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In recent years, the process of optimizing the design of natural fiber
reinforcement in natural fiber composites (NFCs) with distinct properties
has been redefined through the application of machine learning (ML). This
work elucidates the functions of the types and applications of the ML
algorithms and evolutionary computing techniques, with a particular focus
on their applicability within the domain of NFCs. Moreover, the solution
methodologies and associated databases were employed throughout
various stages of the product development journey, from the raw material
selection through the final end-use application for the NFCs. The strengths
and limitations of the ML in the NFCs industry, together with relevant
challenges, such as interpretability of ML models, in materials science was
detailed. Finally, future directions and emerging trends in the ML are
discussed.
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INTRODUCTION

Overview of Natural Fiber Composites (NFCs) and their Significance in
Materials Science

Natural fiber composites (NFCs) are advanced materials that combine a polymer
matrix—thermoset or thermoplastic—with reinforcing materials of lignocellulosic or
biogenic ceramic nature, in geometries that include fibers or less elongated fillers, normally
defined as “particles”, in a micrometric or nanometric size to achieve enhanced properties
tailored to specific applications (Palanisamy et al. 2022a; Seydibeyoglu et al. 2023,;
Palaniappan et al. 2024c). These materials have the potential to be pivotal in modern
materials science due to their versatility, by ultimately offering a unique blend of
characteristics, which surpass those of their individual components (Jagadeesh et al. 2022;
Ayrilmis et al. 2024). The selection of polymer matrix and reinforcement type allows
engineers to optimize properties, such as strength, stiffness, durability, thermal and
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electrical conductivity, and resistance to aging over time, or to more instantaneous damage
phenomena, such as abrasion or impact. Other factors, which would be essential to tailor
performance, together with reducing scattering of properties, are the application of
compatibilizers (Hubbe and Grigsby 2020) and fiber treatment (Latif et al. 2019). This
versatility, though obtainable through the control of a number of parameters, has led to
widespread adoption across various industries, including aerospace, automotive, renewable
energy, construction, and biomedical sectors. In aerospace, for example, NFCs are starting
to be used extensively in aircraft structures, mainly in interiors, to reduce weight while
maintaining structural integrity and fuel efficiency (Asim et al. 2018; Kar et al. 2023,
Palaniappan et al. 2024b). In automotive applications, they contribute to weight reduction
efforts, improving fuel economy and performance (Naik and Kumar 2021). In renewable
energy, composite materials form critical components of wind turbine blades, where they
enhance efficiency and durability (Hussain and Immanuel 2021; Gebrehiwet et al. 2023).
In the construction industry, natural fiber composites offer alternatives to traditional
materials, providing high strength-to-weight ratios and resistance to abrasion, plus
effectively replacing fiberglass (Silva et al. 2020). Additionally, NFCs are employed in
biomedical fields for developing implants and prosthetics that mimic natural tissues’
mechanical properties (Kim and Chalivendra 2020; Sumesh et al. 2023, 2024). The
integration of machine learning (ML) with science of NFCs further enhances their
significance by enabling predictive modeling, optimization of material formulations, and
automation of design processes (Malalli and Ramji 2022). The ML algorithms analyze
complex datasets to predict material behaviors based on composition, processing
parameters, and environmental conditions, thereby accelerating innovation and reducing
development costs. These methods also have brought potential advantages in particularly
computationally complex fields, e.g., whenever the effect of vibrations on materials is
involved (Guo et al. 2024; Mahariq et al. 2020). There still are challenges, such as data
scarcity, interpretability of models, and computational complexity. However, ongoing
research and interdisciplinary collaborations promise to overcome these hurdles, unlocking
new possibilities for composite materials in diverse applications (Karuppiah et al. 2020;
Mulenga et al. 2021).

Importance of Predictive Modeling and Optimization in Composite Materials
Design

Predictive modeling and optimization play crucial roles in advancing composite
materials design, particularly when integrated with ML techniques tailored for NFCs
(Shahzad et al. 2024). These methodologies are essential for efficiently and effectively
tailoring material properties to meet specific performance requirements across various
industrial applications. Predictive modeling leverages computational algorithms to
simulate and predict the behavior of composite materials based on input variables such as
material composition, processing conditions, and environmental factors. Through
harnessing ML algorithms—which build on regression models, decision trees, neural
networks, and more sophisticated deep learning architectures, not dismissing the
importance of the former, yet hopefully improving their performance namely for easier
interpretation of the results (Levy and O’ Malley 2020) —engineers can analyze vast
datasets and extract meaningful insights that inform design decisions (Karuppiah et al.
2022; Feng et al. 2024). This capability not only accelerates the materials development
process, but it also enhances the accuracy of predictions regarding mechanical strength,
thermal stability, electrical conductivity, and other critical properties. Optimization

Palanisamy et al. (2025). “Computers & composites,” BioResources 20(1), 2321-2345. 2322



PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu

techniques further refine composite formulations by identifying optimal combinations of
matrix materials, reinforcements, and additives to achieve desired performance metrics
while minimizing costs and at the same time reducing environmental impact (Husain
2023). ML-driven optimization frameworks enable rapid iteration and exploration of
design spaces that may not be feasible through traditional empirical methods alone, thereby
fostering innovation and competitiveness in industries such as aerospace, automotive,
renewable energy, and the biomedical sector. Through integrating predictive modeling and
optimization with ML, researchers and engineers can navigate complex material
interactions, overcome design challenges, and deliver composite materials with enhanced
functionality, durability, and sustainability, thereby shaping the future of materials science
and engineering (Sadeghi et al. 2024).

