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In recent years, the process of optimizing the design of natural fiber 
reinforcement in natural fiber composites (NFCs) with distinct properties 
has been redefined through the application of machine learning (ML). This 
work elucidates the functions of the types and applications of the ML 
algorithms and evolutionary computing techniques, with a particular focus 
on their applicability within the domain of NFCs. Moreover, the solution 
methodologies and associated databases were employed throughout 
various stages of the product development journey, from the raw material 
selection through the final end-use application for the NFCs. The strengths 
and limitations of the ML in the NFCs industry, together with relevant 
challenges, such as interpretability of ML models, in materials science was 
detailed. Finally, future directions and emerging trends in the ML are 
discussed. 
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INTRODUCTION 
 
Overview of Natural Fiber Composites (NFCs) and their Significance in 
Materials Science 

Natural fiber composites (NFCs) are advanced materials that combine a polymer 

matrix—thermoset or thermoplastic—with reinforcing materials of lignocellulosic or 

biogenic ceramic nature, in geometries that include fibers or less elongated fillers, normally 

defined as “particles”, in a micrometric or nanometric size to achieve enhanced properties 

tailored to specific applications (Palanisamy et al. 2022a; Seydibeyoğlu et al. 2023; 

Palaniappan et al. 2024c). These materials have the potential to be pivotal in modern 

materials science due to their versatility, by ultimately offering a unique blend of 

characteristics, which surpass those of their individual components (Jagadeesh et al. 2022; 

Ayrilmis et al. 2024). The selection of polymer matrix and reinforcement type allows 

engineers to optimize properties, such as strength, stiffness, durability, thermal and 
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electrical conductivity, and resistance to aging over time, or to more instantaneous damage 

phenomena, such as abrasion or impact. Other factors, which would be essential to tailor 

performance, together with reducing scattering of properties, are the application of 

compatibilizers (Hubbe and Grigsby 2020) and fiber treatment (Latif et al. 2019). This 

versatility, though obtainable through the control of a number of parameters, has led to 

widespread adoption across various industries, including aerospace, automotive, renewable 

energy, construction, and biomedical sectors. In aerospace, for example, NFCs are starting 

to be used extensively in aircraft structures, mainly in interiors, to reduce weight while 

maintaining structural integrity and fuel efficiency (Asim et al. 2018; Kar et al. 2023; 

Palaniappan et al. 2024b). In automotive applications, they contribute to weight reduction 

efforts, improving fuel economy and performance (Naik and Kumar 2021). In renewable 

energy, composite materials form critical components of wind turbine blades, where they 

enhance efficiency and durability (Hussain and Immanuel 2021; Gebrehiwet et al. 2023). 

In the construction industry, natural fiber composites offer alternatives to traditional 

materials, providing high strength-to-weight ratios and resistance to abrasion, plus 

effectively replacing fiberglass (Silva et al. 2020). Additionally, NFCs are employed in 

biomedical fields for developing implants and prosthetics that mimic natural tissues’ 

mechanical properties (Kim and Chalivendra 2020; Sumesh et al. 2023, 2024). The 

integration of machine learning (ML) with science of NFCs further enhances their 

significance by enabling predictive modeling, optimization of material formulations, and 

automation of design processes (Malalli and Ramji 2022). The ML algorithms analyze 

complex datasets to predict material behaviors based on composition, processing 

parameters, and environmental conditions, thereby accelerating innovation and reducing 

development costs. These methods also have brought potential advantages in particularly 

computationally complex fields, e.g., whenever the effect of vibrations on materials is 

involved (Guo et al. 2024; Mahariq et al. 2020). There still are challenges, such as data 

scarcity, interpretability of models, and computational complexity. However, ongoing 

research and interdisciplinary collaborations promise to overcome these hurdles, unlocking 

new possibilities for composite materials in diverse applications (Karuppiah et al. 2020; 

Mulenga et al. 2021). 

 

Importance of Predictive Modeling and Optimization in Composite Materials 
Design 

Predictive modeling and optimization play crucial roles in advancing composite 

materials design, particularly when integrated with ML techniques tailored for NFCs 

(Shahzad et al. 2024). These methodologies are essential for efficiently and effectively 

tailoring material properties to meet specific performance requirements across various 

industrial applications. Predictive modeling leverages computational algorithms to 

simulate and predict the behavior of composite materials based on input variables such as 

material composition, processing conditions, and environmental factors. Through 

harnessing ML algorithms—which build on regression models, decision trees, neural 

networks, and more sophisticated deep learning architectures, not dismissing the 

importance of the former, yet hopefully improving their performance namely for easier 

interpretation of the results (Levy and O’ Malley 2020) —engineers can analyze vast 

datasets and extract meaningful insights that inform design decisions (Karuppiah et al. 

