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Two-step Synthesis of Hard Carbons Anode Material
from Poplar Wood with Enhanced Performance for
Sodium-lon Batteries
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Hard carbon (HC) is regarded as the most prospective anode material for
sodium-ion batteries. Biomass HC is favored due to the advantages of
being inexpensive and easily available. Herein, hydrothermal treatment of
poplar lateral branches at 220 °C for 4 h was employed as the first
synthesis step for HC precursor with yield of 48.5%. The obtained
precursor was subjected to the second step of carbonization under
nitrogen atmosphere at 1200 °C, 1400 °C, and 1600 °C for synthesis of
HC anode materials. Advantages of two step synthesis were confirmed in
terms of inorganic impurities elimination, HC yield, and electrochemical
performance. Inorganic impurities reduced from 0.46% in poplar wood to
0.26% in precursor. The HC yield was 34.6% for precursor from
hydrothermal treatment of poplar wood, which was much higher than HC
yield of 18.5% from direct carbonization of poplar wood. The obtained HC
anode materials manifested high capacity, strong rate performance, and
long-term stability for sodium-ion batteries as indicated by the capacity of
333mAhg?'at0.1Cand 285 mAhg?at2 C, and capacity retention of
92.9% after 200 cycles at 1 C. This research provides an eco-friendly
approach for the high-value utilization of woody biomass as anode
material for sodium-ion batteries.

DOI: 10.15376/biores.20.1.235-247

Keywords: Poplar wood; Hydrothermal treatment; Hard carbon; Sodium ion batteries; Environment
friendly

Contact information: a: State Key Laboratory of Biobased Material and Green Papermaking, Qilu
University of Technology (Shandong Academy of Sciences), Jinan 250353, China; b: Engineering &
Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of
Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China;

*Corresponding author: wzj@qlu.edu.cn; liganggai@qlu.edu.cn

INTRODUCTION

With the increasing depletion of fossil fuels, the most widely used energy source,
and the growing environmental concerns associated with fossil fuel combustion, the need
for efficient energy storage systems is growing. Based on this, the new energy industry is
constantly developing, and the application of lithium-ion batteries (LIBs) is becoming
increasingly widespread (Yunming et al. 2016; Xiao et al. 2017). However, the global
reserves of lithium resources are limited, where 70% of them are distributed in the South
American region, greatly limiting the development of LIBs. The sodium resource is found
in the Earth's crust at a higher abundance of 2.75%, which was over 400 times greater than
the abundance of the lithium resource (Yabuuchi et al. 2014; Kundu et al. 2015). At the
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same time, sodium and lithium are elements belonging to group IA alkali metals, exhibiting
comparable chemical characteristics. Sodium-ion batteries (SIBs) work on the similar
principle as LIBs, relying on the “rocking chair” movement of metal ions between the
anode and the cathode. Therefore, SIBs are considered a strong contender for the next
generation of energy storage (Wang et al. 2018). But a well-known fact is that Na is much
heavier than Li, so SIBs may not be suitable for transportation power. On the contrary,
cheaper but heavier SIBs may be the preferred choice for fixed site energy storage.

The radius of the sodium ion is 0.026 nm, which is greater than that of the lithium
ion. The common graphite anodes applied in LIBs are not suitable for SIBs (Ge and
Fouletier 1988; Doeff et al. 1994; Cao et al. 2012). Currently, the anode materials for
SIBs are mainly restricted to metals and amorphous carbons. Metal anodes have high initial
capacities while the volume changes greatly during charging and discharging, resulting in
safety concerns and inferior cycling performance (Li et al. 2018). Amorphous carbons are
categorized into soft carbon and hard carbon. The crystal structure of soft carbons is more
similar to graphite, which has high electrical conductivity but low initial Coulombic
efficiency. The molecular-level structure of hard carbon is more intricate in comparison to
the well-organized layer structure found in graphite (Xiao et al. 2016; Qiu et al. 2017b;
Lu etal. 2018; Mittal etal. 2022; Tan et al. 2023). In 2012, Cao et al. (2012) found that
the energy consumption of Na* insertion decreases as the interlayer distance of NaCe
increases. This result consolidates that the larger interlayer spacing and short-range orderly
structure of hard carbon is more favorable for Na* de/intercalation, and thus hard carbon is
regarded as promising anode materials for SIBs.