When analyzing polymeric composites, the many existing parameters and different
combinations that need to be evaluated to boost applications with multi-functional
requirements is motivating researchers to carry out more systematic and data-intensive
research. The combination of experiments and computer simulations has produced a huge
amount of data that has enabled the integration of machine learning algorithms with
materials science, which has been a key driver in the development of new materials
(Sharma et al. 2022; Goutham et al. 2023). The mining of large-scale data is the work of
accessing hidden information (Wu et al. 2013; Jaseena and David 2014; Westermayr et al.
2021). In data analysis, statistics plays a crucial role in addressing a variety of problems
and is extensively employed in finding solutions.

However, it is difficult to use in some problems. Especially, very large statistical
methods may appear inadequate when working with large amounts and variety of data. In
these circumstances, data mining addresses the need for solutions to complex problems.
Machine learning has started to be used in the last few years to tailor and optimize the
properties of composite materials (Terzi et al. 2014). This acts more generally also on the
production process to accelerate evaluation and increase the level of accuracy as regards
the relation between structure and properties, which is reflected in a combination of
phenomena during fabrication, namely tension, flexure, inter and intra-ply shear, and
compaction (Guo et al. 2021; Govindarajan et al. 2024; Padmanabhan et al. 2024).
Achieving successful results in future predictions with artificial neural networks depends
also on the degree of independence of the variables and is influenced by the degree of
accuracy in the measurement of their values. Results can be enhanced by using different
network structures and determining which of these is more suitable for the problem type
(Tka¢ and Verner 2016; Abdolrasol et al. 2021). Data mining algorithms are available and
continuously improved in many fields, including marketing, social, education,
communication, and engineering (Terzi 2007; Kiigiksille et al. 2011; Ozel and Topsakal
2014). Many different methods are used in data mining, among which the most diffuse are
classification, Gaussian regression analysis, clustering, association analysis, ordered
sequence analysis, and time series analysis (Fu 2011; Romero and Ventura 2013; Hokes et
al. 2016; Aye and Heyns 2017; Gong et al. 2024).

Introduction to ML and its Applications in Materials Science

Since ML has emerged as a transformative paradigm in materials science, it is also
able to offer powerful tools to revolutionize the design, characterization, and optimization
of the composites, starting from the simplest models of unidirectional fibers-matrix
interaction (Zhang et al. 2018). At its core, ML involves the development of algorithms
and statistical models that enable computers to learn from and make predictions or

Palanisamy et al. (2025). “Computers & composites,” BioResources 20(1), 2321-2345. 2323



PEER-REVIEWED REVIEW ARTICLE bioresources.cnr.ncsu.edu

decisions based on data. In this sense, the question of ML transparency is essential, as it is
recognized e.g., in the medical field, and it can be somehow enhanced by exploring the
variance statistics and the model accuracy (Huang and Huang 2023).

In the context of NFCs, ML techniques are employed to analyze complex datasets
derived from material characterization, processing parameters, and performance testing.
These algorithms range from classical regression and decision trees to more advanced
approaches, such as neural networks and deep learning architectures, each of these tailored
to extract meaningful insights and patterns from large volumes of heterogeneous data (Yao
et al. 2020). The ML facilitates predictive modeling of material properties, enabling
researchers to simulate and predict behaviors, such as mechanical strength, thermal
conductivity, and chemical stability, under varying conditions. This predictive capability
accelerates materials discovery and optimization, reducing time-to-market and costs
associated with empirical testing. Moreover, ML-driven approaches enable automated
design workflows, where algorithms iteratively refine composite formulations and
manufacturing processes based on performance criteria and constraints, thereby pushing
the boundaries of materials science innovation in fields ranging from aerospace and
automotive to renewable energy and biomedical applications (Alli et al. 2024). As ML
continues to evolve, its integration with materials science promises to unlock new frontiers
in composite materials design, offering unprecedented opportunities for customization,
efficiency, and sustainability in manufacturing and product development.