2022; Feng et al. 2024). This capability not only accelerates the materials development 

process, but it also enhances the accuracy of predictions regarding mechanical strength, 

thermal stability, electrical conductivity, and other critical properties. Optimization 
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techniques further refine composite formulations by identifying optimal combinations of 

matrix materials, reinforcements, and additives to achieve desired performance metrics 

while minimizing costs and at the same time reducing environmental impact (Husain 

2023). ML-driven optimization frameworks enable rapid iteration and exploration of 

design spaces that may not be feasible through traditional empirical methods alone, thereby 

fostering innovation and competitiveness in industries such as aerospace, automotive, 

renewable energy, and the biomedical sector. Through integrating predictive modeling and 

optimization with ML, researchers and engineers can navigate complex material 

interactions, overcome design challenges, and deliver composite materials with enhanced 

functionality, durability, and sustainability, thereby shaping the future of materials science 

and engineering (Sadeghi et al. 2024). 

When analyzing polymeric composites, the many existing parameters and different 

combinations that need to be evaluated to boost applications with multi-functional 

requirements is motivating researchers to carry out more systematic and data-intensive 

research. The combination of experiments and computer simulations has produced a huge 

amount of data that has enabled the integration of machine learning algorithms with 

materials science, which has been a key driver in the development of new materials 

(Sharma et al. 2022; Goutham et al. 2023). The mining of large-scale data is the work of 

accessing hidden information (Wu et al. 2013; Jaseena and David 2014; Westermayr et al. 

2021). In data analysis, statistics plays a crucial role in addressing a variety of problems 

and is extensively employed in finding solutions. 

However, it is difficult to use in some problems. Especially, very large statistical 

methods may appear inadequate when working with large amounts and variety of data. In 

these circumstances, data mining addresses the need for solutions to complex problems. 

Machine learning has started to be used in the last few years to tailor and optimize the 

properties of composite materials (Terzi et al. 2014). This acts more generally also on the 

production process to accelerate evaluation and increase the level of accuracy as regards 

the relation between structure and properties, which is reflected in a combination of 

phenomena during fabrication, namely tension, flexure, inter and intra-ply shear, and 

compaction (Guo et al. 2021; Govindarajan et al. 2024; Padmanabhan et al. 2024). 

Achieving successful results in future predictions with artificial neural networks depends 

also on the degree of independence of the variables and is influenced by the degree of 

accuracy in the measurement of their values. Results can be enhanced by using different 

network structures and determining which of these is more suitable for the problem type 

(Tkáč and Verner 2016; Abdolrasol et al. 2021). Data mining algorithms are available and 

continuously improved in many fields, including marketing, social, education, 

communication, and engineering (Terzi 2007; Küçüksille et al. 2011; Özel and Topsakal 

2014). Many different methods are used in data mining, among which the most diffuse are 

classification, Gaussian regression analysis, clustering, association analysis, ordered 

sequence analysis, and time series analysis (Fu 2011; Romero and Ventura 2013; Hokeš et 

al. 2016; Aye and Heyns 2017; Gong et al. 2024).  

 

Introduction to ML and its Applications in Materials Science 
Since ML has emerged as a transformative paradigm in materials science, it is also 

able to offer powerful tools to revolutionize the design, characterization, and optimization 

of the composites, starting from the simplest models of unidirectional fibers-matrix 

interaction (Zhang et al. 2018). At its core, ML involves the development of algorithms 

and statistical models that enable computers to learn from and make predictions or 
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decisions based on data. In this sense, the question of ML transparency is essential, as it is 

recognized e.g., in the medical field, and it can be somehow enhanced by exploring the 

variance statistics and the model accuracy (Huang and Huang 2023). 

In the context of NFCs, ML techniques are employed to analyze complex datasets 

derived from material characterization, processing parameters, and performance testing. 

These algorithms range from classical regression and decision trees to more advanced 

approaches, such as neural networks and deep learning architectures, each of these tailored 

to extract meaningful insights and patterns from large volumes of heterogeneous data (Yao 

et al. 2020). The ML facilitates predictive modeling of material properties, enabling 

researchers to simulate and predict behaviors, such as mechanical strength, thermal 

conductivity, and chemical stability, under varying conditions. This predictive capability 

accelerates materials discovery and optimization, reducing time-to-market and costs 

associated with empirical testing. Moreover, ML-driven approaches enable automated 

design workflows, where algorithms iteratively refine composite formulations and 

manufacturing processes based on performance criteria and constraints, thereby pushing 

the boundaries of materials science innovation in fields ranging from aerospace and 

automotive to renewable energy and biomedical applications (Alli et al. 2024). As ML 

continues to evolve, its integration with materials science promises to unlock new frontiers 

in composite materials design, offering unprecedented opportunities for customization, 

efficiency, and sustainability in manufacturing and product development. 

 

 
TRADITIONAL METHODS IN THE FORMULATION OF NFCs 
 
Description of Traditional Empirical Methods for Characterizing and 
Designing NFCs 

Traditional empirical methods have long been foundational in characterizing and 

designing NFCs, relying on direct observation, experimentation, and physical testing to 

understand material behaviors and optimize performance. These methods encompass a 

range of techniques tailored to assess various aspects of composite materials, starting with 

material formulation and continuing through processing, testing, and evaluation phases 

