains and showed different laccase secretion ability of
twelve strains. An et al. (2016) analyzed the laccase activity of 13 strains belonging to the
genus of Flammulina fermented in different culture media and found that the presence of
simple carbon and nitrogen sources increased the maximum laccase enzyme activity.
Meanwhile, there were obvious differences in laccase secretion ability among different
Flammulina strains, which was in agreement with the present study. Similarly, different
strains of other fungi, such as Pleurotus and Trametes, have the same characteristics
(Mallak et al. 2021; Melanouri et al. 2022).

In addition to the differences in laccase production capacity, there were also
differences in mycelial biomass accumulation among these Flammulina velutipes strains
(Fig. 2). F. velutipes CCMSSC 05331 and F. velutipes CCMSSC 00103 can grow in M1,
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M2, M3, M4, M5, and M6, at 26 °C and M1, M2, M3, M4, M5, M6, and M7 at 33 °C (Fig.
2). However, the mycelial biomass of F. velutipes FL 19 could be detected in all tested
fermentation medium at 26 and 33 °C (Fig. 2). Based on this, the adaptability of F. velutipes
CCMSSC 05331 and F. velutipes CCMSSC 00103 to the medium was similar. However,
the maximum value of mycelial biomass of F. velutipes CCMSSC 05331 fermented at 26
and 33 °C was higher than the maximum mycelial biomass of F. velutipes CCMSSC 00103.
Moreover, it is not difficult to find that F. velutipes CCMSSC 05331 had the largest
mycelial growth at 26 and 33 °C when compared with the other two strains, which also
reflects the differences in nutrient utilization and metabolism among different strains of the
same species.

Laccase Activity and Mycelium Biomass with Different Temperature

Maximum laccase activity of Flammulina velutipes CCMSSC 05331, F. velutipes
FL 19, and F. velutipes CCMSSC 00103 at 26 °C was higher than that measured at 33 °C
(Fig. 1). Thus, F. velutipes strains were more suitable for secreting laccase at 26 °C.
However, the mycelia growth of three F. velutipes strains did not show the consistency of
laccase at different temperatures, and the mycelia biomass varied under different medium
conditions. Nevertheless, the maximum mycelium biomass for each F. velutipes strain was
still present at a culture temperature of 26 °C, but not in the same medium as the maximum
laccase activity. Yang et al. (2020) discovered a thermo-active laccase isoenzyme from
Trametes trogii, and the optimal temperature after purification was found to be 60 °C. Sun
et al. (2021) investigated the extracellular laccase of the litter decomposing fungus
Gymnopus luxurians and demonstrated that an optimum temperature range of G. luxurians
was 55 to 65 °C. This seems to indicate that the optimum temperature of the purified laccase
IS not consistent with that of the crude laccase protein.

CONCLUSIONS

1. Among the three strains of Flammulina velutipes, the laccase secretion capacity of F.
velutipes FL 19 was clearly better than that of F. velutipes CCMSSC 05331 and F.
velutipes CCMSSC 00103.

2. The presence of alkali lignin was useful for improving laccase activity secreted by
Flammulina velutipes. The effect of alkali lignin on improving laccase activity even
exceeded that of Populus beijingensis.

3. There was no linear relationship between the content of mycelium biomass and laccase
activity of Flammulina velutipes.

4. F. velutipes strains were more suitable for secreting laccase at 26 °C due to the
maximum laccase activity measured at 26 °C was higher than that measured at 33 °C.
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