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The nutrient composition and biostimulant properties of seaweed were 
determined as solid biofertilizer for cultivating tomato seedlings in a 
greenhouse. Seaweeds (Sargassum wightii, Sargassum longifolium, 
Laminaria digitata, and Gelidiella acerosa) were collected from rocky 
areas and turned into a powder, and their nutrient compositions were 
analyzed. The brown seaweed showed indoleacetic acid (IAA), gibberellic 
acid (GA3), indole butyric acid (IBA), and abscisic acid (ABA). The amount 
of IAA ranged from 0.52 to 21.5 μg/mL. Compared with the other brown 
algae, the G. acerosa extract presented the maximum amount of GA3 (149 
μg/mL). The amount of IBA ranged from 1.5 to 15.3 μg/mL, and the ABA 
level was high in S. wightii (2.5 μg/mL). All algae powders were subjected 
to biofertilizer preparation and their biostimulant properties were studied. 
The algal biostimulant improved flower cluster number, fruit number, shoot 
dry weight, and root dry weight in tomato plants in a greenhouse. 
Macroalgae fertilizer improved urease, phosphatase, invertase, and 
catalase activities (p<0.05) and the microbial population in the soil. The 
results showed positive effects of biostimulants on soil physicochemical 
and biological properties.  
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INTRODUCTION 
 

Seaweeds are used as fertilizers for legume plants and in horticulture because they 

have various mineral components, and these minerals are absent in other fertilizers. 

Seaweed also contains various growth-stimulating phytohormones that induce plant 

growth. In addition, various macro-and micronutrients present in seaweed can improve 

plant hormone synthesis and promote plant growth (Ateweberhan et al. 2008). Iodine, iron, 

aluminium, calcium, manganese, sulphur, phosphorus, dissolved nitrogen, chlorine, 

titanium, barium, boron, cobalt, potassium, and copper are the major minerals found in 

seaweed. Ulva lactuca contains increased amounts of K, N, Fe, and Mg and micronutrients 

such as Mn, Cu, B, Zn, Al, Cr, Ni, Pb, and Cd. Caulerpa racemosa contains minerals such 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

James et al. (2025). “Seaweeds & tomato growth,” BioResources 20(1), 1431-1451. 1432 

as Ca, Mg, and ammonia (Villares et al. 2007). Species such as Laminaria shinzii, 

Ascophylum nodosum, Gracilaria chilensis, Ecklonia maxima, and Durvillaea potatorum, 

are the major sources of minerals and are used for the preparation of fertilizers (Crouch et 

al. 1992; Craigie 2011). Because of their increased availability, seaweeds offer an 

inexpensive solution for improving crop yield and subsequently decreasing the applications 

of inorganic fertilizers in the field. Biostimulants prepared from seaweed improve crop 

yield and plant growth, increase biotic and abiotic stress tolerances, and increase the 

bioavailability of nutrients (Shukla et al. 2019; Wadduwage et al. 2023). The application 

of seaweed extract was found to improve abiotic stresses, such as salt stress and freezing, 

and drought stress in tomato, soybean, and Arabidopsis (Nair et al. 2012; Martynenko et 

al. 2016; Santaniello et al. 2017; Goni et al. 2018; Jithesh et al. 2019). Foliar application 

of seaweed extracts increased soil fertilization and improved yield in several crops, 

including sugarcane, wine grapes, vegetables, and strawberries (Khan et al. 2009; Arioli et 

al. 2015; Shukla et al. 2019; Muniswami et al. 2023). 

The application of seaweed fertilizer, which is environmentally friendly, can 

improve soil productivity and fertility (Ali et al. 2021). Seaweed extracts increase the total 

chlorophyll content in plants, including tomato plants, while improving their 

photosynthetic potential, stomatal conductance, transpiration rate, and antioxidant 

properties, which are positively correlated with increases in fruit yield and fresh weight 

(Carillo et al. 2020; Franzoni et al. 2022). The application of seaweed extracts may 

improve crop quality and yield by increasing the accumulation of beneficial secondary 

metabolites, including antioxidant compounds, alcohols, simple sugars, proline, and 

abscisic acid. In addition, the seaweed extract was found to mitigate the negative impacts 

of abiotic stress (El Khattabi et al. 2023). These extracts improved the quality 

characteristics of tomato fruits and reduced the accumulation of several toxic ions under 

abiotic stress (Di Stasio et al. 2018). The biostimulant properties of Padina gymnospora 

extract have been reported, and it improves nutrient uptake and absorption, and promotes 

tomato plant growth (Hernández-Herrera et al. 2014, 2016). However, the selection of 

seaweed extract is based on the type of crop and environmental conditions (Bose et al. 