(Sapuan and Mansor 2014). At the formulation stage, empirical methods involve manual 

selection and blending of polymer matrices with reinforcing agents, fillers, and additives 

based on prior knowledge, experience, and heuristics. Experimental techniques, such as 

differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-

transform infrared spectroscopy (FTIR), are employed to analyze thermal properties, 

chemical composition, and molecular structure, providing insights into material stability 

and compatibility (Lin 2021; Mylsamy et al. 2024; Ramasubbu et al. 2024). Mechanical 

testing methods, including tensile, flexural, impact, and hardness testing, offer the 

assessment of properties, such as strength, stiffness, toughness, and resistance to 

deformation or fracture, under different loading conditions. Microscopic techniques, such 

as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), 

offer detailed visual analysis of composite microstructures, revealing information about 

phase distribution, interfacial bonding, and defect morphology (Palanisamy et al. 2022b; 

Liu et al. 2023). Despite their effectiveness in providing detailed insights into material 

characteristics, traditional empirical methods are labor-intensive, time-consuming, and 

limited in their ability to comprehensively explore complex material interactions across 

diverse environmental and operational conditions. As such, there is a growing interest in 
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complementing these methods with ML techniques, which can leverage large datasets to 

enhance predictive modeling, optimize composite formulations, and accelerate materials 

development processes in a more efficient and cost-effective manner (Nguyen et al. 2022; 

Krzywanski et al. 2024). 

Machine learning (ML) could offer a new pathway for data-driven design and 

development of reinforced composites. Figure 1 illustrates a framework for the data-driven 

composite design, highlighting manufacturing processes, data collection sources, and 

simulation tools. This approach utilizes forecasting models and decision-making strategies 

for designing reinforced composites, utilizing data from the manufacturing process, 

micromechanics, finite element analysis, academic literature, and digital databases, among 

others. In the specific case of NFCs, the inherent limitations of any applied method, which 

of course impact also on ML, is the difficulty to add to the evaluation data about local 

interface strength, particularly variable in the case of NFCs for the conflicting geometries 

of matrix and reinforcement and the large effect of unavoidable porosities. This could be 

possibly in the future addressed by inserting in modelling large databases of microscopical 

images and features, yet this is unpractical so far, though it has been proposed on traditional 

composites (Romanov et al. 2013). 

 

 
 

Fig. 1. Data-driven design of composite materials, illustrating production pathways, data 
acquisition sources, and simulation tools (Okafor et al. 2023; CC BY 4.0) 
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Strengths: Detailed Physical Insights, Established Methodologies 
The strengths of traditional methods in NFCs lie in their ability to provide detailed 

physical insights and their reliance on well-established methodologies that have been 

refined over decades of materials research and development (Song et al. 2020; Palaniappan 

et al. 2024a). One key advantage offered is the depth of understanding these methods into 

the physical and chemical properties of composite materials. Techniques, such as 

differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-

transform infrared spectroscopy (FTIR) enable precise characterization of thermal stability, 

chemical composition, and molecular structure, which are essential for assessing material 

performance and stability (Al-Quraishi et al. 2020). Mechanical testing methods—such as 

tensile, flexural, impact, and hardness testing—offer quantitative data on mechanical 

properties such as strength, stiffness, toughness, and resilience under varying conditions, 

providing critical insights into material behavior under stress (Falsafi et al. 2020). 

Microscopic analyses, including SEM and TEM, allow for detailed visualization of 

composite microstructures, revealing information about phase distribution, interfacial 

bonding, and defect morphology at microscopic scales (Foster et al. 2018). Furthermore, 

traditional methodologies benefit from well-established protocols and standards, ensuring 

consistency and comparability across different studies and laboratories. This historical 

foundation has built a robust framework for characterizing, designing, and evaluating 

NFCs, offering a solid baseline against which new advancements, such as ML techniques, 

can be compared and integrated to further enhance materials science and engineering 

practices. 

 

Limitations: Time Consumption, Cost, Difficult Scale-up for Complex 
Material Interactions 
 Despite their strengths, traditional methods in NFCs suffer from significant 

limitations that impact their applicability and efficiency in modern materials science. One 

prominent drawback is their inherent time-consuming nature, stemming from the 

sequential and labor-intensive processes involved in empirical testing and physical 

characterization. Techniques, such as DSC, TGA, FTIR, and mechanical testing, require 

meticulous sample preparation, experimental setup, and data collection, extending the 

timeframe from material formulation to final evaluation (Gomes Souza, Jr. et al. 2024). 

Moreover, the need for skilled personnel to operate specialized equipment and interpret 

results adds to the time investment and operational costs. These methods are also costly, 

primarily due to the expenses associated with acquiring and maintaining sophisticated 

instrumentation, conducting experiments, and analyzing data. The procurement of high-

quality raw materials and the stringent environmental conditions required for accurate 

testing further contribute to the financial burden (Salgueiro et al. 2010). Additionally, 

traditional methods may not scale well to handle the complexities of modern composite 

materials, which often involve intricate combinations of polymers, reinforcements, 

additives, and processing techniques. The interactions between these components can lead 

to nonlinear and multidimensional effects that traditional empirical methods may struggle 

to capture comprehensively. As a result, there is a growing recognition of the need for 

complementary approaches, such as ML, which can leverage large datasets and 

computational power to overcome these limitations, accelerate materials development, and 

optimize composite formulations in a more cost-effective and scalable manner (Suwardi et 

al. 2022). 
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Once these difficulties have been recognized, another open question is whether 

NFCs deserve more accurate analyses such as those performed using ML, which can be 

costly and not easy to implement. However, the perspective has gradually changed over 

the last few years, due to the increasingly extensive use of NFCs in challenging fields such 

as automotive and even aviation and nautical sectors. As a result of this, more modelling 

works are coming out, which have recognized the distinctly different characteristics of 

these materials with respect to the more ordered and repeatable structures of traditional 

composites, so that models used for them fall short of effectively explaining the behavior 

of NFCs (Xiong et al. 2018). 