Sony used hard carbon obtained from poly furfuryl alcohol for the first time as an
anode material in 1991, marking the beginning of the industrialization of hard carbon.
Recently, biomass-based hard carbon has garnered significant interest because of their
renewability, environmental friendliness, and excellent electrochemical properties as
anode materials for SIBs. Gaddam et al. (2017) mixed mango feedstock as a precursor
with sulfuric acid solution and reacted it in an autoclave at 170 °C for 25 h, followed by
high-temperature carbonization to obtain hard carbon materials. After undergoing 1,000
cycles at a high current density of 1 A g1, the material exhibited a capacity of 113 mA h
gL Li etal. (2015) synthesized monodisperse hard carbon spheres from sucrose, and the
assembled battery exhibited the highest capacity of 220 mA h g~* at 1600 °C. Zheng et al.
(2019) used a one-step pyrolysis method to prepare poplar wood as hard carbon, which had
a capacity of 330 mA h g* at 1 C and decayed to below 100 mA hgtat2 C. Yu etal.
(2018) immersed old loofahs in ZnCl: solution for 24 h and then carbonized them at 800
°C in a tube furnace to obtain loofah hard carbon, and the assembled batteries also had
excellent cycling performance at 1000 mA g*. Rybarcyzk et al. (2019) directly carbonized
rice husks and achieved a maximum battery capacity of 276 mA h g~* at 1600 °C.

As a productive species, poplar trees are fast-growing and widely planted in the
world, making it a rich resource for furniture and construction. However, the utilization
rate of poplar side branches is extremely low, and are usually burnt after pruning. To realize
the high-value utilization of poplar waste lateral branches, this work employs poplar waste
lateral branches to prepare HC precursor by hydrothermal treatment. The obtained
precursor was subjected to carbonization under argon flow at 1200 °C, 1400 °C, and 1600
°C for synthesis of HC anode materials. The electrochemical performance of poplar wood-
derived HC anode materials were systematically evaluated.
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EXPERIMENTAL

Materials

Poplar waste lateral branches were obtained from a forest farm in Shandong
Province. The button cells (CR2032), Super P, and polyvinylidene fluoride (PVDF, Solvay
5130) were obtained from Zhengzhou Jinghong New Energy Technology Co., Ltd. (Henan,
China). N-methyl-2—pyrrolidinone (NMP) was procured from Macklin Biochemical
Technology Co., Ltd. (Shanghai, China).

HC Synthesis

Poplar wood chips were washed by water and then dried in an oven at 105 °C.
Oven-dried poplar wood (10 g) and deionized water (150 mL) were placed in a 500-mL
stainless pressure vessel of Series 4560 Parr reactor (Parr Instrument Company, Moline,
IL, USA) and exposed to hydrothermal treatment at 220 °C for 4 h. Wood residue after
hydrothermal treatment, known as HC precursor, was separated from liquid by filtration,
and then dried in blast drying oven at 105 °C. The oven-dried precursor was placed in a
planetary ball mill for size reduction at 300 RPM for 6 h. The ball-milled HC precursor
was carbonized under N2 of 0.5 L/min atmosphere at 1200 °C, 1400 °C, and 1600 °C for 3
h in a SK-06163 tube furnace (Tianjin Zhonghuan furnace Co., Ltd.). The obtained HC
was denoted as HC-x, such as HC-1200, HC-1400, and HC-1600, where X represents the
carbonization temperature.

Physicochemical Characterization

Ash content was used to quantified inorganic impurities in poplar wood and HC
precursor, according to 1SO 9087 (1998). The microstructure of HC-x was analyzed by
SmartLab SE X-ray diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with Cu
Ka rays, and a scanning range of 5° to 85° at 20°/min. Scanning electron microscope
(SEM) images of poplar wood and HC materials were captured using a Regulus SU8220
(Hitachi, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) analyses performed on
HC materials were conducted on monochromatic Al K. radiation using an ESCALAB QXi
X-ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham, MA, USA ).