2014; Rai et al. 2021; Khan et al. 2022). 

The soil treated with seaweed extract increases nutrients for the soil microbiome. 

Seaweed fertilizer improved the soil bacterial population (Sunarpi et al. 2020; Prasedya et 

al. 2022). In agriculture, the soil rhizosphere microbiome plays an important role in plant 

nutrition and breeding (Yang et al. 2017; Mendes et al. 2018). The available nutrients in 

the soil environment regulate the population of the soil microbiome (Krid et al. 2023). The 

application of Ascophyllum nodosum extract increased the shoot and root length, berry 

yield, physiological activity, and microbial population in the rhizosphere of strawberry 

plants (Alam et al. 2013). In carrots, the application of biostimulants is positively related 

to microbial activity and plant growth (Alam et al. 2014). The use of seaweed-based natural 

products has been gaining momentum in improved crop production systems owing to their 

growth hormones and bioactive components. The phytostimulatory characteristics result in 

improved crop yield in several commercial important crops. The phytoelicitor activity of 

seaweed extract, which was not completely elucidated, included improved plant defence 

systems in plants that significantly contribute to disease resistance, pest resistance, and 

abiotic stresses including salinity, drought, and cold. Treatment by seaweed extracts causes 

changes in the microbiome components of soil and plant in support of sustainable plant 

growth. Seaweed extract contain various phytohormones which helps in overall plant 

growth and crop production. The nutrient composition, and phytochemical components of 
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seaweed varied widely. Since seaweed extracts are organic, they are highly suited for crop 

production and environmental management. The authors hypothesized that the application 

of seaweed fertilizer would improve plant growth, microbial activity, and the microbial 

population. This study used tomato plants and applied seaweed fertilizer in a greenhouse. 

The plants growing in the pots were supplemented with seaweed fertilizer at specific time 

intervals. The plant biology, root growth, shoot growth, chlorophyll content of leaves, fruit 

yield, and fruit quality were analysed. The aim of this study was to analyse the effects of 

seaweed extract on plant growth, yield, and rhizosphere-associated microbes in tomato 

plants in a greenhouse. 

 

 
EXPERIMENTAL 
 
Seaweed Collection and Processing 

Four seaweed samples were collected in the early morning on the rocky shore, 

approximately 10 m from the shore along the Kanniyakumari coast, India (8° 5' 17.9016'' 

N and 77° 32' 18.4272'' E), in October 2022. The seaweeds were cleaned of extraneous 

substances, such as sand particles, epiphytes, and barnacles by repeatedly washing with 

seawater. The collected seaweeds were identified with monographs, taxonomic books, and 

reference from herbaria. To prepare samples for analytical experiments, fresh seaweed was 

washed with tap water and frozen at -80 °C for 12 h. The samples were lyophilized, and 

the macroalgae were finely powdered with a blender. The sample was labelled and stored 

in a deep freezer at -80 °C until further use. 

 

Proximate Composition and Mineral Content of Macroalgae 
 The collected seaweeds (Sargassum wightii, Sargassum longifolium, Laminaria 

digitata, and Gelidiella acerosa) were subjected to proximate and mineral analyses. The 

crude protein, ash, dry matter, crude fat, and dietary fibre contents were determined as 

described by the AOAC (AOAC 2006).The crude protein content of each sample was 

determined via a Kjeltec system (N×6.25). The ash content of each sample was determined 

through gravimetric method. Briefly, seaweeds were placed in a muffle furnace (Carbolite, 

UK) for 5 h, and the ash content was calculated. The moisture content of the algae was 

determined by drying 5 g of seaweed at 110 °C until a constant weight was obtained in a 

hot air oven.  

To determine the fat content, 50 g of seaweed was extracted with petroleum ether. 

The seaweed was hydrolyzed with 0.26 N sulfuric acid, incubated at 100 °C, and treated 

with 0.31 N sodium hydroxide for 30 min. The amount of dietary fibre was determined via 

the enzymatic-gravimetric method. The results are expressed as the percentage dry weight. 

To determine the mineral composition of the seaweed, 5 g of dried sample was dissolved 

in nitric acid (1 mL) and hydrogen peroxide and digested in a microwave oven. The mixture 

was subsequently shaken vigorously and filtered through Whatman number 1 filter paper. 

The amounts of minerals, such as calcium (Ca), magnesium (Mg), potassium (K), 

manganese (Mn), and iron (Fe), were analyzed using an atomic absorption 

spectrophotometer (Hitachi Z-5000, Tokyo, Japan) equipped with an air-acetylene burner. 