 

 

ROLE OF MACHINE LEARNING IN NFC 
 
Explanation of How ML Algorithms Analyze Complex Datasets to Predict 
Material Properties and Behavior 
 The ML algorithms have revolutionized the study and prediction of material 

properties and behaviors within NFCs by harnessing the power of data-driven analysis and 

computational modeling. At the core of ML’s application in this domain lies its ability to 

handle large, complex datasets derived from diverse sources such as experimental 

measurements, simulations, and historical records (Zhong et al. 2021). The process begins 

with data preprocessing, where raw data are cleaned, normalized, and transformed into a 

suitable format for analysis. Feature engineering follows, where relevant input variables 

(features) are selected or generated from the data, capturing essential aspects of material 

composition, processing conditions, and environmental factors. These features serve as the 

basis for building predictive models that aim to establish correlations between input 

parameters and desired output variables, such as mechanical strength, thermal 

conductivity, or durability (Stergiou et al. 2023). The ML algorithms employ various 

techniques to analyze these datasets and develop predictive models. Supervised learning 

methods, such as regression and classification algorithms, learn from labeled datasets 

where the relationships between inputs and outputs are explicitly provided (Singh et al. 

2016). For instance, regression models can predict continuous properties such as tensile 

strength based on factors such as polymer type, reinforcement material, and curing 

temperature. Classification algorithms, on the other hand, categorize materials into classes 

based on predefined criteria, such as identifying composite formulations that meet specific 

performance standards (Diniță et al. 2023). Furthermore, ML algorithms excel in capturing 

nonlinear relationships and patterns that may not be apparent through traditional analytical 

methods. Complex algorithms including decision trees, random forests, support vector 

machines (SVMs), and neural networks are adept at identifying intricate interactions 

among multiple variables within the dataset. Neural networks, particularly deep learning 

architectures, are capable of learning hierarchical representations of data, enabling them to 

model highly complex relationships and make accurate predictions in materials science 

applications (Taye 2023).  

Once trained, ML models undergo validation and evaluation processes to assess 

their performance and generalizability. Techniques such as cross-validation ensure that 

models can effectively predict outcomes on new, unseen data, thereby confirming their 

reliability in practical applications (Nicora et al. 2022). Moreover, ML facilitates 

continuous model refinement through techniques, such as ensemble learning and 

hyperparameter tuning, which optimize model performance and enhance predictive 
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accuracy (Abnoosian et al. 2023). The integration of ML with NFC science not only 

accelerates the materials discovery and optimization processes but also enables more 

informed decision-making in design and manufacturing. Through leveraging predictive 

models developed through ML, researchers and engineers can explore a broader design 

space, identify optimal material combinations, and predict material behaviors under 

varying conditions with greater efficiency and cost-effectiveness (Herbol et al. 2020). This 

capability not only reduces reliance on costly and time-consuming empirical testing but 

also opens avenues for innovation in composite materials tailored to meet specific 

performance criteria across industries such as aerospace, automotive, renewable energy, 

and beyond. As ML techniques continue to evolve and datasets grow in complexity and 

size, their application in NFC science promises to drive significant advancements in 

materials design, sustainability, and technological innovation (Obaideen et al. 2024). 

 

Types of ML Techniques Commonly Used Available for NFCs 
 In the realm of NFCs, ML techniques encompass a diverse array of methodologies 

tailored to analyze complex datasets and predict material properties and behaviors. One of 

the fundamental ML techniques employed is regression analysis, which encompasses 

linear regression for modeling relationships between input variables (e.g., composition of 

NFCs and processing parameters) and continuous output variables (e.g., mechanical 

strength or thermal conductivity) (Özkan et al. 2019). Decision trees, another prevalent 

technique, offer a hierarchical approach to decision-making, where composite properties 

are predicted based on a series of binary decisions at each node of the tree. Ensemble 

methods, such as random forests, combine multiple decision trees to enhance prediction 

accuracy and robustness. Moreover, neural networks represent a cornerstone of ML 

applications in NFCs, particularly deep learning architectures, which are capable of 

learning intricate patterns and nonlinear relationships within datasets (Hussain et al. 2020). 

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are adapted 

for tasks, such as image analysis of composite microstructures or time-series prediction of 

material degradation under varying environmental conditions. SVMs are utilized for 

classification tasks, distinguishing between different composite material classes based on 

specified features. Bayesian methods provide probabilistic frameworks for uncertainty 

quantification in predictions, offering insights into the reliability and variability of 

estimated material properties (Liu et al. 2024). Reinforcement learning, although less 

commonly applied in materials science, explores optimal strategies for composite 

manufacturing processes and material design through iterative learning and decision-

making. Each of these ML techniques brings unique strengths to the field, enabling 

researchers and engineers to extract valuable insights from data, optimize composite 

formulations, and advance the understanding and application of NFCs across diverse 

industrial sectors. 

