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This article examines the chemical deterioration of wooden materials on 
the exterior surfaces of a historical mansion in Kahramanmaraş, 
constructed using the Bağdadi Wall Construction Technique, which is a 
rare example of Late Ottoman-Turkish architecture. The study employed 
various analyses to demonstrate that environmental factors, such as air, 
temperature, light, rain, and biological decay, have aged the wood. Fourier 
transform infrared analysis revealed a decrease in holocellulose peak 
density and lignin degradation. X-ray diffraction analysis indicated that the 
amorphous components of hardwood had diminished, leading to an 
increase in crystallinity, while the crystalline cellulose content in softwood 
had decreased, thereby weakening the structure. Thermal analysis 
uncovered changes in thermal stability between the wood’s outer and 
inner surfaces. Ultraviolet analysis indicated a 21% color change on the 
exterior compared to that in the interior. Despite the deterioration of the 
exterior, the interior surfaces remained intact. Appropriate measures could 
prolong the mansion’s lifespan, and urgent restoration is necessary to 
preserve this important cultural heritage. 
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INTRODUCTION 
 

Kahramanmaraş is located on significant trade routes connecting ancient Anatolian 

geography and is positioned at the intersection of trade routes extending from Syria and 

Mesopotamia to Anatolia. Dating back to the 3rd millennium BCE, the city hosted various 

civilizations, such as the Hittites and Gurgum during the Neo-Hittite period, Antiocheia 

and Taurum in the Hellenistic period, and Caesarea Germanicia in the Roman period 

(Ürkmez 2014; Dumankaya 2019; Yıldırım and Kalaycı 2022, 2023). Furthermore, it 

accommodated the Byzantine, Seljuk, and Ottoman civilizations. Kahramanmaraş’ center 

contains many remnants of ancient cultures, including examples of Ottoman-Turkish 

houses representing the Ottoman period.  

The terms “Turkish house,” “Ottoman house,” and “Anatolian house,” are 

commonly used to refer to traditional Ottoman-Turkish houses. Especially in Istanbul, the 
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capital of the Ottoman Empire, the most exquisite examples of Ottoman-Turkish houses 

can be found. The development and spread of Ottoman-Turkish houses in Anatolia took 

place mainly during the 17th and 18th centuries (Gabriel 1938). Over time, Ottoman-Turkish 

houses spread to a vast geography including the Balkans, the Caucasus, the Caspian region, 

and Crimea, where suitable building materials were readily available. Traditional Turkish 

houses were typically constructed using natural materials such as stone, adobe, and wood. 

Local architecture is characterized by the use of local materials with low embodied energy, 

and thus minimal environmental impact, alongside environmental adaptation in terms of 

local climate conditions and topography (Philokyprou and Michael 2020; Durak and 

Ayyıldız 2023). Wood has remained a favored material in traditional architecture due to its 

natural properties. Its easy availability, workability, and ease of handling, combined with 

superior performance under loads, made it an essential choice for construction. Especially 

in Anatolia, where earthquakes are frequent, the flexibility of wood has played a crucial 

role in enhancing the earthquake resistance of buildings (Aksoy and Ahunbay 2010). 

However, starting from the 20th century, Ottoman-Turkish houses gradually began to be 

replaced by reinforced concrete buildings (Eldem 1954, 1984; Burkut 2019; Karakuş 

2021). 

In Kahramanmaraş, although there are examples of traditional Ottoman-Turkish 

houses preserved to this day through simple repairs, deteriorations in the wooden sections 

have been observed. In this study, chemical deteriorations in the wooden materials used in 

the mansion constructed in the first quarter of the 19th century Ottoman-Turkish 

architecture located in Turan Neighborhood, Dulkadiroğlu district of Kahramanmaraş, at 

parcel 45 of block 1736 (formerly numbered 465), have been examined, and 

recommendations for necessary measures have been provided. 