TRADITIONAL METHODS IN THE FORMULATION OF NFCs

Description of Traditional Empirical Methods for Characterizing and
Designing NFCs

Traditional empirical methods have long been foundational in characterizing and
designing NFCs, relying on direct observation, experimentation, and physical testing to
understand material behaviors and optimize performance. These methods encompass a
range of techniques tailored to assess various aspects of composite materials, starting with
material formulation and continuing through processing, testing, and evaluation phases
(Sapuan and Mansor 2014). At the formulation stage, empirical methods involve manual
selection and blending of polymer matrices with reinforcing agents, fillers, and additives
based on prior knowledge, experience, and heuristics. Experimental techniques, such as
differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-
transform infrared spectroscopy (FTIR), are employed to analyze thermal properties,
chemical composition, and molecular structure, providing insights into material stability
and compatibility (Lin 2021; Mylsamy et al. 2024; Ramasubbu et al. 2024). Mechanical
testing methods, including tensile, flexural, impact, and hardness testing, offer the
assessment of properties, such as strength, stiffness, toughness, and resistance to
deformation or fracture, under different loading conditions. Microscopic techniques, such
as scanning electron microscopy (SEM) and transmission electron microscopy (TEM),
offer detailed visual analysis of composite microstructures, revealing information about
phase distribution, interfacial bonding, and defect morphology (Palanisamy et al. 2022b;
Liu et al. 2023). Despite their effectiveness in providing detailed insights into material
characteristics, traditional empirical methods are labor-intensive, time-consuming, and
limited in their ability to comprehensively explore complex material interactions across
diverse environmental and operational conditions. As such, there is a growing interest in
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complementing these methods with ML techniques, which can leverage large datasets to
enhance predictive modeling, optimize composite formulations, and accelerate materials
development processes in a more efficient and cost-effective manner (Nguyen et al. 2022;
Krzywanski et al. 2024).

Machine learning (ML) could offer a new pathway for data-driven design and
development of reinforced composites. Figure 1 illustrates a framework for the data-driven
composite design, highlighting manufacturing processes, data collection sources, and
simulation tools. This approach utilizes forecasting models and decision-making strategies
for designing reinforced composites, utilizing data from the manufacturing process,
micromechanics, finite element analysis, academic literature, and digital databases, among
others. In the specific case of NFCs, the inherent limitations of any applied method, which
of course impact also on ML, is the difficulty to add to the evaluation data about local
interface strength, particularly variable in the case of NFCs for the conflicting geometries
of matrix and reinforcement and the large effect of unavoidable porosities. This could be
possibly in the future addressed by inserting in modelling large databases of microscopical
images and features, yet this is unpractical so far, though it has been proposed on traditional
composites (Romanov et al. 2013).
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Fig. 1. Data-driven design of composite materials, illustrating production pathways, data
acquisition sources, and simulation tools (Okafor et al. 2023; CC BY 4.0)
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Strengths: Detailed Physical Insights, Established Methodologies

The strengths of traditional methods in NFCs lie in their ability to provide detailed
physical insights and their reliance on well-established methodologies that have been
refined over decades of materials research and development (Song et al. 2020; Palaniappan
et al. 2024a). One key advantage offered is the depth of understanding these methods into
the physical and chemical properties of composite materials. Techniques, such as
differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-
transform infrared spectroscopy (FTIR) enable precise characterization of thermal stability,
chemical composition, and molecular structure, which are essential for assessing material
performance and stability (Al-Quraishi et al. 2020). Mechanical testing methods—such as
tensile, flexural, impact, and hardness testing—offer quantitative data on mechanical
properties such as strength, stiffness, toughness, and resilience under varying conditions,
providing critical insights into material behavior under stress (Falsafi et al. 2020).
Microscopic analyses, including SEM and TEM, allow for detailed visualization of
composite microstructures, revealing information about phase distribution, interfacial
bonding, and defect morphology at microscopic scales (Foster et al. 2018). Furthermore,
traditional methodologies benefit from well-established protocols and standards, ensuring
consistency and comparability across different studies and laboratories. This historical
foundation has built a robust framework for characterizing, designing, and evaluating
NFCs, offering a solid baseline against which new advancements, such as ML techniques,
can be compared and integrated to further enhance materials science and engineering
practices.

Limitations: Time Consumption, Cost, Difficult Scale-up for Complex
Material Interactions

Despite their strengths, traditional methods in NFCs suffer from significant
limitations that impact their applicability and efficiency in modern materials science. One
prominent drawback is their inherent time-consuming nature, stemming from the
sequential and labor-intensive processes involved in empirical testing and physical
characterization. Techniques, such as DSC, TGA, FTIR, and mechanical testing, require
meticulous sample preparation, experimental setup, and data collection, extending the
timeframe from material formulation to final evaluation (Gomes Souza, Jr. et al. 2024).
Moreover, the need for skilled personnel to operate specialized equipment and interpret
results adds to the time investment and operational costs. These methods are also costly,
primarily due to the expenses associated with acquiring and maintaining sophisticated
instrumentation, conducting experiments, and analyzing data. The procurement of high-
quality raw materials and the stringent environmental conditions required for accurate
testing further contribute to the financial burden (Salgueiro et al. 2010). Additionally,
traditional methods may not scale well to handle the complexities of modern composite
materials, which often involve intricate combinations of polymers, reinforcements,
additives, and processing techniques. The interactions between these components can lead
to nonlinear and multidimensional effects that traditional empirical methods may struggle
to capture comprehensively. As a result, there is a growing recognition of the need for
complementary approaches, such as ML, which can leverage large datasets and
computational power to overcome these limitations, accelerate materials development, and
optimize composite formulations in a more cost-effective and scalable manner (Suwardi et
al. 2022).
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Once these difficulties have been recognized, another open question is whether
NFCs deserve more accurate analyses such as those performed using ML, which can be
costly and not easy to implement. However, the perspective has gradually changed over
the last few years, due to the increasingly extensive use of NFCs in challenging fields such
as automotive and even aviation and nautical sectors. As a result of this, more modelling
works are coming out, which have recognized the distinctly different characteristics of
these materials with respect to the more ordered and repeatable structures of traditional
composites, so that models used for them fall short of effectively explaining the behavior
of NFCs (Xiong et al. 2018).