 

Advantages: Speed, Scalability, Ability to Handle Large Datasets, Potential 
for Automation 
 The ML techniques offer significant advantages in the context of the NFCs, 

revolutionizing the traditional approaches to design, optimization, and characterization. 

One of the primary advantages is speed, as ML algorithms can rapidly analyze and process 

large volumes of complex data, significantly accelerating materials discovery and 

development timelines. This capability is particularly valuable in industries such as 

aerospace, automotive, and renewable energy, where fast-paced innovation is crucial for 
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maintaining competitiveness. Scalability is another key benefit, as ML models can 

efficiently scale to handle vast datasets encompassing diverse parameters, from material 

composition and processing conditions to performance metrics and environmental factors 

(Ninduwezuor-Ehiobu et al. 2023). This scalability allows for comprehensive exploration 

of design spaces and optimization of composite formulations without the limitations of 

traditional empirical methods. Additionally, ML’s ability to handle large datasets facilitates 

more robust and accurate predictive modeling of material properties and behaviors, 

leveraging patterns and correlations that may not be apparent through conventional 

analytical techniques alone. Furthermore, ML techniques enable automation of repetitive 

tasks in materials science, such as data preprocessing, feature selection, and model training. 

Automated workflows streamline processes, reduce human error, and enhance 

reproducibility in experimental design and data analysis (Klenam et al. 2023). This 

automation not only improves efficiency but also frees up researchers’ time to focus on 

more strategic aspects of materials research, fostering innovation and interdisciplinary 

collaboration. As ML continues to advance and integrate with experimental techniques and 

computational simulations, its potential for automation in NFCs promises to reshape how 

materials are designed, tested, and optimized, paving the way for enhanced performance, 

sustainability, and technological innovation in diverse industrial applications (Ma et al. 

2023). 

 

Examples of Successful Applications in Aerospace, Automotive, 
Renewable Energy, and Biomedical Fields 

Machine learning has catalyzed significant advancements in NFCs across various 

industries, showcasing successful applications in aerospace, automotive, renewable 

energy, and biomedical fields. In aerospace, ML-driven approaches have revolutionized 

the design and optimization of lightweight composite structures, essential for reducing 

aircraft weight and improving fuel efficiency. For instance, Airbus employs ML to predict 

the mechanical properties of composite materials used in aircraft components, optimizing 

their performance while ensuring safety and durability. Similarly, in the automotive sector, 

ML techniques are leveraged to enhance the development of composite materials for 

vehicle lightweighting, improving fuel economy and reducing emissions (Ye et al. 2005). 

Companies including BMW use ML algorithms to simulate and predict the behavior of 

composite materials under different driving conditions, optimizing vehicle performance 

and structural integrity. In renewable energy, particularly in wind energy applications, ML 

plays a crucial role in predicting and optimizing the performance of composite materials 

used in wind turbine blades. The ML models analyze data from sensors embedded in blades 

to monitor structural health, predict maintenance needs, and optimize operational 

efficiency, thereby increasing energy production and reducing downtime (Nachtane et al. 

2023). Moreover, in biomedical fields, NFCs reinforced with biocompatible materials are 

transforming the development of medical implants and prosthetics. The ML algorithms 

analyze patient-specific data to customize implant designs, predict material 

biocompatibility, and optimize mechanical properties to enhance patient outcomes and 

longevity. These examples illustrate how ML is not only enhancing the performance and 

efficiency of NFCs across industries but also driving innovation and sustainability in 

materials science and engineering (Feng et al. 2024). As ML techniques continue to evolve 

and integrate with traditional empirical methods, their potential to further advance 

composite materials' capabilities and applications remain promising regarding continued 

progress in efficiency, safety, and performance across global industries (Zadpoor 2017). 
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CHALLENGES AND CONSIDERATIONS 
 
Data Scarcity and Quality Issues Specific to NFCs 

Data scarcity and quality issues pose significant challenges in the application of 

ML to the NFCs. The NFCs exhibit inherent variability due to factors such as material 

composition, processing conditions, and environmental influences, making it challenging 

to collect comprehensive and standardized datasets. Unlike conventional materials with 

well-documented properties, NFCs often lack extensive datasets that encompass diverse 

variations and scenarios (Ge et al. 2023). This scarcity limits the scope and accuracy of 

ML models trained on insufficient or biased data, potentially leading to unreliable 

predictions and suboptimal material designs. In addition, ensuring data quality is 

paramount, as inconsistencies, errors, or incomplete datasets can skew model outcomes 

and hinder the generalizability of findings. The variability in experimental techniques and 

measurement protocols across different laboratories further complicates data integration 

and comparison, undermining the reliability of composite material databases (Gibert et al. 

2016). Addressing these challenges requires collaborative efforts to establish standardized 

testing protocols, improve data collection methodologies, and enhance data sharing 

practices within the materials science community. Advances in sensor technology, 

computational simulations, and materials informatics offer promising avenues to augment 

existing datasets and mitigate data scarcity issues. Once this is achieved, researchers can 

enhance the robustness and applicability of ML models in NFCs, unlocking new 

opportunities for innovation and optimization in materials design and engineering (Xu et 

al. 2023). 