The amounts of phosphorus (P), sodium (Na), and selenium (Se) from the seaweed were 

tested via inductively coupled plasma‒mass spectrometry (ICP-MS) (Perkin Elmer ELAN 

9000, Wellesley, MA, USA). The mineral composition of the seaweed was expressed as 

mg/100 g dry weight. 
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Analysis of Plant Growth Hormones in the Seaweed Extracts 
 Approximately 1.0 g of each of the four algal powder samples was infused in 10 

mL of methanol (99.9% purity) and 1.0 mmol/L citric acid. The mixture was sonicated and 

incubated at 4 °C for 2 days. After 2 days, the mixture was centrifuged for 10 min at 5000 

g at 4 °C. Then, the clear supernatant was collected, and methanol (2 mL) was added and 

mixed. The mixture was incubated for 1 h and then centrifuged for 10 min at 5000 × g at 4 

°C. It was filtered through a 0.2-μm filter and diluted appropriately for analysis. The 

amounts of indoleacetic acid (IAA), gibberellic acid (GA3), indole butyric acid (IBA), and 

abscisic acid (ABA) in the extract were determined, and the results were compared with 

those of standards (>99% purity). The standard solutions were prepared with methanol, 

and the stock solutions were prepared at 1 mg/mL and stored at 4 °C until use. All the 

solvents were sonicated for 30 min prior to the experiments. High-performance liquid 

chromatography (Brea, CA, USA) was used to detect phytohormones. It was equipped with 

a Beckman Coulter 166 ultraviolet-visible (UV/VIS)detector system. Methanol and water 

(70:30, v/v) were used as the mobile phase, and the flow rate used was 0.5 mL/min. 

Approximately 20 μL of each of the four algal extracts were injected and detected at 280 

nm. 

 

Seaweed Fertilizer Preparation 
A solid fertilizer from seaweed was prepared as described previously by Prasedya 

et al. (2022). The biomass from all four seaweeds (500 g) (S. wightii, S. longifolium, L. 

digitata, and G. acerosa) was first fermented with a starter bacterium, and fermentation 

was carried out in Erlenmeyer flasks for 40 days as previously described (Bzdyk et al. 

2018). After 40 days of fermentation, the fermented biomass was used as solid fertilizer. It 

was applied as an enriched nutrient to the soil before the transplantation of tomato plants 

in a greenhouse environment. 

 

Tomato Seeds 
Tomato (Lycopersicon esculentum) seeds were purchased from a vegetable market 

and used for this study. The tomato seeds were dried prior to the experiment. The seeds 

were carefully planted into seedling trays containing fertile agricultural soil. The trays were 

maintained for twenty days at 23 ± 1 °C in a greenhouse.  

 

Greenhouse Experiment 
 Twenty-day-old tomato seedlings were used in this study. The seedlings were 

subsequently transplanted to round plastic pots containing agricultural soil and seaweed 

fertilizer (10:1, w/w). The concentration of seaweed biostimulant was fixed as described 

previously (Arioli et al. 2020). Seaweed fertilizer was applied directly to the potted soil in 

each set of experiments, which was irrigated daily. The tomato seedlings (control and 

experimental) were maintained in a greenhouse. The experiment was performed in a 

randomized complete block design with two duplicates for each set of experiments. For 

each set of experiments, 12 plants were used. The flowering and harvest time points were 

analyzed after 60 and 90 days (60 DAP and 90 DAP, respectively). The flowering 

development time (days of DAP) and fruit development were monitored daily. 

 

Plant Growth Analysis 
 Plant growth was analyzed by observing flower cluster and fruit numbers, root 

length, and shoot length. The dry weights of the root and shoot samples were analyzed by 
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drying the samples in an oven at 70 °C until a constant dry weight was reached, and the 

results were recorded with an electronic balance (Shimadzu, Japan). The growth profile 

was analyzed after 60 DAP and 90 DAP. 

 

Soil Macronutrient Analysis 
 The soil samples were collected from the experimental and control pots 60 DAP 

and 90 DAP. Approximately 300 g of soil sample was collected from the top layer in each 

pot. The sample was dried for five days at room temperature. The unwanted debris were 

subsequently removed. The amount of organic matter in each soil sample was quantified 

using the dichromate wet oxidation technique by Walkley and Black (1934) method. The 

total nitrogen in each soil sample was determined via the micro-Kjeldahl method. The 

amounts of nitrogen and potassium were analyzed using the inductively coupled plasma-

optical emission spectroscopy(ICP‒OES) technique. 