ROLE OF MACHINE LEARNING IN NFC

Explanation of How ML Algorithms Analyze Complex Datasets to Predict
Material Properties and Behavior

The ML algorithms have revolutionized the study and prediction of material
properties and behaviors within NFCs by harnessing the power of data-driven analysis and
computational modeling. At the core of ML’s application in this domain lies its ability to
handle large, complex datasets derived from diverse sources such as experimental
measurements, simulations, and historical records (Zhong et al. 2021). The process begins
with data preprocessing, where raw data are cleaned, normalized, and transformed into a
suitable format for analysis. Feature engineering follows, where relevant input variables
(features) are selected or generated from the data, capturing essential aspects of material
composition, processing conditions, and environmental factors. These features serve as the
basis for building predictive models that aim to establish correlations between input
parameters and desired output variables, such as mechanical strength, thermal
conductivity, or durability (Stergiou et al. 2023). The ML algorithms employ various
techniques to analyze these datasets and develop predictive models. Supervised learning
methods, such as regression and classification algorithms, learn from labeled datasets
where the relationships between inputs and outputs are explicitly provided (Singh et al.
2016). For instance, regression models can predict continuous properties such as tensile
strength based on factors such as polymer type, reinforcement material, and curing
temperature. Classification algorithms, on the other hand, categorize materials into classes
based on predefined criteria, such as identifying composite formulations that meet specific
performance standards (Dinita et al. 2023). Furthermore, ML algorithms excel in capturing
nonlinear relationships and patterns that may not be apparent through traditional analytical
methods. Complex algorithms including decision trees, random forests, support vector
machines (SVMs), and neural networks are adept at identifying intricate interactions
among multiple variables within the dataset. Neural networks, particularly deep learning
architectures, are capable of learning hierarchical representations of data, enabling them to
model highly complex relationships and make accurate predictions in materials science
applications (Taye 2023).

Once trained, ML models undergo validation and evaluation processes to assess
their performance and generalizability. Techniques such as cross-validation ensure that
models can effectively predict outcomes on new, unseen data, thereby confirming their
reliability in practical applications (Nicora et al. 2022). Moreover, ML facilitates
continuous model refinement through techniques, such as ensemble learning and
hyperparameter tuning, which optimize model performance and enhance predictive
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accuracy (Abnoosian et al. 2023). The integration of ML with NFC science not only
accelerates the materials discovery and optimization processes but also enables more
informed decision-making in design and manufacturing. Through leveraging predictive
models developed through ML, researchers and engineers can explore a broader design
space, identify optimal material combinations, and predict material behaviors under
varying conditions with greater efficiency and cost-effectiveness (Herbol et al. 2020). This
capability not only reduces reliance on costly and time-consuming empirical testing but
also opens avenues for innovation in composite materials tailored to meet specific
performance criteria across industries such as aerospace, automotive, renewable energy,
and beyond. As ML techniques continue to evolve and datasets grow in complexity and
size, their application in NFC science promises to drive significant advancements in
materials design, sustainability, and technological innovation (Obaideen et al. 2024).

Types of ML Techniqgues Commonly Used Available for NFCs

In the realm of NFCs, ML techniques encompass a diverse array of methodologies
tailored to analyze complex datasets and predict material properties and behaviors. One of
the fundamental ML techniques employed is regression analysis, which encompasses
linear regression for modeling relationships between input variables (e.g., composition of
NFCs and processing parameters) and continuous output variables (e.g., mechanical
strength or thermal conductivity) (Ozkan et al. 2019). Decision trees, another prevalent
technique, offer a hierarchical approach to decision-making, where composite properties
are predicted based on a series of binary decisions at each node of the tree. Ensemble
methods, such as random forests, combine multiple decision trees to enhance prediction
accuracy and robustness. Moreover, neural networks represent a cornerstone of ML
applications in NFCs, particularly deep learning architectures, which are capable of
learning intricate patterns and nonlinear relationships within datasets (Hussain et al. 2020).
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are adapted
for tasks, such as image analysis of composite microstructures or time-series prediction of
material degradation under varying environmental conditions. SVMs are utilized for
classification tasks, distinguishing between different composite material classes based on
specified features. Bayesian methods provide probabilistic frameworks for uncertainty
quantification in predictions, offering insights into the reliability and variability of
estimated material properties (Liu et al. 2024). Reinforcement learning, although less
commonly applied in materials science, explores optimal strategies for composite
manufacturing processes and material design through iterative learning and decision-
making. Each of these ML techniques brings unique strengths to the field, enabling
researchers and engineers to extract valuable insights from data, optimize composite
formulations, and advance the understanding and application of NFCs across diverse
industrial sectors.