Electrochemical Measurement

The electrode paste was made by blending HC, conductive additive (Super P), and
polyvinylidene fluoride (PVDF) binder in a mass ratio of 8:1:1 in
N—methyl-2—pyrrolidinone (NMP) solvent. The mixture was then applied onto copper foil,
and then vacuum dried at 120 °C for 12 h. The CR2032 button half-cell was assembled in
a glove box filled with Ar atmosphere containing less than 10 ppm of both oxygen and
moisture, with Na metal as the opposing electrode, Celgard® 2400 monolayer
polypropylene membrane as the diaphragm, NaPFs 1.0 M in diethylene glycol dimethyl
ether (DEGDME) as the electrolyte. Cyclic voltammograms (CVs) and electrochemical
impedance spectra (EIS) were evaluated using CHI760E electrochemical workstation (CH
Instruments, Shanghai, China). The CVs were measured with a sweep rate of 0.05 mV/s
and a potential window of 0.01 V to 3.0 V. The EIS was recorded at an amplitude of 5 mV
and frequencies spanning from 1 Hz to 10° Hz. The rate test was conducted using LANHE
CT2001A battery tester (Wuhan Landian Co., China) with a potential window of 0.01 V to
2.8 V, and charging/discharging currents of 0.1 C, 0.2 C, 05 C, 1 C, and 2 C. The
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electrochemical performance of all batteries were evaluated on the mass basis of active
materials on one electrode.

RESULTS AND DISCUSSION

Characterization of HC Precursor

Poplar wood chips were hydrothermally treated to obtain precursors of wood-based
HC. In this process, poplar wood chips and water were placed in a high-temperature, high-
pressure vessel and reacted for 4 h at 220 °C. The HC yield was 48.5% from hydrothermal
treatment. The inorganic impurities in poplar wood chips and HC precursor were quantified
in terms of ash content. The ash content was reduced from 0.4654% of poplar wood to
0.2607% of HC precursor. Through calculation, it was determined that the elimination of
inorganic impurities from the wood chips during the hydrothermal treatment was 72.8%.
Adrian Beda et al. (2020) examined the impact of inorganic impurities present in biomass
on the characteristics of hard carbon and their subsequent electrochemical performance. It
was found that the removal of crystalline inorganic impurities (K, Ca, Si, and Mg-based
compounds), which was helpful for the increase of carbon content and electronic
conductivity.

Thermogravimetric analysis (TGA) was used to assess the thermal stability of
poplar wood and HC precursor. Both TGA and differential thermogravimetric (DTG)
curves of poplar wood and HC precursor are shown in Fig. 1. Three regions of weight loss
were observed in the TGA curves. The rapid weight loss at 250 °C to 400 °C is primarily
due to the pyrolysis of hemicellulose and cellulose and the consequent release of oxygen-
containing volatile substances (Velazquez Marti et al. 2023). The weight loss after 400 °C
results from the release of CO and CO2 from lignin and aromatic carbon through thermal
degradation (Skreiberg et al. 2011; Gao et al. 2023; Velazquez Marti et al. 2023). From
Table 2, the initial degradation temperature, which was defined as temperature
corresponding to 5% weight loss, was 254.4 °C for HC precursor, which was higher than
175.1 °C for poplar wood. From DTG curves in Fig. 1b, HC precursor showed Tmax
(temperature at the maximum degradation rate) 359.8 °C, slightly higher than Tmax 353.0
°C of poplar wood. This indicates the improvement of thermal stability of HC as result of
hydrothermal treatment. The residual weight at 800 °C was 34.7% for HC precursor, much
higher than 18.5% for poplar wood. These values are consistent to HC yield because weight
keeps constant at higher temperature.
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Fig. 1. (a) TGA curves of poplar wood and HC precursor, (b) DTG curves of poplar wood and HC
precursor
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Table 1. Characteristic Parameters of Poplar Wood and HC Precursor
Determined by TGA