The choice of a machine learning technique for a particular design problem is 

difficult because of the large number of algorithms readily available. The limited computer 

skills of most materials designers have been a major issue that has limited the large-scale 

use of machine learning in reinforced composite technology (Gu et al. 2018). Although 

there are many databases on natural fiber composites’ properties, drawbacks include the 

lack of easily accessible data sources, inconsistencies between data produced by different 

groups, and inadequacies of the current database. Other limitations of the machine learning 

approach are shown in Fig. 2. 

 

 
 

Fig. 2. The limitations of machine learning (Okafor et al. 2023; CC BY 4.0) 



 

PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu 

 

 

Palanisamy et al. (2025). “Computers & composites,” BioResources 20(1), 2321-2345.      2331 

Despite the challenges inherent to the application of machine learning in this 

context, there are significant opportunities for future research. These include the 

development of more sophisticated algorithms, the enlargement of the dataset used for 

training, the combination of machine learning with simulation tools, and an investigation 

of the limitations and challenges associated with this approach. 

There are several difficulties and limitations associated with the application of 

machine learning to NFCs, despite its great potential. The difficulties in using machine 

learning techniques to optimize NFCs are illustrated in Fig. 3. Verification of the accuracy 

of machine learning models is the third challenge. This can be a lengthy and costly process, 

as the accuracy of machine learning algorithms needs to be tested against experimental 

data. 

 

 
 
Fig. 3. Machine learning challenges in designing and optimizing NFCs (Maniraj et al. 2023; CC 
BY 4.0) 

 

The lack of high-quality, relevant data is a major barrier to the use of machine 

learning in this context. Large datasets of NFCs test results are required for accurate 

predictions by machine learning algorithms. Moreover, the data must be varied and be an 

accurate reflection of the materials and microstructures of interest. A further problem is 

that NFCs are complex materials, constituted by a minimum of two phases, normally 

geometrically complex and irregular, yet often including further fillers, and it is a difficult 

task to predict their properties based on their microstructures. 

 

Interpretability of ML Models in Materials Science 
Interpretability of ML models in materials science presents a critical challenge due 

to the complexity and multidimensional nature of data-driven predictions. In the context of 

NFCs, more risks for over-simplification, hence inaccuracy in the relation between data 

and models exist, due to the hierarchical structure of natural fillers and the complex relation 

with environment this might involve, which might impact crucial sectors, such as 

assessment of properties following artificial aging tests (Mejri et al. 2018). The ML 

models, such as neural networks and ensemble methods, are adapted at extracting intricate 
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patterns and correlations from large datasets, enabling accurate predictions of material 

properties and behaviors (Stoll and Benner 2021). However, the trade-off for this predictive 

power often lies in the opacity of these models, making it difficult to decipher how inputs 

translate into outputs. In traditional empirical methods, engineers and researchers can 

directly interpret results based on well-established principles and physical laws. In contrast, 

ML models operate as “black boxes,” where the internal workings are obscured, raising 

concerns about the reliability and trustworthiness of their predictions, particularly in safety-

critical applications. This lack of interpretability impedes the validation of model outcomes 

and the identification of causal relationships between composite characteristics and 

performance metrics. Moreover, stakeholders, such as regulatory bodies and industry 

professionals, require transparent and interpretable models to ensure compliance with 

standards and regulations (Bongomin et al. 2024). Addressing these challenges necessitates 

the development of explainable AI techniques tailored to materials science, enabling 

researchers to gain insights into how ML models arrive at their predictions. Techniques, 

such as feature importance analysis, sensitivity analysis, and model-agnostic approaches, 

like SHAP (SHapley Additive exPlanations) are emerging as promising methods to 

enhance interpretability. Furthermore, integrating physics-based models with data-driven 

(Papadimitriou et al. 2024). ML approaches can provide hybrid models that combine 

predictive accuracy with explanatory capabilities, leveraging domain knowledge to 

validate and interpret predictions effectively. Through enhancing the interpretability of ML 

models in materials science, researchers can improve confidence in model outcomes, foster 

interdisciplinary collaboration, and accelerate the adoption of advanced technologies in the 

design, optimization, and deployment of the NFCs (Azevedo et al. 2024).  

 

Computational Complexity and Scalability Challenges 
In the realm of ML applied to the NFCs, computational complexity and scalability 

present significant challenges that impact the efficiency and applicability of predictive 

models. The NFCs are inherently complex materials with diverse compositions and 

processing parameters that influence their properties and behaviors. The ML algorithms, 

such as neural networks and ensemble methods, excel at extracting patterns and 

relationships from large datasets to predict material properties like mechanical strength, 

thermal conductivity, and durability (Stergiou et al. 2023). However, the computational 

demands of training and deploying these models increase with dataset size and complexity. 

Training deep neural networks, for instance, requires substantial computational resources 

and time, often involving high-performance computing clusters or cloud infrastructure. 