 

 
 

Fig. 1. View of the Historic Turkish Mansion 
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The mentioned structure is located within the boundaries of the Dulkadiroğlu 

district. Situated on the slopes of a prominent hill, approximately 400 m from the 

Kahramanmaraş Castle, it represents one of the finest examples of Late Ottoman Period 

architecture. The ground floor of the structure is built using a stone masonry system, while 

the walls of the rooms are constructed with the “Baghdadi wall construction technique”. In 

the Baghdadi wall construction technique, wooden slats are horizontally placed at regular 

intervals on a wooden frame. The dimensions of the slats used in this technique are 

typically 10 × 12 cm2, with a thickness of 1.5 cm to 2 cm, and a width of 2.5 cm to 3.5 cm. 

The slats are plastered with lime mortar on both the interior and exterior surfaces (Erman 

2000; Tayla 2007). The timber material used in the wall construction has a fibrous and 

porous structure, which despite being lightweight, demonstrates high strength due to these 

characteristics (Eriç 1978). However, significant deterioration is observed in the timber 

frame walls constructed using the Baghdadi technique. Additionally, the timber columns 

supporting the roof have collapsed, leading to the roof’s failure (Fig. 1). Based on its 

architectural and structural features, the building is believed to have been constructed in 

the late 19th century.  

 

 
 

Fig. 2. The locations from which the wooden samples were extracted are as follows: A) The first 
sample was taken from the wooden ceiling of the ground floor; B) The second wooden sample 
was taken from the timber frame 
 

Two samples were extracted from the mentioned structure for analysis, ensuring 

they were derived from the original wooden components of the building. The first sample 
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was obtained from the roofing planks of the second floor, while the second sample was 

taken from the wooden beams interspersed between the walls. The wood used for the 

roofing material and the beams between the walls is presumed to be from a coniferous tree 

species (Fig. 2). 

Wood has been a crucial component in human life since historical times. Its 

fundamental composition includes cellulose, hemicellulose, and lignin polymers. When 

subjected to suitable conditions in the biological life cycle, wood undergoes structural 

deterioration (Eriksson and Johnsrud 1982; Björdal 2000). Factors such as sunlight, 

oxygen, water, heat, wind, pollution, and microorganisms lead to both intermolecular and 

intramolecular degradation of wood polymers, ultimately compromising its structural 

integrity. Solar radiation, particularly, induces photochemical degradation on the wood 

surface, primarily affecting lignin (Björdal 2000; Kranitz et al. 2016). Moisture content 

fluctuations resulting from rainfall or water exposure cause continual swelling and 

shrinking of the wood cell wall, thereby increasing the formation of cracks (Hosseinpourpia 

et al. 2018). While temperature may not be as critical as humidity and sunlight, higher 

temperatures accelerate photochemical, oxidative reactions, and wood decay rates (Feist 

1990; Ghavidel et al. 2020a, 2020b). Enzymes from fungi play a crucial role in extensively 

breaking down cellulose and hemicellulose units, which are responsible for wood material 

strength (Koike et al. 2009). Significant strength losses and the formation of cubic cracks 

occur in the early stages of decay (Green and Highley 1997). Brown-rot fungi, particularly 

prevalent in damp, warm, and windless environments, commonly affect old and historical 

building woods (Jennings and Bravery 1991; Watkinson and Eastwood 2012). 

X-ray diffraction (XRD), particularly present in lignocellulosic materials, such as 

wood, exhibits a certain degree of cellulose crystallinity due to the presence of free 

hydroxyl groups in the cellulose macromolecules, which participate in different 

intramolecular and intermolecular hydrogen bonding arrangements (Broda and Carmen-

Mihaela 2019). The crystallinity of wood has a significant impact on the physical, 

mechanical, and chemical properties of wood-based materials. For instance, as crystallinity 

increases, the Young’s modulus, tensile strength, dimensional stability, density, and 

hardness increase, while moisture regain, paint absorption, chemical reactivity, swelling, 

and flexibility decrease. Therefore, determining the crystallinity of wood could be an 

approach to understanding the effect of environmental conditions on wood properties. 

However, the complex chemical composition, texture, and highly anisotropic structure of 

wood make the determination of crystallinity challenging. The XRD and Fourier transform 

infrared (FTIR) spectroscopy have been utilized to monitor changes in wood crystallinity 

induced by chemical and biological degradation (Howell et al. 2009; Fackler et al. 2011), 

although they do not provide reliable absolute values of crystallinity but rather relative 

values (Park et al. 2010).  