 
Soil Enzyme Activity 
 The urease activity of the soil was determined as described previously by Zantua 

and Bremner (2002). Approximately 5 g of each soil sample was mixed with 50 mL of 0.1 

M phosphate buffer (pH 7.0). The mixture was incubated for 24 h, after which the amount 

of NH4
+ ions released into the soil solutions was determined. Urease activity was expressed 

as U/g soil. Invertase activity was determined via the procedure reported by 

Balasubramanian et al. (1970). Glucose was used as the positive control. The amount of 

phosphatase activity in the soil was determined as described previously by Tabatabai and 

Bremner (1969). The amount of phosphatase activity was determined using colorimetric 

method in which p-nitrophenol phosphate and p-nitrophenol were used as standards. 

 

Determination of the Microbial Population in the Soil 
 The microbial population was determined from pots treated with seaweed fertilizer 

and the control. Briefly, 5 g of each soil sample was mixed with 95 mL of 0.9% saline and 

shaken for 30 min at room temperature. The mixture was subsequently centrifuged at 4 °C 

for 30 min at 5000×g. The supernatant was diluted with sterile demineralized water and 

used as a sample. To determine the soil bacteria on nutrient agar (Himedia, India), the 

sample was spread and incubated for 24 h at 37 °C. The fungi were isolated via potato 

dextrose agar media and incubated for 4 to 5 days at 32 °C. The sample was spread on 

starch casein agar medium and incubated for 5to10 days at 28 °C (Balasubramanian et al. 

2021). 

 

Statistical Analysis 
Analysis of variance was performed with SPSS (version 22, IBM, Armonk, NY, 

USA). The effects of fertilizer on plant growth, enzyme activity, and the microbial 

population were analyzed using statistical methods. The results were compared through the 

Tukey test, and the differences were considered significant at p<0.05. 

 

RESULTS AND DISCUSSION 
 

Proximate Analysis and Mineral Composition of Macroalgal Biomass 
 The proximate compositional analysis (ash, carbohydrate, crude fibre, total dietary 

fibre, moisture, lipid, and protein) based on the dry weight (DW) of seaweed was 

determined, and the results are presented in Table 1. The composition of the samples varied 
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widely according to the seaweed species. Overall, the ash content ranged from 4.1 ± 0.2 to 

21.4 ± 1.02% DW. In brown algae, the ash content has been reported to vary from 15% to 

45% (Øverland et al. 2019). Moreover, the range of ash content varies from sampling 

location. Bikker et al. (2020) analyzed the ash content of brown seaweeds in Ireland and 

France. The ash content ranged from 18.9% to 37.4% in A. nodosum and L. digitata. The 

total carbohydrate content of the seaweed ranged from 14.2 ± 0.1% DW (L. digitata) to 

48.2 ± 2.4% DW (G. acerosa). The seaweed extract resulted in increased carbohydrate 

contents (up to 48.2 ± 2.4% DW) and low-fat contents (1.05 ± 0.09% to 1.92 ± 0.2% DW). 

The carbohydrate and fat contents of the L. digitata biomass observed in this study were 

similar to those reported previously (Costa et al. 2022). The biochemical composition of 

wild macroalgal species varies with season, time of harvest, nutrient availability, water 

current, and pollution (Coaten et al. 2023). The mineral components of the seaweed were 

analyzed, and the results are expressed as mg/100 g DW in Table 1. Compared with the 

other seaweeds, L. digitata contained greater amounts of microminerals. Seaweeds are rich 

sources of several nutrients, vitamins, and plant growth hormones that directly influence 

cellular processes and improve crop yield and plant growth (Khan et al. 2009). A brown 

alga, A. nodosum, collected from the North Atlantic Ocean was used as a biostimulant. It 

is rich in several polysaccharides, vitamins and minerals, lipids, polyphenols, and proteins 

(Holdt and Kraan 2011). In the present study, the collected brown algae presented increased 

levels of carbohydrates, proteins, and micronutrients, however it varied among seaweed (S. 

latissima, A. esculenta, L. digitata, and L. hyperborean), which highlight the importance 

of brown algae in biostimulant preparation. The biochemical composition of S. latissima, 

A. esculenta, L. digitata, and L. hyperborean was reported previously. The amount of 

laminarin, alginate, mannitol, ash, proteins, moisture, metals, nitrogen, total carbon and 

polyphenolics varied based on season and harvest time (Schiener et al. 2015).  