Advantages: Speed, Scalability, Ability to Handle Large Datasets, Potential
for Automation

The ML techniques offer significant advantages in the context of the NFCs,
revolutionizing the traditional approaches to design, optimization, and characterization.
One of the primary advantages is speed, as ML algorithms can rapidly analyze and process
large volumes of complex data, significantly accelerating materials discovery and
development timelines. This capability is particularly valuable in industries such as
aerospace, automotive, and renewable energy, where fast-paced innovation is crucial for
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maintaining competitiveness. Scalability is another key benefit, as ML models can
efficiently scale to handle vast datasets encompassing diverse parameters, from material
composition and processing conditions to performance metrics and environmental factors
(Ninduwezuor-Ehiobu et al. 2023). This scalability allows for comprehensive exploration
of design spaces and optimization of composite formulations without the limitations of
traditional empirical methods. Additionally, ML’s ability to handle large datasets facilitates
more robust and accurate predictive modeling of material properties and behaviors,
leveraging patterns and correlations that may not be apparent through conventional
analytical techniques alone. Furthermore, ML techniques enable automation of repetitive
tasks in materials science, such as data preprocessing, feature selection, and model training.
Automated workflows streamline processes, reduce human error, and enhance
reproducibility in experimental design and data analysis (Klenam et al. 2023). This
automation not only improves efficiency but also frees up researchers’ time to focus on
more strategic aspects of materials research, fostering innovation and interdisciplinary
collaboration. As ML continues to advance and integrate with experimental techniques and
computational simulations, its potential for automation in NFCs promises to reshape how
materials are designed, tested, and optimized, paving the way for enhanced performance,
sustainability, and technological innovation in diverse industrial applications (Ma et al.
2023).

Examples of Successful Applications in Aerospace, Automotive,
Renewable Energy, and Biomedical Fields

Machine learning has catalyzed significant advancements in NFCs across various
industries, showcasing successful applications in aerospace, automotive, renewable
energy, and biomedical fields. In aerospace, ML-driven approaches have revolutionized
the design and optimization of lightweight composite structures, essential for reducing
aircraft weight and improving fuel efficiency. For instance, Airbus employs ML to predict
the mechanical properties of composite materials used in aircraft components, optimizing
their performance while ensuring safety and durability. Similarly, in the automotive sector,
ML techniques are leveraged to enhance the development of composite materials for
vehicle lightweighting, improving fuel economy and reducing emissions (Ye et al. 2005).
Companies including BMW use ML algorithms to simulate and predict the behavior of
composite materials under different driving conditions, optimizing vehicle performance
and structural integrity. In renewable energy, particularly in wind energy applications, ML
plays a crucial role in predicting and optimizing the performance of composite materials
used in wind turbine blades. The ML models analyze data from sensors embedded in blades
to monitor structural health, predict maintenance needs, and optimize operational
efficiency, thereby increasing energy production and reducing downtime (Nachtane et al.
2023). Moreover, in biomedical fields, NFCs reinforced with biocompatible materials are
transforming the development of medical implants and prosthetics. The ML algorithms
analyze patient-specific data to customize implant designs, predict material
biocompatibility, and optimize mechanical properties to enhance patient outcomes and
longevity. These examples illustrate how ML is not only enhancing the performance and
efficiency of NFCs across industries but also driving innovation and sustainability in
materials science and engineering (Feng et al. 2024). As ML techniques continue to evolve
and integrate with traditional empirical methods, their potential to further advance
composite materials' capabilities and applications remain promising regarding continued
progress in efficiency, safety, and performance across global industries (Zadpoor 2017).
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CHALLENGES AND CONSIDERATIONS

Data Scarcity and Quality Issues Specific to NFCs

Data scarcity and quality issues pose significant challenges in the application of
ML to the NFCs. The NFCs exhibit inherent variability due to factors such as material
composition, processing conditions, and environmental influences, making it challenging
to collect comprehensive and standardized datasets. Unlike conventional materials with
well-documented properties, NFCs often lack extensive datasets that encompass diverse
variations and scenarios (Ge et al. 2023). This scarcity limits the scope and accuracy of
ML models trained on insufficient or biased data, potentially leading to unreliable
predictions and suboptimal material designs. In addition, ensuring data quality is
paramount, as inconsistencies, errors, or incomplete datasets can skew model outcomes
and hinder the generalizability of findings. The variability in experimental techniques and
measurement protocols across different laboratories further complicates data integration
and comparison, undermining the reliability of composite material databases (Gibert et al.
2016). Addressing these challenges requires collaborative efforts to establish standardized
testing protocols, improve data collection methodologies, and enhance data sharing
practices within the materials science community. Advances in sensor technology,
computational simulations, and materials informatics offer promising avenues to augment
existing datasets and mitigate data scarcity issues. Once this is achieved, researchers can
enhance the robustness and applicability of ML models in NFCs, unlocking new
opportunities for innovation and optimization in materials design and engineering (Xu et
al. 2023).