The thermogravimetric analysis (TGA)/derivative thermogravimetric (DTG) 

analyses provide information about the thermal stabilities of the components constituting 

wood (Skreiberg et al. 2011; Zhou et al. 2013). The organic components in cellulose, 

hemicellulose, and lignin, the main constituents of wood, react to environmental 

conditions. Photodegradation is the most rapid and potent event in the degradation of wood 

due to environmental effects (Hon and Chang 1984; Hon and Feist 1984). Particularly, 

lignin is the most sensitive wood component to photodegradation induced by ultraviolet 

(UV) light (Pandey 2005; Reinprecht 2016). 

Wood can absorb electromagnetic radiation at several different wavelengths, 

initiating photochemical reactions that lead to the discoloration of wood. Wood contains 
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cellulose, hemicellulose, lignin, and extractive substances. All wood polymers are sensitive 

to ultraviolet radiation. Solar radiation depolymerizes lignin and cellulose, and water filters 

out the resulting photo-degraded fragments from the wood (Derbyshire and Miller 1981; 

Evans et al. 1993). 

 
 
EXPERIMENTAL 
 

The portions of the samples obtained for chemical analysis from the wooden 

structures used in the roofing and beam elements of the historic mansion are provided 

below. Upon macroscopic examination of the wooden sample used in the roofing, the 

portions analyzed include the heavily degraded outer surface (E) and the undamaged inner 

surface (G). For the wooden beam sample, the portions analyzed include the heavily 

degraded outer surface (C) and the undamaged inner surface (D) (Fig. 3). For each sample, 

sections were taken from both the outer layer, where degradation was clearly visible 

(approximately 2 cm thick), and the core area of the wood. 

 

 
 

Fig. 3. The analysis sections (internal - external) of the wooden samples (E, G, C, D) 
 

The FTIR analysis (Attenuated Total Reflectance/ATR) was performed using a 

Shimadzu IRAffinity-1 FTIR instrument with 32 scans per sample and a resolution of 4 

cm-1 at wavelengths ranging from 4000 to 800 cm-1. For XRD, a Panalytical Philips X’Pert 

PRO XRD instrument was utilized under conditions of 40 kV and 30 mA, with 

monochromatic CuK α radiation (λ = 0.154056 nm). The XRD measurements were taken 

in the temperature range of 10 to 100 °C with a step interval of 0.02 °C, and each step was 

held for 1 s. The crystallinity index (CrI) was calculated using Eq. 1 from Segal et al. 

(1959) internal reference method. In this formula, I002 represents the maximum intensity of 

the peak at 2 ± 22.5°, and Iam corresponds to the intensity at 2 ± 18 °C. 

𝐶𝑟𝑙 (%) = [
(𝐼002−𝐼𝑎𝑚)

(𝐼002)
] × 100       (1) 

The wood samples were subjected to differential thermal analysis using the Perkin 

Elmer, Diamond TG/DTA – Seiko Instruments SII, Exstar 6300 TG/DTA. The analysis 

was conducted in a nitrogen atmosphere within the temperature range of 30 to 800 °C. For 

UV analysis, the samples were examined using the HunterLab Color Flex device under 

D65 daylight and a 10 °C viewing angle to assess color changes based on L*, a*, and b* 

values. The total color difference (ΔE*) was calculated, with ΔE* measured on a scale 
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from 0 to 100; where 0 indicates minimal color change and 100 signifies complete 

deterioration. 

 
 
RESULTS AND DISCUSSION 
 

When the FTIR analysis of the C and D sections of the wooden samples obtained 

from the historic mansion was examined, an asymmetric stretching vibration peak of 

methyl and methylene groups located in cellulose, hemicellulose, and lignin was obtained 

at the wavelength of 3321 cm-1 (Faix 1992; Pandey and Pitman 2003; Carrillo et al. 2004; 

Schwanninger et al. 2004; Bodirlau and Teaca 2009). At the wavelength of 2917 cm-1, 

symmetric stretching vibrations of methyl and methylene groups present in holocellulose 

were detected (Pandey and Pitman 2003; Carrillo et al. 2004; Schwanninger et al. 2004). 