Samples Tsw? (°C) Tiow? (°C) Tmac® (°C) Res'd‘zoe/o ;Ne'ght
Poplar wood 175.1 264.6 353.0 18.5
HC precursor 254.4 305.7 359.8 34.7

aTsy is defined as the initial degradation temperature at 5% weight loss;
bT10% is the degradation temperature at 10% weight loss;
“Tmax is the temperature at the maximum degradation rate

Physicochemical Characterization of HC

Scanning electron microscopy was employed to observe the morphology of poplar
wood and HC. As shown in Fig. 2, untreated poplar wood shows clear and organized xylem
structure with smooth cell walls. The HC exhibited granular sedimentary morphology. HC
materials from different carbonization temperatures are not distinguishable in morphology.
The irregular granular morphology of HC was attributed to the precipitation of the liquefied
wood during the hydrothermal process. These precipitates are very small in size, but
aggregated together to form HC granules with average size of 15 um. It is observed there
are pores and channels within HC granules, which are believed to be favorable for the
electrolyte penetration, and the embedding and detachment of Na*.

Fig. 2. SEM images of (a) poplar wood, (b) HC-1200, (c) HC-1400, and (d) HC-1600

Figure 3 shows XRD pattern and Raman spectra of HC. From Fig. 3a, two peaks in
the XRD pattern represent the graphite (002) crystal plane and (100) crystal plane and
appear at 23° and 43°, respectively. As the temperature for carbonization increased from
1200 °C to 1600 °C, both peaks showed tendency of being narrow and sharp. It shows that
the crystallinity and graphitization of HC were enhanced with the increase of carbonization
temperature. When the carbonization temperature was 1600 °C, the peak (002) shifted to
a higher angle. This suggests that the local structural development of HC tends to be short-
range ordered. In addition, no impurity peaks were detected in the XRD pattern, which
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indicated that the impurities in the precursor are removed during the hydrothermal process.
Based on the XRD pattern, structural parameters, such as dooz, La, Lc (Gonzélez et al.
2004), and N (Qiu et al. 2017a) of HC were calculated with reference to Scherrer formula
as descripted by Eqgs. 1 through 4; where 1 is the wavelength of the Cu K, radiation, and K
= 0.89. The equations are as follows:

A

dooz = 2sind 1)

KA
La = Bsin® (2)
(B is the half peak width of (002))

kA
Le = Bsin® (3)
(B is the half peak width of (100))

__ Lc
N = dooz ()

As illustrated in Table 2, the graphite-like layer spacing (dooz) was 0.381 nm at a
carbonization temperature of 1200 °C. When the carbonization temperature was increased
to 1600 °C, the doo2 decreased to 0.371 nm. The dooz2 of all HC is greater than the critical
minimum spacing (0.37 nm) for the insertion of Na* between graphite layers (Cao et al.
2012), and bigger than the doo2 of standard graphene layers (0.335 nm)(Katzen et al. 2018).
While the carbonization temperature increased, the average length of graphite-like
microcrystal (La), the thickness of graphite-like microcrystal (Lc), and average number of
graphene layer (N) increased from 4.24 nm, 0.87 nm, and 2.28 to 4.94 nm, 1.07 nm, and
2.93, respectively. The increase of dooz encouraged more Na* to be embedded, but too long
La prevented Na* diffusion. Electrochemical test results also confirmed this finding.