 

Table 1. Proximate Composition and Mineral Content of Sargassum wightii, 
Sargassum longifolium, Laminaria digitata, and Gelidiella acerosa 

Composition S. wightii 
S. 

longifolium L. digitata G. acerosa 

Ash (DW%) 18.31 ± 1.1 20.5 ± 0.4 4.1 ± 0.2 21.4 ± 1.02 

Carbohydrate (DW%) 42.1 ± 1.3 43.2 ± 0.8 14.2 ± 0.1 48.2 ± 2.4 

Crude fibre (DW%) 9.03 ± 0.9 9.5 ± 0.11 10.3 ± 0.2 11.04 ± 2.2 

Total dietary fibre (DW%) 3.03  ±  0.17 4.08 ± 0.52 5.1 ± 0.21 5.2 ± 0.2 

Moisture (DW%) 14.04 ± 0.25 9.5 ± 0.13 10.3 ± 0.3 10.2 ± 0.4 

Lipid (DW%) 1.05 ± 0.09 1.3 ± 0.14 1.92 ± 0.2 1.07 ± 0.25 

Protein (DW%) 7.06  ±  0.28 10.52 ± 1.4 6.2 ± 0.1 12.4 ± 1.5 

Sodium (mg/100 g DW) 
6549.3  ± 

129 5092 ± 0.9 4021 ± 10.4 4098 ± 4.5 

Potassium (mg/100 g DW) 
1908.3 ±  

87.3 2052 ± 53 1409 ± 10.5 802.4 ± 2.2 

Calcium (mg/100 g DW) 908.3 ±  20.7 958 ± 92 792 ± 19 802.3 ± 2.1 

Magnesium (mg/100 g DW) 139 ± 10.2 209 ± 2.7 94.5 ± 2.5 303.7 ± 12.3 

Selenium (mg/100 g DW) 1.21 ± 0.02 0.92 ± 0.04 0.39 ± 0.09 2.87 ± 0.4 

Iron (mg/100 g DW) 302 ± 2.2 397 ± 3.1 206.4 ± 2.8 408.4 ± 10.5 
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Plant Growth Promoters in Seaweed Extracts 
 The brown seaweed contained IAA, GA3, IBA, and ABA. The amount of IAA 

ranged from 0.52 ± 0.03 to 21.5 ± 1.5μg/mL. Compared with the other brown algae, the G. 

acerosa extract presented the maximum amount of GA3 (149.1 ± 2.4 μg/mL). The amount 

of IBA ranged from 1.5 ± 0.12 to 15.3 ± 1.2 μg/mL, and the ABA level was high in S. 

wightii (2.5 ± 0.3 μg/mL) (Table 2). Similar to terrestrial plants, seaweeds are rich sources 

of various plant growth promoters. These plant growth promoters respond to physiological 

and developmental processes and provide adequate support to overcome biotic and abiotic 

stresses. Recently, plant growth promoters have been characterized from seaweeds with 

the aim of agronomic uses (Verma et al. 2016). In Spyridia filamentosa, the extract 

increased the IBA, KN, ABA, and IAA contents (Spagnuolo et al. 2022), which was similar 

to the plant growth promoter values obtained in this study. The plant growth-promoting 

properties of the seaweed used in this study were comparable with those reported 

previously (Sanderson et al. 1987). The seaweed Ascophyllum nodosum has been widely 

used as a source of phytohormones (Fan et al. 2013; Mattner et al. 2018; EL Boukhari et 

al. 2020; Shukla et al. 2021), and the brown algae characterized in this study presented 

comparable plant growth-promoting activities. It has been reported that plant growth 

promoters in seaweeds are not exclusively based on metabolic processes but may have 

specific physiological effects on growth in response to abiotic stress, especially 

environmental stimuli. In Ulva fasciata Delile, the amount of ABA was greater than that 

in Dictyotahumifusa Hörnig, and the production was greater in response to environmental 

stimuli. The available ABA in the extract improved the quality of the tomato plants. The 

ABA reportedly plays a typical role in various developmental processes, including shoot 

and root development, seed germination, and photosynthesis (Luo et al. 2014; Wang et al. 

2021). In this study, the phytohormone levels of all four brown algae were studied 

considering the use of all the extracts to understand their synergistic activity. However, the 

biostimulant activity of macroalgal combinations can differ from that of individual 

biostimulants (Colla et al. 2017). The combined effects of these three biostimulants on 

plants have been reported previously, and they improved the total yield, dry biomass, 

mineral composition, and chlorophyll content of Diplotaxis tenuifolia (Giordano et al. 