A vibration peak related to the stretching of C=C and C=O groups in the lignin structure 

was identified at the wavelength of 1621 cm-1 (García-Iruela et al. 2020; Ghavidel et al. 

2020a). At the wavelength of 1262 cm-1, the C-O stretching vibration of guaiacyl lignin 

ring and the -OH and -CH bending vibrations of the holocellulose unit were determined. 

The stretching vibration peaks of C-O and C-C in holocellulose were obtained at the 

wavelength of 1019 cm-1 (Faix 1992; Pucetaite 2012; Pedersen et al. 2021) (Fig. 4). 

 

 
 

Fig. 4. The FTIR graphs of the C and D sections of the wooden samples 
 

Upon comparison of the outer surface (C) of the wooden samples with the inner 

surface (D), where degradation was less or absent, it was observed that the intensity of the 

peak decreased at the wavelength region of 800 to 900 cm-1. These wavelengths are related 

to the cellulose content of the wood (Derbyshire and Miller 1981; Hoffmann and Jones 

1990). A significant peak loss was detected at the wavelength of 1019 cm-1, clearly 

indicating the loss of holocellulose in the wood. There was a decrease in peak intensity 

between wavelengths of 1250 and 1500 cm-1. This decrease was associated with the lignin 
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content, and on this surface (C), where degradation is more pronounced, lignin degradation 

was observed.  

In a study examining archaeological wood samples using FTIR analysis, the loss at 

wavelengths of 1235 cm-1 and 1646 cm-1 was attributed to the vibrations of the C=O and 

C=C groups in the lignin structure (Ghavidel et al. 2021a, 2021b). A peak loss was 

identified at 1700 cm-1, which is associated with hemicellulose component (Ljungdahl and 

Eriksson 1985; Lucejko et al. 2020; High and Penkman 2020). A decrease in intensity was 

determined at 3320 cm-1, indicating a reduction in holocellulose content at this wavelength 

(Fig. 4). 

The stretching vibration in the region between 2800 and 3000 cm-1 is associated 

with the –CH group in cellulose, hemicellulose, and lignin (Ghavidel et al. 2020a, 2020b). 

The band at 1733 cm-1, assigned to the stretching vibrations of non-conjugated C=O groups 

and specific regions, was missing in the wood samples. This may be associated with the 

significant degradation of hemicellulose after the aging process (Ljungdahl and Eriksson 

1985; Lucejko et al. 2020; High and Penkman 2020). 

When the FTIR analysis of the E and G sections (Fig. 5) was examined, peaks of 

O-H stretching vibrations originating from cellulose and hemicellulose content were 

detected at wavelengths of 3357 to 3340 cm-1. At 2912 cm-1 wavelength, the peak of 

asymmetric stretching vibrations of methyl and methylene-bound C-H stretchings in 

cellulose, hemicellulose, and lignin were obtained. At of 1599 and 1503 cm-1, peaks due to 

stretching vibrations in the aromatic structure of the lignin component were found 

(Pucetaite 2012; Emmanuel et al. 2015; Moosavinejad et al. 2016). At 1415 cm-1, a peak 

of vibrations in the aromatic structure within lignin was observed (Pandey and Pitman 

2020). At 1264 cm-1, the stretching vibrations of C-O in guaiacyl ring in lignin and the 

swinging peaks of OH and CH in hemicellulose were obtained. At 1021 cm-1 wavelength, 

peaks of stretching vibrations of C-O and C-C in hemicellulose were obtained (Faix 1992; 

Pucetaite 2012). 

In the E samples with degraded outer surfaces, the peak of OH vibrations 

originating from hemicellulose and cellulose content at 3340 cm-1 was found more 

intensely in the G samples obtained from the more intact inner surfaces at 3357 cm-1. This 

is thought to be due to the brown-rot fungi damaging the outer surfaces of the wood, and 

additionally, photodegradation occurring on the outer surfaces. The peak of C=C stretching 

vibrations in the aromatic structure within lignin observed at 1594 cm-1 in the E samples 

was found to be more intense at 1599 cm-1 wavelength in the G sample with intact wood. 