This computational complexity limits the scalability of ML approaches, especially when 

scaling up to handle massive datasets or when conducting simulations at multiple scales 

(e.g., microscale to macroscale). Furthermore, the integration of ML with physics-based 

models to capture multiscale interactions in the NFCs introduces additional computational 

challenges. However, it is possible also to predict that, together with the application of 

other damage monitoring techniques on NFCs (Natesan and Krishnasamy 2024), which are 

gradually diffusing, as illustrated further in the following Section, ML might also assist a 

possible etiology of fracture on NFCs. Balancing the need for accuracy and efficiency in 

model training and deployment remains a critical consideration, particularly in industries 

like aerospace and automotive, where real-time decision-making and optimization of 

composite materials are essential (Yassin et al. 2023). Addressing these challenges requires 

advancements in algorithmic efficiency, parallel computing techniques, and hardware 

acceleration, alongside the development of scalable ML frameworks tailored to the specific 
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characteristics of NFCs. Collaborative efforts between materials scientists, data scientists, 

and computational experts are crucial to overcoming these computational hurdles and 

harnessing the full potential of ML for advancing materials design, optimization, and 

manufacturing processes. 

 

 
FUTURE DIRECTIONS AND EMERGING TRENDS 
 
Potential for Automated Composite Design and Manufacturing 

The potential for automated composite design and manufacturing using ML 

represents a transformative frontier in NFCs, promising to revolutionize how materials are 

developed, optimized, and manufactured across various industries. Automation in 

composite design begins with the ability of ML algorithms to analyze vast datasets, 

encompassing material properties, processing parameters, environmental conditions, and 

performance metrics. Through leveraging this data, ML can automate the selection and 

optimization of composite formulations tailored to meet specific performance requirements 

(Chinchanikar and Shaikh 2022). For instance, ML algorithms can identify optimal 

combinations of polymer matrices, reinforcement materials, and additives to achieve 

desired mechanical, thermal, or electrical properties, while minimizing weight and cost. 

Moreover, automated design workflows can simulate and predict the behavior of composite 

materials under different loading conditions, environmental exposures, and manufacturing 

processes. This predictive capability accelerates the iterative design process, reducing the 

reliance on time-consuming empirical testing and enabling rapid prototyping and iteration 

of composite structures (Yuan et al. 2021). In the manufacturing sector, ML-driven 

automation enhances process control and optimization, ensuring consistency in material 

properties and product quality while reducing waste and energy consumption. 

Technologies such as robotic process automation (RPA) and adaptive manufacturing 

systems integrate ML models with real-time sensor data to adjust manufacturing 

parameters dynamically, optimizing production efficiency and reducing downtime (Bhadra 

et al. 2023). Furthermore, the integration of digital twins—virtual replicas of physical 

composite materials and manufacturing processes—facilitates predictive maintenance, 

fault detection, and optimization of production schedules. As advancements in ML 

algorithms, computational power, and sensor technologies continue, the vision of fully 

automated composite design and manufacturing becomes increasingly feasible, promising 

unprecedented levels of customization, efficiency, and sustainability in materials science 

and engineering. Collaborative efforts between academia, industry, and government 

stakeholders will be crucial in realizing this vision, driving innovation and competitiveness 

in sectors such as aerospace, automotive, renewable energy, and beyond (Ninduwezuor-

Ehiobu et al. 2023). 

 

Integration of ML with Experimental Techniques for Enhanced Predictive 
Capabilities 

The integration of ML with experimental techniques represents a promising frontier 

in advancing predictive capabilities and accelerating innovation in NFCs. The ML 

algorithms offer powerful tools to analyze complex datasets derived from experimental 

measurements, simulations, and historical data, enabling researchers to extract actionable 

insights and predict material behaviors with unprecedented accuracy (Morgan et al. 2022). 

Through integrating ML with experimental techniques, such as spectroscopy, microscopy, 
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and mechanical testing, researchers can enhance the understanding of composite material 

properties and their underlying mechanisms. For example, ML models can analyze 

spectroscopic data to identify molecular structures and chemical interactions within 

polymer matrices and reinforcements, offering insights into material composition and 

stability. A combination of microscopic techniques, such as SEM and atomic force 

microscopy (AFM), provide detailed images of composite microstructures in the three 

directions down to the micron and below, which ML algorithms can analyze to predict 

mechanical properties, such as strength and stiffness, based on features such as fiber 

orientation or interfacial bonding (Ge et al. 2020). Furthermore, ML enhances the 

predictive capabilities of mechanical testing by correlating experimental data with material 

composition and processing parameters, facilitating the optimization of composite 

formulations for specific applications. Through integrating real-time sensor data with ML 

algorithms, researchers can monitor and predict material degradation, fatigue behavior, and 

environmental resilience, enabling proactive maintenance and lifecycle management 

strategies. Collaborative efforts between materials scientists, data scientists, and 

experimentalists are essential to developing robust ML frameworks that leverage the 

complementary strengths of experimental techniques and computational modeling, 

advancing the reliability, efficiency, and sustainability of NFCs in diverse industrial 

applications. 