2020). The amount of fatty acids, polysaccharide, phytohormones, salicylic acid, (+)-

abscisic acid, indole-3-acetic acid, vitamins, and mineral nutrients varied widely among 

the seaweeds. The increased amount of these compounds improved biostimulant properties 

(Benítez García et al. 2020; Yang et al. 2023; Mughunth et al. 2024). 

 

Table 2. Plant Growth-Promoting Properties of Brown Seaweed 

Seaweed IAA (μg/mL) GA3 (μg/mL) IBA (μg/mL) ABA (μg/mL) 

S. wightii 14.3 ± 0.5a 25.3 ± 0.3a 10.2 ± 0.5a 2.5 ± 0.3a 

S. longifolium 8.2 ± 0.3b 18.5 ± 0.49b 1.5 ± 0.12b ND 

L. digitata 0.52 ± 0.03c 3.2 ± 0.18c 4.9 ± 0.2c ND 

G. acerosa 21.5 ± 1.5d 149.1 ± 2.4d 15.3 ± 1.2d 1.02 ± 0.02b 

Indoleacetic acid (IAA), gibberellic acid (GA3), indole butyric acid (IBA), and abscisic acid (ABA)  
Mean value within the same column followed by the different lower case letter(s) are statistically 
significant. 
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Synergistic Effects of Seaweed Biostimulants on Tomato Plants in a 
Greenhouse 
 The synergistic effect of the seaweed biostimulant on tomato plants was evaluated, 

and the plant growth-stimulating activity after 60 DAP and 90 DAP in a greenhouse is 

shown in Fig. 1. In the greenhouse experiments, the biostimulant significantly improved 

the growth of the tomato plants. The soil application of the seaweed-biostimulant increased 

the values of the observed morphological factors analyzed in this study. Compared with 

those of the control groups, the number of flower clusters increased 51% after 60 DAP. 

The fruit number increased significantly at 60 DAP (35%) and 90 DAP (52%) compared 

with that of the control (p<0.05). The shoot dry weight increased significantly at 60 DAP 

(15%) and 90 DAP (95%) (p<0.05). Similarly, the dry weight of the roots was greater in 

the tomato plants treated with the biostimulant than in the control plants at 60 DAP and 90 

DAP. In the present study, the early growth phase (60 DAP) resulted in improved growth 

compared with the later stages (90 DAP).  

Macroalgae manure has a wide range of biostimulant properties during the 

vegetative phase of plant growth, including shoot and root elongation, stimulation of root 

cell division, and hair development, an increased root-to-shoot ratio, and increased leaf 

surface area. Several studies have revealed that horticultural plants grow in terrestrial 

environments treated with seaweed extract or seaweed manure and exhibit a wide range of 

biostimulant properties during the early vegetative phase of plant growth compared with 

the latter stages (El-Naggar et al. 2005; Mulbry et al. 2007; Hernández-Herrera et al. 2016; 

Akila et al. 2019; Baroud et al. 2021). The beneficial role of macroalgal biostimulants 

observed in plants was attributed mainly to the presence of various macro- and micro-

nutrients in the macroalgal biostimulant, and most of the minerals were available in soluble 

form. These macro- and micro-nutrients, along with plant growth hormones, improve the 

vegetative growth of plants (Ahmed et al. 2021). In addition, seaweed fertilizer isa rich 

source of various bioactive secondary metabolites that can directly influence plant 

physiology and metabolic processes (Pirian et al. 2018; Benítez-García et al. 2020). The 

increased level of root architecture observed in this study could be due to the supply of 

adequate nutrients by seaweed nutrients.  

A trace level of phytohormones is present in seaweed biomass, which improves 

plant growth in a greenhouse (Kumari et al. 2013). Seaweed extracts improved seed 

germination rates and increases in seedling vigor by positively affecting root size and 

density. The seaweed extracts improved rooting architecture, and this could be a result of 

auxins in the extracts (Loconsole et al. 2024). Seaweed extracts improved water and 

nutrient uptake, which ultimately improved the overall growth of plants. Seaweeds 

improved the absorption of minerals and potassium uptake in the leaves. Seaweed extracts 

improved phytohormonal activity and chlorophyll content of leaves and inhibited 

chlorophyll degradation by the activity of betaines (Chrysargyris et al. 2018). The 

availability of various levels of phytohormones, including cytokinins, and the induction of 

host hormonal synthesis led to a steep increase in early flowering, fruit size, and yield. In 

addition, the seaweed extracts can modulate the expression of growth hormone genes, 

including cytokinin, auxin, and gibberellins (Ghaderiardakani et al. 2019). 
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Fig. 1. The effects of seaweed extract on flower cluster number (A), fruit number (B), shoot dry 
weight (C), and root dry weight (D) in tomato plants in a greenhouse. Mean  ±  SD values 
followed by different lowercase letters indicate statistically significant differences(p<0.05). 
Mean value after prefixed DAP followed by the different lower case letter(s) are statistically 
significant. 