This is believed to be due to photodegradation occurring on the outer surfaces of the wood 

affecting the lignin content. 

At 1415 cm-1, a peak of vibrations in the aromatic structure within lignin was 

obtained in the E samples, which is not observed in the G samples. This peak is the 

vibrational peak associated with the aromatic structure in the lignin content. It is thought 

to be intensely observed on degraded surfaces due to the reduction in the hemicellulose 

content in the wood caused by the damage inflicted by brown rot fungi, which consequently 

leads to a relative increase in lignin content. 

 Between wavelengths of 1050 and 1100 cm-1, the peak intensity decreased on the 

outer surfaces (E) with intact degradation. The reason for this may be that while the peak 

of C-C and C-O vibrations in hemicellulose content was observed in the sample taken from 

the inner surface (G) at these wavelengths, the intensity decreased in the degraded outer 

surfaces (E). This is attributed to photodegradation and the action of brown rot fungi on 

the wood's outer surfaces. 
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Fig. 5. The FTIR graphs of the E and G sections of the wooden samples 
 

When comparing the outer surface (C) and the less degraded inner surface (D) of 

the wooden samples, the crystallinity index of the outer surface (C) was determined to be 

65%, while the crystallinity index of the inner surface was determined to be 55% (Fig. 6).  

 

 
 

Fig. 6. The XRD graphs of the C and D sections of the wooden samples 

 

The reason for the increase in crystallinity index on the outer surface is believed to 

be the action of microorganisms, especially those causing degradation in wood materials. 

This may lead to the increase in crystallization of the wood component due to the 

degradations of lignin and hemicellulose, which have an amorphous structure (Howell et 

al. 2009). It is considered that substantial changes in crystallinity index and crystallite size 

may lead to an increase in the relative ratio of crystalline wood components after the 

removal of the amorphous fractions (lignin and hemicellulose). In this study, the samples 
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are estimated to be from hardwood. In a study, the crystallinity of poplar wood was 

determined to be 60.6% (Gu et al. 2019). Although it is evident that the inner surface of 

the wood is less degraded compared to the outer surface, this does not necessarily mean 

that the inner surface of the wood has not degraded at all over the years. A study has found 

that environmental conditions and decay factors over time reduce the crystallinity index of 

wood (Bouramdane et al. 2022). 

When comparing the outer surface (E) and the less degraded inner surface (G) of 

the wooden samples, the crystallinity index of the outer surface (E) was determined to be 

42%, while the that of the inner surface (G) was determined to be 45% (Fig. 7). It is 

presumed that the examined tree species is coniferous wood. In a study examining the 

degradation of wood under outdoor conditions, it was found that the crystallinity index of 

cellulose decreased due to the influence of outdoor conditions. They reported that wood 

cellulose was initially crystalline and that environmental degradation conditions made the 

wood more amorphous (Kim and Kuga 2001; Bouramdane et al. 2022). Additionally, they 

found that the loss of crystallinity was due to the opening of glycopyranose rings and the 

disruption of the regular structure (Kim and Kuga 2001; Li et al. 2011). The decrease in 

wood crystallinity during degradation processes under outdoor conditions indicates a 

reduction in hydrogen bonds in crystalline cellulose when temperature or oxidation levels 

increase. As a result, cellulose microfibrils become stiffer and more brittle, leading to a 

significant breakdown of hydrogen bonds and thus a cellulose structure that is easily 

degraded (Bouramdane et al. 2022). 