The choice of a machine learning technique for a particular design problem is
difficult because of the large number of algorithms readily available. The limited computer
skills of most materials designers have been a major issue that has limited the large-scale
use of machine learning in reinforced composite technology (Gu et al. 2018). Although
there are many databases on natural fiber composites’ properties, drawbacks include the
lack of easily accessible data sources, inconsistencies between data produced by different
groups, and inadequacies of the current database. Other limitations of the machine learning
approach are shown in Fig. 2.

The Limitations of Machine Learning

( Each narrow application needs to be specially trained
Require large amounts of hand-crafted, structured training data
Learning must generally be supervised: Training data must be tagged
Require lengthy offline/ batch training
Do not learn incrementally or interactively, in real time
+  Poor transfer learning ability, re-usability of modules, and integration
_'< Systems are opaque, making them very hard to debug
Performance cannot be audited or guaranteed at the “long tail”
They encode correlation, not causation or ontological relationships
Do not encode entities, or spatial relationships between entities
+  Only handle very narrow aspects of natural language
K Not well suited for high-level, symbolic reasoning or planning

Fig. 2. The limitations of machine learning (Okafor et al. 2023; CC BY 4.0)
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Despite the challenges inherent to the application of machine learning in this
context, there are significant opportunities for future research. These include the
development of more sophisticated algorithms, the enlargement of the dataset used for
training, the combination of machine learning with simulation tools, and an investigation
of the limitations and challenges associated with this approach.

There are several difficulties and limitations associated with the application of
machine learning to NFCs, despite its great potential. The difficulties in using machine
learning techniques to optimize NFCs are illustrated in Fig. 3. Verification of the accuracy
of machine learning models is the third challenge. This can be a lengthy and costly process,
as the accuracy of machine learning algorithms needs to be tested against experimental
data.

-

—

Model Complexity

—

Challenges
Model Validation 9

Fig. 3. Machine learning challenges in designing and optimizing NFCs (Maniraj et al. 2023; CC
BY 4.0)

The lack of high-quality, relevant data is a major barrier to the use of machine
learning in this context. Large datasets of NFCs test results are required for accurate
predictions by machine learning algorithms. Moreover, the data must be varied and be an
accurate reflection of the materials and microstructures of interest. A further problem is
that NFCs are complex materials, constituted by a minimum of two phases, normally
geometrically complex and irregular, yet often including further fillers, and it is a difficult
task to predict their properties based on their microstructures.

Interpretability of ML Models in Materials Science

Interpretability of ML models in materials science presents a critical challenge due
to the complexity and multidimensional nature of data-driven predictions. In the context of
NFCs, more risks for over-simplification, hence inaccuracy in the relation between data
and models exist, due to the hierarchical structure of natural fillers and the complex relation
with environment this might involve, which might impact crucial sectors, such as
assessment of properties following artificial aging tests (Mejri et al. 2018). The ML
models, such as neural networks and ensemble methods, are adapted at extracting intricate
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patterns and correlations from large datasets, enabling accurate predictions of material
properties and behaviors (Stoll and Benner 2021). However, the trade-off for this predictive
power often lies in the opacity of these models, making it difficult to decipher how inputs
translate into outputs. In traditional empirical methods, engineers and researchers can
directly interpret results based on well-established principles and physical laws. In contrast,
ML models operate as “black boxes,” where the internal workings are obscured, raising
concerns about the reliability and trustworthiness of their predictions, particularly in safety-
critical applications. This lack of interpretability impedes the validation of model outcomes
and the identification of causal relationships between composite characteristics and
performance metrics. Moreover, stakeholders, such as regulatory bodies and industry
professionals, require transparent and interpretable models to ensure compliance with
standards and regulations (Bongomin et al. 2024). Addressing these challenges necessitates
the development of explainable Al techniques tailored to materials science, enabling
researchers to gain insights into how ML models arrive at their predictions. Techniques,
such as feature importance analysis, sensitivity analysis, and model-agnostic approaches,
like SHAP (SHapley Additive exPlanations) are emerging as promising methods to
enhance interpretability. Furthermore, integrating physics-based models with data-driven
(Papadimitriou et al. 2024). ML approaches can provide hybrid models that combine
predictive accuracy with explanatory capabilities, leveraging domain knowledge to
validate and interpret predictions effectively. Through enhancing the interpretability of ML
models in materials science, researchers can improve confidence in model outcomes, foster
interdisciplinary collaboration, and accelerate the adoption of advanced technologies in the
design, optimization, and deployment of the NFCs (Azevedo et al. 2024).