The XPS was performed to obtain the elemental composition and bonding of HC.
The XPS spectrum of HC (Fig. 3b) showed two peaks at 284.8 eV and 531.3 eV,
corresponding to C 1s and O 1s, respectively. There were no peaks for K (around 300 eV),
Si (around 100 eV), etc. in wood. It showed that HC after hydrothermal treatment had
minimal impurities and was below the detection limit of XPS. The amount of carbon was
91.8 at% for HC-1200, 93.5 at% for HC-1400, and 94.4 at% for HC-1600. The XPS
spectrum of C 1s was divided into three peaks (Fig. 3 d through f). The main peak at 284.8
eV corresponds to the sp>-hybridization C-C (Wei et al. 2009). The peaks at 286.3 eV and
288.5 eV correspond to C—O—C and C=0 groups, respectively (Ou et al. 2015). The two
peaks of O 1s at 531.2 eV and 532.6 eV correspond to C=0 and C-O-C, respectively (Ou
et al. 2015; Zizhang et al. 2017). The oxygen was mainly derived from heat-stable groups
in carbon and small amounts of oxygen and water adsorbed on the surface. Several studies
have shown that the surface redox reaction of C=0 with Na* enhances Na* storage (Kim
et al. 2013; Shao et al. 2013; Kim et al. 2014; Liu et al. 2016). The reversible reaction
can be expressed by Eq. 5:

—C-O-Na<«+>-C=0+Na"+e (5)

Looking at the percentage in C 1s and O 1s plots, HC-1400 has the highest
percentage of C=0, 14% and 85%, respectively. It was consistent with the results in the
rate plots where the HC-1400 has the highest capacity.
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Raman spectrograms of HC showed distinct D and G peaks at ~1338 cm~ and
~1586 cm1, respectively, both attributed to the sp? site. The D peak represents the atomic
pattern of sp? in the carbon ring (Ferrari and Basko 2013). There is no D peak without the
ring structure. The G peak represents the oscillation of all sp? atoms in the carbocyclic or
carbon chain (Ferrari etal. 2004). The integral area ratio of the G peak to the D peak (lc/Ip)
represents the defect concentration of the graphitic material, where an increase in the
integral intensity ratio corresponds to a decrease in defect concentration and an increase in
ordering (Andrea et al. 2004). From Table 2, it is shown that the Ic/lp increased from 0.48
to 0.77 when the carbonization temperature was increased from 1200 °C to 1600 °C. It
indicated that the orderliness of HC increases along with the carbonization temperatures,
which was consistent with the tendency to short-range orderliness in XRD (Fig. 3a).
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Fig. 3. (a) XRD pattern, (b) XPS spectra, (c) Raman spectra, (d through f) C 1s, and (g through i)
O 1s of HC materials from different carbonization temperatures
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Table 2. Structure Features of HC Materials from XRD Pattern and Raman

Spectra
Sample Label dooz (Nm) Lct (nm) La? (nm) N3 le/Ip*
HC-1200 0.381 0.87 4.24 2.28 0.48
HC-1400 0.376 0.92 4.39 2.44 0.61
HC-1600 0.371 1.07 4.94 2.93 0.77

Lc is the thickness of graphite-like microcrystals;

2 La is the average length of graphite-like microcrystals;

3 N is the average number of graphite-like microcrystalline layers;
4 Ie/lp is the integral intensity ratio of the G peak to the D peak

Electrochemical Performance of HC

The electrode kinetics of HC as anode for sodium-ion batteries were evaluated by
electrochemical impedance spectra (EIS) at amplitudes of 5 mV and frequencies ranging
from 1 Hz to 10° Hz. As shown in Fig. 4a, EIS consists of plotting so-called Nyquist
plots, which are composed of a semicircle in the high-frequency region and a short slanting
line in the low-frequency region. The diameters of the semicircle in the Nyquist plot usually
correspond to the charge transfer resistance (Rct). An increase in the diameter of the
semicircle indicates a slowing down of the electrochemical reaction at the electrode
surface. From Fig. 4a, HC-1400 sodium battery showed the lowest charge transfer
resistance, while HC-1200 sodium battery showed the highest charge transfer resistance.
The Warburg slope line represents the diffusion capacity of sodium ions in the electrode,
with a greater slope indicating a higher ion transport capacity (Moss et al. 2009; Nunes et
al. 2024). Figure 4a shows the HC-1400 had the highest slope, which indicated the fastest
electrochemical reaction on the surface and the strongest ion transport capacity. It was
consistent with the rate plots.