 

 
 
Fig. 7. The XRD graphs of the E and G sections of the wooden samples 

 

In the TGA, DTG, and DTA analyses of the D and C samples, the D samples (inner 

surface) started to degrade at 261 °C, and degradation reaction was completed at 499 °C 

(Figs. 8 and 9). It was determined that two exothermic reactions occurred during the 

degradation reaction, and at the beginning of the first degradation reaction, there was 

89.6% substance, while the reaction started with 16.8% substance at the beginning of the 

second reaction. 72% of the substance was degraded between the two reactions. About 

3.3% of the substance remained after the combustion reaction. The highest weight loss in 

the first reaction occurred at 352 °C with a rate of 2.151 mg/min, while in the second 

degradation occurred at 454 °C with a rate of 1.309 mg/min. The C sample (outer part) 

started to degrade at 246 °C and ended at 520.7 °C. Two exothermic reactions occurred 
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during the degradation process. At the beginning of the first degradation reaction, there 

was 90.7% substance, while the reaction started with 27.3% substance at the beginning of 

the second reaction. 63.4% of the substance was degraded between the two reactions. 6% 

of the substance remained after the reaction. It was determined that the weight loss rate of 

the D sample was higher than that of the C sample in both reactions. 

 

 
 

Fig. 8. The TGA, DTG, and DTA graphs of the C sections of the wooden samples 
 

 
 
Fig. 9. The TGA, DTG, and DTA graphs of the D sections of the wooden samples 
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Upon examination of the TGA, DTG, and DTA graphs of the E and G samples 

(Figs. 10 and 11), it is apparent that the degradation reaction of sample G began at 239 °C 

and was completed at 489 °C. At the end of the degradation reaction, 0% of the substance 

remained. The degradation involved two exothermic reactions. The first exothermic 

reaction of the G sample occurred at the highest temperature of 333.7 °C, with a 

degradation rate of 1.995 mg/min, while the second degradation reaction occurred at the 

highest temperature of 429 °C, with a rate of 0.829 mg/min. At the end of the reaction, 0% 

of the substance remained.  
 

 
 

Fig. 10. The TGA, DTG, and DTA graphs of the E of the wooden samples 
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Fig. 11. The TGA, DTG, and DTA graphs of the G of the wooden samples 

 

According to the TGA, DTG, and DTA graphs of the E sample, the degradation 

reaction began at 232.3 °C and was completed at 399 °C. The reaction occurred in two 

stages as exothermic. At the end of the reaction, 2.1% of the substance remained. The first 

exothermic reaction of the E samples occurred at the highest temperature of 326.5 °C, with 

a degradation rate of 2.247 mg/min, while the second degradation reaction occurred at the 

highest temperature of 417 °C, with a rate of 0.387 mg/min. It was observed that the weight 

loss rate of the E samples was higher in the first exothermic reaction, while it was higher 

for the G samples in the second exothermic reaction. 

Upon examination of the E and G samples, it was observed that the starting and 

completion temperatures of the degradation reaction due to thermal effects were lower for 

the E samples, which are more exposed to degradation under outdoor conditions, compared 

to the inner part (G), indicating a decrease in the thermal stability of the wooden samples. 

When examining the D-C and E-G sections of wooden samples taken from two 

different locations in the historical mansion, it was observed that the initiation and 

completion temperatures of the degradation reaction because of temperature were lower 

for the C and E samples, which were more exposed to environmental degradation, 

compared to the inner parts. Thus, it was determined that the thermal resistance of the 

wooden samples decreased. When the weight loss rates were analyzed, it was found that 

the weight loss rates of the inner surface of the wood were higher than those of the degraded 

outer surface. This is because the outer surface of the wood is particularly affected by wood 

decay and undergoes structural changes. It is evident that the outer surface of the wood is 

exposed to brown decay due to the formation of brown cracks. Brown decay primarily 

consumes holocellulose from the components of wood, causing less damage to the lignin 

content (Hill 2006). Therefore, the holocellulose content of the degraded outer surface 
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samples C and E had decreased over time. As a result, it was observed that the combustion 

rate was higher for the D and G samples, which have a higher holocellulose content. It was 

determined that the remaining substance in the C and E samples after the completion of the 

reaction was higher. This is thought to be due to the carbonization of the wood as a result 

of being more exposed to environmental conditions. 

In this study, it was found that the shape of the DTG curves decreased the peak 

temperatures assigned to the evaporation of hemicelluloses and amorphous cellulose 

depending on the exposure time of the wood to C. globosum fungus. The shift to lower 

temperatures is attributable to the formation of oxidized structures after enzymatic 

degradation, making the wood less thermally stable (Popescu et al. 2010). In another study, 

it was found that the remaining ash content after the combustion of wood samples decayed 

by fungi was higher compared to intact wood (Kawase 1962). 