Computational Complexity and Scalability Challenges

In the realm of ML applied to the NFCs, computational complexity and scalability
present significant challenges that impact the efficiency and applicability of predictive
models. The NFCs are inherently complex materials with diverse compositions and
processing parameters that influence their properties and behaviors. The ML algorithms,
such as neural networks and ensemble methods, excel at extracting patterns and
relationships from large datasets to predict material properties like mechanical strength,
thermal conductivity, and durability (Stergiou et al. 2023). However, the computational
demands of training and deploying these models increase with dataset size and complexity.
Training deep neural networks, for instance, requires substantial computational resources
and time, often involving high-performance computing clusters or cloud infrastructure.
This computational complexity limits the scalability of ML approaches, especially when
scaling up to handle massive datasets or when conducting simulations at multiple scales
(e.g., microscale to macroscale). Furthermore, the integration of ML with physics-based
models to capture multiscale interactions in the NFCs introduces additional computational
challenges. However, it is possible also to predict that, together with the application of
other damage monitoring techniques on NFCs (Natesan and Krishnasamy 2024), which are
gradually diffusing, as illustrated further in the following Section, ML might also assist a
possible etiology of fracture on NFCs. Balancing the need for accuracy and efficiency in
model training and deployment remains a critical consideration, particularly in industries
like aerospace and automotive, where real-time decision-making and optimization of
composite materials are essential (Yassin et al. 2023). Addressing these challenges requires
advancements in algorithmic efficiency, parallel computing techniques, and hardware
acceleration, alongside the development of scalable ML frameworks tailored to the specific
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characteristics of NFCs. Collaborative efforts between materials scientists, data scientists,
and computational experts are crucial to overcoming these computational hurdles and
harnessing the full potential of ML for advancing materials design, optimization, and
manufacturing processes.

FUTURE DIRECTIONS AND EMERGING TRENDS

Potential for Automated Composite Design and Manufacturing

The potential for automated composite design and manufacturing using ML
represents a transformative frontier in NFCs, promising to revolutionize how materials are
developed, optimized, and manufactured across various industries. Automation in
composite design begins with the ability of ML algorithms to analyze vast datasets,
encompassing material properties, processing parameters, environmental conditions, and
performance metrics. Through leveraging this data, ML can automate the selection and
optimization of composite formulations tailored to meet specific performance requirements
(Chinchanikar and Shaikh 2022). For instance, ML algorithms can identify optimal
combinations of polymer matrices, reinforcement materials, and additives to achieve
desired mechanical, thermal, or electrical properties, while minimizing weight and cost.
Moreover, automated design workflows can simulate and predict the behavior of composite
materials under different loading conditions, environmental exposures, and manufacturing
processes. This predictive capability accelerates the iterative design process, reducing the
reliance on time-consuming empirical testing and enabling rapid prototyping and iteration
of composite structures (Yuan et al. 2021). In the manufacturing sector, ML-driven
automation enhances process control and optimization, ensuring consistency in material
properties and product quality while reducing waste and energy consumption.
Technologies such as robotic process automation (RPA) and adaptive manufacturing
systems integrate ML models with real-time sensor data to adjust manufacturing
parameters dynamically, optimizing production efficiency and reducing downtime (Bhadra
et al. 2023). Furthermore, the integration of digital twins—virtual replicas of physical
composite materials and manufacturing processes—facilitates predictive maintenance,
fault detection, and optimization of production schedules. As advancements in ML
algorithms, computational power, and sensor technologies continue, the vision of fully
automated composite design and manufacturing becomes increasingly feasible, promising
unprecedented levels of customization, efficiency, and sustainability in materials science
and engineering. Collaborative efforts between academia, industry, and government
stakeholders will be crucial in realizing this vision, driving innovation and competitiveness
in sectors such as aerospace, automotive, renewable energy, and beyond (Ninduwezuor-
Ehiobu et al. 2023).

Integration of ML with Experimental Techniques for Enhanced Predictive
Capabilities

The integration of ML with experimental techniques represents a promising frontier
in advancing predictive capabilities and accelerating innovation in NFCs. The ML
algorithms offer powerful tools to analyze complex datasets derived from experimental
measurements, simulations, and historical data, enabling researchers to extract actionable
insights and predict material behaviors with unprecedented accuracy (Morgan et al. 2022).
Through integrating ML with experimental techniques, such as spectroscopy, microscopy,
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and mechanical testing, researchers can enhance the understanding of composite material
properties and their underlying mechanisms. For example, ML models can analyze
spectroscopic data to identify molecular structures and chemical interactions within
polymer matrices and reinforcements, offering insights into material composition and
stability. A combination of microscopic techniques, such as SEM and atomic force
microscopy (AFM), provide detailed images of composite microstructures in the three
directions down to the micron and below, which ML algorithms can analyze to predict
mechanical properties, such as strength and stiffness, based on features such as fiber
orientation or interfacial bonding (Ge et al. 2020). Furthermore, ML enhances the
predictive capabilities of mechanical testing by correlating experimental data with material
composition and processing parameters, facilitating the optimization of composite
formulations for specific applications. Through integrating real-time sensor data with ML
algorithms, researchers can monitor and predict material degradation, fatigue behavior, and
environmental resilience, enabling proactive maintenance and lifecycle management
strategies. Collaborative efforts between materials scientists, data scientists, and
experimentalists are essential to developing robust ML frameworks that leverage the
complementary strengths of experimental techniques and computational modeling,
advancing the reliability, efficiency, and sustainability of NFCs in diverse industrial
applications.