 

Effect of Seaweed Manure on the Improvement of Soil Nutrients 
 The physicochemical properties of the soil growth media used in the greenhouse 

experiments are depicted in Table 3.The pH of the control soil sample was 7.21 ± 0.02, and 

the experimental soil used in this study was sandy. The three major nutrients, N, P, and K 

were significantly higher in the soil treated with macroalgal nutrients. It was previously 

reported that supplemented organic fertilizers generally improved essential macronutrients 

(N, P, and K) in soils (Moe et al. 2019; Adekiya et al. 2020). Similarly, Tursun (2022) used 

organic seaweed fertilizer to improve the growth and essential oil composition of coriander. 

In addition, Ashour et al. (2021) used commercial seaweed liquid fertilizer and reported 

improved antioxidant activities in hot pepper (Capsicum annuum). The improvement in 

NPK in the soil indicated improved fertility. The amount of NPK increased continuously 

at 60 DPI and 90 DPI. The increased level of NPK after 90 DPI showed that the availability 

of macro- and micro-nutrients would benefit the next plantation. In agriculture, P is 
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considered a major nutrient factor, and the increase in P in the soil was consistent with the 

findings of a previous study indicating that it improved crop yields (Cassidy et al. 2013). 

The application of seaweed fertilizers improved soil enzyme activities and the growth of 

Malus hupehensis Rehd. seedlings (Wang et al. 2016) and soil fertility (de Sosa et al. 

2023).The seaweed residues in the supplemented soil improved soil fertility and vine 

productivity (de Sosa et al. 2023). In addition, the seaweed (Ulva ohnoi) was used for the 

preparation of compost and the compost manure improved crop yield (Cole et al. 2016). 

The applied seaweed acted as a nitrogen source, increased sweet corn yield and quality, 

and improved soil quality (Possinger and Amador 2016).  

 

Table 3. Macronutrient Composition of Soil Treated with Seaweed Biostimulants 
in a Greenhouse 

Properties Control 60 DAP 90 DAP 

Total nitrogen 1.19 ± 0.02a 1.87 ± 0.02b 2.48 ± 0.03c 

Total phosphorus 0.41 ± 0.01a 0.59 ± 0.04b 0.71 ± 0.09c 

Total potassium 0.74 ± 0.02a 0.82 ± 0.11b 1.53 ± 0.22c 

 

Mean values within the same row followed by the different lower case letter(s) are 

statistically significant. 

 
Soil Enzyme Activity 
 Seaweed soil fertilizer improved the soil enzyme activities in the greenhouse. The 

application of seaweed fertilizer increased the activity of the tested soil enzymes (Table 4). 

The soil urease activity and soil phosphatase activity increased significantly (p<0.05). 

Compared with the control treatment, the control treatment had no significant effect on 

urease activity. Catalase activity increased marginally at 60 DPI and was statistically 

insignificant (p>0.05). Moreover, soil invertase activity was significantly greater in the 

seaweed-treated soil than in the control (p<0.05). Soil enzymes are produced by 

microorganisms and are closely related to the microbial community and activity. They are 

very important in catalyzing the enzymatic reactions required for nutrient cycling and 

organic matter decomposition (Demisie et al. 2014). The cultivation method, type of 

organic amendment, crop type, and climate conditions are all significant factors that 

influence enzymatic reactions. The available organic matter in the soil indicates microbial 

activity and soil fertility. In this study, phosphatase activity was assayed, and it was 

improved by macroalgal supplementation. It is a useful enzyme in agriculture because it 

hydrolyses organic phosphorus from the environment into inorganic phosphate. Plants 

utilize this inorganic phosphate directly (Amador et al. 1997). Several workers have shown 

an increase in soil enzyme activities after organic fertilizers, such as composts and 

manures, are applied (Akça and Namlı 2015; Chathurika et al. 2019). In agreement with 

these previous findings, soil enzyme activities significantly increased with the application 

of seaweed manure. In this study, the soil enzyme activity of urease and phosphatase was 

correlated with the application of organic fertilizer and the number of days of application. 