Figure 4b shows the cyclic voltammogram (CV) of the HC anode of SIBs in the
voltage range of 0 to 3 V. The shape of CV deviates to some extent from ‘duck’ shape. It
was observed from the Fig. 4b that the CV curves were smooth, which proved that the HC
material was stable and had no extra reactions. The nice symmetry of the redox peaks in
the figure also proved the high reversibility of the electrode reaction. During the positive
scanning, an oxidation peak was observed around 0.1 V, corresponding to the removal of
Na* from HC. The sharp reduction peak around 0.03 V observed in the negative scanning
corresponds to the insertion of Na* into HC (Wang et al. 2013). The oxidation peaks and
reduction peak showed a tendency of strengthening and then weakening with the increase
of carbonization temperature, which was highly consistent with the rate plots.

Figure 4c shows a rate plot where the reversible capacity of HC can be observed,
with a potential window of 0.01 V to 2.8 V and charging/discharging currents of 0.1 C, 0.2
C,05C,1C,and 2 C (1 C =372 mA h g?1). HC-1400 electrode showed the best
electrochemical performance, which reversible capacity attained 333 mA hg*at 0.1 C and
285 mA h gtat 2 C. The reversible capacity of HC-1200 and HC-1600 was 284 mA h g!
and 300 mA h g at 0.1 C, respectively. However, it was not distinguishable any more at
2 C, which is about 232 mA h g-*. Satisfactorily, all HC samples were cycled 25 times at
different current density and return to 0.1 C, the capacity could still be restored to the initial
amount. The electrode cycling performance for 200 cycles at a current density of 1 C is
shown in Fig. 4d. At the beginning of the cycle, the battery capacity of HC-1400 was 307
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mA h g~L. The battery capacity retained 92.9% after 200 cycles. This likewise occurred to
HC-1200 and HC-1600 as indicated by the capacity retentions of 90.8% and 89.58%,
respectively.
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Fig. 4. Electrochemical performance of HC electrodes: (a) Nyquist plots, (b) CVs, (c) rate plots,
and (d) Cycling plots

For comparison with HC-1400 from two-step synthesis, namely hydrothermal
treatment of wood and carbonization at 1400 °C, hard carbon from direct carbonization at
1400 °C of wood was synthesized and named as DHC-1400. Figure 5 shows the
comparison of the rate performance and cycling performance between HC-1400 and DHC-
1400.

The capacities of HC-1400 and DHC-1400 electrodes at various rates (Fig. 5a)
demonstrate superb rate capability 4 of HC-1400. The specific capacity of HC-1400 at
current density of 0.1 C, 0.2 C, 05 C, 1 C, 2 C is 333, 326, 315, 305, 285 mA h g%,
respectively. In comparison, DHC-1400 cannot deliver such a high capacity, especially at
larger rates. From Fig. 5b, HC-1400 also offers a slightly higher in cycling stability at rate
of 1 C over 200 cycles compared with DHC-1400. The capacity retention of DHC-1400
after 200 cycles was 89.3% , which is lower than 92.9% of HC-1400.
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Fig. 5. (a) Rate performance of HC-1400 and DHC-1400 at various rates from 0.1 C to 2 C; (b)
Cycling performance of HC-1400 and DHC-1400 at rate of 1 C

CONCLUSIONS

1. Hard carbons were obtained by hydrothermal treatment and subsequent carbonization
at different pyrolysis temperatures from 1200 °C to 1600 °C. The layer spacing of the
obtained hard carbons exceeded 0.37 nm, creating favorable conditions for the
insertion/removal of Na*.

2. The HC-1400 exhibited a maximum reversible capacity of 333 mA h gt at 0.1 C and
maintained a reversible capacity of 285 mA h g* at high current density 2 C. It showed
a capacity retention of 92.9% after 200 cycles at 1 C.

3. The synthesis of hard carbon from poplar wood offers promising opportunities for
sodium-ion battery energy storage because of its cost-effectiveness, high capacity,
excellent cycling stability, and efficient utilization of waste biomass.
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