Advances in Hybrid Models Combining Mechanical Properties-based
Simulations with ML Algorithms

Advances in hybrid models that combine mechanical properties (MP)-based
simulations with ML algorithms represent a cutting-edge approach in the future of the
NFCs. These hybrid models integrate the strengths of MP-based models that rely on
fundamental principles and equations to simulate material behavior at various scales, with
the predictive capabilities of ML, which excels in learning complex patterns from data
(Rocha et al. 2023; Rudolph et al. 2024). Through merging these two approaches,
researchers aim to overcome the limitations of purely empirical or theoretical methods,
offering a more holistic understanding and predictive power for composite materials. MP-
based simulations provide a foundational understanding of material properties and
processes, such as polymer matrix behavior, reinforcement mechanics, and interfacial
interactions, based on first principles and experimental data. These simulations can capture
intricate details of composite structures and their responses to external stimuli, offering
insights into performance under specific conditions (Bishara et al. 2023). The ML
algorithms complement these simulations by learning from large datasets, including
experimental measurements and simulations outputs, to optimize model parameters,
predict material behaviors with greater accuracy, and explore complex design spaces
beyond the capabilities of traditional MP-based approaches alone. For example, hybrid
models can enhance the prediction of composite material properties under varying
environmental conditions, simulate manufacturing processes with improved efficiency and
precision, and optimize material formulations for specific performance criteria.
Furthermore, integrating MP-based simulations with ML facilitates real-time adaptation
and learning, enabling adaptive modeling approaches that adjust predictions based on new
data and evolving conditions (Struzziero et al. 2019; Krzywanski et al. 2024).
Collaborative research efforts across disciplines—such as materials science, computer
science, and applied mathematics—are essential to advancing hybrid modeling techniques,
developing standardized methodologies, and validating model accuracy to accelerate
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innovation and application in sectors, such as aerospace, automotive, renewable energy,
and biomedical.

Opportunities for Interdisciplinary Collaboration and Industry Adoption

The future of ML in the NFCs presents abundant opportunities for interdisciplinary
collaboration and widespread industry adoption, fostering innovation across diverse
sectors. Interdisciplinary collaboration is essential as ML intersects with materials science,
computational modeling, data science, and engineering disciplines. By bringing together
experts from these fields, researchers can leverage complementary expertise to address
complex challenges in materials design, optimization, and manufacturing. For instance,
materials scientists provide domain knowledge on composite materials’ chemical
composition, mechanical properties, and environmental interactions, guiding the
development of ML models that accurately predict material behaviors (Sparks et al. 2020;
Pilania 2021). Computational modelers contribute expertise in developing physics-based
simulations and numerical methods, integrating them with ML algorithms to enhance
predictive capabilities across multiple scales—from molecular dynamics to macroscopic
material properties. Data scientists play a crucial role in processing and analyzing vast
datasets, implementing advanced ML algorithms, and developing interpretable models that
align with industry standards and regulatory requirements (Carvalho et al. 2019; Shah
2021). Engineers and industry practitioners bring practical insights into manufacturing
processes, performance requirements, and market demands, ensuring that ML-driven
solutions are not only innovative but also feasible and scalable for industrial applications.
Furthermore, interdisciplinary collaboration accelerates knowledge transfer and skill
development, nurturing a new generation of researchers and practitioners skilled in both
materials’ science and advanced data analytics. Industry adoption of ML in the NFCs holds
transformative potential by optimizing product development cycles, reducing costs, and
enhancing product performance and sustainability. Companies in aerospace, automotive,
renewable energy, and biomedical sectors are increasingly integrating ML-driven
approaches to innovate new materials, improve manufacturing efficiency, and address
environmental challenges (Popescu et al. 2024). For example, ML models can streamline
composite material selection, predict material degradation, and optimize manufacturing
processes, leading to lighter, stronger, and more durable products. Collaborations between
academia, government agencies, and industry partners are critical in fostering technology
transfer, validating ML models in real-world applications, and establishing best practices
for integrating ML into existing workflows (Terranova et al. 2024). Through embracing
interdisciplinary collaboration and industry adoption, the future of ML in the development
and analysis of NFCs promises to unlock unprecedented opportunities for innovation,
competitiveness, and sustainable development across global markets.

CONCLUDING STATEMENTS

The quality of the test facilities, the research climate, and the experience of the
designer determine the success of experimental measurement. Experimental research can
therefore be expensive and time-intensive, particularly if numerous tests are needed to
analyze each material variable. This is the case of multiphase and irregular natural fiber
composites (NFCs). The three key data sources recognized for machine learning-based
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design of reinforced composites include finite element analysis/high-throughput
simulations, experimental data, and material databases/literature.

A variety of options are now available to data scientists and materials engineers for
the development of models for a wide range of ML needs in the areas of reinforced
composite design. Thus, the review evaluated popular digital tools and platforms, such as
MATLAB, TensorFlow, Scikit-learn, and Weka, used by various researchers for
implementing ML algorithms over the last years.

To make a more significant impact on the field of machine learning in fiber
composite research, experts in reinforced composites should be encouraged to provide the
data most suitable for further processing to tailor and examine the material structure.
Importance of continued research, development, and collaboration for advancing materials
science through ML.

The use of machine learning algorithms to automate the forecasting of natural fiber
composite properties based on microstructural data can lead to enhanced efficiency,
precision, and cost savings.
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