In Table 1 it is observed that the total color change between the inner (D) and outer 

(C) surfaces of the wooden samples due to natural aging was 20.73%. Similarly, when 

analyzing the color change of other wooden samples obtained from the same location 

(Table 2), the total color change between the inner (G) and outer (E) surfaces of the wood 

was determined to be 21.25%. 

 

 Table 1. UV Analysis Results for Samples C and D 

Sample L* a* b* 

G 69.85 7.81 31.11 

E 49.85 10.01 26.14 

Aging Difference 20 -2.2 4.97 

ΔE*  20.73  

 

When comparing the outer and inner surfaces of wood, it has been observed that 

both types of wood undergo photodegradation. In addition to the decrease in methoxyl and 

lignin contents and the increase in carboxyl content within the wood (Leary 1968), 

photodegradation also leads to an increase in cellulose content and a decrease in lignin 

content on the wood surface (Wang and Lin 1991; George et al. 2005). Considering other 

decay factors, this condition results in a reduction in some physical, chemical, and 

biological properties of natural wood. 

 

Table 2. UV Analysis Results for Samples E and G 

Sample L* a* b* 

D 61.15 10.48 32.98 

C 42.03 10.16 23.72 

Aging Difference 19.12 0.32 9.26 

ΔE*  21.25  
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CONCLUSIONS AND RECOMMENDATION 
 
1. The results from the analysis on wood samples obtained from the historical mansion 

indicate that the wood has undergone aging due to environmental factors such as air, 

temperature, light, rain, and biological decay agents.  

2. Based on the Fourier transform infrared (FTIR) analysis, it was understood that the 

peak density of hemicellulose responsible for the mechanical strength of the wood 

decreased, and lignin was degraded. According to the X-ray diffraction (XRD) 

analysis, it was found that in both hardwood and softwood, the amorphous 

components decreased, leading to an increase in the proportional crystallinity in 

hardwood and a decrease in the crystalline cellulose content in softwood, disrupting 

both the crystalline and amorphous regions of the wood structure.  

3. The thermogravimetric analysis / differential thermal gravimetric / differential 

thermal (TGA/DTG/DTA) analyses indicated changes in thermal stability between 

the outer and inner surfaces of the wood. Furthermore, the ultraviolet (UV) analysis 

revealed that the color of the wood’s outer surface changed approximately 21% 

compared to its inner part in both types of wood. As a result of the analyses, it is 

evident that the outer surfaces of the wood samples taken from the historic mansion 

had deteriorated, while the inner surfaces remain intact. With appropriate measures, 

such as conservation and restoration, the continued use of this structure is feasible. 

The restoration and conservation of historic buildings are essential for ensuring the 

sustainability of cultural heritage. However, many structures have suffered significant 

damage due to neglect, improper interventions, and lack of knowledge (Ahunbay 2011; 

Akyıldız et al. 2016). During the restoration process, the mechanical, physical, and chem-

ical properties of building materials such as stone, brick, wood, mortar, and plaster must 

be analyzed, and the reinforcement of the load-bearing system should be prioritized (Crocci 

1998; Karakuş 2020). The stability of masonry walls, timber beams, columns, and connec-

tion points should be assessed, and reinforcement should be carried out using anchors, 

foundation underpinning, micropiles, and pile foundation systems to enhance the struc-

ture’s resistance to settlement and seismic activity.  

Among the commonly applied restoration and seismic strengthening techniques, 

Fiber Reinforced Polymers (FRP), cross-bracing, structural confinement, steel tie-bars, and 

reinforced concrete or steel plate jacketing are widely utilized (Karakuş 2019). To preserve 

the authenticity of the structure while ensuring its structural integrity, non-invasive, re-

versible, and minimally intrusive conservation solutions should be implemented in accord-

ance with ICOMOS, UNESCO, and ASTM standards. A multidisciplinary approach inte-

grating structural engineering, material science, and architectural conservation is crucial 

for maintaining the long-term stability and sustainability of historic buildings. 
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