 

Advances in Hybrid Models Combining Mechanical Properties-based 
Simulations with ML Algorithms 

Advances in hybrid models that combine mechanical properties (MP)-based 

simulations with ML algorithms represent a cutting-edge approach in the future of the 

NFCs. These hybrid models integrate the strengths of MP-based models that rely on 

fundamental principles and equations to simulate material behavior at various scales, with 

the predictive capabilities of ML, which excels in learning complex patterns from data 

(Rocha et al. 2023; Rudolph et al. 2024). Through merging these two approaches, 

researchers aim to overcome the limitations of purely empirical or theoretical methods, 

offering a more holistic understanding and predictive power for composite materials. MP-

based simulations provide a foundational understanding of material properties and 

processes, such as polymer matrix behavior, reinforcement mechanics, and interfacial 

interactions, based on first principles and experimental data. These simulations can capture 

intricate details of composite structures and their responses to external stimuli, offering 

insights into performance under specific conditions (Bishara et al. 2023). The ML 

algorithms complement these simulations by learning from large datasets, including 

experimental measurements and simulations outputs, to optimize model parameters, 

predict material behaviors with greater accuracy, and explore complex design spaces 

beyond the capabilities of traditional MP-based approaches alone. For example, hybrid 

models can enhance the prediction of composite material properties under varying 

environmental conditions, simulate manufacturing processes with improved efficiency and 

precision, and optimize material formulations for specific performance criteria. 

Furthermore, integrating MP-based simulations with ML facilitates real-time adaptation 

and learning, enabling adaptive modeling approaches that adjust predictions based on new 

data and evolving conditions (Struzziero et al. 2019; Krzywanski et al. 2024). 

Collaborative research efforts across disciplines—such as materials science, computer 

science, and applied mathematics—are essential to advancing hybrid modeling techniques, 

developing standardized methodologies, and validating model accuracy to accelerate 
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innovation and application in sectors, such as aerospace, automotive, renewable energy, 

and biomedical. 

 

Opportunities for Interdisciplinary Collaboration and Industry Adoption 
The future of ML in the NFCs presents abundant opportunities for interdisciplinary 

collaboration and widespread industry adoption, fostering innovation across diverse 

sectors. Interdisciplinary collaboration is essential as ML intersects with materials science, 

computational modeling, data science, and engineering disciplines. By bringing together 

experts from these fields, researchers can leverage complementary expertise to address 

complex challenges in materials design, optimization, and manufacturing. For instance, 

materials scientists provide domain knowledge on composite materials’ chemical 

composition, mechanical properties, and environmental interactions, guiding the 

development of ML models that accurately predict material behaviors (Sparks et al. 2020; 

Pilania 2021). Computational modelers contribute expertise in developing physics-based 

simulations and numerical methods, integrating them with ML algorithms to enhance 

predictive capabilities across multiple scales—from molecular dynamics to macroscopic 

material properties. Data scientists play a crucial role in processing and analyzing vast 

datasets, implementing advanced ML algorithms, and developing interpretable models that 

align with industry standards and regulatory requirements (Carvalho et al. 2019; Shah 

2021). Engineers and industry practitioners bring practical insights into manufacturing 

processes, performance requirements, and market demands, ensuring that ML-driven 

solutions are not only innovative but also feasible and scalable for industrial applications. 

Furthermore, interdisciplinary collaboration accelerates knowledge transfer and skill 

development, nurturing a new generation of researchers and practitioners skilled in both 

materials’ science and advanced data analytics. Industry adoption of ML in the NFCs holds 

transformative potential by optimizing product development cycles, reducing costs, and 

enhancing product performance and sustainability. Companies in aerospace, automotive, 

renewable energy, and biomedical sectors are increasingly integrating ML-driven 

approaches to innovate new materials, improve manufacturing efficiency, and address 

environmental challenges (Popescu et al. 2024). For example, ML models can streamline 

composite material selection, predict material degradation, and optimize manufacturing 

processes, leading to lighter, stronger, and more durable products. Collaborations between 

academia, government agencies, and industry partners are critical in fostering technology 

transfer, validating ML models in real-world applications, and establishing best practices 

for integrating ML into existing workflows (Terranova et al. 2024). Through embracing 

interdisciplinary collaboration and industry adoption, the future of ML in the development 

and analysis of NFCs promises to unlock unprecedented opportunities for innovation, 

competitiveness, and sustainable development across global markets. 

 

 
CONCLUDING STATEMENTS 
 

The quality of the test facilities, the research climate, and the experience of the 

designer determine the success of experimental measurement. Experimental research can 

therefore be expensive and time-intensive, particularly if numerous tests are needed to 

analyze each material variable. This is the case of multiphase and irregular natural fiber 

composites (NFCs). The three key data sources recognized for machine learning-based 
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design of reinforced composites include finite element analysis/high-throughput 

simulations, experimental data, and material databases/literature.  

A variety of options are now available to data scientists and materials engineers for 

the development of models for a wide range of ML needs in the areas of reinforced 

composite design. Thus, the review evaluated popular digital tools and platforms, such as 

MATLAB, TensorFlow, Scikit-learn, and Weka, used by various researchers for 

implementing ML algorithms over the last years.  

To make a more significant impact on the field of machine learning in fiber 

composite research, experts in reinforced composites should be encouraged to provide the 

data most suitable for further processing to tailor and examine the material structure. 

Importance of continued research, development, and collaboration for advancing materials 

science through ML. 

The use of machine learning algorithms to automate the forecasting of natural fiber 

composite properties based on microstructural data can lead to enhanced efficiency, 

precision, and cost savings.  
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