The application of inorganic fertilizers to the soil affects enzyme activities and soil fertility 

dynamics. The activities of soil enzymes, such as phosphatase, urease, catalase, and 

invertase, increase when plants are supplied with manure (Yang et al. 2008), and these 

results are consistent with those of the present study. Moreover, enzymatic activity in soil 

depends on several factors, such as the soil pH, organic matter level, content of biogenic 
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elements, and diversity of microorganisms. The brown algal seaweed fertilizer has been 

used in the okra planting field for a long period (2 years). The continuous application of 

algal residues improved soil fertility, soil enzyme activity and soil bacterial diversity. The 

soil microbiome is involved in nitrogen fixation, polysaccharide degradation, and enzyme 

production (Liu et al. 2023).  

 

Table 4. Effects of Weed Fertilizer on Soil Enzyme Activity in Greenhouses 

Enzymes 60 DAP 90 DAP Control 

Urease (U/g) 259.4 ± 10.1a 268.5 ± 5.9b 241 ± 11.3c 

Phosphatase (U/g) 8759 ± 14.7a 9057 ± 20.3b 8067 ± 102.4c 

Invertase (U/g) 18.3 ± 1.1a 25.4 ± 1.2b 15.3 ± 1.1c 

Catalase (U/g) 9.2 ± 0.86a 14.8 ± 1.7b 8.58 ± 0.54a 

Mean values within the same row followed by the different lower case letter(s) are statistically 
significant. 

 
Effect of Seaweed Manure on the Soil Microbial Population 
 In this study, the prepared seaweed manure improved the soil microbial population. 

In agricultural fields, plant roots are in contact with soil microbial structures. These 

interactions improve nutrient acquisition, enhance growth, facilitate disease suppression, 

and mitigate stress (El Boukhari et al. 2020). The application of seaweed nutrients to the 

soil in the current study improved the microbial communities after 60 days and 90 days of 

the experiment. Seaweed nutrients significantly (p<0.05) improved the bacterial, fungal, 

and actinomycete populations, and the results are expressed in CFU/g soil (Table 5, Fig. 

2). Moreover, the bacterial population was greater in the soil treated with seaweed nutrients 

than in the control. Overall, these findings show that seaweed nutrient application 

stimulated bacterial growth to a greater extent than fungal or actinomycetes did. The 

predominance of bacteria depends on the type of organic compost used as a soil 

amendment. Macroalgae supply nutrients in the form of carbohydrates, carbon, and energy 

for microbial populations (Illera-Vives et al. 2020). Seaweed manure improved the soil 

microbial population, thus improving the soil biogeochemical cycles. The present result 

was corroborative with previous findings. Wang et al. (2017) used seaweed fertilizer 

prepared from L. nigrescens and L. flavicans, which increased the bacterial and fungal 

populations compared with those of the control. In addition, seaweed extracts prepared 

from D. potatorum and A. nodosum improved the microbiological processes of the soil by 

increasing the total microbial load and increasing the availability of nitrogen. The available 

N-content in soil treated with seaweed extract improved the bacterial population and 

improved soil health (Hussain et al. 2021). The seaweed extracts improved nutrient 

recycling and microbial population. The seaweed biostimulants influenced the exudate 

composition, which directly affected rhizosphere associated microorganisms. The pattern 

and composition of root exudates affect the population size, structure, and activity (Ali et 

al. 2021).  
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Fig. 2. Growth of bacteria on nutrient agar plates (a through c), Fungi on potato dextrose agar 
media (d through f), and Actinomycetes on starch casein agar media (g through i) 

 

Table 5. Effect of Seaweed on the Microbial Population in the Soil Grown in the 
Greenhouse Environment 

Experiment Untreated Control 60 DAP 90 DAP 

Bacteria (×107) 1.82 ± 0.21a 2.76 ± 0.15b 3.42 ± 0.22c 

Fungi (×105) 1.01 ± 0.2a 1.42 ± 0.14b 1.44 ± 0.25b 

Actinomycetes (×103) 0.53 ± 0.08a 0.54 ± 0.1a 0.82 ± 0.11b 

Mean values within the same row followed by the different lower case letter(s) are statistically 
significant. 

 

 

CONCLUSIONS 
 

1. Proximate analyses of seaweed revealed that brown algae are rich of 

macronutrients, micronutrients, and minerals. The presence of phytohormones, 

including indoleacetic acid, gibberellic acid, indole butyric acid, and abscisic acid 

was detected. 
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2. Seaweed fertilizer was prepared using Sargassum wightii, Sargassum longifolium, 

Laminaria digitata, and Gelidiella acerosa. 

3. The supplemented algal biostimulant improved flower cluster and fruit number, 

shoot dry and root dry weight in tomato plants in a greenhouse. Macroalgae 

fertilizer improved soil enzyme activities and the microbial population. 
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